Commit be7f7822 by Jonathan Wakely Committed by Jonathan Wakely

re PR libstdc++/48521 ([C++0x] std::result_of doesn't work with pointer to member)

2011-04-19  Jonathan Wakely  <jwakely.gcc@gmail.com>

	PR libstdc++/48521
	* include/std/type_traits (result_of): Handle pointer to member.
	* include/std/functional (__invoke): Likewise.
	(_Function_to_function_pointer): Remove.
	(_Reference_wrapper_base): Provide nested types independent of
	unary_function and binary_function.
	(reference_wrapper::operator()): DR 2017.
	(ref(const A&&), cref(const A&&): Define as deleted.
	* include/std/future (async): Simplify SFINAE and use result_of to
	support pointer to member.
	* testsuite/20_util/reference_wrapper/invoke.cc: Test pointer to 
	member.
	* testsuite/20_util/reference_wrapper/24803.cc: Likewise.
	* testsuite/20_util/reference_wrapper/typedefs.cc: Test for types
	instead of derivation from unary_function and binary_function.
	* testsuite/20_util/declval/requirements/1_neg.cc: Adjust.
	* testsuite/20_util/reference_wrapper/invoke-2.cc: New.
	* testsuite/20_util/reference_wrapper/ref_neg.c: New.
	* testsuite/20_util/reference_wrapper/typedefs-3.c: New.

From-SVN: r172709
parent d39132ea
2011-04-19 Jonathan Wakely <jwakely.gcc@gmail.com>
PR libstdc++/48521
* include/std/type_traits (result_of): Handle pointer to member.
* include/std/functional (__invoke): Likewise.
(_Function_to_function_pointer): Remove.
(_Reference_wrapper_base): Provide nested types independent of
unary_function and binary_function.
(reference_wrapper::operator()): DR 2017.
(ref(const A&&), cref(const A&&): Define as deleted.
* include/std/future (async): Simplify SFINAE and use result_of to
support pointer to member.
* testsuite/20_util/reference_wrapper/invoke.cc: Test pointer to
member.
* testsuite/20_util/reference_wrapper/24803.cc: Likewise.
* testsuite/20_util/reference_wrapper/typedefs.cc: Test for types
instead of derivation from unary_function and binary_function.
* testsuite/20_util/declval/requirements/1_neg.cc: Adjust.
* testsuite/20_util/reference_wrapper/invoke-2.cc: New.
* testsuite/20_util/reference_wrapper/ref_neg.c: New.
* testsuite/20_util/reference_wrapper/typedefs-3.c: New.
2011-04-19 Hans-Peter Nilsson <hp@axis.com> 2011-04-19 Hans-Peter Nilsson <hp@axis.com>
PR testsuite/48675 PR testsuite/48675
......
...@@ -212,19 +212,6 @@ _GLIBCXX_HAS_NESTED_TYPE(result_type) ...@@ -212,19 +212,6 @@ _GLIBCXX_HAS_NESTED_TYPE(result_type)
static const bool value = sizeof(__test((_Tp*)0)) == 1; static const bool value = sizeof(__test((_Tp*)0)) == 1;
}; };
/// Turns a function type into a function pointer type
template<typename _Tp, bool _IsFunctionType = is_function<_Tp>::value>
struct _Function_to_function_pointer
{
typedef _Tp type;
};
template<typename _Tp>
struct _Function_to_function_pointer<_Tp, true>
{
typedef _Tp* type;
};
/** /**
* Invoke a function object, which may be either a member pointer or a * Invoke a function object, which may be either a member pointer or a
* function object. The first parameter will tell which. * function object. The first parameter will tell which.
...@@ -235,20 +222,33 @@ _GLIBCXX_HAS_NESTED_TYPE(result_type) ...@@ -235,20 +222,33 @@ _GLIBCXX_HAS_NESTED_TYPE(result_type)
(!is_member_pointer<_Functor>::value (!is_member_pointer<_Functor>::value
&& !is_function<_Functor>::value && !is_function<_Functor>::value
&& !is_function<typename remove_pointer<_Functor>::type>::value), && !is_function<typename remove_pointer<_Functor>::type>::value),
typename result_of<_Functor(_Args...)>::type typename result_of<_Functor(_Args&&...)>::type
>::type >::type
__invoke(_Functor& __f, _Args&&... __args) __invoke(_Functor& __f, _Args&&... __args)
{ {
return __f(std::forward<_Args>(__args)...); return __f(std::forward<_Args>(__args)...);
} }
template<typename _Functor, typename... _Args>
inline
typename enable_if<
(is_member_pointer<_Functor>::value
&& !is_function<_Functor>::value
&& !is_function<typename remove_pointer<_Functor>::type>::value),
typename result_of<_Functor(_Args&&...)>::type
>::type
__invoke(_Functor& __f, _Args&&... __args)
{
return mem_fn(__f)(std::forward<_Args>(__args)...);
}
// To pick up function references (that will become function pointers) // To pick up function references (that will become function pointers)
template<typename _Functor, typename... _Args> template<typename _Functor, typename... _Args>
inline inline
typename enable_if< typename enable_if<
(is_pointer<_Functor>::value (is_pointer<_Functor>::value
&& is_function<typename remove_pointer<_Functor>::type>::value), && is_function<typename remove_pointer<_Functor>::type>::value),
typename result_of<_Functor(_Args...)>::type typename result_of<_Functor(_Args&&...)>::type
>::type >::type
__invoke(_Functor __f, _Args&&... __args) __invoke(_Functor __f, _Args&&... __args)
{ {
...@@ -263,40 +263,43 @@ _GLIBCXX_HAS_NESTED_TYPE(result_type) ...@@ -263,40 +263,43 @@ _GLIBCXX_HAS_NESTED_TYPE(result_type)
template<bool _Unary, bool _Binary, typename _Tp> template<bool _Unary, bool _Binary, typename _Tp>
struct _Reference_wrapper_base_impl; struct _Reference_wrapper_base_impl;
// Not a unary_function or binary_function, so try a weak result type. // None of the nested argument types.
template<typename _Tp> template<typename _Tp>
struct _Reference_wrapper_base_impl<false, false, _Tp> struct _Reference_wrapper_base_impl<false, false, _Tp>
: _Weak_result_type<_Tp> : _Weak_result_type<_Tp>
{ }; { };
// unary_function but not binary_function // Nested argument_type only.
template<typename _Tp> template<typename _Tp>
struct _Reference_wrapper_base_impl<true, false, _Tp> struct _Reference_wrapper_base_impl<true, false, _Tp>
: unary_function<typename _Tp::argument_type, : _Weak_result_type<_Tp>
typename _Tp::result_type> {
{ }; typedef typename _Tp::argument_type argument_type;
};
// binary_function but not unary_function // Nested first_argument_type and second_argument_type only.
template<typename _Tp> template<typename _Tp>
struct _Reference_wrapper_base_impl<false, true, _Tp> struct _Reference_wrapper_base_impl<false, true, _Tp>
: binary_function<typename _Tp::first_argument_type, : _Weak_result_type<_Tp>
typename _Tp::second_argument_type, {
typename _Tp::result_type> typedef typename _Tp::first_argument_type first_argument_type;
{ }; typedef typename _Tp::second_argument_type second_argument_type;
};
// Both unary_function and binary_function. Import result_type to // All the nested argument types.
// avoid conflicts.
template<typename _Tp> template<typename _Tp>
struct _Reference_wrapper_base_impl<true, true, _Tp> struct _Reference_wrapper_base_impl<true, true, _Tp>
: unary_function<typename _Tp::argument_type, : _Weak_result_type<_Tp>
typename _Tp::result_type>,
binary_function<typename _Tp::first_argument_type,
typename _Tp::second_argument_type,
typename _Tp::result_type>
{ {
typedef typename _Tp::result_type result_type; typedef typename _Tp::argument_type argument_type;
typedef typename _Tp::first_argument_type first_argument_type;
typedef typename _Tp::second_argument_type second_argument_type;
}; };
_GLIBCXX_HAS_NESTED_TYPE(argument_type)
_GLIBCXX_HAS_NESTED_TYPE(first_argument_type)
_GLIBCXX_HAS_NESTED_TYPE(second_argument_type)
/** /**
* Derives from unary_function or binary_function when it * Derives from unary_function or binary_function when it
* can. Specializations handle all of the easy cases. The primary * can. Specializations handle all of the easy cases. The primary
...@@ -306,8 +309,9 @@ _GLIBCXX_HAS_NESTED_TYPE(result_type) ...@@ -306,8 +309,9 @@ _GLIBCXX_HAS_NESTED_TYPE(result_type)
template<typename _Tp> template<typename _Tp>
struct _Reference_wrapper_base struct _Reference_wrapper_base
: _Reference_wrapper_base_impl< : _Reference_wrapper_base_impl<
_Derives_from_unary_function<_Tp>::value, __has_argument_type<_Tp>::value,
_Derives_from_binary_function<_Tp>::value, __has_first_argument_type<_Tp>::value
&& __has_second_argument_type<_Tp>::value,
_Tp> _Tp>
{ }; { };
...@@ -422,12 +426,8 @@ _GLIBCXX_HAS_NESTED_TYPE(result_type) ...@@ -422,12 +426,8 @@ _GLIBCXX_HAS_NESTED_TYPE(result_type)
class reference_wrapper class reference_wrapper
: public _Reference_wrapper_base<typename remove_cv<_Tp>::type> : public _Reference_wrapper_base<typename remove_cv<_Tp>::type>
{ {
// If _Tp is a function type, we can't form result_of<_Tp(...)>,
// so turn it into a function pointer type.
typedef typename _Function_to_function_pointer<_Tp>::type
_M_func_type;
_Tp* _M_data; _Tp* _M_data;
public: public:
typedef _Tp type; typedef _Tp type;
...@@ -456,7 +456,7 @@ _GLIBCXX_HAS_NESTED_TYPE(result_type) ...@@ -456,7 +456,7 @@ _GLIBCXX_HAS_NESTED_TYPE(result_type)
{ return *_M_data; } { return *_M_data; }
template<typename... _Args> template<typename... _Args>
typename result_of<_M_func_type(_Args...)>::type typename result_of<_Tp&(_Args&&...)>::type
operator()(_Args&&... __args) const operator()(_Args&&... __args) const
{ {
return __invoke(get(), std::forward<_Args>(__args)...); return __invoke(get(), std::forward<_Args>(__args)...);
...@@ -476,6 +476,12 @@ _GLIBCXX_HAS_NESTED_TYPE(result_type) ...@@ -476,6 +476,12 @@ _GLIBCXX_HAS_NESTED_TYPE(result_type)
cref(const _Tp& __t) cref(const _Tp& __t)
{ return reference_wrapper<const _Tp>(__t); } { return reference_wrapper<const _Tp>(__t); }
template<typename _Tp>
void ref(const _Tp&&) = delete;
template<typename _Tp>
void cref(const _Tp&&) = delete;
/// Partial specialization. /// Partial specialization.
template<typename _Tp> template<typename _Tp>
inline reference_wrapper<_Tp> inline reference_wrapper<_Tp>
......
...@@ -142,11 +142,19 @@ _GLIBCXX_BEGIN_NAMESPACE_VERSION ...@@ -142,11 +142,19 @@ _GLIBCXX_BEGIN_NAMESPACE_VERSION
future<typename result_of<_Fn(_Args...)>::type> future<typename result_of<_Fn(_Args...)>::type>
async(launch __policy, _Fn&& __fn, _Args&&... __args); async(launch __policy, _Fn&& __fn, _Args&&... __args);
template<typename _FnCheck, typename _Fn, typename... _Args>
struct __async_sfinae_helper
{
typedef future<typename result_of<_Fn(_Args...)>::type> type;
};
template<typename _Fn, typename... _Args>
struct __async_sfinae_helper<launch, _Fn, _Args...>
{ };
template<typename _Fn, typename... _Args> template<typename _Fn, typename... _Args>
typename typename
enable_if<!is_same<typename decay<_Fn>::type, launch>::value, __async_sfinae_helper<typename decay<_Fn>::type, _Fn, _Args...>::type
future<decltype(std::declval<_Fn>()(std::declval<_Args>()...))>
>::type
async(_Fn&& __fn, _Args&&... __args); async(_Fn&& __fn, _Args&&... __args);
#if defined(_GLIBCXX_HAS_GTHREADS) && defined(_GLIBCXX_USE_C99_STDINT_TR1) \ #if defined(_GLIBCXX_HAS_GTHREADS) && defined(_GLIBCXX_USE_C99_STDINT_TR1) \
...@@ -1373,9 +1381,7 @@ _GLIBCXX_BEGIN_NAMESPACE_VERSION ...@@ -1373,9 +1381,7 @@ _GLIBCXX_BEGIN_NAMESPACE_VERSION
/// async, potential overload /// async, potential overload
template<typename _Fn, typename... _Args> template<typename _Fn, typename... _Args>
inline typename inline typename
enable_if<!is_same<typename decay<_Fn>::type, launch>::value, __async_sfinae_helper<typename decay<_Fn>::type, _Fn, _Args...>::type
future<decltype(std::declval<_Fn>()(std::declval<_Args>()...))>
>::type
async(_Fn&& __fn, _Args&&... __args) async(_Fn&& __fn, _Args&&... __args)
{ {
return async(launch::any, std::forward<_Fn>(__fn), return async(launch::any, std::forward<_Fn>(__fn),
......
...@@ -1583,18 +1583,6 @@ _GLIBCXX_BEGIN_NAMESPACE_VERSION ...@@ -1583,18 +1583,6 @@ _GLIBCXX_BEGIN_NAMESPACE_VERSION
/// underlying_type (still unimplemented) /// underlying_type (still unimplemented)
/// result_of
template<typename _Signature>
class result_of;
template<typename _Functor, typename... _ArgTypes>
struct result_of<_Functor(_ArgTypes...)>
{
typedef
decltype( std::declval<_Functor>()(std::declval<_ArgTypes>()...) )
type;
};
/// declval /// declval
template<typename _Tp> template<typename _Tp>
struct __declval_protector struct __declval_protector
...@@ -1612,6 +1600,98 @@ _GLIBCXX_BEGIN_NAMESPACE_VERSION ...@@ -1612,6 +1600,98 @@ _GLIBCXX_BEGIN_NAMESPACE_VERSION
return __declval_protector<_Tp>::__delegate(); return __declval_protector<_Tp>::__delegate();
} }
/// result_of
template<typename _Signature>
class result_of;
template<typename _MemPtr, typename _Arg>
struct _Result_of_memobj;
template<typename _Res, typename _Class, typename _Arg>
struct _Result_of_memobj<_Res _Class::*, _Arg>
{
private:
typedef _Res _Class::* _Func;
template<typename _Tp>
static _Tp _S_get(const _Class&);
template<typename _Tp>
static decltype(*std::declval<_Tp>()) _S_get(...);
public:
typedef
decltype(_S_get<_Arg>(std::declval<_Arg>()).*std::declval<_Func>())
__type;
};
template<typename _MemPtr, typename _Arg, typename... _ArgTypes>
struct _Result_of_memfun;
template<typename _Res, typename _Class, typename _Arg, typename... _Args>
struct _Result_of_memfun<_Res _Class::*, _Arg, _Args...>
{
private:
typedef _Res _Class::* _Func;
template<typename _Tp>
static _Tp _S_get(const _Class&);
template<typename _Tp>
static decltype(*std::declval<_Tp>()) _S_get(...);
public:
typedef
decltype((_S_get<_Arg>(std::declval<_Arg>()).*std::declval<_Func>())
(std::declval<_Args>()...) )
__type;
};
template<bool, bool, typename _Functor, typename... _ArgTypes>
struct _Result_of_impl;
template<typename _Functor, typename... _ArgTypes>
struct _Result_of_impl<false, false, _Functor, _ArgTypes...>
{
typedef
decltype( std::declval<_Functor>()(std::declval<_ArgTypes>()...) )
__type;
};
template<typename _MemPtr, typename _Arg>
struct _Result_of_impl<true, false, _MemPtr, _Arg>
: _Result_of_memobj<typename remove_reference<_MemPtr>::type, _Arg>
{
typedef typename _Result_of_memobj<
typename remove_reference<_MemPtr>::type, _Arg>::__type
__type;
};
template<typename _MemPtr, typename _Arg, typename... _ArgTypes>
struct _Result_of_impl<false, true, _MemPtr, _Arg, _ArgTypes...>
: _Result_of_memfun<typename remove_reference<_MemPtr>::type, _Arg,
_ArgTypes...>
{
typedef typename _Result_of_memfun<
typename remove_reference<_MemPtr>::type, _Arg, _ArgTypes...>::__type
__type;
};
template<typename _Functor, typename... _ArgTypes>
struct result_of<_Functor(_ArgTypes...)>
: _Result_of_impl<is_member_object_pointer<
typename remove_reference<_Functor>::type >::value,
is_member_function_pointer<
typename remove_reference<_Functor>::type >::value,
_Functor, _ArgTypes...>
{
typedef typename _Result_of_impl<
is_member_object_pointer<
typename remove_reference<_Functor>::type >::value,
is_member_function_pointer<
typename remove_reference<_Functor>::type >::value,
_Functor, _ArgTypes...>::__type
type;
};
/** /**
* Use SFINAE to determine if the type _Tp has a publicly-accessible * Use SFINAE to determine if the type _Tp has a publicly-accessible
* member type _NTYPE. * member type _NTYPE.
......
...@@ -19,7 +19,7 @@ ...@@ -19,7 +19,7 @@
// with this library; see the file COPYING3. If not see // with this library; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>. // <http://www.gnu.org/licenses/>.
// { dg-error "static assertion failed" "" { target *-*-* } 1610 } // { dg-error "static assertion failed" "" { target *-*-* } 1598 }
#include <utility> #include <utility>
......
// { dg-options "-std=gnu++0x" } // { dg-options "-std=gnu++0x" }
// { dg-do compile } // { dg-do compile }
// Copyright (C) 2008, 2009, 2010 Free Software Foundation, Inc. // Copyright (C) 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
// //
// This file is part of the GNU ISO C++ Library. This library is free // This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the // software; you can redistribute it and/or modify it under the
...@@ -46,12 +46,18 @@ void verify_return_type(T, T) ...@@ -46,12 +46,18 @@ void verify_return_type(T, T)
void test01() void test01()
{ {
test_type* null_tt = 0;
const test_type* null_ttc = 0;
int zero; int zero;
std::reference_wrapper<double (int)>* pr1(0); std::reference_wrapper<double (int)>* pr1(0);
verify_return_type((*pr1)(0), double()); verify_return_type((*pr1)(0), double());
std::reference_wrapper<double (*)(int)>* pr2(0); std::reference_wrapper<double (*)(int)>* pr2(0);
verify_return_type((*pr2)(0), double()); verify_return_type((*pr2)(0), double());
std::reference_wrapper<int (test_type::*)()>* pr3(0);
verify_return_type((*pr3)(null_tt), int());
std::reference_wrapper<int (test_type::*)()const>* pr4(0);
verify_return_type((*pr4)(null_ttc), int());
std::reference_wrapper<functor1>* pr5(0); std::reference_wrapper<functor1>* pr5(0);
// libstdc++/24803 // libstdc++/24803
...@@ -62,6 +68,10 @@ void test01() ...@@ -62,6 +68,10 @@ void test01()
verify_return_type((*pr1b)(0, 0), double()); verify_return_type((*pr1b)(0, 0), double());
std::reference_wrapper<double (*)(int, char)>* pr2b(0); std::reference_wrapper<double (*)(int, char)>* pr2b(0);
verify_return_type((*pr2b)(0, 0), double()); verify_return_type((*pr2b)(0, 0), double());
std::reference_wrapper<int (test_type::*)(char)>* pr3b(0);
verify_return_type((*pr3b)(null_tt,zero), int());
std::reference_wrapper<int (test_type::*)()const>* pr4b(0);
verify_return_type((*pr4b)(null_ttc), int());
std::reference_wrapper<functor2>* pr5b(0); std::reference_wrapper<functor2>* pr5b(0);
// libstdc++/24803 // libstdc++/24803
......
// { dg-options "-std=gnu++0x" }
// { dg-do compile}
// Copyright (C) 2011 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
// USA.
// 20.6.4 function object return types [func.ret]
#include <functional>
struct X
{
int f(int) { return 0; }
int i;
};
void test01()
{
typedef int (X::*mfp)(int);
typedef int X::*mp;
mfp m = &X::f;
mp m2 = &X::i;
X x = { };
std::ref(m)(x, 1);
std::ref(m)(&x, 1);
int& i1 = std::ref(m2)(x);
int& i2 = std::ref(m2)(&x);
}
int main()
{
test01();
return 0;
}
// { dg-options "-std=gnu++0x" } // { dg-options "-std=gnu++0x" }
// Copyright (C) 2008, 2009, 2010 Free Software Foundation, Inc. // Copyright (C) 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
// //
// This file is part of the GNU ISO C++ Library. This library is free // This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the // software; you can redistribute it and/or modify it under the
...@@ -36,6 +36,7 @@ struct X ...@@ -36,6 +36,7 @@ struct X
int foo_c(float x) const { return truncate_float(x); } int foo_c(float x) const { return truncate_float(x); }
int foo_v(float x) volatile { return truncate_float(x); } int foo_v(float x) volatile { return truncate_float(x); }
int foo_cv(float x) const volatile { return truncate_float(x); } int foo_cv(float x) const volatile { return truncate_float(x); }
int foo_varargs(float x, ...) { return truncate_float(x); }
int operator()(float x) int operator()(float x)
{ {
...@@ -69,6 +70,13 @@ void test01() ...@@ -69,6 +70,13 @@ void test01()
::get_seventeen get_sev; ::get_seventeen get_sev;
::X x; ::X x;
::X* xp = &x;
int (::X::* p_foo)(float) = &::X::foo;
int (::X::* p_foo_c)(float) const = &::X::foo_c;
int (::X::* p_foo_v)(float) volatile = &::X::foo_v;
int (::X::* p_foo_cv)(float) const volatile = &::X::foo_cv;
int (::X::* p_foo_varargs)(float, ...) = &::X::foo_varargs;
int ::X::* p_bar = &::X::bar;
const float pi = 3.14; const float pi = 3.14;
...@@ -77,8 +85,26 @@ void test01() ...@@ -77,8 +85,26 @@ void test01()
VERIFY(ref(seventeen)() == 17); VERIFY(ref(seventeen)() == 17);
// Function pointers // Function pointers
VERIFY(cref(&truncate_float)(pi) == 3); VERIFY(cref(truncate_float)(pi) == 3);
VERIFY(cref(&seventeen)() == 17); VERIFY(cref(seventeen)() == 17);
// Member function pointers
VERIFY(ref(p_foo)(x, pi) == 3);
VERIFY(ref(p_foo)(xp, pi) == 3);
VERIFY(ref(p_foo_c)(x, pi) == 3);
VERIFY(ref(p_foo_c)(xp, pi) == 3);
VERIFY(ref(p_foo_v)(x, pi) == 3);
VERIFY(ref(p_foo_v)(xp, pi) == 3);
VERIFY(ref(p_foo_cv)(x, pi) == 3);
VERIFY(ref(p_foo_cv)(xp, pi) == 3);
// VERIFY(ref(p_foo_varargs)(x, pi) == 3);
// VERIFY(ref(p_foo_varargs)(xp, pi, 1, 1) == 3);
// VERIFY(ref(p_foo_varargs)(x, pi, 1, 1) == 3);
// VERIFY(ref(p_foo_varargs)(xp, pi) == 3);
// Member data pointers
VERIFY(ref(p_bar)(x) == 17);
VERIFY(ref(p_bar)(xp) == 17);
// Function objects // Function objects
VERIFY(ref(get_sev)() == 17); VERIFY(ref(get_sev)() == 17);
......
// Copyright (C) 2011 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>.
// 20.8.3 Class template reference_wrapper
// { dg-do compile }
// { dg-options "-std=gnu++0x" }
#include <functional>
struct X { };
X rval();
X&& rvalref();
void test01()
{
std::ref(1); // { dg-error "deleted" }
std::cref(1); // { dg-error "deleted" }
std::ref( int() ); // { dg-error "deleted" }
std::cref( int() ); // { dg-error "deleted" }
std::ref(rval()); // { dg-error "deleted" }
std::cref(rvalref()); // { dg-error "deleted" }
}
int main()
{
test02();
}
// { dg-excess-errors "" }
// { dg-options "-std=gnu++0x" }
// { dg-do compile }
// Copyright (C) 2011 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>.
#include <functional>
#include <type_traits>
struct S { };
struct S0
{
typedef int argument_type;
};
struct S1
{
typedef float first_argument_type;
};
struct S2
{
typedef char second_argument_type;
};
struct S01 : S0, S1 { };
struct S02 : S0, S2 { };
struct S12 : S1, S2 { };
struct S012 : S0, S1, S2 { };
using std::__sfinae_types;
using std::integral_constant;
using std::remove_cv;
_GLIBCXX_HAS_NESTED_TYPE(argument_type)
_GLIBCXX_HAS_NESTED_TYPE(first_argument_type)
_GLIBCXX_HAS_NESTED_TYPE(second_argument_type)
template<typename T>
struct has_arg_type : __has_argument_type<T>
{ };
template<typename T>
struct has_1st_arg_type : __has_first_argument_type<T>
{ };
template<typename T>
struct has_2nd_arg_type : __has_second_argument_type<T>
{ };
template<typename T, bool = has_arg_type<T>::value>
struct test_arg_type
{
static_assert( !has_arg_type<std::reference_wrapper<T>>::value,
"reference_wrapper has no nested argument_type");
};
template<typename T>
struct test_arg_type<T, true>
{
typedef std::reference_wrapper<T> ref;
static_assert( has_arg_type<ref>::value,
"reference_wrapper has nested argument_type");
static_assert(
std::is_same< typename T::argument_type,
typename ref::argument_type >::value,
"reference_wrapper has the correct argument_type");
};
template<typename T,
bool = has_1st_arg_type<T>::value && has_2nd_arg_type<T>::value>
struct test_1st_2nd_arg_types
{
typedef std::reference_wrapper<T> ref;
static_assert( !has_1st_arg_type<ref>::value,
"reference_wrapper has no nested first_argument_type");
static_assert( !has_2nd_arg_type<ref>::value,
"reference_wrapper has no nested second_argument_type");
};
template<typename T>
struct test_1st_2nd_arg_types<T, true>
{
typedef std::reference_wrapper<T> ref;
static_assert( has_1st_arg_type<ref>::value,
"reference_wrapper has nested first_argument_type");
static_assert( has_2nd_arg_type<ref>::value,
"reference_wrapper has nested second_argument_type");
static_assert(
std::is_same< typename T::first_argument_type,
typename ref::first_argument_type>::value,
"reference_wrapper has correct first_argument_type");
static_assert(
std::is_same< typename T::second_argument_type,
typename ref::second_argument_type>::value,
"reference_wrapper has correct second_argument_type");
};
template<typename T>
void test()
{
test_arg_type<T> t;
test_arg_type<const T> tc;
test_arg_type<volatile T> tv;
test_arg_type<const volatile T> tcv;
test_1st_2nd_arg_types<T> t12;
test_1st_2nd_arg_types<const T> t12c;
test_1st_2nd_arg_types<volatile T> t12v;
test_1st_2nd_arg_types<const volatile T> t12cv;
}
int main()
{
test<S>();
test<S0>();
test<S1>();
test<S2>();
test<S01>();
test<S02>();
test<S12>();
test<S012>();
}
// { dg-do compile }
// { dg-options "-std=gnu++0x" } // { dg-options "-std=gnu++0x" }
// Copyright (C) 2008, 2009 Free Software Foundation, Inc. // Copyright (C) 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
// //
// This file is part of the GNU ISO C++ Library. This library is free // This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the // software; you can redistribute it and/or modify it under the
...@@ -19,10 +20,6 @@ ...@@ -19,10 +20,6 @@
#include <functional> #include <functional>
#include <type_traits> #include <type_traits>
#include <testsuite_hooks.h>
#include <testsuite_tr1.h>
using namespace __gnu_test;
struct X {}; struct X {};
...@@ -41,43 +38,18 @@ struct derives_unary_binary ...@@ -41,43 +38,18 @@ struct derives_unary_binary
void test01() void test01()
{ {
bool test __attribute__((unused)) = true;
using std::reference_wrapper; using std::reference_wrapper;
using std::is_same; using std::is_same;
using std::is_convertible;
using std::unary_function;
using std::binary_function;
// Check result_type typedef // Check result_type typedef
VERIFY((is_same<reference_wrapper<int_result_type>::result_type, int>::value)); static_assert( is_same<reference_wrapper<int_result_type>::result_type, int>::value, "has result_type" );
VERIFY((is_same<reference_wrapper<derives_unary>::result_type, int>::value)); static_assert( is_same<reference_wrapper<derives_unary>::result_type, int>::value, "has result_type" );
VERIFY((is_same<reference_wrapper<derives_binary>::result_type, int>::value)); static_assert( is_same<reference_wrapper<derives_binary>::result_type, int>::value, "has result_type" );
VERIFY((is_same<reference_wrapper<derives_unary_binary>::result_type, int>::value)); static_assert( is_same<reference_wrapper<derives_unary_binary>::result_type, int>::value, "has result_type" );
VERIFY((is_same<reference_wrapper<int(void)>::result_type, int>::value)); static_assert( is_same<reference_wrapper<int(void)>::result_type, int>::value, "has result_type" );
VERIFY((is_same<reference_wrapper<int(*)(void)>::result_type, int>::value)); static_assert( is_same<reference_wrapper<int(*)(void)>::result_type, int>::value, "has result_type" );
VERIFY((is_same<reference_wrapper<int (::X::*)()>::result_type, int>::value)); static_assert( is_same<reference_wrapper<int (::X::*)()>::result_type, int>::value, "has result_type" );
VERIFY((is_same<reference_wrapper<int (::X::*)(float)>::result_type, int>::value)); static_assert( is_same<reference_wrapper<int (::X::*)(float)>::result_type, int>::value, "has result_type" );
// Check derivation from unary_function
VERIFY((is_convertible<reference_wrapper<derives_unary>*, unary_function<int, int>*>::value));
VERIFY((is_convertible<reference_wrapper<derives_unary_binary>*, unary_function<int, int>*>::value));
VERIFY((is_convertible<reference_wrapper<int(int)>*, unary_function<int, int>*>::value));
VERIFY((is_convertible<reference_wrapper<int(*)(int)>*, unary_function<int, int>*>::value));
VERIFY((is_convertible<reference_wrapper<int (::X::*)()>*, unary_function< ::X*, int>*>::value));
VERIFY((is_convertible<reference_wrapper<int (::X::*)() const>*, unary_function<const ::X*, int>*>::value));
VERIFY((is_convertible<reference_wrapper<int (::X::*)() volatile>*, unary_function<volatile ::X*, int>*>::value));
VERIFY((is_convertible<reference_wrapper<int (::X::*)() const volatile>*, unary_function<const volatile ::X*, int>*>::value));
// Check derivation from binary_function
VERIFY((is_convertible<reference_wrapper<derives_binary>*, binary_function<int, float, int>*>::value));
VERIFY((is_convertible<reference_wrapper<derives_unary_binary>*, binary_function<int, float, int>*>::value));
VERIFY((is_convertible<reference_wrapper<int(int, float)>*, binary_function<int, float, int>*>::value));
VERIFY((is_convertible<reference_wrapper<int(*)(int, float)>*, binary_function<int, float, int>*>::value));
VERIFY((is_convertible<reference_wrapper<int (::X::*)(float)>*, binary_function< ::X*, float, int>*>::value));
VERIFY((is_convertible<reference_wrapper<int (::X::*)(float) const>*, binary_function<const ::X*, float, int>*>::value));
VERIFY((is_convertible<reference_wrapper<int (::X::*)(float) volatile>*, binary_function<volatile ::X*, float, int>*>::value));
VERIFY((is_convertible<reference_wrapper<int (::X::*)(float) const volatile>*, binary_function<const volatile ::X*, float, int>*>::value));
} }
int main() int main()
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment