Commit a6a2b532 by Andreas Krebbel Committed by Andreas Krebbel

S/390: Fix vector all/any cc modes.

This fixes a problem with the vector compares producing CC mode
results.

The instructions produce condition code modes which can be either
interpreted to check an ALL elements or an ANY element result.  As the
modes where used before they could not be inverted by the middle-end
by inverting the comparison code (e.g. eq to ne).  The result usually
was just wrong.

In fact inverting a comparison code on an CCVALL mode would require to
also change the mode to CCVANY but this cannot be done easily in the
middle-end.  With this patch the meaning of an ALL cc mode only refers
to the not-inverted comparison code (e.g. eq, gt, ge).  With that
change inverting the comparison code matches a not operation on the
condition code mask again.

Bootstrapped and regression tested on s390 and s390x.

Bye,

-Andreas-

gcc/testsuite/ChangeLog:

2016-12-02  Andreas Krebbel  <krebbel@linux.vnet.ibm.com>

	* gcc.target/s390/vector/vec-scalar-cmp-1.c: Fix and harden the
	pattern checks.
	* gcc.target/s390/zvector/vec-cmp-1.c: New test.

gcc/ChangeLog:

2016-12-02  Andreas Krebbel  <krebbel@linux.vnet.ibm.com>

	* config/s390/s390-modes.def (CCVEQANY, CCVH, CCVHANY, CCVHU)
	(CCVHUANY): Remove modes.
	(CCVIH, CCVIHU, CCVIALL, CCVIANY, CCVFALL, CCVFANY): Add modes and
	documentation.
	* config/s390/s390.c (s390_match_ccmode_set): Rename cc modes.
	(s390_expand_vec_compare_scalar): Pick one of the cc consumer
	modes.
	(s390_branch_condition_mask): Adjust to use the new cc consumer
	modes.  The new modes allow for proper reversal in the middle-end.
	(s390_expand_vec_compare_cc): Determine the proper cc producer and
	consumer modes for a comparison.
	* config/s390/s390.md: Rename CCVH to CCVIH and CCVHU to CCVIHU
	throughout the file.
	* config/s390/vx-builtins.md: Likewise.

From-SVN: r243154
parent 84b0769e
2016-12-02 Andreas Krebbel <krebbel@linux.vnet.ibm.com>
* config/s390/s390-modes.def (CCVEQANY, CCVH, CCVHANY, CCVHU)
(CCVHUANY): Remove modes.
(CCVIH, CCVIHU, CCVIALL, CCVIANY, CCVFALL, CCVFANY): Add modes and
documentation.
* config/s390/s390.c (s390_match_ccmode_set): Rename cc modes.
(s390_expand_vec_compare_scalar): Pick one of the cc consumer
modes.
(s390_branch_condition_mask): Adjust to use the new cc consumer
modes. The new modes allow for proper reversal in the middle-end.
(s390_expand_vec_compare_cc): Determine the proper cc producer and
consumer modes for a comparison.
* config/s390/s390.md: Rename CCVH to CCVIH and CCVHU to CCVIHU
throughout the file.
* config/s390/vx-builtins.md: Likewise.
2016-12-02 Maxim Ostapenko <m.ostapenko@samsung.com>
* asan.c (asan_global_struct): Refactor.
......@@ -84,22 +84,6 @@ Requested mode -> Destination CC register mode
CCS, CCU, CCT, CCSR, CCUR -> CCZ
CCA -> CCAP, CCAN
Vector comparison modes
CCVEQ EQ - - NE (VCEQ)
CCVEQANY EQ EQ - NE (VCEQ)
CCVH GT - - LE (VCH)
CCVHANY GT GT - LE (VCH)
CCVHU GTU - - LEU (VCHL)
CCVHUANY GTU GTU - LEU (VCHL)
CCVFH GT - - UNLE (VFCH)
CCVFHANY GT GT - UNLE (VFCH)
CCVFHE GE - - UNLT (VFCHE)
CCVFHEANY GE GE - UNLT (VFCHE)
*** Comments ***
......@@ -169,14 +153,40 @@ The compare and swap instructions sets the condition code to 0/1 if the
operands were equal/unequal. The CCZ1 mode ensures the result can be
effectively placed into a register.
CCV*
The variants with and without ANY are generated by the same
instructions and therefore are holding the same information. However,
when generating a condition code mask they require checking different
bits of CC. In that case the variants without ANY represent the
results for *all* elements.
CCVIH, CCVIHU, CCVFH, CCVFHE
These are condition code modes used in instructions setting the
condition code. The mode determines which comparison to perform (H -
high, HU - high unsigned, HE - high or equal) and whether it is a
floating point comparison or not (I - int, F - float).
The comparison operation to be performed needs to be encoded into the
condition code mode since the comparison operator is not available in
compare style patterns (set cc (compare (op0) (op1))). So the
condition code mode is the only information to determine the
instruction to be used.
CCVIALL, CCVIANY, CCVFALL, CCVFANY
These modes are used in instructions reading the condition code.
Opposed to the CC producer patterns the comparison operator is
available. Hence the comparison operation does not need to be part of
the CC mode. However, we still need to know whether CC has been
generated by a float or an integer comparison in order to be able to
invert the condition correctly (int: GT -> LE, float: GT -> UNLE).
The ALL and ANY variants differ only in the usage of CC1 which
indicates a mixed result across the vector elements. Be aware that
depending on the comparison code the ALL and ANY variants might
actually refer to their opposite meaning. I.e. while inverting the
comparison in (EQ (reg:CCVIALL 33) (const_int 0)) results in (NE
(reg:CCVIALL 33) (const_int 0)) it in fact describes an ANY comparison
(inverting "all equal" should be "any not equal") However, the
middle-end does invert only the comparison operator without touching
the mode.
Hence, the ALL/ANY in the mode names refer to the meaning in the
context of EQ, GT, GE while for the inverted codes it actually means
ANY/ALL.
CCRAW
......@@ -209,18 +219,18 @@ CC_MODE (CCT3);
CC_MODE (CCRAW);
CC_MODE (CCVEQ);
CC_MODE (CCVEQANY);
CC_MODE (CCVH);
CC_MODE (CCVHANY);
CC_MODE (CCVHU);
CC_MODE (CCVHUANY);
CC_MODE (CCVIH);
CC_MODE (CCVIHU);
CC_MODE (CCVFH);
CC_MODE (CCVFHANY);
CC_MODE (CCVFHE);
CC_MODE (CCVFHEANY);
CC_MODE (CCVIALL);
CC_MODE (CCVIANY);
CC_MODE (CCVFALL);
CC_MODE (CCVFANY);
/* Vector modes. */
......
......@@ -1275,6 +1275,11 @@ s390_match_ccmode_set (rtx set, machine_mode req_mode)
gcc_assert (GET_CODE (set) == SET);
/* These modes are supposed to be used only in CC consumer
patterns. */
gcc_assert (req_mode != CCVIALLmode && req_mode != CCVIANYmode
&& req_mode != CCVFALLmode && req_mode != CCVFANYmode);
if (GET_CODE (SET_DEST (set)) != REG || !CC_REGNO_P (REGNO (SET_DEST (set))))
return 1;
......@@ -1293,8 +1298,8 @@ s390_match_ccmode_set (rtx set, machine_mode req_mode)
case CCT2mode:
case CCT3mode:
case CCVEQmode:
case CCVHmode:
case CCVHUmode:
case CCVIHmode:
case CCVIHUmode:
case CCVFHmode:
case CCVFHEmode:
if (req_mode != set_mode)
......@@ -1752,14 +1757,20 @@ s390_expand_vec_compare_scalar (enum rtx_code *code, rtx cmp1, rtx cmp2,
cmp2 = cmp1;
cmp1 = tmp;
}
*cc = gen_rtx_REG (cmp_mode, CC_REGNUM);
emit_insn (gen_rtx_PARALLEL (VOIDmode,
gen_rtvec (2,
gen_rtx_SET (*cc,
gen_rtx_SET (gen_rtx_REG (cmp_mode, CC_REGNUM),
gen_rtx_COMPARE (cmp_mode, cmp1,
cmp2)),
gen_rtx_CLOBBER (VOIDmode,
gen_rtx_SCRATCH (V2DImode)))));
/* This is the cc reg how it will be used in the cc mode consumer.
