sgx_random_engine.cc 15.8 KB
Newer Older
nhynes committed
1 2 3 4 5 6 7 8
/*!
 *  Copyright (c) 2018 by Contributors
 * \file random/sgx_random_engine.h
 * \brief SGX trusted random engine
 */
#include <dmlc/logging.h>
#include <sgx_trts.h>
#include <algorithm>
9
#include <cmath>
nhynes committed
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
#include "../../runtime/sgx/common.h"

namespace tvm {
namespace contrib {

/*!
 * \brief An interface for generating [tensors of] random numbers.
 */
class RandomEngine {
 public:
   /*!
    * \brief Creates a RandomEngine, suggesting the use of a provided seed.
    */
  explicit RandomEngine(unsigned seed) {
    LOG(WARNING) << "SGX RandomEngine does not support seeding.";
  }

   /*!
    * \brief Seeds the underlying RNG, if possible.
    */
  inline void Seed(unsigned seed) {
    LOG(WARNING) << "SGX RandomEngine does not support seeding.";
  }

   /*!
    * \return the seed associated with the underlying RNG.
    */
  inline unsigned GetSeed() const {
    LOG(WARNING) << "SGX RandomEngine does not support seeding.";
    return 0;
  }

   /*!
    * \return a random integer sampled from the RNG.
    */
  inline unsigned GetRandInt() {
    int rand_int;
    TVM_SGX_CHECKED_CALL(
        sgx_read_rand(reinterpret_cast<unsigned char*>(&rand_int), sizeof(int)));
    return rand_int;
  }

   /*!
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    * \return a random integer sampled from Unif(low, high).
    */
  inline float GetUniform(float low, float high) {
    float max_int = static_cast<float>(std::numeric_limits<unsigned>::max());
    float unif01 = GetRandInt() / max_int;
    return low + unif01 * (high - low);
  }

   /*!
    * \return a random value sampled from Normal(loc, scale**2).
    */
  inline float GetNormal(float loc, float scale) {
    float sign = GetUniform(-1, 1);
    float sample = GetStandardNormalOneside();
    return loc + (sign > 0 ? scale : -scale) * sample;
  }

   /*!
nhynes committed
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    * \brief Fills a tensor with values drawn from Unif(low, high)
    */
  void SampleUniform(DLTensor* data, float low, float high) {
    CHECK_GT(high, low) << "high must be bigger than low";
    CHECK(data->strides == nullptr);

    DLDataType dtype = data->dtype;
    int64_t size = 1;
    for (int i = 0; i < data->ndim; ++i) {
      size *= data->shape[i];
    }

    CHECK(dtype.code == kDLFloat && dtype.bits == 32 && dtype.lanes == 1);

    std::generate_n(static_cast<float*>(data->data), size, [&] () {
      float max_int = static_cast<float>(std::numeric_limits<unsigned>::max());
      float unif01 = GetRandInt() / max_int;
      return low + unif01 * (high - low);
    });
  }
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

   /*!
    * \brief Fills a tensor with values drawn from Normal(loc, scale)
    */
  void SampleNormal(DLTensor* data, float loc, float scale) {
    CHECK_GT(scale, 0) << "scale must be positive";
    CHECK(data->strides == nullptr);

    DLDataType dtype = data->dtype;
    int64_t size = 1;
    for (int i = 0; i < data->ndim; ++i) {
      size *= data->shape[i];
    }

    CHECK(dtype.code == kDLFloat && dtype.bits == 32 && dtype.lanes == 1);

    std::generate_n(static_cast<float*>(data->data), size, [&] () {
      return GetNormal(loc, scale);
    });
  }

 private:
   /*!
    * \return a random value sampled from Normal(0, 1) such that the
    * sampled value is greater than tail
    */
  inline float GetStandardNormalTail(float tail) {
    while (true) {
      float u1 = GetUniform(0, 1);
      float u2 = GetUniform(0, 1);
      float x = - log(u1) / tail;
      float y = - log(u2);
      if (2 * y < x * x) {
        return x + tail;
      }
    }
  }

   /*!
    * \return a random positive value sampled from Normal(0, 1).
    */
  inline float GetStandardNormalOneside() {
    while (true) {
      unsigned i = GetRandInt() & 255;
      float x = GetUniform(0, ZIG_NORM_X[i]);
      if (x < ZIG_NORM_X[i+1]) {
        return x;
      }
      if (i == 0) {
        return GetStandardNormalTail(ZIG_NORM_X[1]);
      }
      float y = GetUniform(ZIG_NORM_F[i], ZIG_NORM_F[i+1]);
      if (y < exp(-0.5 * x * x)) {
        return x;
      }
    }
  }

   /*!
    * Tables for normal distribution which is sampled using the ziggurat algorithm.
    */
  static constexpr float ZIG_NORM_X[257] =
    {3.910757959537090045, 3.654152885361008796, 3.449278298560964462, 3.320244733839166074,
     3.224575052047029100, 3.147889289517149969, 3.083526132001233044, 3.027837791768635434,
     2.978603279880844834, 2.934366867207854224, 2.894121053612348060, 2.857138730872132548,
     2.822877396825325125, 2.790921174000785765, 2.760944005278822555, 2.732685359042827056,
     2.705933656121858100, 2.680514643284522158, 2.656283037575502437, 2.633116393630324570,
     2.610910518487548515, 2.589575986706995181, 2.569035452680536569, 2.549221550323460761,
     2.530075232158516929, 2.511544441625342294, 2.493583041269680667, 2.476149939669143318,
     2.459208374333311298, 2.442725318198956774, 2.426670984935725972, 2.411018413899685520,
     2.395743119780480601, 2.380822795170626005, 2.366237056715818632, 2.351967227377659952,
     2.337996148795031370, 2.324308018869623016, 2.310888250599850036, 2.297723348901329565,
     2.284800802722946056, 2.272108990226823888, 2.259637095172217780, 2.247375032945807760,
     2.235313384928327984, 2.223443340090905718, 2.211756642882544366, 2.200245546609647995,
     2.188902771624720689, 2.177721467738641614, 2.166695180352645966, 2.155817819875063268,
     2.145083634046203613, 2.134487182844320152, 2.124023315687815661, 2.113687150684933957,
     2.103474055713146829, 2.093379631137050279, 2.083399693996551783, 2.073530263516978778,
     2.063767547809956415, 2.054107931648864849, 2.044547965215732788, 2.035084353727808715,
     2.025713947862032960, 2.016433734904371722, 2.007240830558684852, 1.998132471356564244,
     1.989106007615571325, 1.980158896898598364, 1.971288697931769640, 1.962493064942461896,
     1.953769742382734043, 1.945116560006753925, 1.936531428273758904, 1.928012334050718257,
     1.919557336591228847, 1.911164563769282232, 1.902832208548446369, 1.894558525668710081,
     1.886341828534776388, 1.878180486290977669, 1.870072921069236838, 1.862017605397632281,
     1.854013059758148119, 1.846057850283119750, 1.838150586580728607, 1.830289919680666566,
     1.822474540091783224, 1.814703175964167636, 1.806974591348693426, 1.799287584547580199,
     1.791640986550010028, 1.784033659547276329, 1.776464495522344977, 1.768932414909077933,
     1.761436365316706665, 1.753975320315455111, 1.746548278279492994, 1.739154261283669012,
     1.731792314050707216, 1.724461502945775715, 1.717160915015540690, 1.709889657069006086,
     1.702646854797613907, 1.695431651932238548, 1.688243209434858727, 1.681080704722823338,
     1.673943330923760353, 1.666830296159286684, 1.659740822855789499, 1.652674147080648526,
     1.645629517902360339, 1.638606196773111146, 1.631603456932422036, 1.624620582830568427,
     1.617656869570534228, 1.610711622367333673, 1.603784156023583041, 1.596873794420261339,
     1.589979870021648534, 1.583101723393471438, 1.576238702733332886, 1.569390163412534456,
     1.562555467528439657, 1.555733983466554893, 1.548925085471535512, 1.542128153226347553,
     1.535342571438843118, 1.528567729435024614, 1.521803020758293101, 1.515047842773992404,
     1.508301596278571965, 1.501563685112706548, 1.494833515777718391, 1.488110497054654369,
     1.481394039625375747, 1.474683555695025516, 1.467978458615230908, 1.461278162507407830,
     1.454582081885523293, 1.447889631277669675, 1.441200224845798017, 1.434513276002946425,
     1.427828197027290358, 1.421144398672323117, 1.414461289772464658, 1.407778276843371534,
     1.401094763676202559, 1.394410150925071257, 1.387723835686884621, 1.381035211072741964,
     1.374343665770030531, 1.367648583594317957, 1.360949343030101844, 1.354245316759430606,
     1.347535871177359290, 1.340820365893152122, 1.334098153216083604, 1.327368577624624679,
     1.320630975217730096, 1.313884673146868964, 1.307128989027353860, 1.300363230327433728,
     1.293586693733517645, 1.286798664489786415, 1.279998415710333237, 1.273185207661843732,
     1.266358287014688333, 1.259516886060144225, 1.252660221891297887, 1.245787495544997903,
     1.238897891102027415, 1.231990574742445110, 1.225064693752808020, 1.218119375481726552,
     1.211153726239911244, 1.204166830140560140, 1.197157747875585931, 1.190125515422801650,
     1.183069142678760732, 1.175987612011489825, 1.168879876726833800, 1.161744859441574240,
     1.154581450355851802, 1.147388505416733873, 1.140164844363995789, 1.132909248648336975,
     1.125620459211294389, 1.118297174115062909, 1.110938046009249502, 1.103541679420268151,
     1.096106627847603487, 1.088631390649514197, 1.081114409698889389, 1.073554065787871714,
     1.065948674757506653, 1.058296483326006454, 1.050595664586207123, 1.042844313139370538,
     1.035040439828605274, 1.027181966030751292, 1.019266717460529215, 1.011292417434978441,
     1.003256679539591412, 0.995156999629943084, 0.986990747093846266, 0.978755155288937750,
     0.970447311058864615, 0.962064143217605250, 0.953602409875572654, 0.945058684462571130,
     0.936429340280896860, 0.927710533396234771, 0.918898183643734989, 0.909987953490768997,
     0.900975224455174528, 0.891855070726792376, 0.882622229578910122, 0.873271068082494550,
     0.863795545546826915, 0.854189171001560554, 0.844444954902423661, 0.834555354079518752,
     0.824512208745288633, 0.814306670128064347, 0.803929116982664893, 0.793369058833152785,
     0.782615023299588763, 0.771654424216739354, 0.760473406422083165, 0.749056662009581653,
     0.737387211425838629, 0.725446140901303549, 0.713212285182022732, 0.700661841097584448,
     0.687767892786257717, 0.674499822827436479, 0.660822574234205984, 0.646695714884388928,
     0.632072236375024632, 0.616896989996235545, 0.601104617743940417, 0.584616766093722262,
     0.567338257040473026, 0.549151702313026790, 0.529909720646495108, 0.509423329585933393,
     0.487443966121754335, 0.463634336771763245, 0.437518402186662658, 0.408389134588000746,
     0.375121332850465727, 0.335737519180459465, 0.286174591747260509, 0.215241895913273806,
     0.000000000000000000};
  static constexpr float ZIG_NORM_F[257] =
    {0.000477467764586655, 0.001260285930498598, 0.002609072746106363, 0.004037972593371872,
     0.005522403299264754, 0.007050875471392110, 0.008616582769422917, 0.010214971439731100,
     0.011842757857943104, 0.013497450601780807, 0.015177088307982072, 0.016880083152595839,
     0.018605121275783350, 0.020351096230109354, 0.022117062707379922, 0.023902203305873237,
     0.025705804008632656, 0.027527235669693315, 0.029365939758230111, 0.031221417192023690,
     0.033093219458688698, 0.034980941461833073, 0.036884215688691151, 0.038802707404656918,
     0.040736110656078753, 0.042684144916619378, 0.044646552251446536, 0.046623094902089664,
     0.048613553216035145, 0.050617723861121788, 0.052635418276973649, 0.054666461325077916,
     0.056710690106399467, 0.058767952921137984, 0.060838108349751806, 0.062921024437977854,
     0.065016577971470438, 0.067124653828023989, 0.069245144397250269, 0.071377949059141965,
     0.073522973714240991, 0.075680130359194964, 0.077849336702372207, 0.080030515814947509,
     0.082223595813495684, 0.084428509570654661, 0.086645194450867782, 0.088873592068594229,
     0.091113648066700734, 0.093365311913026619, 0.095628536713353335, 0.097903279039215627,
     0.100189498769172020, 0.102487158942306270, 0.104796225622867056, 0.107116667775072880,
     0.109448457147210021, 0.111791568164245583, 0.114145977828255210, 0.116511665626037014,
     0.118888613443345698, 0.121276805485235437, 0.123676228202051403, 0.126086870220650349,
     0.128508722280473636, 0.130941777174128166, 0.133386029692162844, 0.135841476571757352,
     0.138308116449064322, 0.140785949814968309, 0.143274978974047118, 0.145775208006537926,
     0.148286642733128721, 0.150809290682410169, 0.153343161060837674, 0.155888264725064563,
     0.158444614156520225, 0.161012223438117663, 0.163591108232982951, 0.166181285765110071,
     0.168782774801850333, 0.171395595638155623, 0.174019770082499359, 0.176655321444406654,
     0.179302274523530397, 0.181960655600216487, 0.184630492427504539, 0.187311814224516926,
     0.190004651671193070, 0.192709036904328807, 0.195425003514885592, 0.198152586546538112,
     0.200891822495431333, 0.203642749311121501, 0.206405406398679298, 0.209179834621935651,
     0.211966076307852941, 0.214764175252008499, 0.217574176725178370, 0.220396127481011589,
     0.223230075764789593, 0.226076071323264877, 0.228934165415577484, 0.231804410825248525,
     0.234686861873252689, 0.237581574432173676, 0.240488605941449107, 0.243408015423711988,
     0.246339863502238771, 0.249284212419516704, 0.252241126056943765, 0.255210669955677150,
     0.258192911338648023, 0.261187919133763713, 0.264195763998317568, 0.267216518344631837,
     0.270250256366959984, 0.273297054069675804, 0.276356989296781264, 0.279430141762765316,
     0.282516593084849388, 0.285616426816658109, 0.288729728483353931, 0.291856585618280984,
     0.294997087801162572, 0.298151326697901342, 0.301319396102034120, 0.304501391977896274,
     0.307697412505553769, 0.310907558127563710, 0.314131931597630143, 0.317370638031222396,
     0.320623784958230129, 0.323891482377732021, 0.327173842814958593, 0.330470981380537099,
     0.333783015832108509, 0.337110066638412809, 0.340452257045945450, 0.343809713148291340,
     0.347182563958251478, 0.350570941482881204, 0.353974980801569250, 0.357394820147290515,
     0.360830600991175754, 0.364282468130549597, 0.367750569780596226, 0.371235057669821344,
     0.374736087139491414, 0.378253817247238111, 0.381788410875031348, 0.385340034841733958,
     0.388908860020464597, 0.392495061461010764, 0.396098818517547080, 0.399720314981931668,
     0.403359739222868885, 0.407017284331247953, 0.410693148271983222, 0.414387534042706784,
     0.418100649839684591, 0.421832709231353298, 0.425583931339900579, 0.429354541031341519,
     0.433144769114574058, 0.436954852549929273, 0.440785034667769915, 0.444635565397727750,
     0.448506701509214067, 0.452398706863882505, 0.456311852680773566, 0.460246417814923481,
     0.464202689050278838, 0.468180961407822172, 0.472181538469883255, 0.476204732721683788,
     0.480250865911249714, 0.484320269428911598, 0.488413284707712059, 0.492530263646148658,
     0.496671569054796314, 0.500837575128482149, 0.505028667945828791, 0.509245245998136142,
     0.513487720749743026, 0.517756517232200619, 0.522052074674794864, 0.526374847174186700,
     0.530725304406193921, 0.535103932383019565, 0.539511234259544614, 0.543947731192649941,
     0.548413963257921133, 0.552910490428519918, 0.557437893621486324, 0.561996775817277916,
     0.566587763258951771, 0.571211506738074970, 0.575868682975210544, 0.580559996103683473,
     0.585286179266300333, 0.590047996335791969, 0.594846243770991268, 0.599681752622167719,
     0.604555390700549533, 0.609468064928895381, 0.614420723892076803, 0.619414360609039205,
     0.624450015550274240, 0.629528779928128279, 0.634651799290960050, 0.639820277456438991,
     0.645035480824251883, 0.650298743114294586, 0.655611470583224665, 0.660975147780241357,
     0.666391343912380640, 0.671861719900766374, 0.677388036222513090, 0.682972161648791376,
     0.688616083008527058, 0.694321916130032579, 0.700091918140490099, 0.705928501336797409,
     0.711834248882358467, 0.717811932634901395, 0.723864533472881599, 0.729995264565802437,
     0.736207598131266683, 0.742505296344636245, 0.748892447223726720, 0.755373506511754500,
     0.761953346841546475, 0.768637315803334831, 0.775431304986138326, 0.782341832659861902,
     0.789376143571198563, 0.796542330428254619, 0.803849483176389490, 0.811307874318219935,
     0.818929191609414797, 0.826726833952094231, 0.834716292992930375, 0.842915653118441077,
     0.851346258465123684, 0.860033621203008636, 0.869008688043793165, 0.878309655816146839,
     0.887984660763399880, 0.898095921906304051, 0.908726440060562912, 0.919991505048360247,
     0.932060075968990209, 0.945198953453078028, 0.959879091812415930, 0.977101701282731328,
     1.000000000000000000};
nhynes committed
284 285
};

286 287 288
constexpr float RandomEngine::ZIG_NORM_X[];
constexpr float RandomEngine::ZIG_NORM_F[];

nhynes committed
289 290
}  // namespace contrib
}  // namespace tvm