Commit 8c35bbc5 by Richard Kenner

(REAL_WORDS_BIG_ENDIAN): New macro.

(REAL_WORDS_BIG_ENDIAN): New macro.  Define as either
FLOAT_WORDS_BIG_ENDIAN or HOST_FLOAT_WORDS_BIG_ENDIAN.  Use it instead
of FLOAT_WORDS_BIG_ENDIAN.
(m16m, edivm, emulm): Change `short' to `EMUSHORT', and `long' to `EMULONG'.
Clean up comments.

From-SVN: r9027
parent 0ed5f250
......@@ -44,23 +44,19 @@ The emulator defaults to the host's floating point format so that
its decimal conversion functions can be used if desired (see
real.h).
The first part of this file interfaces gcc to ieee.c, which is a
floating point arithmetic suite that was not written with gcc in
mind. The interface is followed by ieee.c itself and related
items. Avoid changing ieee.c unless you have suitable test
programs available. A special version of the PARANOIA floating
point arithmetic tester, modified for this purpose, can be found
on usc.edu : /pub/C-numanal/ieeetest.zoo. Some tutorial
information on ieee.c is given in my book: S. L. Moshier,
_Methods and Programs for Mathematical Functions_, Prentice-Hall
or Simon & Schuster Int'l, 1989. A library of XFmode elementary
transcendental functions can be obtained by ftp from
research.att.com: netlib/cephes/ldouble.shar.Z */
The first part of this file interfaces gcc to a floating point
arithmetic suite that was not written with gcc in mind. Avoid
changing the low-level arithmetic routines unless you have suitable
test programs available. A special version of the PARANOIA floating
point arithmetic tester, modified for this purpose, can be found on
usc.edu: /pub/C-numanal/ieeetest.zoo. Other tests, and libraries of
XFmode and TFmode transcendental functions, can be obtained by ftp from
netlib.att.com: netlib/cephes. */
/* Type of computer arithmetic.
Only one of DEC, IBM, IEEE, or UNK should get defined.
`IEEE', when FLOAT_WORDS_BIG_ENDIAN is non-zero, refers generically
`IEEE', when REAL_WORDS_BIG_ENDIAN is non-zero, refers generically
to big-endian IEEE floating-point data structure. This definition
should work in SFmode `float' type and DFmode `double' type on
virtually all big-endian IEEE machines. If LONG_DOUBLE_TYPE_SIZE
......@@ -68,7 +64,7 @@ research.att.com: netlib/cephes/ldouble.shar.Z */
XFmode (`long double' type) data structure used by the Motorola
680x0 series processors.
`IEEE', when FLOAT_WORDS_BIG_ENDIAN is zero, refers generally to
`IEEE', when REAL_WORDS_BIG_ENDIAN is zero, refers generally to
little-endian IEEE machines. In this case, if LONG_DOUBLE_TYPE_SIZE
has been defined to be 96, then IEEE also invokes the particular
XFmode `long double' data structure used by the Intel 80x86 series
......@@ -130,6 +126,8 @@ unknown arithmetic type
#endif /* not IBM */
#endif /* not VAX */
#define REAL_WORDS_BIG_ENDIAN FLOAT_WORDS_BIG_ENDIAN
#else
/* REAL_ARITHMETIC not defined means that the *host's* data
structure will be used. It may differ by endian-ness from the
......@@ -153,6 +151,8 @@ unknown arithmetic type
#endif /* not IBM */
#endif /* not VAX */
#define REAL_WORDS_BIG_ENDIAN HOST_FLOAT_WORDS_BIG_ENDIAN
#endif /* REAL_ARITHMETIC not defined */
/* Define INFINITY for support of infinity.
......@@ -256,7 +256,7 @@ unknown arithmetic type
#define GET_REAL(r,e) \
do { \
if (HOST_FLOAT_WORDS_BIG_ENDIAN == FLOAT_WORDS_BIG_ENDIAN) \
if (HOST_FLOAT_WORDS_BIG_ENDIAN == REAL_WORDS_BIG_ENDIAN) \
e53toe ((unsigned EMUSHORT*) (r), (e)); \
else \
{ \
......@@ -271,7 +271,7 @@ do { \
#define PUT_REAL(e,r) \
do { \
if (HOST_FLOAT_WORDS_BIG_ENDIAN == FLOAT_WORDS_BIG_ENDIAN) \
if (HOST_FLOAT_WORDS_BIG_ENDIAN == REAL_WORDS_BIG_ENDIAN) \
etoe53 ((e), (unsigned EMUSHORT *) (r)); \
else \
{ \
......@@ -433,7 +433,7 @@ endian (e, x, mode)
{
unsigned long th, t;
if (FLOAT_WORDS_BIG_ENDIAN)
if (REAL_WORDS_BIG_ENDIAN)
{
switch (mode)
{
......@@ -894,7 +894,6 @@ target_isinf (x)
#endif
}
/* Check whether a REAL_VALUE_TYPE item is a NaN. */
int
......@@ -993,10 +992,19 @@ debug_real (r)
}
/* Target values are arrays of host longs. A long is guaranteed
to be at least 32 bits wide. */
/* The following routines convert REAL_VALUE_TYPE to the various floating
point formats that are meaningful to supported computers.
The results are returned in 32-bit pieces, each piece stored in a `long'.
This is so they can be printed by statements like
fprintf (file, "%lx, %lx", L[0], L[1]);
that will work on both narrow- and wide-word host computers. */
/* 128-bit long double */
/* Convert R to a 128-bit long double precision value. The output array L
contains four 32-bit pieces of the result, in the order they would appear
in memory. */
void
etartdouble (r, l)
......@@ -1010,7 +1018,9 @@ etartdouble (r, l)
endian (e, l, TFmode);
}
/* 80-bit long double */
/* Convert R to a double extended precision value. The output array L
contains three 32-bit pieces of the result, in the order they would
appear in memory. */
void
etarldouble (r, l)
......@@ -1024,6 +1034,9 @@ etarldouble (r, l)
endian (e, l, XFmode);
}
/* Convert R to a double precision value. The output array L contains two
32-bit pieces of the result, in the order they would appear in memory. */
void
etardouble (r, l)
REAL_VALUE_TYPE r;
......@@ -1036,6 +1049,9 @@ etardouble (r, l)
endian (e, l, DFmode);
}
/* Convert R to a single precision float value stored in the least-significant
bits of a `long'. */
long
etarsingle (r)
REAL_VALUE_TYPE r;
......@@ -1049,6 +1065,11 @@ etarsingle (r)
return ((long) l);
}
/* Convert X to a decimal ASCII string S for output to an assembly
language file. Note, there is no standard way to spell infinity or
a NaN, so these values may require special treatment in the tm.h
macros. */
void
ereal_to_decimal (x, s)
REAL_VALUE_TYPE x;
......@@ -1060,6 +1081,9 @@ ereal_to_decimal (x, s)
etoasc (e, s, 20);
}
/* Compare X and Y. Return 1 if X > Y, 0 if X == Y, -1 if X < Y,
or -2 if either is a NaN. */
int
ereal_cmp (x, y)
REAL_VALUE_TYPE x, y;
......@@ -1071,6 +1095,8 @@ ereal_cmp (x, y)
return (ecmp (ex, ey));
}
/* Return 1 if the sign bit of X is set, else return 0. */
int
ereal_isneg (x)
REAL_VALUE_TYPE x;
......@@ -1090,7 +1116,7 @@ ereal_isneg (x)
short integers. The arguments of the routines are pointers to
the arrays.
External e type data structure, simulates Intel 8087 chip
External e type data structure, similar to Intel 8087 chip
temporary real format but possibly with a larger significand:
NE-1 significand words (least significant word first,
......@@ -1099,7 +1125,7 @@ ereal_isneg (x)
top bit is the sign)
Internal data structure of a number (a "word" is 16 bits):
Internal exploded e-type data structure of a number (a "word" is 16 bits):
ei[0] sign word (0 for positive, 0xffff for negative)
ei[1] biased exponent (value = EXONE for the number 1.0)
......@@ -1112,7 +1138,7 @@ ereal_isneg (x)
Routines for external format numbers
Routines for external format e-type numbers
asctoe (string, e) ASCII string to extended double e type
asctoe64 (string, &d) ASCII string to long double
......@@ -1156,7 +1182,7 @@ ereal_isneg (x)
eisnan (e) 1 if e is a NaN
Routines for internal format numbers
Routines for internal format exploded e-type numbers
eaddm (ai, bi) add significands, bi = bi + ai
ecleaz (ei) ei = 0
......@@ -1217,11 +1243,11 @@ ereal_isneg (x)
For computers, such as IBM PC, that follow the IEEE
Standard for Binary Floating Point Arithmetic (ANSI/IEEE
Std 754-1985), the symbol IBMPC or MIEEE should be defined.
Std 754-1985), the symbol IEEE should be defined.
These numbers have 53-bit significands. In this mode, constants
are provided as arrays of hexadecimal 16 bit integers.
[This has been changed to instead check the preprocessor macros IEEE
and FLOAT_WORDS_BIG_ENDIAN].
The endian-ness of generated values is controlled by
REAL_WORDS_BIG_ENDIAN.
To accommodate other types of computer arithmetic, all
constants are also provided in a normal decimal radix
......@@ -1320,15 +1346,13 @@ unsigned EMUSHORT epi[NE] =
{0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,};
#endif
/* Control register for rounding precision.
This can be set to 113 (if NE=10), 80 (if NE=6), 64, 56, 53, or 24 bits. */
int rndprc = NBITS;
extern int rndprc;
/* Clear out entire external format number. */
/* Clear out entire e-type number X. */
static void
eclear (x)
......@@ -1340,9 +1364,7 @@ eclear (x)
*x++ = 0;
}
/* Move external format number from a to b. */
/* Move e-type number from A to B. */
static void
emov (a, b)
......@@ -1355,7 +1377,7 @@ emov (a, b)
}
/* Absolute value of external format number. */
/* Absolute value of e-type X. */
static void
eabs (x)
......@@ -1365,7 +1387,7 @@ eabs (x)
x[NE - 1] &= 0x7fff;
}
/* Negate external format number. */
/* Negate the e-type number X. */
static void
eneg (x)
......@@ -1375,9 +1397,7 @@ eneg (x)
x[NE - 1] ^= 0x8000; /* Toggle the sign bit */
}
/* Return 1 if sign bit of external format number is nonzero, else zero. */
/* Return 1 if sign bit of e-type number X is nonzero, else zero. */
static int
eisneg (x)
......@@ -1390,8 +1410,7 @@ eisneg (x)
return (0);
}
/* Return 1 if external format number is infinity, else return zero. */
/* Return 1 if e-type number X is infinity, else return zero. */
static int
eisinf (x)
......@@ -1408,7 +1427,6 @@ eisinf (x)
return (0);
}
/* Check if e-type number is not a number. The bit pattern is one that we
defined, so we know for sure how to detect it. */
......@@ -1433,7 +1451,7 @@ eisnan (x)
return (0);
}
/* Fill external format number with infinity pattern (IEEE)
/* Fill e-type number X with infinity pattern (IEEE)
or largest possible number (non-IEEE). */
static void
......@@ -1475,7 +1493,6 @@ einfin (x)
#endif
}
/* Output an e-type NaN.
This generates Intel's quiet NaN pattern for extended real.
The exponent is 7fff, the leading mantissa word is c000. */
......@@ -1493,8 +1510,7 @@ enan (x, sign)
*x = (sign << 15) | 0x7fff;
}
/* Move in external format number, converting it to internal format. */
/* Move in an e-type number A, converting it to exploded e-type B. */
static void
emovi (a, b)
......@@ -1541,8 +1557,7 @@ emovi (a, b)
*q = 0;
}
/* Move internal format number out, converting it to external format. */
/* Move out exploded e-type number A, converting it to e type B. */
static void
emovo (a, b)
......@@ -1581,7 +1596,7 @@ emovo (a, b)
*q-- = *p++;
}
/* Clear out internal format number. */
/* Clear out exploded e-type number XI. */
static void
ecleaz (xi)
......@@ -1593,8 +1608,7 @@ ecleaz (xi)
*xi++ = 0;
}
/* Same, but don't touch the sign. */
/* Clear out exploded e-type XI, but don't touch the sign. */
static void
ecleazs (xi)
......@@ -1607,9 +1621,7 @@ ecleazs (xi)
*xi++ = 0;
}
/* Move internal format number from a to b. */
/* Move exploded e-type number from A to B. */
static void
emovz (a, b)
......@@ -1623,7 +1635,7 @@ emovz (a, b)
*b = 0;
}
/* Generate internal format NaN.
/* Generate exploded e-type NaN.
The explicit pattern for this is maximum exponent and
top two significant bits set. */
......@@ -1637,7 +1649,7 @@ einan (x)
x[M + 1] = 0xc000;
}
/* Return nonzero if internal format number is a NaN. */
/* Return nonzero if exploded e-type X is a NaN. */
static int
eiisnan (x)
......@@ -1656,7 +1668,7 @@ eiisnan (x)
return (0);
}
/* Return nonzero if sign of internal format number is nonzero. */
/* Return nonzero if sign of exploded e-type X is nonzero. */
static int
eiisneg (x)
......@@ -1666,7 +1678,7 @@ eiisneg (x)
return x[0] != 0;
}
/* Fill internal format number with infinity pattern.
/* Fill exploded e-type X with infinity pattern.
This has maximum exponent and significand all zeros. */
static void
......@@ -1678,7 +1690,7 @@ eiinfin (x)
x[E] = 0x7fff;
}
/* Return nonzero if internal format number is infinite. */
/* Return nonzero if exploded e-type X is infinite. */
static int
eiisinf (x)
......@@ -1695,7 +1707,7 @@ eiisinf (x)
}
/* Compare significands of numbers in internal format.
/* Compare significands of numbers in internal exploded e-type format.
Guard words are included in the comparison.
Returns +1 if a > b
......@@ -1724,8 +1736,7 @@ ecmpm (a, b)
return (-1);
}
/* Shift significand down by 1 bit. */
/* Shift significand of exploded e-type X down by 1 bit. */
static void
eshdn1 (x)
......@@ -1749,9 +1760,7 @@ eshdn1 (x)
}
}
/* Shift significand up by 1 bit. */
/* Shift significand of exploded e-type X up by 1 bit. */
static void
eshup1 (x)
......@@ -1776,7 +1785,7 @@ eshup1 (x)
}
/* Shift significand down by 8 bits. */
/* Shift significand of exploded e-type X down by 8 bits. */
static void
eshdn8 (x)
......@@ -1797,7 +1806,7 @@ eshdn8 (x)
}
}
/* Shift significand up by 8 bits. */
/* Shift significand of exploded e-type X up by 8 bits. */
static void
eshup8 (x)
......@@ -1819,7 +1828,7 @@ eshup8 (x)
}
}
/* Shift significand up by 16 bits. */
/* Shift significand of exploded e-type X up by 16 bits. */
static void
eshup6 (x)
......@@ -1837,7 +1846,7 @@ eshup6 (x)
*p = 0;
}
/* Shift significand down by 16 bits. */
/* Shift significand of exploded e-type X down by 16 bits. */
static void
eshdn6 (x)
......@@ -1855,7 +1864,7 @@ eshdn6 (x)
*(--p) = 0;
}
/* Add significands. x + y replaces y. */
/* Add significands of exploded e-type X and Y. X + Y replaces Y. */
static void
eaddm (x, y)
......@@ -1881,7 +1890,7 @@ eaddm (x, y)
}
}
/* Subtract significands. y - x replaces y. */
/* Subtract significands of exploded e-type X and Y. Y - X replaces Y. */
static void
esubm (x, y)
......@@ -2061,22 +2070,21 @@ emulm (a, b)
#else
/* Radix 65536 versions of multiply and divide */
/* Radix 65536 versions of multiply and divide. */
/* Multiply significand of e-type number b
by 16-bit quantity a, e-type result to c. */
/* Multiply significand of e-type number B
by 16-bit quantity A, return e-type result to C. */
static void
m16m (a, b, c)
unsigned int a;
unsigned short b[], c[];
unsigned EMUSHORT b[], c[];
{
register unsigned short *pp;
register unsigned long carry;
unsigned short *ps;
unsigned short p[NI];
unsigned long aa, m;
register unsigned EMUSHORT *pp;
register unsigned EMULONG carry;
unsigned EMUSHORT *ps;
unsigned EMUSHORT p[NI];
unsigned EMULONG aa, m;
int i;
aa = a;
......@@ -2095,11 +2103,11 @@ m16m (a, b, c)
}
else
{
m = (unsigned long) aa * *ps--;
m = (unsigned EMULONG) aa * *ps--;
carry = (m & 0xffff) + *pp;
*pp-- = (unsigned short)carry;
*pp-- = (unsigned EMUSHORT)carry;
carry = (carry >> 16) + (m >> 16) + *pp;
*pp = (unsigned short)carry;
*pp = (unsigned EMUSHORT)carry;
*(pp-1) = carry >> 16;
}
}
......@@ -2107,19 +2115,19 @@ m16m (a, b, c)
c[i] = p[i];
}
/* Divide significands. Neither the numerator nor the denominator
is permitted to have its high guard word nonzero. */
/* Divide significands of exploded e-types NUM / DEN. Neither the
numerator NUM nor the denominator DEN is permitted to have its high guard
word nonzero. */
static int
edivm (den, num)
unsigned short den[], num[];
unsigned EMUSHORT den[], num[];
{
int i;
register unsigned short *p;
unsigned long tnum;
unsigned short j, tdenm, tquot;
unsigned short tprod[NI+1];
register unsigned EMUSHORT *p;
unsigned EMULONG tnum;
unsigned EMUSHORT j, tdenm, tquot;
unsigned EMUSHORT tprod[NI+1];
p = &equot[0];
*p++ = num[0];
......@@ -2134,7 +2142,7 @@ edivm (den, num)
for (i=M; i<NI; i++)
{
/* Find trial quotient digit (the radix is 65536). */
tnum = (((unsigned long) num[M]) << 16) + num[M+1];
tnum = (((unsigned EMULONG) num[M]) << 16) + num[M+1];
/* Do not execute the divide instruction if it will overflow. */
if ((tdenm * 0xffffL) < tnum)
......@@ -2174,16 +2182,15 @@ edivm (den, num)
return ((int)j);
}
/* Multiply significands of exploded e-type A and B, result in B. */
/* Multiply significands */
static int
emulm (a, b)
unsigned short a[], b[];
unsigned EMUSHORT a[], b[];
{
unsigned short *p, *q;
unsigned short pprod[NI];
unsigned short j;
unsigned EMUSHORT *p, *q;
unsigned EMUSHORT pprod[NI];
unsigned EMUSHORT j;
int i;
equot[0] = b[0];
......@@ -2220,19 +2227,19 @@ emulm (a, b)
/* Normalize and round off.