It either needs to be CCVFALL or CCVFANY. However, CC1 will
never be set by the scalar variants. So it actually doesn't
matter which one we choose here. */
*cc = gen_rtx_REG (CCVFALLmode, CC_REGNUM);
return true;
}
......@@ -2021,92 +2032,63 @@ s390_branch_condition_mask (rtx code)
break;
/* Vector comparison modes. */
case CCVEQmode:
switch (GET_CODE (code))
{
case EQ: return CC0;
case NE: return CC3;
default: return -1;
}
case CCVEQANYmode:
switch (GET_CODE (code))
{
case EQ: return CC0 | CC1;
case NE: return CC3 | CC1;
default: return -1;
}
/* Integer vector compare modes. */
case CCVHmode:
switch (GET_CODE (code))
{
case GT: return CC0;
case LE: return CC3;
default: return -1;
}
case CCVHANYmode:
switch (GET_CODE (code))
{
case GT: return CC0 | CC1;
case LE: return CC3 | CC1;
default: return -1;
}
case CCVHUmode:
switch (GET_CODE (code))
{
case GTU: return CC0;
case LEU: return CC3;
default: return -1;
}
case CCVHUANYmode:
switch (GET_CODE (code))
{
case GTU: return CC0 | CC1;
case LEU: return CC3 | CC1;
default: return -1;
}
/* FP vector compare modes. */
case CCVFHmode:
/* CC2 will never be set. It however is part of the negated
masks. */
case CCVIALLmode:
switch (GET_CODE (code))
{
case GT: return CC0;
case UNLE: return CC3;
case EQ:
case GTU:
case GT:
case GE: return CC0;
/* The inverted modes are in fact *any* modes. */
case NE:
case LEU:
case LE:
case LT: return CC3 | CC1 | CC2;
default: return -1;
}
case CCVFHANYmode:
case CCVIANYmode:
switch (GET_CODE (code))
{
case GT: return CC0 | CC1;
case UNLE: return CC3 | CC1;
case EQ:
case GTU:
case GT:
case GE: return CC0 | CC1;
/* The inverted modes are in fact *all* modes. */
case NE:
case LEU:
case LE:
case LT: return CC3 | CC2;
default: return -1;
}
case CCVFHEmode:
case CCVFALLmode:
switch (GET_CODE (code))
{
case EQ:
case GT:
case GE: return CC0;
case UNLT: return CC3;
/* The inverted modes are in fact *any* modes. */
case NE:
case UNLE:
case UNLT: return CC3 | CC1 | CC2;
default: return -1;
}
case CCVFHEANYmode:
case CCVFANYmode:
switch (GET_CODE (code))
{
case EQ:
case GT:
case GE: return CC0 | CC1;
case UNLT: return CC3 | CC1;
/* The inverted modes are in fact *all* modes. */
case NE:
case UNLE:
case UNLT: return CC3 | CC2;
default: return -1;
}
case CCRAWmode:
switch (GET_CODE (code))
{
......@@ -6256,13 +6238,15 @@ s390_expand_vec_compare (rtx target, enum rtx_code cond,
/* Expand the comparison CODE of CMP1 and CMP2 and copy 1 or 0 into
TARGET if either all (ALL_P is true) or any (ALL_P is false) of the
elements in CMP1 and CMP2 fulfill the comparison. */
elements in CMP1 and CMP2 fulfill the comparison.
This function is only used to emit patterns for the vx builtins and
therefore only handles comparison codes required by the
builtins. */
void
s390_expand_vec_compare_cc (rtx target, enum rtx_code code,
rtx cmp1, rtx cmp2, bool all_p)
{
enum rtx_code new_code = code;
machine_mode cmp_mode, full_cmp_mode, scratch_mode;
machine_mode cc_producer_mode, cc_consumer_mode, scratch_mode;
rtx tmp_reg = gen_reg_rtx (SImode);
bool swap_p = false;
......@@ -6270,53 +6254,71 @@ s390_expand_vec_compare_cc (rtx target, enum rtx_code code,
{
switch (code)
{
case EQ: cmp_mode = CCVEQmode; break;
case NE: cmp_mode = CCVEQmode; break;
case GT: cmp_mode = CCVHmode; break;
case GE: cmp_mode = CCVHmode; new_code = LE; swap_p = true; break;
case LT: cmp_mode = CCVHmode; new_code = GT; swap_p = true; break;
case LE: cmp_mode = CCVHmode; new_code = LE; break;
case GTU: cmp_mode = CCVHUmode; break;
case GEU: cmp_mode = CCVHUmode; new_code = LEU; swap_p = true; break;
case LTU: cmp_mode = CCVHUmode; new_code = GTU; swap_p = true; break;
case LEU: cmp_mode = CCVHUmode; new_code = LEU; break;
default: gcc_unreachable ();
case EQ:
case NE:
cc_producer_mode = CCVEQmode;
break;
case GE:
case LT:
code = swap_condition (code);
swap_p = true;
/* fallthrough */
case GT:
case LE:
cc_producer_mode = CCVIHmode;
break;
case GEU:
case LTU:
code = swap_condition (code);
swap_p = true;
/* fallthrough */
case GTU:
case LEU:
cc_producer_mode = CCVIHUmode;
break;
default:
gcc_unreachable ();
}
scratch_mode = GET_MODE (cmp1);
/* These codes represent inverted CC interpretations. Inverting
an ALL CC mode results in an ANY CC mode and the other way
around. Invert the all_p flag here to compensate for
that. */
if (code == NE || code == LE || code == LEU)
all_p = !all_p;
cc_consumer_mode = all_p ? CCVIALLmode : CCVIANYmode;
}
else if (GET_MODE (cmp1) == V2DFmode)
else if (GET_MODE_CLASS (GET_MODE (cmp1)) == MODE_VECTOR_FLOAT)
{
bool inv_p = false;
switch (code)
{
case EQ: cmp_mode = CCVEQmode; break;
case NE: cmp_mode = CCVEQmode; break;
case GT: cmp_mode = CCVFHmode; break;
case GE: cmp_mode = CCVFHEmode; break;
case UNLE: cmp_mode = CCVFHmode; break;
case UNLT: cmp_mode = CCVFHEmode; break;
case LT: cmp_mode = CCVFHmode; new_code = GT; swap_p = true; break;
case LE: cmp_mode = CCVFHEmode; new_code = GE; swap_p = true; break;
case EQ: cc_producer_mode = CCVEQmode; break;
case NE: cc_producer_mode = CCVEQmode; inv_p = true; break;
case GT: cc_producer_mode = CCVFHmode; break;
case GE: cc_producer_mode = CCVFHEmode; break;
case UNLE: cc_producer_mode = CCVFHmode; inv_p = true; break;
case UNLT: cc_producer_mode = CCVFHEmode; inv_p = true; break;
case LT: cc_producer_mode = CCVFHmode; code = GT; swap_p = true; break;
case LE: cc_producer_mode = CCVFHEmode; code = GE; swap_p = true; break;
default: gcc_unreachable ();
}
scratch_mode = V2DImode;
scratch_mode = mode_for_vector (
int_mode_for_mode (GET_MODE_INNER (GET_MODE (cmp1))),
GET_MODE_NUNITS (GET_MODE (cmp1)));
gcc_assert (scratch_mode != BLKmode);
if (inv_p)
all_p = !all_p;
cc_consumer_mode = all_p ? CCVFALLmode : CCVFANYmode;
}
else
gcc_unreachable ();
if (!all_p)
switch (cmp_mode)
{
case CCVEQmode: full_cmp_mode = CCVEQANYmode; break;
case CCVHmode: full_cmp_mode = CCVHANYmode; break;
case CCVHUmode: full_cmp_mode = CCVHUANYmode; break;
case CCVFHmode: full_cmp_mode = CCVFHANYmode; break;
case CCVFHEmode: full_cmp_mode = CCVFHEANYmode; break;
default: gcc_unreachable ();
}
else
/* The modes without ANY match the ALL modes. */
full_cmp_mode = cmp_mode;
if (swap_p)
{
rtx tmp = cmp2;
......@@ -6326,8 +6328,8 @@ s390_expand_vec_compare_cc (rtx target, enum rtx_code code,
emit_insn (gen_rtx_PARALLEL (VOIDmode,
gen_rtvec (2, gen_rtx_SET (
gen_rtx_REG (cmp_mode, CC_REGNUM),
gen_rtx_COMPARE (cmp_mode, cmp1, cmp2)),
gen_rtx_REG (cc_producer_mode, CC_REGNUM),
gen_rtx_COMPARE (cc_producer_mode, cmp1, cmp2)),
gen_rtx_CLOBBER (VOIDmode,
gen_rtx_SCRATCH (scratch_mode)))));
emit_move_insn (target, const0_rtx);
......@@ -6335,10 +6337,10 @@ s390_expand_vec_compare_cc (rtx target, enum rtx_code code,
emit_move_insn (target,
gen_rtx_IF_THEN_ELSE (SImode,
gen_rtx_fmt_ee (new_code, VOIDmode,
gen_rtx_REG (full_cmp_mode, CC_REGNUM),
gen_rtx_fmt_ee (code, VOIDmode,
gen_rtx_REG (cc_consumer_mode, CC_REGNUM),
const0_rtx),
target, tmp_reg));
tmp_reg, target));
}
/* Generate a vector comparison expression loading either elements of
......
......@@ -782,7 +782,7 @@
; Used with VFCMP to expand part of the mnemonic
; For fp we have a mismatch: eq in the insn name - e in asm
(define_mode_attr asm_fcmp [(CCVEQ "e") (CCVFH "h") (CCVFHE "he")])
(define_mode_attr insn_cmp [(CCVEQ "eq") (CCVH "h") (CCVHU "hl") (CCVFH "h") (CCVFHE "he")])
(define_mode_attr insn_cmp [(CCVEQ "eq") (CCVIH "h") (CCVIHU "hl") (CCVFH "h") (CCVFHE "he")])
;; Subst pattern definitions
(include "subst.md")
......
......@@ -36,7 +36,7 @@
(V1DF "DI") (V2DF "DI")])
; Condition code modes generated by int comparisons
(define_mode_iterator VICMP [CCVEQ CCVH CCVHU])
(define_mode_iterator VICMP [CCVEQ CCVIH CCVIHU])
; Comparisons supported by the vec_cmp* builtins
(define_code_iterator intcmp [eq gt gtu ge geu lt ltu le leu])
......@@ -1900,24 +1900,24 @@
(define_expand "vec_cmph<VI_HW:mode>_cc"
[(parallel
[(set (reg:CCVH CC_REGNUM)
(compare:CCVH (match_operand:VI_HW 1 "register_operand" "v")
(match_operand:VI_HW 2 "register_operand" "v")))
[(set (reg:CCVIH CC_REGNUM)
(compare:CCVIH (match_operand:VI_HW 1 "register_operand" "v")
(match_operand:VI_HW 2 "register_operand" "v")))
(set (match_operand:VI_HW 0 "register_operand" "=v")
(gt:VI_HW (match_dup 1) (match_dup 2)))])
(set (match_operand:SI 3 "memory_operand" "")
(unspec:SI [(reg:CCVH CC_REGNUM)] UNSPEC_CC_TO_INT))]
(unspec:SI [(reg:CCVIH CC_REGNUM)] UNSPEC_CC_TO_INT))]
"TARGET_VX")
(define_expand "vec_cmphl<VI_HW:mode>_cc"
[(parallel
[(set (reg:CCVHU CC_REGNUM)
(compare:CCVHU (match_operand:VI_HW 1 "register_operand" "v")
(match_operand:VI_HW 2 "register_operand" "v")))
[(set (reg:CCVIHU CC_REGNUM)
(compare:CCVIHU (match_operand:VI_HW 1 "register_operand" "v")
(match_operand:VI_HW 2 "register_operand" "v")))
(set (match_operand:VI_HW 0 "register_operand" "=v")
(gtu:VI_HW (match_dup 1) (match_dup 2)))])
(set (match_operand:SI 3 "memory_operand" "")
(unspec:SI [(reg:CCVHU CC_REGNUM)] UNSPEC_CC_TO_INT))]
(unspec:SI [(reg:CCVIHU CC_REGNUM)] UNSPEC_CC_TO_INT))]
"TARGET_VX")
......@@ -1932,9 +1932,9 @@
[(set_attr "op_type" "VRR")])
(define_insn "*vec_cmph<VI_HW:mode>_cc"
[(set (reg:CCVH CC_REGNUM)
(compare:CCVH (match_operand:VI_HW 0 "register_operand" "v")
(match_operand:VI_HW 1 "register_operand" "v")))
[(set (reg:CCVIH CC_REGNUM)
(compare:CCVIH (match_operand:VI_HW 0 "register_operand" "v")
(match_operand:VI_HW 1 "register_operand" "v")))
(set (match_operand:VI_HW 2 "register_operand" "=v")
(gt:VI_HW (match_dup 0) (match_dup 1)))]
"TARGET_VX"
......@@ -1942,9 +1942,9 @@
[(set_attr "op_type" "VRR")])
(define_insn "*vec_cmphl<VI_HW:mode>_cc"
[(set (reg:CCVHU CC_REGNUM)
(compare:CCVHU (match_operand:VI_HW 0 "register_operand" "v")
(match_operand:VI_HW 1 "register_operand" "v")))
[(set (reg:CCVIHU CC_REGNUM)
(compare:CCVIHU (match_operand:VI_HW 0 "register_operand" "v")
(match_operand:VI_HW 1 "register_operand" "v")))
(set (match_operand:VI_HW 2 "register_operand" "=v")
(gtu:VI_HW (match_dup 0) (match_dup 1)))]
"TARGET_VX"
......@@ -1978,13 +1978,13 @@
(define_expand "vec_cmphv2df_cc"
[(parallel
[(set (reg:CCVH CC_REGNUM)
(compare:CCVH (match_operand:V2DF 1 "register_operand" "v")
(match_operand:V2DF 2 "register_operand" "v")))
[(set (reg:CCVIH CC_REGNUM)
(compare:CCVIH (match_operand:V2DF 1 "register_operand" "v")
(match_operand:V2DF 2 "register_operand" "v")))
(set (match_operand:V2DI 0 "register_operand" "=v")
(gt:V2DI (match_dup 1) (match_dup 2)))])
(set (match_operand:SI 3 "memory_operand" "")
(unspec:SI [(reg:CCVH CC_REGNUM)] UNSPEC_CC_TO_INT))]
(unspec:SI [(reg:CCVIH CC_REGNUM)] UNSPEC_CC_TO_INT))]
"TARGET_VX")
(define_expand "vec_cmphev2df_cc"
......@@ -2010,9 +2010,9 @@
[(set_attr "op_type" "VRR")])
(define_insn "*vec_cmphv2df_cc"
[(set (reg:CCVH CC_REGNUM)
(compare:CCVH (match_operand:V2DF 0 "register_operand" "v")
(match_operand:V2DF 1 "register_operand" "v")))
[(set (reg:CCVIH CC_REGNUM)
(compare:CCVIH (match_operand:V2DF 0 "register_operand" "v")
(match_operand:V2DF 1 "register_operand" "v")))
(set (match_operand:V2DI 2 "register_operand" "=v")
(gt:V2DI (match_dup 0) (match_dup 1)))]
"TARGET_VX"
......
2016-12-02 Andreas Krebbel <krebbel@linux.vnet.ibm.com>
* gcc.target/s390/vector/vec-scalar-cmp-1.c: Fix and harden the
pattern checks.
* gcc.target/s390/zvector/vec-cmp-1.c: New test.
2016-12-02 Maxim Ostapenko <m.ostapenko@samsung.com>
* c-c++-common/asan/no-redundant-odr-indicators-1.c: New test.
......
/* Check that we use the scalar variants of vector compares. */
/* { dg-do compile { target { s390*-*-* } } } */
/* { dg-options "-O3 -mzarch -march=z13" } */
/* { dg-final { scan-assembler-times "wfcedbs\t%v\[0-9\]*,%v0,%v2" 2 } } */
/* { dg-final { scan-assembler-times "wfchdbs\t%v\[0-9\]*,%v0,%v2" 1 } } */
/* { dg-final { scan-assembler-times "wfchedbs\t%v\[0-9\]*,%v2,%v0" 1 } } */
/* { dg-final { scan-assembler-times "wfchdbs\t%v\[0-9\]*,%v2,%v0" 1 } } */
/* { dg-final { scan-assembler-times "wfchedbs\t%v\[0-9\]*,%v2,%v0" 1 } } */
/* { dg-final { scan-assembler-times "lochine" 5 } } */
/* { dg-final { scan-assembler-times "lochino" 1 } } */
/* { dg-options "-O3 -mzarch -march=z13 -fno-asynchronous-unwind-tables" } */
int
eq (double a, double b)
......@@ -18,32 +9,45 @@ eq (double a, double b)
return a == b;
}
/* { dg-final { scan-assembler "eq:\n\twfcedbs\t%v\[0-9\]*,%v0,%v2\n\tlhi\t%r2,1\n\tlochine\t%r2,0" } } */
int
ne (double a, double b)
{
return a != b;
}
/* { dg-final { scan-assembler "ne:\n\twfcedbs\t%v\[0-9\]*,%v0,%v2\n\tlhi\t%r2,1\n\tlochie\t%r2,0" } } */
int
gt (double a, double b)
{
return a > b;
}
/* { dg-final { scan-assembler "gt:\n\twfchdbs\t%v\[0-9\]*,%v0,%v2\n\tlhi\t%r2,1\n\tlochine\t%r2,0" } } */
int
ge (double a, double b)
{
return a >= b;
}
/* { dg-final { scan-assembler "ge:\n\twfchedbs\t%v\[0-9\]*,%v0,%v2\n\tlhi\t%r2,1\n\tlochine\t%r2,0" } } */
int
lt (double a, double b)
{
return a < b;
}
/* { dg-final { scan-assembler "lt:\n\twfchdbs\t%v\[0-9\]*,%v2,%v0\n\tlhi\t%r2,1\n\tlochine\t%r2,0" } } */
int
le (double a, double b)
{
return a <= b;
}
/* { dg-final { scan-assembler "le:\n\twfchedbs\t%v\[0-9\]*,%v2,%v0\n\tlhi\t%r2,1\n\tlochine\t%r2,0" } } */
/* { dg-do compile { target { s390*-*-* } } } */
/* { dg-options "-O3 -mzarch -march=z13 -mzvector -fno-asynchronous-unwind-tables" } */
#include <vecintrin.h>
int __attribute__((noinline,noclone))
all_eq_double (vector double a, vector double b)
{
return vec_all_eq (a, b);
}
/* { dg-final { scan-assembler-times all_eq_double:\n\tvfcedbs\t%v\[0-9\]*,%v24,%v26\n\tlhi\t%r2,1\n\tlochine\t%r2,0 1 } } */
int __attribute__((noinline,noclone))
all_ne_double (vector double a, vector double b)
{
return vec_all_ne (a, b);
}
/* { dg-final { scan-assembler-times all_ne_double:\n\tvfcedbs\t%v\[0-9\]*,%v24,%v26\n\tlhi\t%r2,1\n\tlochile\t%r2,0 1 } } */
int __attribute__((noinline,noclone))
all_gt_double (vector double a, vector double b)
{
return vec_all_gt (a, b);
}
/* { dg-final { scan-assembler-times all_gt_double:\n\tvfchdbs\t%v\[0-9\]*,%v24,%v26\n\tlhi\t%r2,1\n\tlochine\t%r2,0 1 } } */
int __attribute__((noinline,noclone))
all_lt_double (vector double a, vector double b)
{
return vec_all_lt (a, b);
}
/* { dg-final { scan-assembler-times all_lt_double:\n\tvfchdbs\t%v\[0-9\]*,%v26,%v24\n\tlhi\t%r2,1\n\tlochine\t%r2,0 1 } } */
int __attribute__((noinline,noclone))
all_ge_double (vector double a, vector double b)
{
return vec_all_ge (a, b);
}
/* { dg-final { scan-assembler-times all_ge_double:\n\tvfchedbs\t%v\[0-9\]*,%v24,%v26\n\tlhi\t%r2,1\n\tlochine\t%r2,0 1 } } */
int __attribute__((noinline,noclone))
all_le_double (vector double a, vector double b)
{
return vec_all_le (a, b);
}
/* { dg-final { scan-assembler-times all_le_double:\n\tvfchedbs\t%v\[0-9\]*,%v26,%v24\n\tlhi\t%r2,1\n\tlochine\t%r2,0 1 } } */
int __attribute__((noinline,noclone))
any_eq_double (vector double a, vector double b)
{
return vec_any_eq (a, b);
}
/* { dg-final { scan-assembler-times any_eq_double:\n\tvfcedbs\t%v\[0-9\]*,%v24,%v26\n\tlhi\t%r2,1\n\tlochinle\t%r2,0 1 } } */
int __attribute__((noinline,noclone))
any_ne_double (vector double a, vector double b)
{
return vec_any_ne (a, b);
}
/* { dg-final { scan-assembler-times any_ne_double:\n\tvfcedbs\t%v\[0-9\]*,%v24,%v26\n\tlhi\t%r2,1\n\tlochie\t%r2,0 1 } } */
int __attribute__((noinline,noclone))
any_gt_double (vector double a, vector double b)
{
return vec_any_gt (a, b);
}
/* { dg-final { scan-assembler-times any_gt_double:\n\tvfchdbs\t%v\[0-9\]*,%v24,%v26\n\tlhi\t%r2,1\n\tlochinle\t%r2,0 1 } } */
int __attribute__((noinline,noclone))
any_lt_double (vector double a, vector double b)
{
return vec_any_lt (a, b);
}
/* { dg-final { scan-assembler-times any_lt_double:\n\tvfchdbs\t%v\[0-9\]*,%v26,%v24\n\tlhi\t%r2,1\n\tlochinle\t%r2,0 1 } } */
int __attribute__((noinline,noclone))
any_ge_double (vector double a, vector double b)
{
return vec_any_ge (a, b);
}
/* { dg-final { scan-assembler-times any_ge_double:\n\tvfchedbs\t%v\[0-9\]*,%v24,%v26\n\tlhi\t%r2,1\n\tlochinle\t%r2,0 1 } } */
int __attribute__((noinline,noclone))
any_le_double (vector double a, vector double b)
{
return vec_any_le (a, b);
}
/* { dg-final { scan-assembler-times any_le_double:\n\tvfchedbs\t%v\[0-9\]*,%v26,%v24\n\tlhi\t%r2,1\n\tlochinle\t%r2,0 1 } } */
int __attribute__((noinline,noclone))
all_eq_int (vector int a, vector int b)
{
return vec_all_eq (a, b);
}
/* { dg-final { scan-assembler-times all_eq_int:\n\tvceqfs\t%v\[0-9\]*,%v24,%v26\n\tlhi\t%r2,1\n\tlochine\t%r2,0 1 } } */
int __attribute__((noinline,noclone))
all_ne_int (vector int a, vector int b)
{
return vec_all_ne (a, b);
}
/* { dg-final { scan-assembler-times all_ne_int:\n\tvceqfs\t%v\[0-9\]*,%v24,%v26\n\tlhi\t%r2,1\n\tlochile\t%r2,0 1 } } */
int __attribute__((noinline,noclone))
all_gt_int (vector int a, vector int b)
{
return vec_all_gt (a, b);
}
/* { dg-final { scan-assembler-times all_gt_int:\n\tvchfs\t%v\[0-9\]*,%v24,%v26\n\tlhi\t%r2,1\n\tlochine\t%r2,0 1 } } */
int __attribute__((noinline,noclone))
all_lt_int (vector int a, vector int b)
{
return vec_all_lt (a, b);
}
/* { dg-final { scan-assembler-times all_lt_int:\n\tvchfs\t%v\[0-9\]*,%v26,%v24\n\tlhi\t%r2,1\n\tlochine\t%r2,0 1 } } */
int __attribute__((noinline,noclone))
all_ge_int (vector int a, vector int b)
{
return vec_all_ge (a, b);
}
/* { dg-final { scan-assembler-times all_ge_int:\n\tvchfs\t%v\[0-9\]*,%v26,%v24\n\tlhi\t%r2,1\n\tlochile\t%r2,0 1 } } */
int __attribute__((noinline,noclone))
all_le_int (vector int a, vector int b)
{
return vec_all_le (a, b);
}
/* { dg-final { scan-assembler-times all_le_int:\n\tvchfs\t%v\[0-9\]*,%v24,%v26\n\tlhi\t%r2,1\n\tlochile\t%r2,0 1 } } */
int __attribute__((noinline,noclone))
any_eq_int (vector int a, vector int b)
{
return vec_any_eq (a, b);
}
/* { dg-final { scan-assembler-times any_eq_int:\n\tvceqfs\t%v\[0-9\]*,%v24,%v26\n\tlhi\t%r2,1\n\tlochinle\t%r2,0 1 } } */
int __attribute__((noinline,noclone))
any_ne_int (vector int a, vector int b)
{
return vec_any_ne (a, b);
}
/* { dg-final { scan-assembler-times any_ne_int:\n\tvceqfs\t%v\[0-9\]*,%v24,%v26\n\tlhi\t%r2,1\n\tlochie\t%r2,0 1 } } */
int __attribute__((noinline,noclone))
any_gt_int (vector int a, vector int b)
{
return vec_any_gt (a, b);
}
/* { dg-final { scan-assembler-times any_gt_int:\n\tvchfs\t%v\[0-9\]*,%v24,%v26\n\tlhi\t%r2,1\n\tlochinle\t%r2,0 1 } } */
int __attribute__((noinline,noclone))
any_lt_int (vector int a, vector int b)
{
return vec_any_lt (a, b);
}
/* { dg-final { scan-assembler-times any_lt_int:\n\tvchfs\t%v\[0-9\]*,%v26,%v24\n\tlhi\t%r2,1\n\tlochinle\t%r2,0 1 } } */
int __attribute__((noinline,noclone))
any_ge_int (vector int a, vector int b)
{
return vec_any_ge (a, b);
}
/* { dg-final { scan-assembler-times any_ge_int:\n\tvchfs\t%v\[0-9\]*,%v26,%v24\n\tlhi\t%r2,1\n\tlochie\t%r2,0 1 } } */
int __attribute__((noinline,noclone))
any_le_int (vector int a, vector int b)
{
return vec_any_le (a, b);
}
/* { dg-final { scan-assembler-times any_le_int:\n\tvchfs\t%v\[0-9\]*,%v24,%v26\n\tlhi\t%r2,1\n\tlochie\t%r2,0 1 } } */
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment