Commit c57546fe by Richard Sandiford Committed by Richard Sandiford

Fix a case in which the vector cost model was ignored

This patch fixes a case in which we vectorised something with a
fully-predicated loop even after the cost model had rejected it.
E.g. the loop in the testcase has the costs:

  Vector inside of loop cost: 27
  Vector prologue cost: 0
  Vector epilogue cost: 0
  Scalar iteration cost: 7
  Scalar outside cost: 6
  Vector outside cost: 0
  prologue iterations: 0
  epilogue iterations: 0

and we can see that the loop executes at most three times, but we
decided to vectorise it anyway.

(The costs here are equal for three iterations, but the same thing
happens even when the vector code is strictly more expensive.)

The problem is the handling of "/VF" in:

  /* Calculate number of iterations required to make the vector version
     profitable, relative to the loop bodies only.  The following condition
     must hold true:
     SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
     where
     SIC = scalar iteration cost, VIC = vector iteration cost,
     VOC = vector outside cost, VF = vectorization factor,
     PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
     SOC = scalar outside cost for run time cost model check.  */

We treat the "/VF" as truncating, but for fully-predicated loops, it's
closer to a ceil division, since fractional iterations are handled by a
full iteration with some predicate bits set to false.

The easiest fix seemed to be to calculate the minimum number of vector
iterations first, then use that to calculate the minimum number of scalar
iterations.

Calculating the minimum number of vector iterations might make sense for
unpredicated loops too, since calculating the scalar niters directly
doesn't take into account the fact that the VIC multiple has to be an
integer.  But the handling of PL_ITERS and EP_ITERS for unpredicated
loops is a bit hand-wavy anyway, so maybe vagueness here cancels out
vagueness there?

Either way, changing this for unpredicated loops would be much too
invasive for stage 4, so the patch keeps it specific to fully-predicated
loops (i.e. SVE) for now.  There's no functional change for other targets.

2019-03-18  Richard Sandiford  <richard.sandiford@arm.com>

gcc/
	* tree-vect-loop.c (vect_estimate_min_profitable_iters): Fix the
	calculation of the minimum number of scalar iterations for
	fully-predicated loops.

gcc/testsuite/
	* gcc.target/aarch64/sve/cost_model_1.c: New test.

From-SVN: r269763
parent cfce6e05
2019-03-18 Richard Sandiford <richard.sandiford@arm.com>
* tree-vect-loop.c (vect_estimate_min_profitable_iters): Fix the
calculation of the minimum number of scalar iterations for
fully-predicated loops.
2019-03-18 Martin Jambor <mjambor@suse.cz> 2019-03-18 Martin Jambor <mjambor@suse.cz>
PR tree-optimization/89546 PR tree-optimization/89546
......
2019-03-18 Richard Sandiford <richard.sandiford@arm.com>
* gcc.target/aarch64/sve/cost_model_1.c: New test.
2019-03-18 Martin Jambor <mjambor@suse.cz> 2019-03-18 Martin Jambor <mjambor@suse.cz>
PR tree-optimization/89546 PR tree-optimization/89546
......
/* { dg-options "-O2 -ftree-vectorize -fdump-tree-vect-details" } */
void
f (unsigned int *restrict x, unsigned int *restrict y,
unsigned char *restrict z, unsigned int n)
{
for (unsigned int i = 0; i < n % 4; ++i)
x[i] = x[i] + y[i] + z[i];
}
/* { dg-final { scan-tree-dump "not vectorized: estimated iteration count too small" vect } } */
/* { dg-final { scan-tree-dump "vectorized 0 loops" vect } } */
...@@ -3600,14 +3600,89 @@ vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo, ...@@ -3600,14 +3600,89 @@ vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
/* Calculate number of iterations required to make the vector version /* Calculate number of iterations required to make the vector version
profitable, relative to the loop bodies only. The following condition profitable, relative to the loop bodies only. The following condition
must hold true: must hold true:
SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC SIC * niters + SOC > VIC * ((niters - NPEEL) / VF) + VOC
where where
SIC = scalar iteration cost, VIC = vector iteration cost, SIC = scalar iteration cost, VIC = vector iteration cost,
VOC = vector outside cost, VF = vectorization factor, VOC = vector outside cost, VF = vectorization factor,
PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations NPEEL = prologue iterations + epilogue iterations,
SOC = scalar outside cost for run time cost model check. */ SOC = scalar outside cost for run time cost model check. */
if ((scalar_single_iter_cost * assumed_vf) > (int) vec_inside_cost) int saving_per_viter = (scalar_single_iter_cost * assumed_vf
- vec_inside_cost);
if (saving_per_viter <= 0)
{
if (LOOP_VINFO_LOOP (loop_vinfo)->force_vectorize)
warning_at (vect_location.get_location_t (), OPT_Wopenmp_simd,
"vectorization did not happen for a simd loop");
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"cost model: the vector iteration cost = %d "
"divided by the scalar iteration cost = %d "
"is greater or equal to the vectorization factor = %d"
".\n",
vec_inside_cost, scalar_single_iter_cost, assumed_vf);
*ret_min_profitable_niters = -1;
*ret_min_profitable_estimate = -1;
return;
}
/* ??? The "if" arm is written to handle all cases; see below for what
we would do for !LOOP_VINFO_FULLY_MASKED_P. */
if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
{
/* Rewriting the condition above in terms of the number of
vector iterations (vniters) rather than the number of
scalar iterations (niters) gives:
SIC * (vniters * VF + NPEEL) + SOC > VIC * vniters + VOC
<==> vniters * (SIC * VF - VIC) > VOC - SIC * NPEEL - SOC
For integer N, X and Y when X > 0:
N * X > Y <==> N >= (Y /[floor] X) + 1. */
int outside_overhead = (vec_outside_cost
- scalar_single_iter_cost * peel_iters_prologue
- scalar_single_iter_cost * peel_iters_epilogue
- scalar_outside_cost);
/* We're only interested in cases that require at least one
vector iteration. */
int min_vec_niters = 1;
if (outside_overhead > 0)
min_vec_niters = outside_overhead / saving_per_viter + 1;
if (dump_enabled_p ())
dump_printf (MSG_NOTE, " Minimum number of vector iterations: %d\n",
min_vec_niters);
if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
{
/* Now that we know the minimum number of vector iterations,
find the minimum niters for which the scalar cost is larger:
SIC * niters > VIC * vniters + VOC - SOC
We know that the minimum niters is no more than
vniters * VF + NPEEL, but it might be (and often is) less
than that if a partial vector iteration is cheaper than the
equivalent scalar code. */
int threshold = (vec_inside_cost * min_vec_niters
+ vec_outside_cost
- scalar_outside_cost);
if (threshold <= 0)
min_profitable_iters = 1;
else
min_profitable_iters = threshold / scalar_single_iter_cost + 1;
}
else
/* Convert the number of vector iterations into a number of
scalar iterations. */
min_profitable_iters = (min_vec_niters * assumed_vf
+ peel_iters_prologue
+ peel_iters_epilogue);
}
else
{ {
min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) min_profitable_iters = ((vec_outside_cost - scalar_outside_cost)
* assumed_vf * assumed_vf
...@@ -3617,8 +3692,7 @@ vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo, ...@@ -3617,8 +3692,7 @@ vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
min_profitable_iters = 0; min_profitable_iters = 0;
else else
{ {
min_profitable_iters /= ((scalar_single_iter_cost * assumed_vf) min_profitable_iters /= saving_per_viter;
- vec_inside_cost);
if ((scalar_single_iter_cost * assumed_vf * min_profitable_iters) if ((scalar_single_iter_cost * assumed_vf * min_profitable_iters)
<= (((int) vec_inside_cost * min_profitable_iters) <= (((int) vec_inside_cost * min_profitable_iters)
...@@ -3627,24 +3701,6 @@ vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo, ...@@ -3627,24 +3701,6 @@ vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
min_profitable_iters++; min_profitable_iters++;
} }
} }
/* vector version will never be profitable. */
else
{
if (LOOP_VINFO_LOOP (loop_vinfo)->force_vectorize)
warning_at (vect_location.get_location_t (), OPT_Wopenmp_simd,
"vectorization did not happen for a simd loop");
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"cost model: the vector iteration cost = %d "
"divided by the scalar iteration cost = %d "
"is greater or equal to the vectorization factor = %d"
".\n",
vec_inside_cost, scalar_single_iter_cost, assumed_vf);
*ret_min_profitable_niters = -1;
*ret_min_profitable_estimate = -1;
return;
}
if (dump_enabled_p ()) if (dump_enabled_p ())
dump_printf (MSG_NOTE, dump_printf (MSG_NOTE,
...@@ -3668,10 +3724,34 @@ vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo, ...@@ -3668,10 +3724,34 @@ vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
Non-vectorized variant is SIC * niters and it must win over vector Non-vectorized variant is SIC * niters and it must win over vector
variant on the expected loop trip count. The following condition must hold true: variant on the expected loop trip count. The following condition must hold true:
SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */ SIC * niters > VIC * ((niters - NPEEL) / VF) + VOC + SOC */
if (vec_outside_cost <= 0) if (vec_outside_cost <= 0)
min_profitable_estimate = 0; min_profitable_estimate = 0;
else if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
{
/* This is a repeat of the code above, but with + SOC rather
than - SOC. */
int outside_overhead = (vec_outside_cost
- scalar_single_iter_cost * peel_iters_prologue
- scalar_single_iter_cost * peel_iters_epilogue
+ scalar_outside_cost);
int min_vec_niters = 1;
if (outside_overhead > 0)
min_vec_niters = outside_overhead / saving_per_viter + 1;
if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
{
int threshold = (vec_inside_cost * min_vec_niters
+ vec_outside_cost
+ scalar_outside_cost);
min_profitable_estimate = threshold / scalar_single_iter_cost + 1;
}
else
min_profitable_estimate = (min_vec_niters * assumed_vf
+ peel_iters_prologue
+ peel_iters_epilogue);
}
else else
{ {
min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost) min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment