Commit 4b11e406 by Richard Sandiford Committed by Richard Sandiford

mips.h (AVOID_CCMODE_COPIES): Update rationale for definition.

gcc/
	* config/mips/mips.h (AVOID_CCMODE_COPIES): Update rationale for
	definition.
	* config/mips/mips.c (machine_function): Add next_fcc.
	(mips_output_move): Remove handling of fcc moves.
	(mips_allocate_fcc): New function.
	(mips_emit_compare, mips_expand_vcondv2sf): Use it.
	(mips_hard_regno_mode_ok_p): Restrict CCmode to ST registers.
	Remove special case for CCmode reloads.
	(mips_expand_builtin_compare_1): Use mips_allocate_fcc and treat
	the result a fixed operand.
	* config/mips/mips.md (move_type): Remove lui_movf.
	(type, length): Remove references to it.
	(movcc, reload_incc, reload_outcc): Delete.

From-SVN: r190703
parent 7fc242e0
2012-08-26 Richard Sandiford <rdsandiford@googlemail.com>
* config/mips/mips.h (AVOID_CCMODE_COPIES): Update rationale for
definition.
* config/mips/mips.c (machine_function): Add next_fcc.
(mips_output_move): Remove handling of fcc moves.
(mips_allocate_fcc): New function.
(mips_emit_compare, mips_expand_vcondv2sf): Use it.
(mips_hard_regno_mode_ok_p): Restrict CCmode to ST registers.
Remove special case for CCmode reloads.
(mips_expand_builtin_compare_1): Use mips_allocate_fcc and treat
the result a fixed operand.
* config/mips/mips.md (move_type): Remove lui_movf.
(type, length): Remove references to it.
(movcc, reload_incc, reload_outcc): Delete.
2012-08-26 Richard Sandiford <rdsandiford@googlemail.com>
* config/mips/mips.c (mips_has_long_branch_p): New function,
split out from...
(mips_expand_ghost_gp_insns): ...here. Look inside sequences.
......
......@@ -321,6 +321,10 @@ struct GTY(()) mips_frame_info {
};
struct GTY(()) machine_function {
/* The next floating-point condition-code register to allocate
for ISA_HAS_8CC targets, relative to ST_REG_FIRST. */
unsigned int next_fcc;
/* The register returned by mips16_gp_pseudo_reg; see there for details. */
rtx mips16_gp_pseudo_rtx;
......@@ -4284,9 +4288,6 @@ mips_output_move (rtx dest, rtx src)
retval[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src));
return dbl_p ? retval : retval + 1;
}
if (ST_REG_P (REGNO (src)) && ISA_HAS_8CC)
return "lui\t%0,0x3f80\n\tmovf\t%0,%.,%1";
}
if (src_code == MEM)
......@@ -4527,6 +4528,63 @@ mips_reversed_fp_cond (enum rtx_code *code)
}
}
/* Allocate a floating-point condition-code register of mode MODE.
These condition code registers are used for certain kinds
of compound operation, such as compare and branches, vconds,
and built-in functions. At expand time, their use is entirely
controlled by MIPS-specific code and is entirely internal
to these compound operations.
We could (and did in the past) expose condition-code values
as pseudo registers and leave the register allocator to pick
appropriate registers. The problem is that it is not practically
possible for the rtl optimizers to guarantee that no spills will
be needed, even when AVOID_CCMODE_COPIES is defined. We would
therefore need spill and reload sequences to handle the worst case.
Although such sequences do exist, they are very expensive and are
not something we'd want to use. This is especially true of CCV2 and
CCV4, where all the shuffling would greatly outweigh whatever benefit
the vectorization itself provides.
The main benefit of having more than one condition-code register
is to allow the pipelining of operations, especially those involving
comparisons and conditional moves. We don't really expect the
registers to be live for long periods, and certainly never want
them to be live across calls.
Also, there should be no penalty attached to using all the available
registers. They are simply bits in the same underlying FPU control
register.
We therefore expose the hardware registers from the outset and use
a simple round-robin allocation scheme. */
static rtx
mips_allocate_fcc (enum machine_mode mode)
{
unsigned int regno, count;
gcc_assert (TARGET_HARD_FLOAT && ISA_HAS_8CC);
if (mode == CCmode)
count = 1;
else if (mode == CCV2mode)
count = 2;
else if (mode == CCV4mode)
count = 4;
else
gcc_unreachable ();
cfun->machine->next_fcc += -cfun->machine->next_fcc & (count - 1);
if (cfun->machine->next_fcc > ST_REG_LAST - ST_REG_FIRST)
cfun->machine->next_fcc = 0;
regno = ST_REG_FIRST + cfun->machine->next_fcc;
cfun->machine->next_fcc += count;
return gen_rtx_REG (mode, regno);
}
/* Convert a comparison into something that can be used in a branch or
conditional move. On entry, *OP0 and *OP1 are the values being
compared and *CODE is the code used to compare them.
......@@ -4590,7 +4648,7 @@ mips_emit_compare (enum rtx_code *code, rtx *op0, rtx *op1, bool need_eq_ne_p)
cmp_code = *code;
*code = mips_reversed_fp_cond (&cmp_code) ? EQ : NE;
*op0 = (ISA_HAS_8CC
? gen_reg_rtx (CCmode)
? mips_allocate_fcc (CCmode)
: gen_rtx_REG (CCmode, FPSW_REGNUM));
*op1 = const0_rtx;
mips_emit_binary (cmp_code, *op0, cmp_op0, cmp_op1);
......@@ -4657,7 +4715,7 @@ mips_expand_vcondv2sf (rtx dest, rtx true_src, rtx false_src,
bool reversed_p;
reversed_p = mips_reversed_fp_cond (&cond);
cmp_result = gen_reg_rtx (CCV2mode);
cmp_result = mips_allocate_fcc (CCV2mode);
emit_insn (gen_scc_ps (cmp_result,
gen_rtx_fmt_ee (cond, VOIDmode, cmp_op0, cmp_op1)));
if (reversed_p)
......@@ -11098,14 +11156,7 @@ mips_hard_regno_mode_ok_p (unsigned int regno, enum machine_mode mode)
&& (regno - ST_REG_FIRST) % 4 == 0);
if (mode == CCmode)
{
if (!ISA_HAS_8CC)
return regno == FPSW_REGNUM;
return (ST_REG_P (regno)
|| GP_REG_P (regno)
|| FP_REG_P (regno));
}
return ISA_HAS_8CC ? ST_REG_P (regno) : regno == FPSW_REGNUM;
size = GET_MODE_SIZE (mode);
mclass = GET_MODE_CLASS (mode);
......@@ -11117,10 +11168,6 @@ mips_hard_regno_mode_ok_p (unsigned int regno, enum machine_mode mode)
&& (((regno - FP_REG_FIRST) % MAX_FPRS_PER_FMT) == 0
|| (MIN_FPRS_PER_FMT == 1 && size <= UNITS_PER_FPREG)))
{
/* Allow TFmode for CCmode reloads. */
if (mode == TFmode && ISA_HAS_8CC)
return true;
/* Allow 64-bit vector modes for Loongson-2E/2F. */
if (TARGET_LOONGSON_VECTORS
&& (mode == V2SImode
......@@ -13738,15 +13785,16 @@ mips_expand_builtin_compare_1 (enum insn_code icode,
tree exp, int nargs)
{
struct expand_operand ops[MAX_RECOG_OPERANDS];
rtx output;
int opno, argno;
/* The instruction should have a target operand, an operand for each
argument, and an operand for COND. */
gcc_assert (nargs + 2 == insn_data[(int) icode].n_generator_args);
output = mips_allocate_fcc (insn_data[(int) icode].operand[0].mode);
opno = 0;
create_output_operand (&ops[opno++], NULL_RTX,
insn_data[(int) icode].operand[0].mode);
create_fixed_operand (&ops[opno++], output);
for (argno = 0; argno < nargs; argno++)
mips_prepare_builtin_arg (&ops[opno++], exp, argno);
create_integer_operand (&ops[opno++], (int) cond);
......
......@@ -2395,12 +2395,8 @@ typedef struct mips_args {
#define FUNCTION_MODE SImode
/* Define if copies to/from condition code registers should be avoided.
This is needed for the MIPS because reload_outcc is not complete;
it needs to handle cases where the source is a general or another
condition code register. */
/* We allocate $fcc registers by hand and can't cope with moves of
CCmode registers to and from pseudos (or memory). */
#define AVOID_CCMODE_COPIES
/* A C expression for the cost of a branch instruction. A value of
......
......@@ -198,7 +198,6 @@
;; loadpool move a constant into a MIPS16 register by loading it
;; from the pool
;; shift_shift a shift left followed by a shift right
;; lui_movf an LUI followed by a MOVF (for d<-z CC moves)
;;
;; This attribute is used to determine the instruction's length and
;; scheduling type. For doubleword moves, the attribute always describes
......@@ -207,7 +206,7 @@
(define_attr "move_type"
"unknown,load,fpload,store,fpstore,mtc,mfc,mtlo,mflo,move,fmove,
const,constN,signext,ext_ins,logical,arith,sll0,andi,loadpool,
shift_shift,lui_movf"
shift_shift"
(const_string "unknown"))
(define_attr "alu_type" "unknown,add,sub,not,nor,and,or,xor"
......@@ -390,8 +389,6 @@
(eq_attr "move_type" "move") (const_string "move")
(eq_attr "move_type" "const") (const_string "const")
(eq_attr "sync_mem" "!none") (const_string "syncloop")]
;; We classify "lui_movf" as "unknown" rather than "multi"
;; because we don't split it. FIXME: we should split instead.
(const_string "unknown")))
;; Mode for conversion types (fcvt)
......@@ -578,10 +575,6 @@
(eq_attr "move_type" "loadpool")
(const_int 8)
;; LUI_MOVFs are decomposed into two separate instructions.
(eq_attr "move_type" "lui_movf")
(const_int 8)
;; SHIFT_SHIFTs are decomposed into two separate instructions.
;; They are extended instructions on MIPS16 targets.
(eq_attr "move_type" "shift_shift")
......@@ -4436,53 +4429,6 @@
operands[2] = GEN_INT (val - 0xff);
})
;; This insn handles moving CCmode values. It's really just a
;; slightly simplified copy of movsi_internal2, with additional cases
;; to move a condition register to a general register and to move
;; between the general registers and the floating point registers.
(define_insn "movcc"
[(set (match_operand:CC 0 "nonimmediate_operand" "=d,*d,*d,*m,*d,*f,*f,*f,*m")
(match_operand:CC 1 "general_operand" "z,*d,*m,*d,*f,*d,*f,*m,*f"))]
"ISA_HAS_8CC && TARGET_HARD_FLOAT"
{ return mips_output_move (operands[0], operands[1]); }
[(set_attr "move_type" "lui_movf,move,load,store,mfc,mtc,fmove,fpload,fpstore")
(set_attr "mode" "SI")])
;; Reload condition code registers. reload_incc and reload_outcc
;; both handle moves from arbitrary operands into condition code
;; registers. reload_incc handles the more common case in which
;; a source operand is constrained to be in a condition-code
;; register, but has not been allocated to one.
;;
;; Sometimes, such as in movcc, we have a CCmode destination whose
;; constraints do not include 'z'. reload_outcc handles the case
;; when such an operand is allocated to a condition-code register.
;;
;; Note that reloads from a condition code register to some
;; other location can be done using ordinary moves. Moving
;; into a GPR takes a single movcc, moving elsewhere takes
;; two. We can leave these cases to the generic reload code.
(define_expand "reload_incc"
[(set (match_operand:CC 0 "fcc_reload_operand" "=z")
(match_operand:CC 1 "general_operand" ""))
(clobber (match_operand:TF 2 "register_operand" "=&f"))]
"ISA_HAS_8CC && TARGET_HARD_FLOAT"
{
mips_expand_fcc_reload (operands[0], operands[1], operands[2]);
DONE;
})
(define_expand "reload_outcc"
[(set (match_operand:CC 0 "fcc_reload_operand" "=z")
(match_operand:CC 1 "register_operand" ""))
(clobber (match_operand:TF 2 "register_operand" "=&f"))]
"ISA_HAS_8CC && TARGET_HARD_FLOAT"
{
mips_expand_fcc_reload (operands[0], operands[1], operands[2]);
DONE;
})
;; MIPS4 supports loading and storing a floating point register from
;; the sum of two general registers. We use two versions for each of
;; these four instructions: one where the two general registers are
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment