curve_editor2d.cpp 13.4 KB
Newer Older
Yijun Tan committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
/*
 #
 #  File        : curve_editor2d.cpp
 #                ( C++ source file )
 #
 #  Description : A simple user interface to construct 2D spline curves.
 #                This file is a part of the CImg Library project.
 #                ( http://cimg.eu )
 #
 #  Copyright   : David Tschumperlé
 #                ( http://tschumperle.users.greyc.fr/ )
 #                Antonio Albiol Colomer
 #                ( http://personales.upv.es/~aalbiol/index-english.html )
 #
 #  License     : CeCILL v2.0
 #                ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
 #
 #  This software is governed by the CeCILL  license under French law and
 #  abiding by the rules of distribution of free software.  You can  use,
 #  modify and/ or redistribute the software under the terms of the CeCILL
 #  license as circulated by CEA, CNRS and INRIA at the following URL
 #  "http://www.cecill.info".
 #
 #  As a counterpart to the access to the source code and  rights to copy,
 #  modify and redistribute granted by the license, users are provided only
 #  with a limited warranty  and the software's author,  the holder of the
 #  economic rights,  and the successive licensors  have only  limited
 #  liability.
 #
 #  In this respect, the user's attention is drawn to the risks associated
 #  with loading,  using,  modifying and/or developing or reproducing the
 #  software by the user in light of its specific status of free software,
 #  that may mean  that it is complicated to manipulate,  and  that  also
 #  therefore means  that it is reserved for developers  and  experienced
 #  professionals having in-depth computer knowledge. Users are therefore
 #  encouraged to load and test the software's suitability as regards their
 #  requirements in conditions enabling the security of their systems and/or
 #  data to be ensured and,  more generally, to use and operate it in the
 #  same conditions as regards security.
 #
 #  The fact that you are presently reading this means that you have had
 #  knowledge of the CeCILL license and that you accept its terms.
 #
*/

#include "CImg.h"
using namespace cimg_library;
#undef min
#undef max

// Compute distance from a point to a segment.
//---------------------------------------------
float dist_segment(const float x, const float y, const float x1, const float y1, const float x2, const float y2) {
  const float
    dx = x2 - x1,
    dy = y2 - y1,
    long_segment = (float)std::sqrt(dx*dx + dy*dy);
  if (long_segment==0) { const float ddx = x - x1, ddy = y - y1; return (float)std::sqrt(ddx*ddx + ddy*ddy); }
  const float
    unitx = dx/long_segment,
    unity = dy/long_segment,
    vx = x - x1,
    vy = y - y1,
    long_proy = vx*unitx + vy*unity,
    proyx = x1 + long_proy*unitx,
    proyy = y1 + long_proy*unity;
  if (long_proy>long_segment) { const float ddx = x - x2, ddy = y - y2; return std::sqrt(ddx*ddx + ddy*ddy); }
  else if (long_proy<0) { const float ddx = x - x1, ddy = y - y1; return std::sqrt(ddx*ddx + ddy*ddy); }
  const float ddx = x - proyx, ddy = y - proyy;
  return std::sqrt(ddx*ddx + ddy*ddy);
}

// Main procedure
//---------------
int main(int argc, char **argv) {

  // Read command line parameters
  //-----------------------------
  cimg_usage("2D Spline Curve Editor");
  const char *file_i = cimg_option("-i",(char*)0,"Input image");
  const float contrast = cimg_option("-contrast",0.6f,"Image contrast");
  const char *file_ip = cimg_option("-ip",(char*)0,"Input control points");
  const char *file_oc = cimg_option("-oc",(char*)0,"Output curve points");
  const char *file_op = cimg_option("-op",(char*)0,"Output control points");
  const char *file_od = cimg_option("-od",(char*)0,"Output distance function");
  bool interp = cimg_option("-poly",true,"Use polynomial interpolation");
  bool closed = cimg_option("-closed",true,"Closed curve");
  bool show_tangents = cimg_option("-tangents",false,"Show tangents");
  bool show_points = cimg_option("-points",true,"Show control points");
  bool show_outline = cimg_option("-outline",true,"Show polygon outline");
  bool show_indices = cimg_option("-indices",true,"Show points indices");
  bool show_coordinates = cimg_option("-coords",false,"Show points coordinates");
  const float precision = cimg_option("-prec",0.05f,"Precision of curve discretization");

  // Init image data
  //-----------------
  const unsigned char yellow[] = { 255,255,0 }, white[] = { 255,255,255 }, green[] = { 0,255,0 },
                      blue[] = { 120,200,255 }, purple[] = { 255,100,255 }, black[] = { 0,0,0 };
  CImg<unsigned char> img0, img, help_img;
  if (file_i) {
    std::fprintf(stderr,"\n - Load input image '%s' : ",cimg::basename(file_i));
    img0 = CImg<>(file_i).normalize(0,255.0f*contrast);
    std::fprintf(stderr,"Size = %dx%dx%dx%d \n",img0.width(),img0.height(),img0.depth(),img0.spectrum());
    img0.resize(-100,-100,1,3);
  }
  else {
    std::fprintf(stderr,"\n - No input image specified, use default 512x512 image.\n");
    img0.assign(512,512,1,3,0).draw_grid(32,32,0,0,false,false,green,0.4f,0xCCCCCCCC,0xCCCCCCCC);
  }

  help_img.assign(220,210,1,3,0).
    draw_text(5,5,
              "------------------------------------------\n"
              "2D Curve Editor\n"
              "------------------------------------------\n"
              "Left button : Create or move control point\n"
              "Right button : Delete control point\n"
              "Spacebar : Switch interpolation\n"
              "Key 'C' : Switch open/closed mode\n"
              "Key 'T' : Show/hide tangents\n"
              "Key 'P' : Show/hide control points\n"
              "Key 'O' : Show/hide polygon outline\n"
              "Key 'N' : Show/hide points indices\n"
              "Key 'X' : Show/hide points coordinates\n"
              "Key 'H' : Show/hide this help\n"
              "Key 'S' : Save control points\n"
              "Key 'R' : Reset curve\n",
              green);
  CImgDisplay disp(img0,"2D Curve Editor",0);
  CImgList<float> points, curve;
  bool moving = false, help = !file_i;

  if (file_ip) {
    std::fprintf(stderr," - Load input control points '%s' : ",cimg::basename(file_ip));
    points = CImg<>(file_ip).transpose()<'x';
    std::fprintf(stderr," %u points\n",points.size());
  }

  // Enter interactive loop
  //------------------------
  while (!disp.is_closed() && !disp.is_keyESC() && !disp.is_keyQ()) {

    // Handle mouse manipulation
    //---------------------------
    const unsigned int button = disp.button();
    const float
      mx = disp.mouse_x()*(float)img0.width()/disp.width(),
      my = disp.mouse_y()*(float)img0.height()/disp.height();

    if (points && button && mx>=0 && my>=0) {

      // Find nearest point and nearest segment
      float dmin_pt = cimg::type<float>::max(), dmin_seg = dmin_pt;
      unsigned int p_pt = 0, p_seg = 0;
      cimglist_for(points,p) {
        const unsigned int
          pnext = closed?(p + 1)%points.size():(p + 1<(int)points.size()?p + 1:p);
        const float
          xp = points(p,0),
          yp = points(p,1);
        const float
          d_pt  = (xp - mx)*(xp - mx) + (yp - my)*(yp - my),
	  d_seg = dist_segment(mx,my,xp,yp,points(pnext,0),points(pnext,1));
        if (d_pt<dmin_pt)   { dmin_pt = d_pt; p_pt = p; }
        if (d_seg<dmin_seg) { dmin_seg = d_seg; p_seg = p; }
      }

      // Handle button
      if (button&1) {
        if (dmin_pt<100 || moving) { points(p_pt,0) = mx; points(p_pt,1) = my; }
        else points.insert(CImg<>::vector(mx,my),p_seg + 1);
        moving = true;
      }
      if (button&2 && dmin_pt<100) {
        if (points.size()>3) points.remove(p_pt);
        disp.set_button();
      }
    }
    if (!button) moving = false;

    if (disp.key()) {
      switch (disp.key()) {
      case cimg::keySPACE : interp = !interp; break;
      case cimg::keyC : closed = !closed; break;
      case cimg::keyT : show_tangents = !show_tangents; break;
      case cimg::keyP : show_points = !show_points; break;
      case cimg::keyO : show_outline = !show_outline; break;
      case cimg::keyN : show_indices = !show_indices; break;
      case cimg::keyX : show_coordinates = !show_coordinates; break;
      case cimg::keyR : points.assign(); break;
      case cimg::keyH : help = !help; break;
      case cimg::keyS : {
        const char *filename = file_op?file_op:"curve_points.dlm";
        std::fprintf(stderr," - Save control points in '%s'\n",filename);
        (points>'x').transpose().save(filename);
      } break;
      }
      disp.set_key();
    }

    // Init list of points if empty
    //------------------------------
    if (!points) {
      const float
        x0 = img0.width()/4.0f,
        y0 = img0.height()/4.0f,
        x1 = img0.width() - x0,
        y1 = img0.height() - y0;
      points.insert(CImg<>::vector(x0,y0)).
        insert(CImg<>::vector(x1,y0)).
        insert(CImg<>::vector(x1,y1)).
        insert(CImg<>::vector(x0,y1));
    }

    // Estimate curve tangents
    //-------------------------
    CImg<> tangents(points.size(),2);
    cimglist_for(points,p) {
      const unsigned int
        p0 = closed?(p + points.size() - 1)%points.size():(p?p - 1:0),
        p1 = closed?(p + 1)%points.size():(p + 1<(int)points.size()?p + 1:p);
      const float
        x  = points(p,0),
        y  = points(p,1),
        x0 = points(p0,0),
        y0 = points(p0,1),
        x1 = points(p1,0),
        y1 = points(p1,1),
        u0 = x - x0,
        v0 = y - y0,
        n0 = 1e-8f + (float)std::sqrt(u0*u0 + v0*v0),
        u1 = x1 - x,
        v1 = y1 - y,
        n1 = 1e-8f + (float)std::sqrt(u1*u1 + v1*v1),
        u = u0/n0 + u1/n1,
        v = v0/n0 + v1/n1,
        n = 1e-8f + (float)std::sqrt(u*u + v*v),
        fact = 0.5f*(n0 + n1);
      tangents(p,0) = fact*u/n;
      tangents(p,1) = fact*v/n;
    }

    // Estimate 3th-order polynomial interpolation
    //---------------------------------------------
    curve.assign();
    const unsigned int pmax = points.size() - (closed?0:1);
    for (unsigned int p0 = 0; p0<pmax; p0++) {
      const unsigned int
        p1 = closed?(p0 + 1)%points.size():(p0 + 1<points.size()?p0 + 1:p0);
      const float
        x0 = points(p0,0),
        y0 = points(p0,1),
        x1 = points(p1,0),
        y1 = points(p1,1);
      float ax = 0, bx = 0, cx = 0, dx = 0, ay = 0, by = 0, cy = 0, dy = 0;
      if (interp) {
        const float
          u0 = tangents(p0,0),
          v0 = tangents(p0,1),
          u1 = tangents(p1,0),
          v1 = tangents(p1,1);
        ax = 2*(x0 - x1) + u0 + u1;
        bx = 3*(x1 - x0) - 2*u0 - u1;
        cx = u0;
        dx = x0;
        ay = 2*(y0 - y1) + v0 + v1;
        by = 3*(y1 - y0) - 2*v0 - v1;
        cy = v0;
        dy = y0;
      } else {
        ax = ay = bx = by = 0;
        dx = x0;
        dy = y0;
        cx = x1 - x0;
        cy = y1 - y0;
      }
      const float tmax = 1 + precision;
      for (float t = 0; t<tmax; t+=precision) {
        const float
          xt = ax*t*t*t + bx*t*t + cx*t + dx,
          yt = ay*t*t*t + by*t*t + cy*t + dy;
        curve.insert(CImg<>::vector(xt,yt));
      }
    }

    // Draw curve and display image
    //-------------------------------
    const float
      factx = (float)disp.width()/img0.width(),
      facty = (float)disp.height()/img0.height();
    img = img0.get_resize(disp.width(),disp.height());
    if (help) img.draw_image(help_img,0.6f);
    if (interp && show_outline) {
      CImg<> npoints = points>'x';
      npoints.get_shared_row(0)*=factx;
      npoints.get_shared_row(1)*=facty;
      img.draw_polygon(npoints,blue,0.4f);
      if (closed) img.draw_polygon(npoints,yellow,0.8f,0x11111111);
      else img.draw_line(npoints,yellow,0.8f,0x11111111);
    }
    CImg<> ncurve = curve>'x';
    ncurve.get_shared_row(0)*=factx;
    ncurve.get_shared_row(1)*=facty;
    if (closed) img.draw_polygon(ncurve,white,1.0f,~0U);
    else img.draw_line(ncurve,white);

    if (show_points) cimglist_for(points,p) {
      const float
        x = points(p,0)*factx,
        y = points(p,1)*facty;
      if (show_tangents) {
        const float
          u = tangents(p,0),
          v = tangents(p,1),
          n = 1e-8f + (float)std::sqrt(u*u + v*v),
          nu = u/n,
          nv = v/n;
        img.draw_arrow((int)(x - 15*nu),(int)(y - 15*nv),(int)(x + 15*nu),(int)(y + 15*nv),green);
      }
      if (show_indices) img.draw_text((int)x,(int)(y - 16),"%d",purple,black,1,13,p);
      if (show_coordinates)
        img.draw_text((int)(x - 24),(int)(y + 8),"(%d,%d)",yellow,black,0.5f,13,(int)points(p,0),(int)points(p,1));
      img.draw_circle((int)x,(int)y,3,blue,0.7f);
    }

    img.display(disp);
    disp.wait();

    if (disp.is_resized()) disp.resize(false);
  }

  // Save output result and exit
  //-----------------------------
  if (file_op) {
    std::fprintf(stderr," - Save control points in '%s'\n",cimg::basename(file_op));
    (points>'x').transpose().save(file_op);
  }
  if (file_oc) {
    std::fprintf(stderr," - Save curve points in '%s'\n",cimg::basename(file_oc));
    (curve>'x').transpose().save(file_oc);
  }
  if (file_od) {
    std::fprintf(stderr," - Computing distance function, please wait...."); std::fflush(stderr);
    CImg<> ncurve = (closed?(+curve).insert(curve[0]):curve)>'x';
    const float zero = 0.0f, one = 1.0f;
    CImg<> distance =
      CImg<>(img0.width(),img0.height(),1,1,-1.0f).draw_line(ncurve,&zero).draw_fill(0,0,&one).
      distance(0);
    std::fprintf(stderr,"\n - Save distance function in '%s'\n",cimg::basename(file_od));
    distance.save(file_od);
  }

  std::fprintf(stderr," - Exit.\n");
  std::exit(0);
  return 0;
}