The internal format number to be rounded is "s".
Input "lost" indicates whether or not the number is exact.
This is the so-called sticky bit.
The internal format number to be rounded is S.
Input LOST is 0 if the value is exact. This is the so-called sticky bit.
Input "subflg" indicates whether the number was obtained
by a subtraction operation. In that case if lost is nonzero
Input SUBFLG indicates whether the number was obtained
by a subtraction operation. In that case if LOST is nonzero
then the number is slightly smaller than indicated.
Input "exp" is the biased exponent, which may be negative.
the exponent field of "s" is ignored but is replaced by
"exp" as adjusted by normalization and rounding.
Input EXP is the biased exponent, which may be negative.
the exponent field of S is ignored but is replaced by
EXP as adjusted by normalization and rounding.
Input "rcntrl" is the rounding control.
Input RCNTRL is the rounding control. If it is nonzero, the
returned value will be rounded to RNDPRC bits.
For future reference: In order for emdnorm to round off denormal
significands at the right point, the input exponent must be
......@@ -2445,9 +2452,7 @@ emdnorm (s, lost, subflg, exp, rcntrl)
s[1] = (unsigned EMUSHORT) exp;
}
/* Subtract external format numbers. */
/* Subtract. C = B - A, all e type numbers. */
static int subflg = 0;
......@@ -2481,8 +2486,7 @@ esub (a, b, c)
eadd1 (a, b, c);
}
/* Add. */
/* Add. C = A + B, all e type. */
static void
eadd (a, b, c)
......@@ -2515,6 +2519,8 @@ eadd (a, b, c)
eadd1 (a, b, c);
}
/* Arithmetic common to both addition and subtraction. */
static void
eadd1 (a, b, c)
unsigned EMUSHORT *a, *b, *c;
......@@ -2617,9 +2623,7 @@ eadd1 (a, b, c)
emovo (bi, c);
}
/* Divide. */
/* Divide: C = B/A, all e type. */
static void
ediv (a, b, c)
......@@ -2721,9 +2725,7 @@ ediv (a, b, c)
emovo (bi, c);
}
/* Multiply. */
/* Multiply e-types A and B, return e-type product C. */
static void
emul (a, b, c)
......@@ -2813,10 +2815,7 @@ emul (a, b, c)
emovo (bi, c);
}
/* Convert IEEE double precision to e type. */
/* Convert double precision PE to e-type Y. */
static void
e53toe (pe, y)
......@@ -2824,7 +2823,7 @@ e53toe (pe, y)
{
#ifdef DEC
dectoe (pe, y); /* see etodec.c */
dectoe (pe, y);
#else
#ifdef IBM
......@@ -2840,7 +2839,7 @@ e53toe (pe, y)
e = pe;
denorm = 0; /* flag if denormalized number */
ecleaz (yy);
if (! FLOAT_WORDS_BIG_ENDIAN)
if (! REAL_WORDS_BIG_ENDIAN)
e += 3;
r = *e;
yy[0] = 0;
......@@ -2852,7 +2851,7 @@ e53toe (pe, y)
if (r == 0x7ff0)
{
#ifdef NANS
if (! FLOAT_WORDS_BIG_ENDIAN)
if (! REAL_WORDS_BIG_ENDIAN)
{
if (((pe[3] & 0xf) != 0) || (pe[2] != 0)
|| (pe[1] != 0) || (pe[0] != 0))
......@@ -2891,7 +2890,7 @@ e53toe (pe, y)
yy[E] = r;
p = &yy[M + 1];
#ifdef IEEE
if (! FLOAT_WORDS_BIG_ENDIAN)
if (! REAL_WORDS_BIG_ENDIAN)
{
*p++ = *(--e);
*p++ = *(--e);
......@@ -2918,6 +2917,8 @@ e53toe (pe, y)
#endif /* not DEC */
}
/* Convert double extended precision float PE to e type Y. */
static void
e64toe (pe, y)
unsigned EMUSHORT *pe, *y;
......@@ -2943,7 +2944,7 @@ e64toe (pe, y)
*p-- = *e++;
#endif
#ifdef IEEE
if (! FLOAT_WORDS_BIG_ENDIAN)
if (! REAL_WORDS_BIG_ENDIAN)
{
for (i = 0; i < 5; i++)
*p++ = *e++;
......@@ -2963,7 +2964,7 @@ e64toe (pe, y)
if (*p == 0x7fff)
{
#ifdef NANS
if (! FLOAT_WORDS_BIG_ENDIAN)
if (! REAL_WORDS_BIG_ENDIAN)
{
for (i = 0; i < 4; i++)
{
......@@ -3001,6 +3002,7 @@ e64toe (pe, y)
*q++ = *p++;
}
/* Convert 128-bit long double precision float PE to e type Y. */
static void
e113toe (pe, y)
......@@ -3015,7 +3017,7 @@ e113toe (pe, y)
denorm = 0;
ecleaz (yy);
#ifdef IEEE
if (! FLOAT_WORDS_BIG_ENDIAN)
if (! REAL_WORDS_BIG_ENDIAN)
e += 7;
#endif
r = *e;
......@@ -3027,7 +3029,7 @@ e113toe (pe, y)
if (r == 0x7fff)
{
#ifdef NANS
if (! FLOAT_WORDS_BIG_ENDIAN)
if (! REAL_WORDS_BIG_ENDIAN)
{
for (i = 0; i < 7; i++)
{
......@@ -3060,7 +3062,7 @@ e113toe (pe, y)
yy[E] = r;
p = &yy[M + 1];
#ifdef IEEE
if (! FLOAT_WORDS_BIG_ENDIAN)
if (! REAL_WORDS_BIG_ENDIAN)
{
for (i = 0; i < 7; i++)
*p++ = *(--e);
......@@ -3085,8 +3087,7 @@ e113toe (pe, y)
emovo (yy, y);
}
/* Convert IEEE single precision to e type. */
/* Convert single precision float PE to e type Y. */
static void
e24toe (pe, y)
......@@ -3106,7 +3107,7 @@ e24toe (pe, y)
denorm = 0; /* flag if denormalized number */
ecleaz (yy);
#ifdef IEEE
if (! FLOAT_WORDS_BIG_ENDIAN)
if (! REAL_WORDS_BIG_ENDIAN)
e += 1;
#endif
#ifdef DEC
......@@ -3122,7 +3123,7 @@ e24toe (pe, y)
if (r == 0x7f80)
{
#ifdef NANS
if (FLOAT_WORDS_BIG_ENDIAN)
if (REAL_WORDS_BIG_ENDIAN)
{
if (((pe[0] & 0x7f) != 0) || (pe[1] != 0))
{
......@@ -3161,7 +3162,7 @@ e24toe (pe, y)
*p++ = *(--e);
#endif
#ifdef IEEE
if (! FLOAT_WORDS_BIG_ENDIAN)
if (! REAL_WORDS_BIG_ENDIAN)
*p++ = *(--e);
else
{
......@@ -3181,6 +3182,7 @@ e24toe (pe, y)
#endif /* not IBM */
}
/* Convert e-type X to IEEE 128-bit long double format E. */
static void
etoe113 (x, e)
......@@ -3212,7 +3214,8 @@ etoe113 (x, e)
toe113 (xi, e);
}
/* Move out internal format to ieee long double */
/* Convert exploded e-type X, that has already been rounded to
113-bit precision, to IEEE 128-bit long double format Y. */
static void
toe113 (a, b)
......@@ -3229,7 +3232,7 @@ toe113 (a, b)
}
#endif
p = a;
if (FLOAT_WORDS_BIG_ENDIAN)
if (REAL_WORDS_BIG_ENDIAN)
q = b;
else
q = b + 7; /* point to output exponent */
......@@ -3241,7 +3244,7 @@ toe113 (a, b)
}
/* combine sign and exponent */
i = *p++;
if (FLOAT_WORDS_BIG_ENDIAN)
if (REAL_WORDS_BIG_ENDIAN)
{
if (i)
*q++ = *p++ | 0x8000;
......@@ -3258,7 +3261,7 @@ toe113 (a, b)
/* skip over guard word */
++p;
/* move the significand */
if (FLOAT_WORDS_BIG_ENDIAN)
if (REAL_WORDS_BIG_ENDIAN)
{
for (i = 0; i < 7; i++)
*q++ = *p++;
......@@ -3270,6 +3273,8 @@ toe113 (a, b)
}
}
/* Convert e-type X to IEEE double extended format E. */
static void
etoe64 (x, e)
unsigned EMUSHORT *x, *e;
......@@ -3301,8 +3306,8 @@ etoe64 (x, e)
toe64 (xi, e);
}
/* Move out internal format to ieee long double. */
/* Convert exploded e-type X, that has already been rounded to
64-bit precision, to IEEE double extended format Y. */
static void
toe64 (a, b)
......@@ -3326,7 +3331,7 @@ toe64 (a, b)
q = b + 4;
#endif
#ifdef IEEE
if (FLOAT_WORDS_BIG_ENDIAN)
if (REAL_WORDS_BIG_ENDIAN)
q = b;
else
{
......@@ -3354,7 +3359,7 @@ toe64 (a, b)
*q-- = *p++;
#endif
#ifdef IEEE
if (FLOAT_WORDS_BIG_ENDIAN)
if (REAL_WORDS_BIG_ENDIAN)
{
if (i)
*q++ = *p++ | 0x8000;
......@@ -3382,7 +3387,7 @@ toe64 (a, b)
*q-- = *p++;
#endif
#ifdef IEEE
if (FLOAT_WORDS_BIG_ENDIAN)
if (REAL_WORDS_BIG_ENDIAN)
{
for (i = 0; i < 4; i++)
*q++ = *p++;
......@@ -3406,10 +3411,10 @@ toe64 (a, b)
#endif
}
/* e type to IEEE double precision. */
/* e type to double precision. */
#ifdef DEC
/* Convert e-type X to DEC-format double E. */
static void
etoe53 (x, e)
......@@ -3418,6 +3423,9 @@ etoe53 (x, e)
etodec (x, e); /* see etodec.c */
}
/* Convert exploded e-type X, that has already been rounded to
56-bit double precision, to DEC double Y. */
static void
toe53 (x, y)
unsigned EMUSHORT *x, *y;
......@@ -3427,6 +3435,7 @@ toe53 (x, y)
#else
#ifdef IBM
/* Convert e-type X to IBM 370-format double E. */
static void
etoe53 (x, e)
......@@ -3435,6 +3444,9 @@ etoe53 (x, e)
etoibm (x, e, DFmode);
}
/* Convert exploded e-type X, that has already been rounded to
56-bit precision, to IBM 370 double Y. */
static void
toe53 (x, y)
unsigned EMUSHORT *x, *y;
......@@ -3444,6 +3456,8 @@ toe53 (x, y)
#else /* it's neither DEC nor IBM */
/* Convert e-type X to IEEE double E. */
static void
etoe53 (x, e)
unsigned EMUSHORT *x, *e;
......@@ -3475,6 +3489,8 @@ etoe53 (x, e)
toe53 (xi, e);
}
/* Convert exploded e-type X, that has already been rounded to
53-bit precision, to IEEE double Y. */
static void
toe53 (x, y)
......@@ -3492,7 +3508,7 @@ toe53 (x, y)
#endif
p = &x[0];
#ifdef IEEE
if (! FLOAT_WORDS_BIG_ENDIAN)
if (! REAL_WORDS_BIG_ENDIAN)
y += 3;
#endif
*y = 0; /* output high order */
......@@ -3504,7 +3520,7 @@ toe53 (x, y)
{ /* Saturate at largest number less than infinity. */
#ifdef INFINITY
*y |= 0x7ff0;
if (! FLOAT_WORDS_BIG_ENDIAN)
if (! REAL_WORDS_BIG_ENDIAN)
{
*(--y) = 0;
*(--y) = 0;
......@@ -3519,7 +3535,7 @@ toe53 (x, y)
}
#else
*y |= (unsigned EMUSHORT) 0x7fef;
if (! FLOAT_WORDS_BIG_ENDIAN)
if (! REAL_WORDS_BIG_ENDIAN)
{
*(--y) = 0xffff;
*(--y) = 0xffff;
......@@ -3546,7 +3562,7 @@ toe53 (x, y)
}
i |= *p++ & (unsigned EMUSHORT) 0x0f; /* *p = xi[M] */
*y |= (unsigned EMUSHORT) i; /* high order output already has sign bit set */
if (! FLOAT_WORDS_BIG_ENDIAN)
if (! REAL_WORDS_BIG_ENDIAN)
{
*(--y) = *p++;
*(--y) = *p++;
......@@ -3566,9 +3582,10 @@ toe53 (x, y)
/* e type to IEEE single precision. */
/* e type to single precision. */
#ifdef IBM
/* Convert e-type X to IBM 370 float E. */
static void
etoe24 (x, e)
......@@ -3577,6 +3594,9 @@ etoe24 (x, e)
etoibm (x, e, SFmode);
}
/* Convert exploded e-type X, that has already been rounded to
float precision, to IBM 370 float Y. */
static void
toe24 (x, y)
unsigned EMUSHORT *x, *y;
......@@ -3585,6 +3605,7 @@ toe24 (x, y)
}
#else
/* Convert e-type X to IEEE float E. DEC float is the same as IEEE float. */
static void
etoe24 (x, e)
......@@ -3617,6 +3638,9 @@ etoe24 (x, e)
toe24 (xi, e);
}
/* Convert exploded e-type X, that has already been rounded to
float precision, to IEEE float Y. */
static void
toe24 (x, y)
unsigned EMUSHORT *x, *y;
......@@ -3633,7 +3657,7 @@ toe24 (x, y)
#endif
p = &x[0];
#ifdef IEEE
if (! FLOAT_WORDS_BIG_ENDIAN)
if (! REAL_WORDS_BIG_ENDIAN)
y += 1;
#endif
#ifdef DEC
......@@ -3653,7 +3677,7 @@ toe24 (x, y)
*(--y) = 0;
#endif
#ifdef IEEE
if (! FLOAT_WORDS_BIG_ENDIAN)
if (! REAL_WORDS_BIG_ENDIAN)
*(--y) = 0;
else
{
......@@ -3667,7 +3691,7 @@ toe24 (x, y)
*(--y) = 0xffff;
#endif
#ifdef IEEE
if (! FLOAT_WORDS_BIG_ENDIAN)
if (! REAL_WORDS_BIG_ENDIAN)
*(--y) = 0xffff;
else
{
......@@ -3691,12 +3715,13 @@ toe24 (x, y)
eshift (x, 8);
}
i |= *p++ & (unsigned EMUSHORT) 0x7f; /* *p = xi[M] */
*y |= i; /* high order output already has sign bit set */
/* High order output already has sign bit set. */
*y |= i;
#ifdef DEC
*(--y) = *p;
#endif
#ifdef IEEE
if (! FLOAT_WORDS_BIG_ENDIAN)
if (! REAL_WORDS_BIG_ENDIAN)
*(--y) = *p;
else
{
......@@ -3765,8 +3790,6 @@ ecmp (a, b)
return (0); /* equality */
diff:
if (*(--p) > *(--q))
......@@ -3775,10 +3798,7 @@ ecmp (a, b)
return (-msign); /* p is littler */
}
/* Find nearest integer to x = floor (x + 0.5). */
/* Find e-type nearest integer to X, as floor (X + 0.5). */
static void
eround (x, y)
......@@ -3788,10 +3808,7 @@ eround (x, y)
efloor (y, y);
}
/* Convert HOST_WIDE_INT to e type. */
/* Convert HOST_WIDE_INT LP to e type Y. */
static void
ltoe (lp, y)
......@@ -3833,7 +3850,7 @@ ltoe (lp, y)
emovo (yi, y); /* output the answer */
}
/* Convert unsigned HOST_WIDE_INT to e type. */
/* Convert unsigned HOST_WIDE_INT LP to e type Y. */
static void
ultoe (lp, y)
......@@ -3868,8 +3885,8 @@ ultoe (lp, y)
}
/* Find signed HOST_WIDE_INT integer and floating point fractional
parts of e-type (packed internal format) floating point input X.
/* Find signed HOST_WIDE_INT integer I and floating point fractional
part FRAC of e-type (packed internal format) floating point input X.
The integer output I has the sign of the input, except that
positive overflow is permitted if FIXUNS_TRUNC_LIKE_FIX_TRUNC.
The output e-type fraction FRAC is the positive fractional
......@@ -3954,9 +3971,9 @@ eifrac (x, i, frac)
}
/* Find unsigned HOST_WIDE_INT integer and floating point fractional parts.
A negative e type input yields integer output = 0
but correct fraction. */
/* Find unsigned HOST_WIDE_INT integer I and floating point fractional part
FRAC of e-type X. A negative input yields integer output = 0 but
correct fraction. */
static void
euifrac (x, i, frac)
......@@ -4025,9 +4042,7 @@ euifrac (x, i, frac)
emovo (xi, frac);
}
/* Shift significand area up or down by the number of bits given by SC. */
/* Shift the significand of exploded e-type X up or down by SC bits. */
static int
eshift (x, sc)
......@@ -4092,10 +4107,8 @@ eshift (x, sc)
return ((int) lost);
}
/* Shift normalize the significand area pointed to by argument.
Shift count (up = positive) is returned. */
/* Shift normalize the significand area of exploded e-type X.
Return the shift count (up = positive). */
static int
enormlz (x)
......@@ -4163,11 +4176,7 @@ enormlz (x)
return (sc);
}
/* Convert e type number to decimal format ASCII string.
The constants are for 64 bit precision. */
/* Powers of ten used in decimal <-> binary conversions. */
#define NTEN 12
#define MAXP 4096
......@@ -4269,6 +4278,9 @@ static unsigned EMUSHORT emtens[NTEN + 1][NE] =
};
#endif
/* Convert float value X to ASCII string STRING with NDIG digits after
the decimal point. */
static void
e24toasc (x, string, ndigs)
unsigned EMUSHORT x[];
......@@ -4281,6 +4293,8 @@ e24toasc (x, string, ndigs)
etoasc (w, string, ndigs);
}
/* Convert double value X to ASCII string STRING with NDIG digits after
the decimal point. */
static void
e53toasc (x, string, ndigs)
......@@ -4294,6 +4308,8 @@ e53toasc (x, string, ndigs)
etoasc (w, string, ndigs);
}
/* Convert double extended value X to ASCII string STRING with NDIG digits
after the decimal point. */
static void
e64toasc (x, string, ndigs)
......@@ -4307,6 +4323,9 @@ e64toasc (x, string, ndigs)
etoasc (w, string, ndigs);
}
/* Convert 128-bit long double value X to ASCII string STRING with NDIG digits
after the decimal point. */
static void
e113toasc (x, string, ndigs)
unsigned EMUSHORT x[];
......@@ -4319,6 +4338,8 @@ e113toasc (x, string, ndigs)
etoasc (w, string, ndigs);
}
/* Convert e-type X to ASCII string STRING with NDIGS digits after
the decimal point. */
static char wstring[80]; /* working storage for ASCII output */
......@@ -4629,15 +4650,14 @@ etoasc (x, string, ndigs)
}
/* Convert ASCII string to quadruple precision floating point
/* Convert ASCII string to floating point.
Numeric input is free field decimal number with max of 15 digits with or
without decimal point entered as ASCII from teletype. Entering E after
the number followed by a second number causes the second number to be
interpreted as a power of 10 to be multiplied by the first number
(i.e., "scientific" notation). */
Numeric input is a free format decimal number of any length, with
or without decimal point. Entering E after the number followed by an
integer number causes the second number to be interpreted as a power of
10 to be multiplied by the first number (i.e., "scientific" notation). */
/* ASCII to single */
/* Convert ASCII string S to single precision float value Y. */
static void
asctoe24 (s, y)
......@@ -4648,7 +4668,7 @@ asctoe24 (s, y)
}
/* ASCII to double */
/* Convert ASCII string S to double precision value Y. */
static void
asctoe53 (s, y)
......@@ -4663,7 +4683,7 @@ asctoe53 (s, y)
}
/* ASCII to long double */
/* Convert ASCII string S to double extended value Y. */
static void
asctoe64 (s, y)
......@@ -4673,7 +4693,7 @@ asctoe64 (s, y)
asctoeg (s, y, 64);
}
/* ASCII to 128-bit long double */
/* Convert ASCII string S to 128-bit long double Y. */
static void
asctoe113 (s, y)
......@@ -4683,7 +4703,7 @@ asctoe113 (s, y)
asctoeg (s, y, 113);
}
/* ASCII to super double */
/* Convert ASCII string S to e type Y. */
static void
asctoe (s, y)
......@@ -4693,8 +4713,8 @@ asctoe (s, y)
asctoeg (s, y, NBITS);
}
/* ASCII to e type, with specified rounding precision = oprec. */
/* Convert ASCII string SS to e type Y, with a specified rounding precision
of OPREC bits. */
static void
asctoeg (ss, y, oprec)
......@@ -5009,7 +5029,8 @@ asctoeg (ss, y, oprec)
/* y = largest integer not greater than x (truncated toward minus infinity) */
/* Return Y = largest integer not greater than X (truncated toward minus
infinity). */
static unsigned EMUSHORT bmask[] =
{
......@@ -5079,9 +5100,8 @@ efloor (x, y)
}
/* Returns s and exp such that s * 2**exp = x and .5 <= s < 1.
For example, 1.1 = 0.55 * 2**1
Handles denormalized numbers properly using long integer exp. */
/* Return S and EXP such that S * 2^EXP = X and .5 <= S < 1.
For example, 1.1 = 0.55 * 2^1. */
static void
efrexp (x, exp, s)
......@@ -5093,6 +5113,7 @@ efrexp (x, exp, s)
EMULONG li;
emovi (x, xi);
/* Handle denormalized numbers properly using long integer exponent. */
li = (EMULONG) ((EMUSHORT) xi[1]);
if (li == 0)
......@@ -5104,9 +5125,7 @@ efrexp (x, exp, s)
*exp = (int) (li - 0x3ffe);
}
/* Return y = x * 2**pwr2. */
/* Return e type Y = X * 2^PWR2. */
static void
eldexp (x, pwr2, y)
......@@ -5127,8 +5146,8 @@ eldexp (x, pwr2, y)
}
/* c = remainder after dividing b by a
Least significant integer quotient bits left in equot[]. */
/* C = remainder after dividing B by A, all e type values.
Least significant integer quotient bits left in EQUOT. */
static void
eremain (a, b, c)
......@@ -5163,6 +5182,9 @@ eremain (a, b, c)
emovo (num, c);
}
/* Return quotient of exploded e-types NUM / DEN in EQUOT,
remainder in NUM. */
static void
eiremain (den, num)
unsigned EMUSHORT den[], num[];
......@@ -5183,9 +5205,7 @@ eiremain (den, num)
j = 1;
}
else
{
j = 0;
}
eshup1 (equot);
equot[NI - 1] |= j;
eshup1 (num);
......@@ -5194,8 +5214,8 @@ eiremain (den, num)
emdnorm (num, 0, 0, ln, 0);
}
/* This routine may be called to report one of the following
error conditions (in the include file mconf.h).
/* Report an error condition CODE encountered in function NAME.
CODE is one of the following:
Mnemonic Value Significance
......@@ -5209,19 +5229,7 @@ eiremain (den, num)
EDOM 33 Unix domain error code
ERANGE 34 Unix range error code
The default version of the file prints the function name,
passed to it by the pointer fctnam, followed by the
error condition. The display is directed to the standard
output device. The routine then returns to the calling
program. Users may wish to modify the program to abort by
calling exit under severe error conditions such as domain
errors.
Since all error conditions pass control to this function,
the display may be easily changed, eliminated, or directed
to an error logging device. */
/* Note: the order of appearance of the following messages is bound to the
The order of appearance of the following messages is bound to the
error codes defined above. */
#define NMSGS 8
......@@ -5247,10 +5255,9 @@ mtherr (name, code)
{
char errstr[80];
/* Display string passed by calling program, which is supposed to be the
/* The string passed by the calling program is supposed to be the
name of the function in which the error occurred.
Display error message defined by the code argument. */
The code argument selects which error message string will be printed. */
if ((code <= 0) || (code >= NMSGS))
code = 0;
......@@ -5262,7 +5269,7 @@ mtherr (name, code)
}
#ifdef DEC
/* Convert DEC double precision to e type. */
/* Convert DEC double precision D to e type E. */
static void
dectoe (d, e)
......@@ -5302,14 +5309,7 @@ dectoe (d, e)
emovo (y, e);
}
/*
; convert e type to DEC double precision
; double d;
; EMUSHORT e[NE];
; etodec (e, &d);
*/
/* Convert e type X to DEC double precision D. */
static void
etodec (x, d)
......@@ -5320,8 +5320,9 @@ etodec (x, d)
int rndsav;
emovi (x, xi);
exp = (EMULONG) xi[E] - (EXONE - 0201); /* adjust exponent for offsets */
/* round off to nearest or even */
/* Adjust exponent for offsets. */
exp = (EMULONG) xi[E] - (EXONE - 0201);
/* Round off to nearest or even. */
rndsav = rndprc;
rndprc = 56;
emdnorm (xi, 0, 0, exp, 64);
......@@ -5329,6 +5330,9 @@ etodec (x, d)
todec (xi, d);
}
/* Convert exploded e-type X, that has already been rounded to
56-bit precision, to DEC format double Y. */
static void
todec (x, y)
unsigned EMUSHORT *x, *y;
......@@ -5552,21 +5556,21 @@ make_nan (nan, sign, mode)
#if !defined(DEC) && !defined(IBM)
case TFmode:
n = 8;
if (FLOAT_WORDS_BIG_ENDIAN)
if (REAL_WORDS_BIG_ENDIAN)
p = TFbignan;
else
p = TFlittlenan;
break;
case XFmode:
n = 6;
if (FLOAT_WORDS_BIG_ENDIAN)
if (REAL_WORDS_BIG_ENDIAN)
p = XFbignan;
else
p = XFlittlenan;
break;
case DFmode:
n = 4;
if (FLOAT_WORDS_BIG_ENDIAN)
if (REAL_WORDS_BIG_ENDIAN)
p = DFbignan;
else
p = DFlittlenan;
......@@ -5574,7 +5578,7 @@ make_nan (nan, sign, mode)
case HFmode:
case SFmode:
n = 2;
if (FLOAT_WORDS_BIG_ENDIAN)
if (REAL_WORDS_BIG_ENDIAN)
p = SFbignan;
else
p = SFlittlenan;
......@@ -5583,11 +5587,11 @@ make_nan (nan, sign, mode)
default:
abort ();
}
if (FLOAT_WORDS_BIG_ENDIAN)
if (REAL_WORDS_BIG_ENDIAN)
*nan++ = (sign << 15) | *p++;
while (--n != 0)
*nan++ = *p++;
if (! FLOAT_WORDS_BIG_ENDIAN)
if (! REAL_WORDS_BIG_ENDIAN)
*nan = (sign << 15) | *p;
}
......@@ -5605,7 +5609,7 @@ ereal_from_float (f)
/* Convert 32 bit integer to array of 16 bit pieces in target machine order.
This is the inverse operation to what the function `endian' does. */
if (FLOAT_WORDS_BIG_ENDIAN)
if (REAL_WORDS_BIG_ENDIAN)
{
s[0] = (unsigned EMUSHORT) (f >> 16);
s[1] = (unsigned EMUSHORT) f;
......@@ -5641,7 +5645,7 @@ ereal_from_double (d)
unsigned EMUSHORT e[NE];
/* Convert array of HOST_WIDE_INT to equivalent array of 16-bit pieces. */
if (FLOAT_WORDS_BIG_ENDIAN)
if (REAL_WORDS_BIG_ENDIAN)
{
s[0] = (unsigned EMUSHORT) (d[0] >> 16);
s[1] = (unsigned EMUSHORT) d[0];
......@@ -5679,7 +5683,7 @@ ereal_from_double (d)
/* Convert target computer unsigned 64-bit integer to e-type.
The endian-ness of DImode follows the convention for integers,
so we use WORDS_BIG_ENDIAN here, not FLOAT_WORDS_BIG_ENDIAN. */
so we use WORDS_BIG_ENDIAN here, not REAL_WORDS_BIG_ENDIAN. */
static void
uditoe (di, e)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment