Commit 916b1701 by Michael Meissner

abstract regset stuff into macros

From-SVN: r14147
parent 2217c9f0
......@@ -19,9 +19,11 @@ the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* Number of bits in each actual element of a regset. */
/* Number of bits in each actual element of a regset. We get slightly
better code for reg%bits and reg/bits if bits is unsigned, assuming
it is a power of 2. */
#define REGSET_ELT_BITS HOST_BITS_PER_WIDE_INT
#define REGSET_ELT_BITS ((unsigned) HOST_BITS_PER_WIDE_INT)
/* Type to use for a regset element. Note that lots of code assumes
that the initial part of a regset that contains information on the
......@@ -40,6 +42,221 @@ typedef REGSET_ELT_TYPE *regset;
extern int regset_bytes;
extern int regset_size;
/* clear a register set */
#define CLEAR_REG_SET(TO) \
do { register REGSET_ELT_TYPE *scan_tp_ = (TO); \
register int i_; \
for (i_ = 0; i_ < regset_size; i_++) \
*scan_tp_++ = 0; } while (0)
/* copy a register to another register */
#define COPY_REG_SET(TO, FROM) \
do { register REGSET_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
register int i_; \
for (i_ = 0; i_ < regset_size; i_++) \
*scan_tp_++ = *scan_fp_++; } while (0)
/* complent a register set, storing it in a second register set. */
#define COMPL_REG_SET(TO, FROM) \
do { register REGSET_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
register int i_; \
for (i_ = 0; i_ < regset_size; i_++) \
*scan_tp_++ = ~ *scan_fp_++; } while (0)
/* and a register set with a second register set. */
#define AND_REG_SET(TO, FROM) \
do { register REGSET_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
register int i_; \
for (i_ = 0; i_ < regset_size; i_++) \
*scan_tp_++ &= *scan_fp_++; } while (0)
/* and the complement of a register set to a register set. */
#define AND_COMPL_REG_SET(TO, FROM) \
do { register REGSET_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
register int i_; \
for (i_ = 0; i_ < regset_size; i_++) \
*scan_tp_++ &= ~ *scan_fp_++; } while (0)
/* inclusive or a register set with a second register set. */
#define IOR_REG_SET(TO, FROM) \
do { register REGSET_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
register int i_; \
for (i_ = 0; i_ < regset_size; i_++) \
*scan_tp_++ |= *scan_fp_++; } while (0)
/* complement two register sets and or in the result into a third. */
#define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
do { register REGSET_ELT_TYPE *scan_tp_ = (TO); \
register REGSET_ELT_TYPE *scan_fp1_ = (FROM1); \
register REGSET_ELT_TYPE *scan_fp2_ = (FROM2); \
register int i_; \
for (i_ = 0; i_ < regset_size; i_++) \
*scan_tp_++ |= *scan_fp1_++ & ~ *scan_fp2_++; } while (0)
/* Clear a single register in a register set. */
#define CLEAR_REGNO_REG_SET(TO, REG) \
do { \
register REGSET_ELT_TYPE *tp_ = (TO); \
tp_[ (REG) / REGSET_ELT_BITS ] \
&= ~ ((REGSET_ELT_TYPE) 1 << ((REG) % REGSET_ELT_BITS)); } while (0);
/* Set a single register in a register set. */
#define SET_REGNO_REG_SET(TO, REG) \
do { \
register REGSET_ELT_TYPE *tp_ = (TO); \
tp_[ (REG) / REGSET_ELT_BITS ] \
|= ((REGSET_ELT_TYPE) 1 << ((REG) % REGSET_ELT_BITS)); } while (0);
/* Return true if a register is set in a register set. */
#define REGNO_REG_SET_P(TO, REG) \
(((TO)[ (REG) / REGSET_ELT_BITS ] \
& (((REGSET_ELT_TYPE)1) << (REG) % REGSET_ELT_BITS)) != 0)
/* Copy the hard registers in a register set to the hard register set. */
#define REG_SET_TO_HARD_REG_SET(TO, FROM) \
do { \
int i_; \
CLEAR_HARD_REG_SET (TO); \
for (i_ = 0; i < FIRST_PSEUDO_REGISTER; i++) \
if (REGNO_REG_SET_P (FROM, i_)) \
SET_HARD_REG_BIT (TO, i_); \
} while (0)
/* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
register number and executing CODE for all registers that are set. */
#define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, CODE) \
do { \
register REGSET_ELT_TYPE *scan_rs_ = (REGSET); \
register int i_; \
register int shift_ = (MIN) % REGSET_ELT_BITS; \
for (i_ = (MIN) / REGSET_ELT_BITS; i_ < regset_size; i_++) \
{ \
REGSET_ELT_TYPE word_ = *scan_rs_++; \
if (word_) \
{ \
REGSET_ELT_TYPE j_; \
REGNUM = (i_ * REGSET_ELT_BITS) + shift_; \
for (j_ = ((REGSET_ELT_TYPE)1) << shift_; \
j_ != 0; \
(j_ <<= 1), REGNUM++) \
{ \
if (word_ & j_) \
{ \
CODE; \
word_ &= ~ j_; \
if (!word_) \
break; \
} \
} \
} \
shift_ = 0; \
} \
} while (0)
/* Like EXECUTE_IF_SET_IN_REG_SET, but also clear the register set. */
#define EXECUTE_IF_SET_AND_RESET_IN_REG_SET(REGSET, MIN, REGNUM, CODE) \
do { \
register REGSET_ELT_TYPE *scan_rs_ = (REGSET); \
register int i_; \
register int shift_ = (MIN) % REGSET_ELT_BITS; \
for (i_ = (MIN) / REGSET_ELT_BITS; i_ < regset_size; i_++) \
{ \
REGSET_ELT_TYPE word_ = *scan_rs_++; \
if (word_) \
{ \
REGSET_ELT_TYPE j_; \
REGNUM = (i_ * REGSET_ELT_BITS) + shift_; \
scan_rs_[-1] = 0; \
for (j_ = ((REGSET_ELT_TYPE)1) << shift_; \
j_ != 0; \
(j_ <<= 1), REGNUM++) \
{ \
if (word_ & j_) \
{ \
CODE; \
word_ &= ~ j_; \
if (!word_) \
break; \
} \
} \
} \
shift_ = 0; \
} \
} while (0)
/* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
REGNUM to the register number and executing CODE for all registers that are
set in both regsets. */
#define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, CODE) \
do { \
register REGSET_ELT_TYPE *scan_rs1_ = (REGSET1); \
register REGSET_ELT_TYPE *scan_rs2_ = (REGSET2); \
register int i_; \
register int shift_ = (MIN) % REGSET_ELT_BITS; \
for (i_ = (MIN) / REGSET_ELT_BITS; i_ < regset_size; i_++) \
{ \
REGSET_ELT_TYPE word_ = *scan_rs1_++ & *scan_rs2_++; \
if (word_) \
{ \
REGSET_ELT_TYPE j_; \
REGNUM = (i_ * REGSET_ELT_BITS) + shift_; \
for (j_ = ((REGSET_ELT_TYPE)1) << shift_; \
j_ != 0; \
(j_ <<= 1), REGNUM++) \
{ \
if (word_ & j_) \
{ \
CODE; \
word_ &= ~ j_; \
if (!word_) \
break; \
} \
} \
} \
shift_ = 0; \
} \
} while (0)
/* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
REGNUM to the register number and executing CODE for all registers that are
set in the first regset and not set in the second. */
#define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, CODE) \
do { \
register REGSET_ELT_TYPE *scan_rs1_ = (REGSET1); \
register REGSET_ELT_TYPE *scan_rs2_ = (REGSET2); \
register int i_; \
register int shift_ = (MIN) % REGSET_ELT_BITS; \
for (i_ = (MIN) / REGSET_ELT_BITS; i_ < regset_size; i_++) \
{ \
REGSET_ELT_TYPE word_ = *scan_rs1_++ & ~ *scan_rs2_++; \
if (word_) \
{ \
REGSET_ELT_TYPE j_; \
REGNUM = (i_ * REGSET_ELT_BITS) + shift_; \
for (j_ = ((REGSET_ELT_TYPE)1) << shift_; \
j_ != 0; \
(j_ <<= 1), REGNUM++) \
{ \
if (word_ & j_) \
{ \
CODE; \
word_ &= ~ j_; \
if (!word_) \
break; \
} \
} \
} \
shift_ = 0; \
} \
} while (0)
/* Allocate a register set with oballoc. */
#define OBALLOC_REG_SET() \
((regset) obstack_alloc (&flow_obstack, regset_bytes))
/* Allocate a register set with alloca. */
#define ALLOCA_REG_SET() ((regset) alloca (regset_bytes))
/* Number of basic blocks in the current function. */
extern int n_basic_blocks;
......
......@@ -367,31 +367,20 @@ save_call_clobbered_regs (insn_mode)
saved because we restore all of them before the end of the basic
block. */
#ifdef HARD_REG_SET
hard_regs_live = *regs_live;
#else
COPY_HARD_REG_SET (hard_regs_live, regs_live);
#endif
REG_SET_TO_HARD_REG_SET (hard_regs_live, regs_live);
CLEAR_HARD_REG_SET (hard_regs_saved);
CLEAR_HARD_REG_SET (hard_regs_need_restore);
n_regs_saved = 0;
for (offset = 0, i = 0; offset < regset_size; offset++)
{
if (regs_live[offset] == 0)
i += REGSET_ELT_BITS;
else
for (bit = 1; bit && i < max_regno; bit <<= 1, i++)
if ((regs_live[offset] & bit)
&& (regno = reg_renumber[i]) >= 0)
for (j = regno;
j < regno + HARD_REGNO_NREGS (regno,
PSEUDO_REGNO_MODE (i));
j++)
SET_HARD_REG_BIT (hard_regs_live, j);
}
EXECUTE_IF_SET_IN_REG_SET (regs_live, 0, i,
{
if ((regno = reg_renumber[i]) >= 0)
for (j = regno;
j < regno + HARD_REGNO_NREGS (regno,
PSEUDO_REGNO_MODE (i));
j++)
SET_HARD_REG_BIT (hard_regs_live, j);
});
/* Now scan the insns in the block, keeping track of what hard
regs are live as we go. When we see a call, save the live
......
......@@ -642,36 +642,21 @@ global_conflicts ()
are explicitly marked in basic_block_live_at_start. */
{
register int offset;
REGSET_ELT_TYPE bit;
register regset old = basic_block_live_at_start[b];
int ax = 0;
#ifdef HARD_REG_SET
hard_regs_live = old[0];
#else
COPY_HARD_REG_SET (hard_regs_live, old);
#endif
for (offset = 0, i = 0; offset < regset_size; offset++)
if (old[offset] == 0)
i += REGSET_ELT_BITS;
else
for (bit = 1; bit; bit <<= 1, i++)
{
if (i >= max_regno)
break;
if (old[offset] & bit)
{
register int a = reg_allocno[i];
if (a >= 0)
{
SET_ALLOCNO_LIVE (a);
block_start_allocnos[ax++] = a;
}
else if ((a = reg_renumber[i]) >= 0)
mark_reg_live_nc (a, PSEUDO_REGNO_MODE (i));
}
}
REG_SET_TO_HARD_REG_SET (hard_regs_live, old);
EXECUTE_IF_SET_IN_REG_SET (old, 0, i,
{
register int a = reg_allocno[i];
if (a >= 0)
{
SET_ALLOCNO_LIVE (a);
block_start_allocnos[ax++] = a;
}
else if ((a = reg_renumber[i]) >= 0)
mark_reg_live_nc (a, PSEUDO_REGNO_MODE (i));
});
/* Record that each allocno now live conflicts with each other
allocno now live, and with each hard reg now live. */
......@@ -1640,13 +1625,10 @@ mark_elimination (from, to)
int i;
for (i = 0; i < n_basic_blocks; i++)
if ((basic_block_live_at_start[i][from / REGSET_ELT_BITS]
& ((REGSET_ELT_TYPE) 1 << (from % REGSET_ELT_BITS))) != 0)
if (REGNO_REG_SET_P (basic_block_live_at_start[i], from))
{
basic_block_live_at_start[i][from / REGSET_ELT_BITS]
&= ~ ((REGSET_ELT_TYPE) 1 << (from % REGSET_ELT_BITS));
basic_block_live_at_start[i][to / REGSET_ELT_BITS]
|= ((REGSET_ELT_TYPE) 1 << (to % REGSET_ELT_BITS));
CLEAR_REGNO_REG_SET (basic_block_live_at_start[i], from);
SET_REGNO_REG_SET (basic_block_live_at_start[i], to);
}
}
......
......@@ -2762,25 +2762,17 @@ mark_target_live_regs (target, res)
marked live, plus live pseudo regs that have been renumbered to
hard regs. */
#ifdef HARD_REG_SET
current_live_regs = *regs_live;
#else
COPY_HARD_REG_SET (current_live_regs, regs_live);
#endif
for (offset = 0, i = 0; offset < regset_size; offset++)
{
if (regs_live[offset] == 0)
i += REGSET_ELT_BITS;
else
for (bit = 1; bit && i < max_regno; bit <<= 1, i++)
if ((regs_live[offset] & bit)
&& (regno = reg_renumber[i]) >= 0)
for (j = regno;
j < regno + HARD_REGNO_NREGS (regno,
PSEUDO_REGNO_MODE (i));
j++)
SET_HARD_REG_BIT (current_live_regs, j);
REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
EXECUTE_IF_SET_IN_REG_SET (regs_live, 0, i,
{
if ((regno = reg_renumber[i]) >= 0)
for (j = regno;
j < regno + HARD_REGNO_NREGS (regno,
PSEUDO_REGNO_MODE (i));
j++)
SET_HARD_REG_BIT (current_live_regs, j);
});
}
/* Get starting and ending insn, handling the case where each might
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment