Commit 3965b35f by Stafford Horne Committed by Stafford Horne

or1k: gcc: initial support for openrisc

2018-11-09  Stafford Horne  <shorne@gmail.com>
	    Richard Henderson  <rth@twiddle.net>
	    Joel Sherrill  <joel@rtems.org>

	* common/config/or1k/or1k-common.c: New file.
	* config/or1k/*: New.
	* config.gcc (or1k*-*-*): New.
	* configure.ac (or1k*-*-*): New test for openrisc tls.
	* configure: Regenerated.
	* doc/install.texi: Document OpenRISC triplets.
	* doc/invoke.texi: Document OpenRISC arguments.
	* doc/md.texi: Document OpenRISC.


Co-Authored-By: Joel Sherrill <joel@rtems.org>
Co-Authored-By: Richard Henderson <rth@twiddle.net>

From-SVN: r265963
parent 1d6ff150
2018-11-09 Stafford Horne <shorne@gmail.com>
Richard Henderson <rth@twiddle.net>
Joel Sherrill <joel@rtems.org>
* common/config/or1k/or1k-common.c: New file.
* config/or1k/*: New.
* config.gcc (or1k*-*-*): New.
* configure.ac (or1k*-*-*): New test for openrisc tls.
* configure: Regenerated.
* doc/install.texi: Document OpenRISC triplets.
* doc/invoke.texi: Document OpenRISC arguments.
* doc/md.texi: Document OpenRISC.
2018-11-09 Richard Earnshaw <rearnsha@arm.com>
* config/arm/arm-cpus.in (arm7tdmi): Add an alias for arm7tdmi-s.
/* Common hooks for OpenRISC
Copyright (C) 2018 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "diagnostic-core.h"
#include "tm.h"
#include "common/common-target.h"
#include "common/common-target-def.h"
#include "opts.h"
#include "flags.h"
/* Implement TARGET_OPTION_OPTIMIZATION_TABLE. */
static const struct default_options or1k_option_optimization_table[] =
{
/* Enable section anchors by default at -O1 or higher. */
{ OPT_LEVELS_1_PLUS, OPT_fsection_anchors, NULL, 1 },
{ OPT_LEVELS_NONE, 0, NULL, 0 }
};
#undef TARGET_OPTION_OPTIMIZATION_TABLE
#define TARGET_OPTION_OPTIMIZATION_TABLE or1k_option_optimization_table
struct gcc_targetm_common targetm_common = TARGETM_COMMON_INITIALIZER;
......@@ -484,6 +484,9 @@ nios2-*-*)
nvptx-*-*)
cpu_type=nvptx
;;
or1k*-*-*)
cpu_type=or1k
;;
powerpc*-*-*spe*)
cpu_type=powerpcspe
extra_headers="ppc-asm.h altivec.h spe.h ppu_intrinsics.h paired.h spu2vmx.h vec_types.h si2vmx.h htmintrin.h htmxlintrin.h"
......@@ -2490,6 +2493,48 @@ nvptx-*)
tm_file="${tm_file} nvptx/offload.h"
fi
;;
or1k*-*-*)
tm_file="elfos.h ${tm_file}"
tmake_file="${tmake_file} or1k/t-or1k"
# Force .init_array support. The configure script cannot always
# automatically detect that GAS supports it, yet we require it.
gcc_cv_initfini_array=yes
# Handle --with-multilib-list=...
or1k_multilibs="${with_multilib_list}"
if test "$or1k_multilibs" = "default"; then
or1k_multilibs="mcmov,msoft-mul,msoft-div"
fi
or1k_multilibs=`echo $or1k_multilibs | sed -e 's/,/ /g'`
for or1k_multilib in ${or1k_multilibs}; do
case ${or1k_multilib} in
mcmov | msext | msfimm | \
mhard-div | mhard-mul | \
msoft-div | msoft-mul )
TM_MULTILIB_CONFIG="${TM_MULTILIB_CONFIG},${or1k_multilib}"
;;
*)
echo "--with-multilib-list=${with_multilib_list} not supported."
exit 1
esac
done
TM_MULTILIB_CONFIG=`echo $TM_MULTILIB_CONFIG | sed 's/^,//'`
case ${target} in
or1k*-*-linux*)
tm_file="${tm_file} gnu-user.h linux.h glibc-stdint.h"
tm_file="${tm_file} or1k/linux.h"
;;
or1k*-*-elf*)
tm_file="${tm_file} newlib-stdint.h or1k/elf.h"
extra_options="${extra_options} or1k/elf.opt"
;;
or1k*-*-rtems*)
tm_file="${tm_file} newlib-stdint.h or1k/rtems.h rtems.h"
tmake_file="${tmake_file} or1k/t-rtems"
;;
esac
;;
pdp11-*-*)
tm_file="${tm_file} newlib-stdint.h"
use_gcc_stdint=wrap
......
;; Constraint definitions for OpenRISC
;; Copyright (C) 2018 Free Software Foundation, Inc.
;; Contributed by Stafford Horne
;; This file is part of GCC.
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published
;; by the Free Software Foundation; either version 3, or (at your
;; option) any later version.
;; GCC is distributed in the hope that it will be useful, but WITHOUT
;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
;; License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
;; -------------------------------------------------------------------------
;; Constraints
;; -------------------------------------------------------------------------
; We use:
; c - sibcall registers
; I - constant signed 16-bit
; K - constant unsigned 16-bit
; M - constant signed 16-bit shifted left 16-bits (l.movhi)
; O - constant zero
(define_register_constraint "c" "SIBCALL_REGS"
"Registers which can hold a sibling call address")
;; Immediates
(define_constraint "I"
"A signed 16-bit immediate in the range -32768 to 32767."
(and (match_code "const_int")
(match_test "IN_RANGE (ival, -32768, 32767)")))
(define_constraint "K"
"An unsigned 16-bit immediate in the range 0 to 0xffff."
(and (match_code "const_int")
(match_test "IN_RANGE (ival, 0, 65535)")))
(define_constraint "M"
"A shifted signed 16-bit constant suitable for l.movhi."
(and (match_code "const_int")
(match_test "(ival & 0xffff) == 0
&& (ival >> 31 == -1 || ival >> 31 == 0)")))
(define_constraint "O"
"The constant zero"
(and (match_code "const_int")
(match_test "ival == 0")))
/* Target Newlib Definitions for OpenRISC.
Copyright (C) 2018 Free Software Foundation, Inc.
Contributed by Stafford Horne.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_OR1K_ELF_H
#define GCC_OR1K_ELF_H
#undef LIB_SPEC
#define LIB_SPEC "--start-group -lc -lor1k " \
"%{mboard=*:-lboard-%*; :-lboard-or1ksim} --end-group"
#undef LINK_SPEC
#define LINK_SPEC "%{h*} \
%{static:-Bstatic} \
%{shared:-shared} \
%{symbolic:-Bsymbolic} \
%{!static:%{rdynamic:-export-dynamic}} \
--entry=0x100"
#undef STARTFILE_SPEC
#define STARTFILE_SPEC "crt0.o%s crtbegin.o%s"
#undef ENDFILE_SPEC
#define ENDFILE_SPEC "crtend.o%s"
#endif /* GCC_OR1K_ELF_H */
; OpenRISC command line options for newlib binaries
; Copyright (C) 2010-2018 Free Software Foundation, Inc.
;
; This file is part of GCC.
;
; GCC is free software; you can redistribute it and/or modify it under
; the terms of the GNU General Public License as published by the Free
; Software Foundation; either version 3, or (at your option) any later
; version.
;
; GCC is distributed in the hope that it will be useful, but WITHOUT ANY
; WARRANTY; without even the implied warranty of MERCHANTABILITY or
; FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
; for more details.
;
; You should have received a copy of the GNU General Public License
; along with GCC; see the file COPYING3. If not see
; <http://www.gnu.org/licenses/>.
; See the GCC internals manual (options.texi) for a description of
; this file's format.
; Please try to keep this file in ASCII collating order.
mboard=
Target RejectNegative Joined
Configure board specific runtime.
mnewlib
Target RejectNegative
For compatibility, it's always newlib for elf now.
/* Linux Definitions for OpenRISC.
Copyright (C) 2018 Free Software Foundation, Inc.
Contributed by Stafford Horne.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_OR1K_LINUX_H
#define GCC_OR1K_LINUX_H
/* elfos.h should have already been included. Now just override
any conflicting definitions and add any extras. */
#define TARGET_OS_CPP_BUILTINS() \
GNU_USER_TARGET_OS_CPP_BUILTINS ()
#define GLIBC_DYNAMIC_LINKER "/lib/ld-linux-or1k.so.1"
#undef MUSL_DYNAMIC_LINKER
#define MUSL_DYNAMIC_LINKER "/lib/ld-musl-or1k.so.1"
#undef LINK_SPEC
#define LINK_SPEC "%{h*} \
%{static:-Bstatic} \
%{shared:-shared} \
%{symbolic:-Bsymbolic} \
%{!static:%{!static-pie: \
%{rdynamic:-export-dynamic} \
%{!shared:-dynamic-linker " GNU_USER_DYNAMIC_LINKER "}}} \
%{static-pie:-Bstatic -pie --no-dynamic-linker -z text}"
#endif /* GCC_OR1K_LINUX_H */
/* Prototypes for OpenRISC functions used in the md file & elsewhere.
Copyright (C) 2018 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
extern HOST_WIDE_INT or1k_initial_elimination_offset (int, int);
extern void or1k_expand_prologue (void);
extern void or1k_expand_epilogue (void);
extern void or1k_expand_eh_return (rtx);
extern rtx or1k_initial_frame_addr (void);
extern rtx or1k_dynamic_chain_addr (rtx);
extern rtx or1k_return_addr (int, rtx);
extern void or1k_expand_move (machine_mode, rtx, rtx);
extern void or1k_expand_compare (rtx *);
extern void or1k_expand_call (rtx, rtx, rtx, bool);
#ifdef RTX_CODE
void or1k_expand_atomic_compare_and_swap (rtx operands[]);
void or1k_expand_atomic_compare_and_swap_qihi (rtx operands[]);
void or1k_expand_atomic_exchange (rtx operands[]);
void or1k_expand_atomic_exchange_qihi (rtx operands[]);
void or1k_expand_atomic_op (rtx_code, rtx, rtx, rtx, rtx);
void or1k_expand_atomic_op_qihi (rtx_code, rtx, rtx, rtx, rtx);
#endif
/* Target Code for OpenRISC
Copyright (C) 2018 Free Software Foundation, Inc.
Contributed by Stafford Horne based on other ports.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#define IN_TARGET_CODE 1
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "stringpool.h"
#include "attribs.h"
#include "df.h"
#include "regs.h"
#include "memmodel.h"
#include "emit-rtl.h"
#include "diagnostic-core.h"
#include "output.h"
#include "stor-layout.h"
#include "varasm.h"
#include "calls.h"
#include "expr.h"
#include "builtins.h"
#include "optabs.h"
#include "explow.h"
#include "cfgrtl.h"
#include "alias.h"
/* These 4 are needed to allow using satisfies_constraint_J. */
#include "insn-config.h"
#include "recog.h"
#include "tm_p.h"
#include "tm-constrs.h"
/* This file should be included last. */
#include "target-def.h"
/* Per-function machine data. */
struct GTY(()) machine_function
{
/* Number of bytes saved on the stack for callee saved registers. */
HOST_WIDE_INT callee_saved_reg_size;
/* Number of bytes saved on the stack for local variables. */
HOST_WIDE_INT local_vars_size;
/* Number of bytes saved on the stack for outgoing/sub-function args. */
HOST_WIDE_INT args_size;
/* The sum of sizes: locals vars, called saved regs, stack pointer
and an optional frame pointer.
Used in expand_prologue () and expand_epilogue (). */
HOST_WIDE_INT total_size;
/* Remember where the set_got_placeholder is located. */
rtx_insn *set_got_insn;
};
/* Zero initialization is OK for all current fields. */
static struct machine_function *
or1k_init_machine_status (void)
{
return ggc_cleared_alloc<machine_function> ();
}
/* Worker for TARGET_OPTION_OVERRIDE.
We currently only use this to setup init_machine_status. */
static void
or1k_option_override (void)
{
/* Set the per-function-data initializer. */
init_machine_status = or1k_init_machine_status;
}
/* Returns true if REGNO must be saved for the current function. */
static bool
callee_saved_regno_p (int regno)
{
/* Check call-saved registers. */
if (!call_used_regs[regno] && df_regs_ever_live_p (regno))
return true;
switch (regno)
{
case HARD_FRAME_POINTER_REGNUM:
return frame_pointer_needed;
case LR_REGNUM:
/* Always save LR if we are saving HFP, producing a walkable
stack chain with -fno-omit-frame-pointer. */
return (frame_pointer_needed
|| !crtl->is_leaf
|| crtl->uses_pic_offset_table
|| df_regs_ever_live_p (regno));
case HW_TO_GCC_REGNO (25):
case HW_TO_GCC_REGNO (27):
case HW_TO_GCC_REGNO (29):
case HW_TO_GCC_REGNO (31):
/* See EH_RETURN_DATA_REGNO. */
return crtl->calls_eh_return;
default:
return false;
}
}
/* Worker for TARGET_COMPUTE_FRAME_LAYOUT.
Compute and populate machine specific function attributes which are globally
accessible via cfun->machine. These include the sizes needed for
stack stored local variables, callee saved registers and space for stack
arguments which may be passed to a next function. The values are used for
the epilogue, prologue and eliminations.
OpenRISC stack grows downwards and contains:
---- previous frame --------
current func arg[n]
current func arg[0] <-- r2 [HFP,AP]
---- current stack frame --- ^ ---\
return address r9 | |
old frame pointer r2 (+) |-- machine->total_size
callee saved regs | | > machine->callee_saved_reg_size
local variables | | > machine->local_vars_size <-FP
next function args <-- r1 [SP]---/ > machine->args_size
---------------------------- |
(-)
(future) |
V
All of these contents are optional. */
static void
or1k_compute_frame_layout (void)
{
HOST_WIDE_INT local_vars_size, args_size, save_reg_size;
local_vars_size = get_frame_size ();
local_vars_size = ROUND_UP (local_vars_size, UNITS_PER_WORD);
args_size = crtl->outgoing_args_size;
args_size = ROUND_UP (args_size, UNITS_PER_WORD);
save_reg_size = 0;
for (int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (callee_saved_regno_p (regno))
save_reg_size += UNITS_PER_WORD;
cfun->machine->local_vars_size = local_vars_size;
cfun->machine->args_size = args_size;
cfun->machine->callee_saved_reg_size = save_reg_size;
cfun->machine->total_size = save_reg_size + local_vars_size + args_size;
}
/* Emit rtl to save register REGNO contents to stack memory at the given OFFSET
from the current stack pointer. */
static void
or1k_save_reg (int regno, HOST_WIDE_INT offset)
{
rtx reg = gen_rtx_REG (Pmode, regno);
rtx mem = gen_frame_mem (SImode, plus_constant (Pmode, stack_pointer_rtx,
offset));
rtx insn = emit_move_insn (mem, reg);
RTX_FRAME_RELATED_P (insn) = 1;
}
/* Emit rtl to restore register REGNO contents from stack memory at the given
OFFSET from the current stack pointer. */
static rtx
or1k_restore_reg (int regno, HOST_WIDE_INT offset, rtx cfa_restores)
{
rtx reg = gen_rtx_REG (Pmode, regno);
rtx mem = gen_frame_mem (SImode, plus_constant (Pmode, stack_pointer_rtx,
offset));
emit_move_insn (reg, mem);
return alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
}
/* Expand the "prologue" pattern. */
void
or1k_expand_prologue (void)
{
HOST_WIDE_INT sp_offset = -cfun->machine->total_size;
HOST_WIDE_INT reg_offset, this_offset;
rtx insn;
if (flag_stack_usage_info)
current_function_static_stack_size = -sp_offset;
/* Early exit for frameless functions. */
if (sp_offset == 0)
goto fini;
/* Adjust the stack pointer. For large stack offsets we will
do this in multiple parts, before and after saving registers. */
reg_offset = (sp_offset + cfun->machine->local_vars_size
+ cfun->machine->args_size);
this_offset = MAX (sp_offset, -32764);
reg_offset -= this_offset;
sp_offset -= this_offset;
insn = emit_insn (gen_frame_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (this_offset)));
RTX_FRAME_RELATED_P (insn) = 1;
/* Save callee-saved registers. */
for (int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (regno != HARD_FRAME_POINTER_REGNUM
&& regno != LR_REGNUM
&& callee_saved_regno_p (regno))
{
or1k_save_reg (regno, reg_offset);
reg_offset += UNITS_PER_WORD;
}
/* Save and update frame pointer. */
if (callee_saved_regno_p (HARD_FRAME_POINTER_REGNUM))
{
or1k_save_reg (HARD_FRAME_POINTER_REGNUM, reg_offset);
if (frame_pointer_needed)
{
insn = emit_insn (gen_addsi3 (hard_frame_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-this_offset)));
RTX_FRAME_RELATED_P (insn) = 1;
}
reg_offset += UNITS_PER_WORD;
}
/* Save the link register. */
if (callee_saved_regno_p (LR_REGNUM))
{
or1k_save_reg (LR_REGNUM, reg_offset);
reg_offset += UNITS_PER_WORD;
}
gcc_assert (reg_offset + this_offset == 0);
/* Allocate the rest of the stack frame, if any. */
if (sp_offset != 0)
{
if (sp_offset < 2 * -32768)
{
/* For very large offsets, we need a temporary register. */
rtx tmp = gen_rtx_REG (Pmode, PE_TMP_REGNUM);
emit_move_insn (tmp, GEN_INT (sp_offset));
insn = emit_insn (gen_frame_addsi3 (stack_pointer_rtx,
stack_pointer_rtx, tmp));
if (!frame_pointer_needed)
{
RTX_FRAME_RELATED_P (insn) = 1;
add_reg_note (insn, REG_CFA_ADJUST_CFA,
gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode,
stack_pointer_rtx,
sp_offset)));
}
}
else
{
/* Otherwise, emit one or two sequential subtracts. */
do
{
this_offset = MAX (sp_offset, -32768);
sp_offset -= this_offset;
insn = emit_insn (gen_frame_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (this_offset)));
if (!frame_pointer_needed)
RTX_FRAME_RELATED_P (insn) = 1;
}
while (sp_offset != 0);
}
}
fini:
/* Fix up, or remove, the insn that initialized the pic register. */
rtx_insn *set_got_insn = cfun->machine->set_got_insn;
if (crtl->uses_pic_offset_table)
{
rtx reg = SET_DEST (PATTERN (set_got_insn));
rtx_insn *insn = emit_insn_before (gen_set_got (reg), set_got_insn);
RTX_FRAME_RELATED_P (insn) = 1;
add_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL_RTX);
}
delete_insn (set_got_insn);
}
/* Expand the "epilogue" pattern. */
void
or1k_expand_epilogue (void)
{
HOST_WIDE_INT reg_offset, sp_offset;
rtx insn, cfa_restores = NULL;
sp_offset = cfun->machine->total_size;
if (sp_offset == 0)
return;
reg_offset = cfun->machine->local_vars_size + cfun->machine->args_size;
if (sp_offset >= 32768 || cfun->calls_alloca)
{
/* The saved registers are out of range of the stack pointer.
We need to partially deallocate the stack frame now. */
if (frame_pointer_needed)
{
/* Reset the stack pointer to the bottom of the saved regs. */
sp_offset -= reg_offset;
reg_offset = 0;
insn = emit_insn (gen_frame_addsi3 (stack_pointer_rtx,
hard_frame_pointer_rtx,
GEN_INT (-sp_offset)));
RTX_FRAME_RELATED_P (insn) = 1;
add_reg_note (insn, REG_CFA_DEF_CFA,
plus_constant (Pmode, stack_pointer_rtx, sp_offset));
}
else if (sp_offset >= 3 * 32768)
{
/* For very large offsets, we need a temporary register. */
rtx tmp = gen_rtx_REG (Pmode, PE_TMP_REGNUM);
emit_move_insn (tmp, GEN_INT (reg_offset));
insn = emit_insn (gen_frame_addsi3 (stack_pointer_rtx,
stack_pointer_rtx, tmp));
sp_offset -= reg_offset;
reg_offset = 0;
RTX_FRAME_RELATED_P (insn) = 1;
add_reg_note (insn, REG_CFA_DEF_CFA,
plus_constant (Pmode, stack_pointer_rtx, sp_offset));
}
else
{
/* Otherwise, emit one or two sequential additions. */
do
{
HOST_WIDE_INT this_offset = MIN (reg_offset, 32764);
reg_offset -= this_offset;
sp_offset -= this_offset;
insn = emit_insn (gen_frame_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (this_offset)));
RTX_FRAME_RELATED_P (insn) = 1;
add_reg_note (insn, REG_CFA_DEF_CFA,
plus_constant (Pmode, stack_pointer_rtx,
sp_offset));
}
while (sp_offset >= 32768);
}
}
/* Restore callee-saved registers. */
for (int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (regno != HARD_FRAME_POINTER_REGNUM
&& regno != LR_REGNUM
&& callee_saved_regno_p (regno))
{
cfa_restores = or1k_restore_reg (regno, reg_offset, cfa_restores);
reg_offset += UNITS_PER_WORD;
}
/* Restore frame pointer. */
if (callee_saved_regno_p (HARD_FRAME_POINTER_REGNUM))
{
cfa_restores = or1k_restore_reg (HARD_FRAME_POINTER_REGNUM,
reg_offset, cfa_restores);
reg_offset += UNITS_PER_WORD;
}
/* Restore link register. */
if (callee_saved_regno_p (LR_REGNUM))
{
cfa_restores = or1k_restore_reg (LR_REGNUM, reg_offset, cfa_restores);
reg_offset += UNITS_PER_WORD;
}
gcc_assert (reg_offset == sp_offset);
/* Restore stack pointer. */
insn = emit_insn (gen_frame_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (sp_offset)));
RTX_FRAME_RELATED_P (insn) = 1;
REG_NOTES (insn) = cfa_restores;
add_reg_note (insn, REG_CFA_DEF_CFA, stack_pointer_rtx);
/* Move up to the stack frame of an exception handler. */
if (crtl->calls_eh_return)
emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
EH_RETURN_STACKADJ_RTX));
}
/* Worker for TARGET_INIT_PIC_REG.
Initialize the cfun->machine->set_got_insn rtx and insert it at the entry
of the current function. The rtx is just a temporary placeholder for
the GOT and will be replaced or removed during or1k_expand_prologue. */
static void
or1k_init_pic_reg (void)
{
start_sequence ();
cfun->machine->set_got_insn
= emit_insn (gen_set_got_tmp (pic_offset_table_rtx));
rtx_insn *seq = get_insns ();
end_sequence ();
edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
insert_insn_on_edge (seq, entry_edge);
commit_one_edge_insertion (entry_edge);
}
#undef TARGET_INIT_PIC_REG
#define TARGET_INIT_PIC_REG or1k_init_pic_reg
#undef TARGET_USE_PSEUDO_PIC_REG
#define TARGET_USE_PSEUDO_PIC_REG hook_bool_void_true
/* Worker for INITIAL_FRAME_ADDRESS_RTX.
Returns the RTX representing the address of the initial stack frame. */
rtx
or1k_initial_frame_addr ()
{
/* Use this to force a stack frame for the current function. */
crtl->accesses_prior_frames = 1;
return arg_pointer_rtx;
}
/* Worker for DYNAMIC_CHAIN_ADDRESS.
Returns the RTX representing the address of where the caller's frame pointer
may be stored on the stack. */
rtx
or1k_dynamic_chain_addr (rtx frame)
{
return plus_constant (Pmode, frame, -2 * UNITS_PER_WORD);
}
/* Worker for RETURN_ADDR_RTX.
Returns the RTX representing the address of where the link register may be
stored on the stack. */
rtx
or1k_return_addr (int, rtx frame)
{
return gen_frame_mem (Pmode, plus_constant (Pmode, frame, -UNITS_PER_WORD));
}
/* Worker for TARGET_FRAME_POINTER_REQUIRED.
Returns true if the current function must use a frame pointer. */
static bool
or1k_frame_pointer_required ()
{
/* ??? While IRA checks accesses_prior_frames, reload does not.
We do want the frame pointer for this case. */
return (crtl->accesses_prior_frames || crtl->profile);
}
/* Expand the "eh_return" pattern.
Used for defining __builtin_eh_return, this will emit RTX to override the
current function's return address stored on the stack. The emitted RTX is
inserted before the epilogue so we can't just update the link register.
This is used when handling exceptions to jump into the exception handler
catch block upon return from _Unwind_RaiseException. */
void
or1k_expand_eh_return (rtx eh_addr)
{
rtx lraddr;
lraddr = gen_frame_mem (Pmode, plus_constant (Pmode,
arg_pointer_rtx,
-UNITS_PER_WORD));
/* Set address to volatile to ensure the store doesn't get optimized out. */
MEM_VOLATILE_P (lraddr) = true;
emit_move_insn (lraddr, eh_addr);
}
/* Helper for defining INITIAL_ELIMINATION_OFFSET.
We allow the following eliminiations:
FP -> HARD_FP or SP
AP -> HARD_FP or SP
HARD_FP and AP are the same which is handled below. */
HOST_WIDE_INT
or1k_initial_elimination_offset (int from, int to)
{
HOST_WIDE_INT offset;
/* Set OFFSET to the offset from the stack pointer. */
switch (from)
{
/* Incoming args are all the way up at the previous frame. */
case ARG_POINTER_REGNUM:
offset = cfun->machine->total_size;
break;
/* Local args grow downward from the saved registers. */
case FRAME_POINTER_REGNUM:
offset = cfun->machine->args_size + cfun->machine->local_vars_size;
break;
default:
gcc_unreachable ();
}
if (to == HARD_FRAME_POINTER_REGNUM)
offset -= cfun->machine->total_size;
return offset;
}
/* Worker for TARGET_LEGITIMATE_ADDRESS_P.
Returns true if X is a legitimate address RTX on OpenRISC. */
static bool
or1k_legitimate_address_p (machine_mode, rtx x, bool strict_p)
{
rtx base, addend;
switch (GET_CODE (x))
{
case REG:
base = x;
break;
case PLUS:
base = XEXP (x, 0);
addend = XEXP (x, 1);
if (!REG_P (base))
return false;
/* Register elimination is going to adjust all of these offsets.
We might as well keep them as a unit until then. */
if (!strict_p && virtual_frame_reg_operand (base, VOIDmode))
return CONST_INT_P (addend);
if (!satisfies_constraint_I (addend))
return false;
break;
case LO_SUM:
base = XEXP (x, 0);
if (!REG_P (base))
return false;
x = XEXP (x, 1);
switch (GET_CODE (x))
{
case CONST:
case SYMBOL_REF:
case LABEL_REF:
/* Assume legitimize_address properly categorized
the symbol. Continue to check the base. */
break;
case UNSPEC:
switch (XINT (x, 1))
{
case UNSPEC_GOT:
case UNSPEC_GOTOFF:
case UNSPEC_TPOFF:
case UNSPEC_GOTTPOFF:
/* Assume legitimize_address properly categorized
the symbol. Continue to check the base. */
break;
default:
return false;
}
break;
default:
return false;
}
break;
default:
return false;
}
unsigned regno = REGNO (base);
if (regno >= FIRST_PSEUDO_REGISTER)
{
if (strict_p)
regno = reg_renumber[regno];
else
return true;
}
if (strict_p)
return regno <= 31;
else
return REGNO_OK_FOR_BASE_P (regno);
}
/* Return the TLS type for TLS symbols, 0 otherwise. */
static tls_model
or1k_tls_symbolic_operand (rtx op)
{
rtx sym, addend;
split_const (op, &sym, &addend);
if (SYMBOL_REF_P (sym))
return SYMBOL_REF_TLS_MODEL (sym);
return TLS_MODEL_NONE;
}
/* Get a reference to the '__tls_get_addr' symbol. */
static GTY(()) rtx gen_tls_tga;
static rtx
gen_tls_get_addr (void)
{
if (!gen_tls_tga)
gen_tls_tga = init_one_libfunc ("__tls_get_addr");
return gen_tls_tga;
}
/* Emit a call to '__tls_get_addr'. */
static void
or1k_tls_call (rtx dest, rtx arg)
{
emit_library_call_value (gen_tls_get_addr (), dest, LCT_CONST,
Pmode, arg, Pmode);
}
/* Helper for or1k_legitimize_address_1. Wrap X in an unspec. */
static rtx
gen_sym_unspec (rtx x, int kind)
{
return gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), kind);
}
/* Worker for TARGET_LEGITIMIZE_ADDRESS_DISPLACEMENT.
Split an out-of-range address displacement into hi and lo parts.
The hi part will have to be loaded into a register separately,
but the low part will be folded into the memory operand. */
static bool
or1k_legitimize_address_displacement (rtx *off1, rtx *off2,
poly_int64 poly_offset, machine_mode)
{
HOST_WIDE_INT orig_offset = poly_offset;
HOST_WIDE_INT lo, hi;
/* If the displacement is within range of 2 addi insns, prefer that.
Otherwise split as per normal, at which point the register allocator
will see that OFF1 is not a valid add3 operand and load it into
a register, as desired. */
if (orig_offset >= 0 && orig_offset < 2 * 32767)
{
hi = 32767;
lo = orig_offset - hi;
}
else if (orig_offset < 0 && orig_offset >= 2 * -32768)
{
hi = -32768;
lo = orig_offset - hi;
}
else
{
lo = sext_hwi (orig_offset, 16);
hi = orig_offset - lo;
}
*off1 = GEN_INT (hi);
*off2 = GEN_INT (lo);
return true;
}
#undef TARGET_LEGITIMIZE_ADDRESS_DISPLACEMENT
#define TARGET_LEGITIMIZE_ADDRESS_DISPLACEMENT \
or1k_legitimize_address_displacement
/* Helper function to implement both TARGET_LEGITIMIZE_ADDRESS and expand the
patterns "movqi", "movqi" and "movsi". Returns an valid OpenRISC RTX that
represents the argument X which is an invalid address RTX. The argument
SCRATCH may be used as a temporary when building addresses. */
static rtx
or1k_legitimize_address_1 (rtx x, rtx scratch)
{
rtx base, addend, t1, t2;
tls_model tls_kind = TLS_MODEL_NONE;
bool is_local = true;
split_const (x, &base, &addend);
switch (GET_CODE (base))
{
default:
gcc_assert (can_create_pseudo_p ());
base = force_reg (Pmode, base);
break;
case REG:
case SUBREG:
break;
case SYMBOL_REF:
tls_kind = SYMBOL_REF_TLS_MODEL (base);
is_local = SYMBOL_REF_LOCAL_P (base);
/* FALLTHRU */
case LABEL_REF:
switch (tls_kind)
{
case TLS_MODEL_NONE:
t1 = can_create_pseudo_p () ? gen_reg_rtx (Pmode) : scratch;
if (!flag_pic)
{
emit_insn (gen_rtx_SET (t1, gen_rtx_HIGH (Pmode, x)));
return gen_rtx_LO_SUM (Pmode, t1, x);
}
else if (is_local)
{
crtl->uses_pic_offset_table = 1;
t2 = gen_sym_unspec (x, UNSPEC_GOTOFF);
emit_insn (gen_rtx_SET (t1, gen_rtx_HIGH (Pmode, t2)));
emit_insn (gen_add3_insn (t1, t1, pic_offset_table_rtx));
return gen_rtx_LO_SUM (Pmode, t1, copy_rtx (t2));
}
else
{
base = gen_sym_unspec (base, UNSPEC_GOT);
crtl->uses_pic_offset_table = 1;
t2 = gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, base);
t2 = gen_const_mem (Pmode, t2);
emit_insn (gen_rtx_SET (t1, t2));
base = t1;
}
break;
case TLS_MODEL_GLOBAL_DYNAMIC:
case TLS_MODEL_LOCAL_DYNAMIC:
/* TODO: For now, treat LD as GD. */
t1 = gen_reg_rtx (Pmode);
base = gen_sym_unspec (base, UNSPEC_TLSGD);
emit_insn (gen_rtx_SET (t1, gen_rtx_HIGH (Pmode, base)));
emit_insn (gen_rtx_SET (t1, gen_rtx_LO_SUM (Pmode, t1, base)));
crtl->uses_pic_offset_table = 1;
emit_insn (gen_add3_insn (t1, t1, pic_offset_table_rtx));
base = gen_reg_rtx (Pmode);
or1k_tls_call (base, t1);
break;
case TLS_MODEL_INITIAL_EXEC:
t1 = gen_reg_rtx (Pmode);
t2 = gen_reg_rtx (Pmode);
base = gen_sym_unspec (base, UNSPEC_GOTTPOFF);
emit_insn (gen_rtx_SET (t1, gen_rtx_HIGH (Pmode, base)));
crtl->uses_pic_offset_table = 1;
emit_insn (gen_add3_insn (t1, t1, pic_offset_table_rtx));
t1 = gen_rtx_LO_SUM (Pmode, t1, base);
emit_move_insn (t2, gen_const_mem (Pmode, t1));
t1 = gen_rtx_REG (Pmode, TLS_REGNUM);
emit_insn (gen_add3_insn (t2, t2, t1));
base = t2;
break;
case TLS_MODEL_LOCAL_EXEC:
x = gen_sym_unspec (x, UNSPEC_TPOFF);
t1 = gen_reg_rtx (Pmode);
emit_insn (gen_rtx_SET (t1, gen_rtx_HIGH (Pmode, x)));
t2 = gen_rtx_REG (Pmode, TLS_REGNUM);
emit_insn (gen_add3_insn (t1, t1, t2));
return gen_rtx_LO_SUM (Pmode, t1, x);
default:
gcc_unreachable ();
}
break;
/* Accept what we may have already emitted. */
case LO_SUM:
case UNSPEC:
return x;
}
/* If we get here, we still have addend outstanding. */
gcc_checking_assert (register_operand (base, Pmode));
if (addend == const0_rtx)
return base;
if (satisfies_constraint_I (addend)
|| virtual_frame_reg_operand (base, VOIDmode))
return gen_rtx_PLUS (Pmode, base, addend);
else
{
rtx hi, lo;
bool ok = (or1k_legitimize_address_displacement
(&hi, &lo, INTVAL (addend), SImode));
gcc_assert (ok);
t2 = can_create_pseudo_p () ? gen_reg_rtx (Pmode) : scratch;
if (satisfies_constraint_I (hi))
emit_insn (gen_addsi3 (t2, base, hi));
else
{
t1 = can_create_pseudo_p () ? gen_reg_rtx (Pmode) : scratch;
emit_move_insn (t1, hi);
emit_insn (gen_add3_insn (t2, base, t1));
}
if (lo == const0_rtx)
return t2;
else
return gen_rtx_PLUS (Pmode, t2, lo);
}
}
/* Worker for TARGET_LEGITIMIZE_ADDRESS.
This delegates implementation to or1k_legitimize_address_1. */
static rtx
or1k_legitimize_address (rtx x, rtx /* oldx */, machine_mode)
{
return or1k_legitimize_address_1 (x, NULL_RTX);
}
#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS or1k_legitimize_address
/* Worker for TARGET_DELEGITIMIZE_ADDRESS.
In the name of slightly smaller debug output, and to cater to
general assembler lossage, recognize PIC+GOTOFF and turn it back
into a direct symbol reference. */
static rtx
or1k_delegitimize_address (rtx x)
{
if (GET_CODE (x) == UNSPEC)
{
/* The LO_SUM to which X was attached has been stripped.
Since the only legitimate address we could have been computing
is that of the symbol, assume that's what we've done. */
if (XINT (x, 1) == UNSPEC_GOTOFF)
return XVECEXP (x, 0, 0);
}
else if (MEM_P (x))
{
rtx addr = XEXP (x, 0);
if (GET_CODE (addr) == LO_SUM
&& XEXP (addr, 0) == pic_offset_table_rtx)
{
rtx inner = XEXP (addr, 1);
if (GET_CODE (inner) == UNSPEC
&& XINT (inner, 1) == UNSPEC_GOT)
return XVECEXP (inner, 0, 0);
}
}
return delegitimize_mem_from_attrs (x);
}
#undef TARGET_DELEGITIMIZE_ADDRESS
#define TARGET_DELEGITIMIZE_ADDRESS or1k_delegitimize_address
/* Worker for TARGET_CANNOT_FORCE_CONST_MEM.
Primarily this is required for TLS symbols, but given that our move
patterns *ought* to be able to handle any symbol at any time, we
should never be spilling symbolic operands to the constant pool, ever. */
static bool
or1k_cannot_force_const_mem (machine_mode, rtx x)
{
rtx_code code = GET_CODE (x);
return (code == SYMBOL_REF
|| code == LABEL_REF
|| code == CONST
|| code == HIGH);
}
#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM or1k_cannot_force_const_mem
/* Worker for TARGET_LEGITIMATE_CONSTANT_P.
Returns true is the RTX X represents a constant that can be used as an
immediate operand in OpenRISC. */
static bool
or1k_legitimate_constant_p (machine_mode, rtx x)
{
switch (GET_CODE (x))
{
case CONST_INT:
case CONST_WIDE_INT:
case HIGH:
/* We construct these, rather than spilling to memory. */
return true;
case CONST:
case SYMBOL_REF:
case LABEL_REF:
/* These may need to be split and not reconstructed. */
return or1k_tls_symbolic_operand (x) == TLS_MODEL_NONE;
default:
return false;
}
}
#undef TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P or1k_legitimate_constant_p
/* Worker for TARGET_PASS_BY_REFERENCE.
Returns true if an argument of TYPE in MODE should be passed by reference
as required by the OpenRISC ABI. On OpenRISC structures, unions and
arguments larger than 64-bits are passed by reference. */
static bool
or1k_pass_by_reference (cumulative_args_t, machine_mode mode,
const_tree type, bool)
{
HOST_WIDE_INT size;
if (type)
{
if (AGGREGATE_TYPE_P (type))
return true;
size = int_size_in_bytes (type);
}
else
size = GET_MODE_SIZE (mode);
return size < 0 || size > 8;
}
/* Worker for TARGET_FUNCTION_VALUE.
Returns an RTX representing the location where function return values will
be stored. On OpenRISC this is the register r11. 64-bit return value's
upper 32-bits are returned in r12, this is automatically done by GCC. */
static rtx
or1k_function_value (const_tree valtype,
const_tree /* fn_decl_or_type */,
bool /* outgoing */)
{
return gen_rtx_REG (TYPE_MODE (valtype), RV_REGNUM);
}
/* Worker for TARGET_LIBCALL_VALUE.
Returns an RTX representing the location where function return values to
external libraries will be stored. On OpenRISC this the same as local
function calls. */
static rtx
or1k_libcall_value (machine_mode mode,
const_rtx /* fun */)
{
return gen_rtx_REG (mode, RV_REGNUM);
}
/* Worker for TARGET_FUNCTION_VALUE_REGNO_P.
Returns true if REGNO is a valid register for storing a function return
value. */
static bool
or1k_function_value_regno_p (const unsigned int regno)
{
return (regno == RV_REGNUM);
}
/* Worker for TARGET_STRICT_ARGUMENT_NAMING.
Return true always as on OpenRISC the last argument in a variatic function
is named. */
static bool
or1k_strict_argument_naming (cumulative_args_t /* ca */)
{
return true;
}
#undef TARGET_STRICT_ARGUMENT_NAMING
#define TARGET_STRICT_ARGUMENT_NAMING or1k_strict_argument_naming
/* Worker for TARGET_FUNCTION_ARG.
Return the next register to be used to hold a function argument or NULL_RTX
if there's no more space. Arugment CUM_V represents the current argument
offset, zero for the first function argument. OpenRISC function arguments
maybe be passed in registers r3 to r8. */
static rtx
or1k_function_arg (cumulative_args_t cum_v, machine_mode mode,
const_tree /* type */, bool named)
{
/* VOIDmode is passed as a special flag for "last argument". */
if (mode == VOIDmode)
return NULL_RTX;
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
int nreg = CEIL (GET_MODE_SIZE (mode), UNITS_PER_WORD);
/* Note that all large arguments are passed by reference. */
gcc_assert (nreg <= 2);
if (named && *cum + nreg <= 6)
return gen_rtx_REG (mode, *cum + 3);
else
return NULL_RTX;
}
/* Worker for TARGET_FUNCTION_ARG_ADVANCE.
Update the cumulative args descriptor CUM_V to advance past the next function
argument. Note, this is not called for arguments passed on the stack. */
static void
or1k_function_arg_advance (cumulative_args_t cum_v, machine_mode mode,
const_tree /* type */, bool named)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
int nreg = CEIL (GET_MODE_SIZE (mode), UNITS_PER_WORD);
/* Note that all large arguments are passed by reference. */
gcc_assert (nreg <= 2);
if (named)
*cum += nreg;
}
/* worker function for TARGET_RETURN_IN_MEMORY.
Returns true if the argument of TYPE should be returned in memory. On
OpenRISC this is any value larger than 64-bits. */
static bool
or1k_return_in_memory (const_tree type, const_tree /* fntype */)
{
const HOST_WIDE_INT size = int_size_in_bytes (type);
return (size == -1 || size > (2 * UNITS_PER_WORD));
}
/* Print reloc (x + add). */
static void
output_addr_reloc (FILE *stream, rtx x, HOST_WIDE_INT add, const char *reloc)
{
if (*reloc)
{
fputs (reloc, stream);
fputc ('(', stream);
}
output_addr_const (stream, x);
if (add)
{
if (add > 0)
fputc ('+', stream);
fprintf (stream, HOST_WIDE_INT_PRINT_DEC, add);
}
if (*reloc)
fputc (')', stream);
}
enum reloc_kind
{
RKIND_LO,
RKIND_HI,
RKIND_MAX
};
enum reloc_type
{
RTYPE_DIRECT,
RTYPE_GOT,
RTYPE_GOTOFF,
RTYPE_TPOFF,
RTYPE_GOTTPOFF,
RTYPE_TLSGD,
RTYPE_MAX
};
static void
print_reloc (FILE *stream, rtx x, HOST_WIDE_INT add, reloc_kind kind)
{
/* All data relocations. A NULL in this table indicates a form that
we expect to never generate, while "" indicates a form that requires
no special markup. */
static const char * const relocs[RKIND_MAX][RTYPE_MAX] = {
{ "lo", "got", "gotofflo", "tpofflo", "gottpofflo", "tlsgdlo" },
{ "ha", NULL, "gotoffha", "tpoffha", "gottpoffha", "tlsgdhi" },
};
reloc_type type = RTYPE_DIRECT;
if (GET_CODE (x) == UNSPEC)
{
switch (XINT (x, 1))
{
case UNSPEC_GOT:
type = RTYPE_GOT;
break;
case UNSPEC_GOTOFF:
type = RTYPE_GOTOFF;
break;
case UNSPEC_TPOFF:
type = RTYPE_TPOFF;
break;
case UNSPEC_GOTTPOFF:
type = RTYPE_GOTTPOFF;
break;
case UNSPEC_TLSGD:
type = RTYPE_TLSGD;
break;
default:
output_operand_lossage ("invalid relocation");
return;
}
x = XVECEXP (x, 0, 0);
}
const char *reloc = relocs[kind][type];
if (reloc == NULL)
output_operand_lossage ("invalid relocation");
else
output_addr_reloc (stream, x, add, reloc);
}
/* Worker for TARGET_PRINT_OPERAND_ADDRESS.
Prints the argument ADDR, an address RTX, to the file FILE. The output is
formed as expected by the OpenRISC assembler. Examples:
RTX OUTPUT
(reg:SI 3) 0(r3)
(plus:SI (reg:SI 3) (const_int 4)) 0x4(r3)
(lo_sum:SI (reg:SI 3) (symbol_ref:SI ("x")))) lo(x)(r3) */
static void
or1k_print_operand_address (FILE *file, machine_mode, rtx addr)
{
rtx offset;
switch (GET_CODE (addr))
{
case REG:
fputc ('0', file);
break;
case PLUS:
offset = XEXP (addr, 1);
addr = XEXP (addr, 0);
gcc_assert (CONST_INT_P (offset));
if (GET_CODE (addr) == LO_SUM)
{
print_reloc (file, XEXP (addr, 1), INTVAL (offset), RKIND_LO);
addr = XEXP (addr, 0);
}
else
output_addr_const (file, offset);
break;
case LO_SUM:
offset = XEXP (addr, 1);
addr = XEXP (addr, 0);
print_reloc (file, offset, 0, RKIND_LO);
break;
default:
output_addr_const (file, addr);
return;
}
fprintf (file, "(%s)", reg_names[REGNO (addr)]);
}
/* Worker for TARGET_PRINT_OPERAND.
Print operand X, an RTX, to the file FILE. The output is formed as expected
by the OpenRISC assember. CODE is the letter following a '%' in an
instrunction template used to control the RTX output. Example(s):
CODE RTX OUTPUT COMMENT
0 (reg:SI 3) r3 output an operand
r (reg:SI 3) r3 output a register or const zero
H (reg:SI 3) r4 output the high pair register
h (symbol_ref:SI ("x")) ha(x) output a signed high relocation
L (symbol_ref:SI ("x")) lo(x) output a low relocation
Note, '#' is a special code used to fill the branch delay slot with an l.nop
instruction. The l.nop (no-op) instruction is only outputted when the delay
slot has not been filled. */
static void
or1k_print_operand (FILE *file, rtx x, int code)
{
rtx operand = x;
switch (code)
{
case '#':
/* Conditionally add a nop in unfilled delay slot. */
if (final_sequence == NULL)
fputs ("\n\t l.nop\n", file);
break;
case 'r':
if (REG_P (x))
fprintf (file, "%s", reg_names[REGNO (operand)]);
else if (x == CONST0_RTX (GET_MODE (x)))
fprintf (file, "r0");
else
output_operand_lossage ("invalid %%r value");
break;
case 'H':
if (REG_P (x))
fprintf (file, "%s", reg_names[REGNO (operand) + 1]);
else
output_operand_lossage ("invalid %%H value");
break;
case 'h':
print_reloc (file, x, 0, RKIND_HI);
break;
case 'L':
print_reloc (file, x, 0, RKIND_LO);
break;
case 'P':
if (!flag_pic || SYMBOL_REF_LOCAL_P (x))
output_addr_const (file, x);
else
output_addr_reloc (file, x, 0, "plt");
break;
case 0:
/* Print an operand as without a modifier letter. */
switch (GET_CODE (operand))
{
case REG:
if (REGNO (operand) > 31)
internal_error ("internal error: bad register: %d",
REGNO (operand));
fprintf (file, "%s", reg_names[REGNO (operand)]);
break;
case MEM:
output_address (GET_MODE (XEXP (operand, 0)), XEXP (operand, 0));
break;
case CODE_LABEL:
case LABEL_REF:
output_asm_label (operand);
break;
default:
/* No need to handle all strange variants, let output_addr_const
do it for us. */
if (CONSTANT_P (operand))
output_addr_const (file, operand);
else
internal_error ("unexpected operand: %d", GET_CODE (operand));
break;
}
break;
default:
output_operand_lossage ("unknown operand letter: '%c'", code);
break;
}
}
/* Worker for TARGET_TRAMPOLINE_INIT.
This is called to initialize a trampoline. The argument M_TRAMP is an RTX
for the memory block to be initialized with trampoline code. The argument
FNDECL contains the definition of the nested function to be called, we use
this to get the function's address. The argument CHAIN is an RTX for the
static chain value to be passed to the nested function. */
static void
or1k_trampoline_init (rtx m_tramp, tree fndecl, rtx chain)
{
const unsigned movhi_r13 = (0x06u << 26) | (13 << 21);
const unsigned movhi_r11 = (0x06u << 26) | (11 << 21);
const unsigned ori_r13_r13 = (0x2a << 26) | (13 << 21) | (13 << 16);
const unsigned ori_r11_r11 = (0x2a << 26) | (11 << 21) | (11 << 16);
const unsigned jr_r13 = (0x11 << 26) | (13 << 11);
rtx tramp[5], fnaddr, f_hi, f_lo, c_hi, c_lo;
fnaddr = force_operand (XEXP (DECL_RTL (fndecl), 0), NULL);
f_hi = expand_binop (SImode, lshr_optab, fnaddr, GEN_INT (16),
NULL, true, OPTAB_DIRECT);
f_lo = expand_binop (SImode, and_optab, fnaddr, GEN_INT (0xffff),
NULL, true, OPTAB_DIRECT);
chain = force_operand (chain, NULL);
c_hi = expand_binop (SImode, lshr_optab, chain, GEN_INT (16),
NULL, true, OPTAB_DIRECT);
c_lo = expand_binop (SImode, and_optab, chain, GEN_INT (0xffff),
NULL, true, OPTAB_DIRECT);
/* We want to generate
l.movhi r13,hi(nested_func)
l.movhi r11,hi(static_chain)
l.ori r13,r13,lo(nested_func)
l.jr r13
l.ori r11,r11,lo(static_chain)
*/
tramp[0] = expand_binop (SImode, ior_optab, f_hi,
gen_int_mode (movhi_r13, SImode),
f_hi, true, OPTAB_DIRECT);
tramp[1] = expand_binop (SImode, ior_optab, c_hi,
gen_int_mode (movhi_r11, SImode),
c_hi, true, OPTAB_DIRECT);
tramp[2] = expand_binop (SImode, ior_optab, f_lo,
gen_int_mode (ori_r13_r13, SImode),
f_lo, true, OPTAB_DIRECT);
tramp[4] = expand_binop (SImode, ior_optab, c_lo,
gen_int_mode (ori_r11_r11, SImode),
c_lo, true, OPTAB_DIRECT);
tramp[3] = gen_int_mode (jr_r13, SImode);
for (int i = 0; i < 5; ++i)
{
rtx mem = adjust_address (m_tramp, SImode, i * 4);
emit_move_insn (mem, tramp[i]);
}
/* Flushing the trampoline from the instruction cache needs
to be done here. */
}
/* Worker for TARGET_HARD_REGNO_MODE_OK.
Returns true if the hard register REGNO is ok for storing values of mode
MODE. */
static bool
or1k_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
{
/* For OpenRISC, GENERAL_REGS can hold anything, while
FLAG_REGS are really single bits within SP[SR]. */
if (REGNO_REG_CLASS (regno) == FLAG_REGS)
return mode == BImode;
return true;
}
#undef TARGET_HARD_REGNO_MODE_OK
#define TARGET_HARD_REGNO_MODE_OK or1k_hard_regno_mode_ok
/* Worker for TARGET_CAN_CHANGE_MODE_CLASS.
Returns true if its ok to change a register in class RCLASS from mode FROM to
mode TO. In general OpenRISC registers, other than special flags, handle all
supported classes. */
static bool
or1k_can_change_mode_class (machine_mode from, machine_mode to,
reg_class_t rclass)
{
if (rclass == FLAG_REGS)
return from == to;
return true;
}
#undef TARGET_CAN_CHANGE_MODE_CLASS
#define TARGET_CAN_CHANGE_MODE_CLASS or1k_can_change_mode_class
/* Expand the patterns "movqi", "movqi" and "movsi". The argument OP0 is the
destination and OP1 is the source. This expands to set OP0 to OP1. OpenRISC
cannot do memory to memory assignments so for those cases we force one
argument to a register. Constants that can't fit into a 16-bit immediate are
split. Symbols are legitimized using split relocations. */
void
or1k_expand_move (machine_mode mode, rtx op0, rtx op1)
{
if (MEM_P (op0))
{
if (!const0_operand (op1, mode))
op1 = force_reg (mode, op1);
}
else if (mode == QImode || mode == HImode)
{
/* ??? Maybe promote MEMs and CONST_INT to SImode,
and then squish back with gen_lowpart. */
}
else
{
switch (GET_CODE (op1))
{
case CONST_INT:
if (!input_operand (op1, mode))
{
HOST_WIDE_INT i = INTVAL (op1);
HOST_WIDE_INT lo = i & 0xffff;
HOST_WIDE_INT hi = i ^ lo;
rtx subtarget = op0;
if (!cse_not_expected && can_create_pseudo_p ())
subtarget = gen_reg_rtx (SImode);
emit_insn (gen_rtx_SET (subtarget, GEN_INT (hi)));
emit_insn (gen_iorsi3 (op0, subtarget, GEN_INT (lo)));
return;
}
break;
case CONST:
case SYMBOL_REF:
case LABEL_REF:
op1 = or1k_legitimize_address_1 (op1, op0);
break;
default:
break;
}
}
emit_insn (gen_rtx_SET (op0, op1));
}
/* Used to expand patterns "movsicc", "movqicc", "movhicc", "cstoresi4" and
"cbranchsi4".
Expands a comparison where OPERANDS is an array of RTX describing the
comparison. The first argument OPERANDS[0] is the operator and OPERANDS[1]
and OPERANDS[2] are the operands. Split out the compare into SR[F] and
return a new operation in OPERANDS[0]. The inputs OPERANDS[1] and
OPERANDS[2] are not directly used, only overridden. */
void
or1k_expand_compare (rtx *operands)
{
rtx sr_f = gen_rtx_REG (BImode, SR_F_REGNUM);
/* The RTL may receive an immediate in argument 1 of the compare, this is not
supported unless we have l.sf*i instructions, force them into registers. */
if (!TARGET_SFIMM)
XEXP (operands[0], 1) = force_reg (SImode, XEXP (operands[0], 1));
/* Emit the given comparison into the Flag bit. */
PUT_MODE (operands[0], BImode);
emit_insn (gen_rtx_SET (sr_f, operands[0]));
/* Adjust the operands for use in the caller. */
operands[0] = gen_rtx_NE (VOIDmode, sr_f, const0_rtx);
operands[1] = sr_f;
operands[2] = const0_rtx;
}
/* Expand the patterns "call", "sibcall", "call_value" and "sibcall_value".
Expands a function call where argument RETVAL is an optional RTX providing
return value storage, the argument FNADDR is and RTX describing the function
to call, the argument CALLARG1 is the number or registers used as operands
and the argument SIBCALL should be true if this is a nested function call.
If FNADDR is a non local symbol and FLAG_PIC is enabled this will generate
a PLT call. */
void
or1k_expand_call (rtx retval, rtx fnaddr, rtx callarg1, bool sibcall)
{
rtx call, use = NULL;
/* Calls via the PLT require the PIC register. */
if (flag_pic
&& GET_CODE (XEXP (fnaddr, 0)) == SYMBOL_REF
&& !SYMBOL_REF_LOCAL_P (XEXP (fnaddr, 0)))
{
crtl->uses_pic_offset_table = 1;
rtx hard_pic = gen_rtx_REG (Pmode, REAL_PIC_OFFSET_TABLE_REGNUM);
emit_move_insn (hard_pic, pic_offset_table_rtx);
use_reg (&use, hard_pic);
}
if (!call_insn_operand (XEXP (fnaddr, 0), Pmode))
{
fnaddr = copy_to_mode_reg (Pmode, XEXP (fnaddr, 0));
fnaddr = gen_rtx_MEM (SImode, fnaddr);
}
call = gen_rtx_CALL (VOIDmode, fnaddr, callarg1);
if (retval)
call = gen_rtx_SET (retval, call);
/* Normal calls clobber LR. This is required in order to
prevent e.g. a prologue store of LR being placed into
the delay slot of the call, after it has been updated. */
if (!sibcall)
{
rtx clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, LR_REGNUM));
call = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, call, clob));
}
call = emit_call_insn (call);
CALL_INSN_FUNCTION_USAGE (call) = use;
}
/* Worker for TARGET_FUNCTION_OK_FOR_SIBCALL.
Returns true if the function declared by DECL is ok for calling as a nested
function. */
static bool
or1k_function_ok_for_sibcall (tree decl, tree /* exp */)
{
/* We can sibcall to any function if not PIC. */
if (!flag_pic)
return true;
/* We can sibcall any indirect function. */
if (decl == NULL)
return true;
/* If the call may go through the PLT, we need r16 live. */
return targetm.binds_local_p (decl);
}
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL or1k_function_ok_for_sibcall
/* Worker for TARGET_RTX_COSTS. */
static bool
or1k_rtx_costs (rtx x, machine_mode mode, int outer_code, int /* opno */,
int *total, bool /* speed */)
{
switch (GET_CODE (x))
{
case CONST_INT:
if (x == const0_rtx)
*total = 0;
else if ((outer_code == PLUS || outer_code == XOR || outer_code == MULT)
&& satisfies_constraint_I (x))
*total = 0;
else if ((outer_code == AND || outer_code == IOR)
&& satisfies_constraint_K (x))
*total = 0;
else if (satisfies_constraint_I (x)
|| satisfies_constraint_K (x)
|| satisfies_constraint_M (x))
*total = 2;
else
*total = COSTS_N_INSNS (2);
return true;
case CONST_DOUBLE:
*total = (x == CONST0_RTX (mode) ? 0 : COSTS_N_INSNS (2));
return true;
case HIGH:
/* This is effectively an 'M' constraint. */
*total = 2;
return true;
case LO_SUM:
/* This is effectively an 'I' constraint. */
*total = (outer_code == MEM ? 0 : 2);
return true;
case CONST:
case SYMBOL_REF:
case LABEL_REF:
if (outer_code == LO_SUM || outer_code == HIGH)
*total = 0;
else
{
/* ??? Extra cost for GOT or TLS symbols. */
*total = COSTS_N_INSNS (1 + (outer_code != MEM));
}
return true;
case PLUS:
if (outer_code == MEM)
*total = 0;
break;
default:
break;
}
return false;
}
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS or1k_rtx_costs
/* A subroutine of the atomic operation splitters. Jump to LABEL if
COND is true. Mark the jump as unlikely to be taken. */
static void
emit_unlikely_jump (rtx_code code, rtx label)
{
rtx x;
x = gen_rtx_REG (BImode, SR_F_REGNUM);
x = gen_rtx_fmt_ee (code, VOIDmode, x, const0_rtx);
x = gen_rtx_IF_THEN_ELSE (VOIDmode, x, label, pc_rtx);
emit_jump_insn (gen_rtx_SET (pc_rtx, x));
// Disable this for now -- producing verify_cfg failures on probabilities.
// int very_unlikely = REG_BR_PROB_BASE / 100 - 1;
// add_int_reg_note (insn, REG_BR_PROB, very_unlikely);
}
/* A subroutine of the atomic operation splitters.
Emit a raw comparison for A CODE B. */
static void
emit_compare (rtx_code code, rtx a, rtx b)
{
emit_insn (gen_rtx_SET (gen_rtx_REG (BImode, SR_F_REGNUM),
gen_rtx_fmt_ee (code, BImode, a, b)));
}
/* A subroutine of the atomic operation splitters.
Emit a load-locked instruction in MODE. */
static void
emit_load_locked (machine_mode mode, rtx reg, rtx mem)
{
gcc_assert (mode == SImode);
emit_insn (gen_load_locked_si (reg, mem));
}
/* A subroutine of the atomic operation splitters.
Emit a store-conditional instruction in MODE. */
static void
emit_store_conditional (machine_mode mode, rtx mem, rtx val)
{
gcc_assert (mode == SImode);
emit_insn (gen_store_conditional_si (mem, val));
}
/* A subroutine of the various atomic expanders. For sub-word operations,
we must adjust things to operate on SImode. Given the original MEM,
return a new aligned memory. Also build and return the quantities by
which to shift and mask. */
static rtx
or1k_adjust_atomic_subword (rtx orig_mem, rtx *pshift, rtx *pmask)
{
rtx addr, align, shift, mask, mem;
machine_mode mode = GET_MODE (orig_mem);
addr = XEXP (orig_mem, 0);
addr = force_reg (Pmode, addr);
/* Aligned memory containing subword. Generate a new memory. We
do not want any of the existing MEM_ATTR data, as we're now
accessing memory outside the original object. */
align = expand_binop (Pmode, and_optab, addr, GEN_INT (-4),
NULL_RTX, 1, OPTAB_LIB_WIDEN);
mem = gen_rtx_MEM (SImode, align);
MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (orig_mem);
if (MEM_ALIAS_SET (orig_mem) == ALIAS_SET_MEMORY_BARRIER)
set_mem_alias_set (mem, ALIAS_SET_MEMORY_BARRIER);
/* Shift amount for subword relative to aligned word. */
rtx mode_mask = GEN_INT (mode == QImode ? 3 : 2);
shift = expand_binop (SImode, and_optab, gen_lowpart (SImode, addr),
mode_mask, NULL_RTX, 1, OPTAB_LIB_WIDEN);
if (BYTES_BIG_ENDIAN)
shift = expand_binop (SImode, xor_optab, shift, mode_mask,
shift, 1, OPTAB_LIB_WIDEN);
shift = expand_binop (SImode, ashl_optab, shift, GEN_INT (3),
shift, 1, OPTAB_LIB_WIDEN);
*pshift = shift;
/* Mask for insertion. */
mask = expand_binop (SImode, ashl_optab, GEN_INT (GET_MODE_MASK (mode)),
shift, NULL_RTX, 1, OPTAB_LIB_WIDEN);
*pmask = mask;
return mem;
}
/* A subroutine of the various atomic expanders. For sub-word operations,
complete the operation by shifting result to the lsb of the SImode
temporary and then extracting the result in MODE with a SUBREG. */
static void
or1k_finish_atomic_subword (machine_mode mode, rtx o, rtx n, rtx shift)
{
n = expand_binop (SImode, lshr_optab, n, shift,
NULL_RTX, 1, OPTAB_LIB_WIDEN);
emit_move_insn (o, gen_lowpart (mode, n));
}
/* Expand an atomic compare and swap operation.
Emits the RTX to perform a compare and swap operation. This function takes
8 RTX arguments in the OPERANDS array. The compare and swap operation
loads a value from memory (OPERANDS[2]) and compares it with an expected
value (OPERANDS[3]), if the values are equal it stores a new value
(OPERANDS[4]) to memory. The argument OPERANDS[0] represents a boolean
result which will be set to true if the operation succeeds. A return value
(OPERANDS[1]) will be set to what was loaded from memory. The argument
OPERAND[5] is used to indicate if the compare and swap is to be treated as
weak. OpenRISC does not use OPERANDS[5] or OPERANDS[6] which provide memory
model details.
For OpenRISC this emits RTX which will translate to assembly using the
'l.lwa' (load word atomic) and 'l.swa' (store word atomic) instructions. */
void
or1k_expand_atomic_compare_and_swap (rtx operands[])
{
rtx boolval, retval, mem, oldval, newval;
rtx label1, label2;
machine_mode mode;
bool is_weak;
boolval = operands[0];
retval = operands[1];
mem = operands[2];
oldval = operands[3];
newval = operands[4];
is_weak = (INTVAL (operands[5]) != 0);
mode = GET_MODE (mem);
if (reg_overlap_mentioned_p (retval, oldval))
oldval = copy_to_reg (oldval);
label1 = NULL_RTX;
/* If strong, create a label to try again. */
if (!is_weak)
{
label1 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
emit_label (XEXP (label1, 0));
}
label2 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
emit_load_locked (mode, retval, mem);
emit_compare (EQ, retval, oldval);
emit_unlikely_jump (EQ, label2);
emit_store_conditional (mode, mem, newval);
/* If strong, jump back to try again on fails. */
if (!is_weak)
emit_unlikely_jump (EQ, label1);
emit_label (XEXP (label2, 0));
/* In all cases, SR_F contains 1 on success, and 0 on failure. */
emit_insn (gen_sne_sr_f (boolval));
}
void
or1k_expand_atomic_compare_and_swap_qihi (rtx operands[])
{
rtx boolval, orig_retval, retval, scratch, mem, oldval, newval;
rtx label1, label2, mask, shift;
machine_mode mode;
bool is_weak;
boolval = operands[0];
orig_retval = operands[1];
mem = operands[2];
oldval = operands[3];
newval = operands[4];
is_weak = (INTVAL (operands[5]) != 0);
mode = GET_MODE (mem);
mem = or1k_adjust_atomic_subword (mem, &shift, &mask);
/* Shift and mask OLDVAL and NEWVAL into position with the word. */
if (oldval != const0_rtx)
{
oldval = convert_modes (SImode, mode, oldval, 1);
oldval = expand_binop (SImode, ashl_optab, oldval, shift,
NULL_RTX, 1, OPTAB_LIB_WIDEN);
}
if (newval != const0_rtx)
{
newval = convert_modes (SImode, mode, newval, 1);
newval = expand_binop (SImode, ashl_optab, newval, shift,
NULL_RTX, 1, OPTAB_LIB_WIDEN);
}
label1 = NULL_RTX;
if (!is_weak)
{
label1 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
emit_label (XEXP (label1, 0));
}
label2 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
scratch = gen_reg_rtx (SImode);
emit_load_locked (SImode, scratch, mem);
retval = expand_binop (SImode, and_optab, scratch, mask,
NULL_RTX, 1, OPTAB_LIB_WIDEN);
scratch = expand_binop (SImode, xor_optab, scratch, retval,
scratch, 1, OPTAB_LIB_WIDEN);
emit_compare (EQ, retval, oldval);
emit_unlikely_jump (EQ, label2);
if (newval != const0_rtx)
scratch = expand_binop (SImode, ior_optab, scratch, newval,
scratch, 1, OPTAB_LIB_WIDEN);
emit_store_conditional (SImode, mem, scratch);
if (!is_weak)
emit_unlikely_jump (EQ, label1);
emit_label (XEXP (label2, 0));
or1k_finish_atomic_subword (mode, orig_retval, retval, shift);
/* In all cases, SR_F contains 1 on success, and 0 on failure. */
emit_insn (gen_sne_sr_f (boolval));
}
/* Expand an atomic exchange operation.
Emits the RTX to perform an exchange operation. This function takes 4 RTX
arguments in the OPERANDS array. The exchange operation atomically loads a
value from memory (OPERANDS[1]) to a return value (OPERANDS[0]) and stores a
new value (OPERANDS[2]) back to the memory location.
Another argument (OPERANDS[3]) is used to indicate the memory model and
is not used by OpenRISC.
For OpenRISC this emits RTX which will translate to assembly using the
'l.lwa' (load word atomic) and 'l.swa' (store word atomic) instructions. */
void
or1k_expand_atomic_exchange (rtx operands[])
{
rtx retval, mem, val, label;
machine_mode mode;
retval = operands[0];
mem = operands[1];
val = operands[2];
mode = GET_MODE (mem);
if (reg_overlap_mentioned_p (retval, val))
val = copy_to_reg (val);
label = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
emit_label (XEXP (label, 0));
emit_load_locked (mode, retval, mem);
emit_store_conditional (mode, mem, val);
emit_unlikely_jump (EQ, label);
}
void
or1k_expand_atomic_exchange_qihi (rtx operands[])
{
rtx orig_retval, retval, mem, val, scratch;
rtx label, mask, shift;
machine_mode mode;
orig_retval = operands[0];
mem = operands[1];
val = operands[2];
mode = GET_MODE (mem);
mem = or1k_adjust_atomic_subword (mem, &shift, &mask);
/* Shift and mask VAL into position with the word. */
if (val != const0_rtx)
{
val = convert_modes (SImode, mode, val, 1);
val = expand_binop (SImode, ashl_optab, val, shift,
NULL_RTX, 1, OPTAB_LIB_WIDEN);
}
label = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
emit_label (XEXP (label, 0));
scratch = gen_reg_rtx (SImode);
emit_load_locked (SImode, scratch, mem);
retval = expand_binop (SImode, and_optab, scratch, mask,
NULL_RTX, 1, OPTAB_LIB_WIDEN);
scratch = expand_binop (SImode, xor_optab, scratch, retval,
scratch, 1, OPTAB_LIB_WIDEN);
if (val != const0_rtx)
scratch = expand_binop (SImode, ior_optab, scratch, val,
scratch, 1, OPTAB_LIB_WIDEN);
emit_store_conditional (SImode, mem, scratch);
emit_unlikely_jump (EQ, label);
or1k_finish_atomic_subword (mode, orig_retval, retval, shift);
}
/* Expand an atomic fetch-and-operate pattern. CODE is the binary operation
to perform (with MULT as a stand-in for NAND). MEM is the memory on which
to operate. VAL is the second operand of the binary operator. BEFORE and
AFTER are optional locations to return the value of MEM either before of
after the operation. */
void
or1k_expand_atomic_op (rtx_code code, rtx mem, rtx val,
rtx orig_before, rtx orig_after)
{
machine_mode mode = GET_MODE (mem);
rtx before = orig_before, after = orig_after;
rtx label;
label = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
emit_label (XEXP (label, 0));
if (before == NULL_RTX)
before = gen_reg_rtx (mode);
emit_load_locked (mode, before, mem);
if (code == MULT)
{
after = expand_binop (mode, and_optab, before, val,
after, 1, OPTAB_LIB_WIDEN);
after = expand_unop (mode, one_cmpl_optab, after, after, 1);
}
else
after = expand_simple_binop (mode, code, before, val,
after, 1, OPTAB_LIB_WIDEN);
emit_store_conditional (mode, mem, after);
emit_unlikely_jump (EQ, label);
if (orig_before)
emit_move_insn (orig_before, before);
if (orig_after)
emit_move_insn (orig_after, after);
}
void
or1k_expand_atomic_op_qihi (rtx_code code, rtx mem, rtx val,
rtx orig_before, rtx orig_after)
{
machine_mode mode = GET_MODE (mem);
rtx label, mask, shift, x;
rtx before, after, scratch;
mem = or1k_adjust_atomic_subword (mem, &shift, &mask);
/* Shift and mask VAL into position with the word. */
val = convert_modes (SImode, mode, val, 1);
val = expand_binop (SImode, ashl_optab, val, shift,
NULL_RTX, 1, OPTAB_LIB_WIDEN);
switch (code)
{
case IOR:
case XOR:
/* We've already zero-extended VAL. That is sufficient to
make certain that it does not affect other bits. */
break;
case AND:
case MULT: /* NAND */
/* If we make certain that all of the other bits in VAL are
set, that will be sufficient to not affect other bits. */
x = expand_unop (SImode, one_cmpl_optab, mask, NULL_RTX, 1);
val = expand_binop (SImode, ior_optab, val, x,
val, 1, OPTAB_LIB_WIDEN);
break;
case PLUS:
case MINUS:
/* These will all affect bits outside the field and need
adjustment via MASK within the loop. */
break;
default:
gcc_unreachable ();
}
label = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
emit_label (XEXP (label, 0));
before = scratch = gen_reg_rtx (SImode);
emit_load_locked (SImode, before, mem);
switch (code)
{
case IOR:
case XOR:
case AND:
after = expand_simple_binop (SImode, code, before, val,
NULL_RTX, 1, OPTAB_LIB_WIDEN);
scratch = after;
break;
case PLUS:
case MINUS:
before = expand_binop (SImode, and_optab, scratch, mask,
NULL_RTX, 1, OPTAB_LIB_WIDEN);
scratch = expand_binop (SImode, xor_optab, scratch, before,
scratch, 1, OPTAB_LIB_WIDEN);
after = expand_simple_binop (SImode, code, before, val,
NULL_RTX, 1, OPTAB_LIB_WIDEN);
after = expand_binop (SImode, and_optab, after, mask,
after, 1, OPTAB_LIB_WIDEN);
scratch = expand_binop (SImode, ior_optab, scratch, after,
scratch, 1, OPTAB_LIB_WIDEN);
break;
case MULT: /* NAND */
after = expand_binop (SImode, and_optab, before, val,
NULL_RTX, 1, OPTAB_LIB_WIDEN);
after = expand_binop (SImode, xor_optab, after, mask,
after, 1, OPTAB_LIB_WIDEN);
scratch = after;
break;
default:
gcc_unreachable ();
}
emit_store_conditional (SImode, mem, scratch);
emit_unlikely_jump (EQ, label);
if (orig_before)
or1k_finish_atomic_subword (mode, orig_before, before, shift);
if (orig_after)
or1k_finish_atomic_subword (mode, orig_after, after, shift);
}
/* Worker for TARGET_ASM_OUTPUT_MI_THUNK.
Output the assembler code for a thunk function. THUNK_DECL is the
declaration for the thunk function itself, FUNCTION is the decl for
the target function. DELTA is an immediate constant offset to be
added to THIS. If VCALL_OFFSET is nonzero, the word at address
(*THIS + VCALL_OFFSET) should be additionally added to THIS. */
static void
or1k_output_mi_thunk (FILE *file, tree /* thunk_fndecl */,
HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
tree function)
{
rtx this_rtx, funexp;
rtx_insn *insn;
reload_completed = 1;
epilogue_completed = 1;
emit_note (NOTE_INSN_PROLOGUE_END);
/* Find the "this" pointer. Normally in r3, but if the function
returns a structure, the structure return pointer is in r3 and
the "this" pointer is in r4 instead. */
if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
this_rtx = gen_rtx_REG (Pmode, 4);
else
this_rtx = gen_rtx_REG (Pmode, 3);
/* Add DELTA. When possible use a plain add, otherwise load it
into a register first. */
if (delta)
{
rtx delta_rtx = GEN_INT (delta);
if (!satisfies_constraint_I (delta_rtx))
{
rtx scratch = gen_rtx_REG (Pmode, PE_TMP_REGNUM);
emit_move_insn (scratch, delta_rtx);
delta_rtx = scratch;
}
/* THIS_RTX += DELTA. */
emit_insn (gen_add2_insn (this_rtx, delta_rtx));
}
/* Add the word at address (*THIS_RTX + VCALL_OFFSET). */
if (vcall_offset)
{
rtx scratch = gen_rtx_REG (Pmode, PE_TMP_REGNUM);
HOST_WIDE_INT lo = sext_hwi (vcall_offset, 16);
HOST_WIDE_INT hi = vcall_offset - lo;
rtx tmp;
/* SCRATCH = *THIS_RTX. */
tmp = gen_rtx_MEM (Pmode, this_rtx);
emit_move_insn (scratch, tmp);
if (hi != 0)
{
rtx scratch2 = gen_rtx_REG (Pmode, RV_REGNUM);
emit_move_insn (scratch2, GEN_INT (hi));
emit_insn (gen_add2_insn (scratch, scratch2));
}
/* SCRATCH = *(*THIS_RTX + VCALL_OFFSET). */
tmp = plus_constant (Pmode, scratch, lo);
tmp = gen_rtx_MEM (Pmode, tmp);
emit_move_insn (scratch, tmp);
/* THIS_RTX += *(*THIS_RTX + VCALL_OFFSET). */
emit_insn (gen_add2_insn (this_rtx, scratch));
}
/* Generate a tail call to the target function. */
if (!TREE_USED (function))
{
assemble_external (function);
TREE_USED (function) = 1;
}
funexp = XEXP (DECL_RTL (function), 0);
/* The symbol will be a local alias and therefore always binds local. */
gcc_assert (SYMBOL_REF_LOCAL_P (funexp));
funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);
insn = emit_call_insn (gen_sibcall (funexp, const0_rtx));
SIBLING_CALL_P (insn) = 1;
emit_barrier ();
/* Run just enough of rest_of_compilation to get the insns emitted.
There's not really enough bulk here to make other passes such as
instruction scheduling worth while. Note that use_thunk calls
assemble_start_function and assemble_end_function. */
insn = get_insns ();
shorten_branches (insn);
final_start_function (insn, file, 1);
final (insn, file, 1);
final_end_function ();
reload_completed = 0;
epilogue_completed = 0;
}
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK or1k_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK \
hook_bool_const_tree_hwi_hwi_const_tree_true
#undef TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE or1k_option_override
#undef TARGET_COMPUTE_FRAME_LAYOUT
#define TARGET_COMPUTE_FRAME_LAYOUT or1k_compute_frame_layout
#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P or1k_legitimate_address_p
#undef TARGET_HAVE_TLS
#define TARGET_HAVE_TLS true
#undef TARGET_HAVE_SPECULATION_SAFE_VALUE
#define TARGET_HAVE_SPECULATION_SAFE_VALUE speculation_safe_value_not_needed
/* Calling Conventions. */
#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE or1k_function_value
#undef TARGET_LIBCALL_VALUE
#define TARGET_LIBCALL_VALUE or1k_libcall_value
#undef TARGET_FUNCTION_VALUE_REGNO_P
#define TARGET_FUNCTION_VALUE_REGNO_P or1k_function_value_regno_p
#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG or1k_function_arg
#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE or1k_function_arg_advance
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY or1k_return_in_memory
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE or1k_pass_by_reference
#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT or1k_trampoline_init
#undef TARGET_FRAME_POINTER_REQUIRED
#define TARGET_FRAME_POINTER_REQUIRED or1k_frame_pointer_required
#undef TARGET_CUSTOM_FUNCTION_DESCRIPTORS
#define TARGET_CUSTOM_FUNCTION_DESCRIPTORS 1
/* Assembly generation. */
#undef TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND or1k_print_operand
#undef TARGET_PRINT_OPERAND_ADDRESS
#define TARGET_PRINT_OPERAND_ADDRESS or1k_print_operand_address
/* Section anchor support. */
#undef TARGET_MIN_ANCHOR_OFFSET
#define TARGET_MIN_ANCHOR_OFFSET -32768
#undef TARGET_MAX_ANCHOR_OFFSET
#define TARGET_MAX_ANCHOR_OFFSET 32767
struct gcc_target targetm = TARGET_INITIALIZER;
#include "gt-or1k.h"
/* Target Definitions for OpenRISC.
Copyright (C) 2018 Free Software Foundation, Inc.
Contributed by Stafford Horne.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_OR1K_H
#define GCC_OR1K_H
/* Names to predefine in the preprocessor for this target machine. */
#define TARGET_CPU_CPP_BUILTINS() \
do \
{ \
builtin_define ("__OR1K__"); \
builtin_define ("__OR1K_DELAY__"); \
builtin_define ("__or1k__"); \
if (TARGET_CMOV) \
builtin_define ("__or1k_cmov__"); \
builtin_assert ("cpu=or1k"); \
builtin_assert ("machine=or1k"); \
} \
while (0)
/* Storage layout. */
#define DEFAULT_SIGNED_CHAR 1
#define BITS_BIG_ENDIAN 0
#define BYTES_BIG_ENDIAN 1
#define WORDS_BIG_ENDIAN 1
#define BITS_PER_WORD 32
#define UNITS_PER_WORD 4
#define POINTER_SIZE 32
#define BIGGEST_ALIGNMENT 32
#define STRICT_ALIGNMENT 1
#define FUNCTION_BOUNDARY 32
#define PARM_BOUNDARY 32
#define STACK_BOUNDARY 32
#define PREFERRED_STACK_BOUNDARY 32
#define MAX_FIXED_MODE_SIZE 64
/* Layout of source language data types. */
#define INT_TYPE_SIZE 32
#define SHORT_TYPE_SIZE 16
#define LONG_TYPE_SIZE 32
#define LONG_LONG_TYPE_SIZE 64
#define FLOAT_TYPE_SIZE 32
#define DOUBLE_TYPE_SIZE 64
#define LONG_DOUBLE_TYPE_SIZE 64
#define WCHAR_TYPE_SIZE 32
#undef SIZE_TYPE
#define SIZE_TYPE "unsigned int"
#undef PTRDIFF_TYPE
#define PTRDIFF_TYPE "int"
#undef WCHAR_TYPE
#define WCHAR_TYPE "unsigned int"
/* Describing Relative Costs of Operations. */
#define MOVE_MAX 4
#define SLOW_BYTE_ACCESS 1
/* Register usage, class and contents. */
/* In OpenRISC there are 32 general purpose registers with the following
designations:
r0 always 0
r1 stack pointer
r2 frame pointer (optional)
r3 arg 0
r4 arg 1
r5 arg 2
r6 arg 3
r7 arg 4
r8 arg 5
r9 function call return link address
r10 thread local storage
r11 function return value & static chain
r12 function return value high (upper 64-bit)
r13 temporary (used in prologue and epilogue)
r14 callee saved
r15 temporary
r16 callee saved & pic base register
r17 temporary
r18 callee saved
r19 temporary
r20 callee saved
r21 temporary
r22 callee saved
r23 temporary
r24 callee saved
r25 temporary
r26 callee saved
r27 temporary
r28 callee saved
r29 temporary
r30 callee saved
r31 temporary
r32 soft argument pointer
r33 soft frame pointer
r34 SR[F] (bit) register
This ABI has no adjacent call-saved register, which means that
DImode/DFmode pseudos cannot be call-saved and will always be
spilled across calls. To solve this without changing the ABI,
remap the compiler internal register numbers to place the even
call-saved registers r16-r30 in 24-31, and the odd call-clobbered
registers r17-r31 in 16-23. */
#define FIRST_PSEUDO_REGISTER 35
#define HW_TO_GCC_REGNO(X) \
((X) < 16 || (X) > 31 ? (X) \
: (X) & 1 ? ((X) - 16) / 2 + 16 \
: ((X) - 16) / 2 + 24)
#define GCC_TO_HW_REGNO(X) \
((X) < 16 || (X) > 31 ? (X) \
: (X) < 24 ? ((X) - 16) * 2 + 17 \
: ((X) - 24) * 2 + 16)
#define DBX_REGISTER_NUMBER(X) GCC_TO_HW_REGNO(X)
#define REGISTER_NAMES { \
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
"r17", "r19", "r21", "r23", "r25", "r27", "r29", "r31", \
"r16", "r18", "r20", "r22", "r24", "r26", "r28", "r30", \
"?ap", "?fp", "?sr_f" }
#define FIXED_REGISTERS \
{ 1, 1, 0, 0, 0, 0, 0, 0, \
0, 0, 1, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
1, 1, 1 }
/* Caller saved/temporary registers + args + fixed */
#define CALL_USED_REGISTERS \
{ 1, 1, 0, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 0, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
0, 0, 0, 0, 0, 0, 0, 0, \
1, 1, 1 }
/* List the order in which to allocate registers. Each register must
be listed once, even those in FIXED_REGISTERS.
??? Note that placing REAL_PIC_OFFSET_TABLE_REGNUM (r16 = 24) first
happens to make it most likely selected *as* the pic register when
compiling without optimization, simply because the pic pseudo happens
to be allocated with the lowest pseudo regno. */
#define REG_ALLOC_ORDER { \
16, 17, 18, 19, 20, 21, 22, 23, /* r17-r31 (odd), non-saved */ \
13, 15, /* non-saved */ \
12, 11, /* non-saved return values */ \
8, 7, 6, 5, 4, 3, /* non-saved argument regs */ \
24, /* r16, saved, pic reg */ \
25, 26, 27, 28, 29, 30, 31, /* r18-r31 (even), saved */ \
14, /* r14, saved */ \
2, /* saved hard frame pointer */ \
9, /* saved return address */ \
0, /* fixed zero reg */ \
1, /* fixed stack pointer */ \
10, /* fixed thread pointer */ \
32, 33, 34, /* fixed ap, fp, sr[f], */ \
}
enum reg_class
{
NO_REGS,
SIBCALL_REGS,
GENERAL_REGS,
FLAG_REGS,
ALL_REGS,
LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
#define REG_CLASS_NAMES { \
"NO_REGS", \
"SIBCALL_REGS", \
"GENERAL_REGS", \
"FLAG_REGS", \
"ALL_REGS" }
/* The SIBCALL_REGS must be call-clobbered, and not used as a temporary
in the epilogue. This excludes R9 (LR), R11 (STATIC_CHAIN), and
R13 (PE_TMP_REGNUM). */
#define SIBCALL_REGS_MASK 0x00ff95f8u
#define REG_CLASS_CONTENTS \
{ { 0x00000000, 0x00000000 }, \
{ SIBCALL_REGS_MASK, 0 }, \
{ 0xffffffff, 0x00000003 }, \
{ 0x00000000, 0x00000004 }, \
{ 0xffffffff, 0x00000007 } \
}
/* A C expression whose value is a register class containing hard
register REGNO. In general there is more that one such class;
choose a class which is "minimal", meaning that no smaller class
also contains the register. */
#define REGNO_REG_CLASS(REGNO) \
((REGNO) >= SR_F_REGNUM ? FLAG_REGS \
: (REGNO) < 32 && ((SIBCALL_REGS_MASK >> (REGNO)) & 1) ? SIBCALL_REGS \
: GENERAL_REGS)
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
do { \
if (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
(MODE) = word_mode; \
} while (0)
/* A macro whose definition is the name of the class to which a valid
base register must belong. A base register is one used in an
address which is the register value plus a displacement. */
#define BASE_REG_CLASS GENERAL_REGS
#define INDEX_REG_CLASS NO_REGS
/* Assembly definitions. */
#define ASM_APP_ON ""
#define ASM_APP_OFF ""
#define ASM_COMMENT_START "# "
#define GLOBAL_ASM_OP "\t.global\t"
#define TEXT_SECTION_ASM_OP "\t.section\t.text"
#define DATA_SECTION_ASM_OP "\t.section\t.data"
#define BSS_SECTION_ASM_OP "\t.section\t.bss"
#define SBSS_SECTION_ASM_OP "\t.section\t.sbss"
/* This is how to output an assembler line
that says to advance the location counter
to a multiple of 2**LOG bytes. */
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
do \
{ \
if ((LOG) != 0) \
fprintf (FILE, "\t.align %d\n", 1 << (LOG)); \
} \
while (0)
/* This is used in crtstuff to create call stubs in the
_init() and _fini() functions. Defining this here saves
a few bytes created by the dummy call_xxx() functions. */
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
asm (SECTION_OP "\n" \
" l.jal " #FUNC "\n" \
" l.nop\n" \
" .previous");
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) (code == '#')
/* Calling convention definitions. */
#define CUMULATIVE_ARGS int
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
do { (CUM) = 0; } while (0)
/* Trampolines, for nested functions */
#define TRAMPOLINE_SIZE 20
#define TRAMPOLINE_ALIGNMENT 32
/* Pointer mode */
#define Pmode SImode
#define FUNCTION_MODE SImode
#define STACK_POINTER_REGNUM SP_REGNUM
#define FRAME_POINTER_REGNUM SFP_REGNUM
#define HARD_FRAME_POINTER_REGNUM HFP_REGNUM
#define STATIC_CHAIN_REGNUM RV_REGNUM
/* The register number of the arg pointer register, which is used to
access the function's argument list. */
#define ARG_POINTER_REGNUM AP_REGNUM
/* Position Independent Code. See or1k_init_pic_reg. */
#define REAL_PIC_OFFSET_TABLE_REGNUM HW_TO_GCC_REGNO (16)
/* ??? Follow i386 in working around gimple costing estimation, which
happens without properly initializing the pic_offset_table pseudo. */
#define PIC_OFFSET_TABLE_REGNUM \
(pic_offset_table_rtx ? INVALID_REGNUM : REAL_PIC_OFFSET_TABLE_REGNUM)
/* A C expression that is nonzero if REGNO is the number of a hard
register in which function arguments are sometimes passed. */
#define FUNCTION_ARG_REGNO_P(r) (r >= 3 && r <= 8)
#define MAX_REGS_PER_ADDRESS 1
/* The ELIMINABLE_REGS macro specifies a table of register pairs used to
eliminate unneeded registers that point into the stack frame. Note,
the only elimination attempted by the compiler is to replace references
to the frame pointer with references to the stack pointer. */
#define ELIMINABLE_REGS \
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }}
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
do { \
(OFFSET) = or1k_initial_elimination_offset ((FROM), (TO)); \
} while (0)
#define REGNO_OK_FOR_INDEX_P(REGNO) 0
#define REGNO_OK_FOR_BASE_P(REGNO) ((REGNO) <= SFP_REGNUM)
/* If defined, the maximum amount of space required for outgoing
arguments will be computed and placed into the variable
'crtl->outgoing_args_size'. No space will be pushed
onto the stack for each call; instead, the function prologue
should increase the stack frame size by this amount. */
#define ACCUMULATE_OUTGOING_ARGS 1
/* Stack layout and stack pointer usage. */
/* This plus ARG_POINTER_REGNUM points to the first word of incoming args. */
#define FIRST_PARM_OFFSET(FNDECL) (0)
/* This plus STACK_POINTER_REGNUM points to the first work of outgoing args. */
#define STACK_POINTER_OFFSET (0)
/* Define this macro if pushing a word onto the stack moves the stack
pointer to a smaller address. */
#define STACK_GROWS_DOWNWARD 1
#define FRAME_GROWS_DOWNWARD 1
/* An alias for a machine mode name. This is the machine mode that
elements of a jump-table should have. */
#define CASE_VECTOR_MODE SImode
#define STORE_FLAG_VALUE 1
/* Indicates how loads of narrow mode values are loaded into words. */
#define LOAD_EXTEND_OP(MODE) (ZERO_EXTEND)
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. */
#define EXIT_IGNORE_STACK 1
/* Macros related to the access of the stack frame chain. */
#define INITIAL_FRAME_ADDRESS_RTX or1k_initial_frame_addr ()
#define DYNAMIC_CHAIN_ADDRESS or1k_dynamic_chain_addr
#define RETURN_ADDR_RTX or1k_return_addr
/* Always pass the SYMBOL_REF for direct calls to the expanders. */
#define NO_FUNCTION_CSE 1
/* Profiling */
#define FUNCTION_PROFILER(FILE,LABELNO) (abort (), 0)
/* Dwarf 2 Support */
#define DWARF2_DEBUGGING_INFO 1
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
#define DWARF_FRAME_RETURN_COLUMN LR_REGNUM
/* Describe how we implement __builtin_eh_return. */
#define EH_RETURN_REGNUM HW_TO_GCC_REGNO (23)
/* Use r25, r27, r29 and r31 (clobber regs) for exception data.
Recall that these are remapped consecutively. */
#define EH_RETURN_DATA_REGNO(N) \
((N) < 4 ? HW_TO_GCC_REGNO (25) + (N) : INVALID_REGNUM)
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, EH_RETURN_REGNUM)
#endif /* GCC_OR1K_H */
;; Machine description for OpenRISC
;; Copyright (C) 2018 Free Software Foundation, Inc.
;; Contributed by Stafford Horne
;; This file is part of GCC.
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published
;; by the Free Software Foundation; either version 3, or (at your
;; option) any later version.
;; GCC is distributed in the hope that it will be useful, but WITHOUT
;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
;; License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
;; -------------------------------------------------------------------------
;; OpenRISC specific constraints, predicates and attributes
;; -------------------------------------------------------------------------
(include "constraints.md")
(include "predicates.md")
;; Register numbers
(define_constants
[(SP_REGNUM 1)
(HFP_REGNUM 2)
(LR_REGNUM 9)
(TLS_REGNUM 10)
(RV_REGNUM 11)
(PE_TMP_REGNUM 13)
(AP_REGNUM 32)
(SFP_REGNUM 33)
(SR_F_REGNUM 34)]
)
(define_c_enum "unspec" [
UNSPEC_SET_GOT
UNSPEC_GOT
UNSPEC_GOTOFF
UNSPEC_TPOFF
UNSPEC_GOTTPOFF
UNSPEC_TLSGD
UNSPEC_MSYNC
])
(define_c_enum "unspecv" [
UNSPECV_SET_GOT
UNSPECV_LL
UNSPECV_SC
])
;; Instruction scheduler
; Most instructions are 4 bytes long.
(define_attr "length" "" (const_int 4))
(define_attr "type"
"alu,st,ld,control,multi"
(const_string "alu"))
(define_attr "insn_support" "class1,sext,sfimm,shftimm" (const_string "class1"))
(define_attr "enabled" ""
(cond [(eq_attr "insn_support" "class1") (const_int 1)
(and (eq_attr "insn_support" "sext")
(ne (symbol_ref "TARGET_SEXT") (const_int 0))) (const_int 1)
(and (eq_attr "insn_support" "sfimm")
(ne (symbol_ref "TARGET_SFIMM") (const_int 0))) (const_int 1)
(and (eq_attr "insn_support" "shftimm")
(ne (symbol_ref "TARGET_SHFTIMM") (const_int 0))) (const_int 1)]
(const_int 0)))
;; Describe a user's asm statement.
(define_asm_attributes
[(set_attr "type" "multi")])
(define_automaton "or1k")
(define_cpu_unit "cpu" "or1k")
(define_insn_reservation "alu" 1
(eq_attr "type" "alu")
"cpu")
(define_insn_reservation "st" 1
(eq_attr "type" "st")
"cpu")
(define_insn_reservation "ld" 3
(eq_attr "type" "st")
"cpu")
(define_insn_reservation "control" 1
(eq_attr "type" "control")
"cpu")
; Define delay slots for any branch
(define_delay (eq_attr "type" "control")
[(eq_attr "type" "alu,st,ld") (nil) (nil)])
;; -------------------------------------------------------------------------
;; nop instruction
;; -------------------------------------------------------------------------
(define_insn "nop"
[(const_int 0)]
""
"l.nop")
;; -------------------------------------------------------------------------
;; Arithmetic instructions
;; -------------------------------------------------------------------------
(define_insn "addsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(plus:SI
(match_operand:SI 1 "register_operand" "%r,r")
(match_operand:SI 2 "reg_or_s16_operand" " r,I")))]
""
"@
l.add\t%0, %1, %2
l.addi\t%0, %1, %2")
(define_insn "mulsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(mult:SI
(match_operand:SI 1 "register_operand" "%r,r")
(match_operand:SI 2 "reg_or_s16_operand" " r,I")))]
"!TARGET_SOFT_MUL"
"@
l.mul\t%0, %1, %2
l.muli\t%0, %1, %2")
(define_insn "divsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(div:SI
(match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r")))]
"!TARGET_SOFT_DIV"
"l.div\t%0, %1, %2")
(define_insn "udivsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(udiv:SI
(match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r")))]
"!TARGET_SOFT_DIV"
"l.divu\t%0, %1, %2")
(define_insn "subsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(minus:SI
(match_operand:SI 1 "reg_or_0_operand" "rO")
(match_operand:SI 2 "register_operand" "r")))]
""
"l.sub\t%0, %r1, %2")
;; -------------------------------------------------------------------------
;; Logical operators
;; -------------------------------------------------------------------------
(define_code_iterator SHIFT [ashift ashiftrt lshiftrt])
(define_code_attr shift_op [(ashift "ashl") (ashiftrt "ashr")
(lshiftrt "lshr")])
(define_code_attr shift_asm [(ashift "sll") (ashiftrt "sra")
(lshiftrt "srl")])
(define_insn "<shift_op>si3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(SHIFT:SI (match_operand:SI 1 "register_operand" "r,r")
(match_operand:SI 2 "reg_or_u6_operand" "r,n")))]
""
"@
l.<shift_asm>\t%0, %1, %2
l.<shift_asm>i\t%0, %1, %2"
[(set_attr "insn_support" "*,shftimm")])
(define_insn "rotrsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(rotatert:SI (match_operand:SI 1 "register_operand" "r,r")
(match_operand:SI 2 "reg_or_u6_operand" "r,n")))]
"TARGET_ROR"
"@
l.ror\t%0, %1, %2
l.rori\t%0, %1, %2"
[(set_attr "insn_support" "*,shftimm")])
(define_insn "andsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(and:SI
(match_operand:SI 1 "register_operand" "%r,r")
(match_operand:SI 2 "reg_or_u16_operand" " r,K")))]
""
"@
l.and\t%0, %1, %2
l.andi\t%0, %1, %2")
(define_insn "xorsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(xor:SI
(match_operand:SI 1 "register_operand" "%r,r")
(match_operand:SI 2 "reg_or_s16_operand" " r,I")))]
""
"@
l.xor\t%0, %1, %2
l.xori\t%0, %1, %2")
(define_insn "iorsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(ior:SI
(match_operand:SI 1 "register_operand" "%r,r")
(match_operand:SI 2 "reg_or_u16_operand" " r,K")))]
""
"@
l.or\t%0, %1, %2
l.ori\t%0, %1, %2")
(define_expand "one_cmplsi2"
[(set (match_operand:SI 0 "register_operand" "")
(xor:SI (match_operand:SI 1 "register_operand" "") (const_int -1)))]
""
"")
;; -------------------------------------------------------------------------
;; Move instructions
;; -------------------------------------------------------------------------
(define_mode_iterator I [QI HI SI])
(define_mode_iterator I12 [QI HI])
(define_mode_attr ldst [(QI "b") (HI "h") (SI "w")])
(define_mode_attr zext_andi [(QI "0xff") (HI "0xffff")])
(define_expand "mov<I:mode>"
[(set (match_operand:I 0 "nonimmediate_operand" "")
(match_operand:I 1 "general_operand" ""))]
""
{
or1k_expand_move (<MODE>mode, operands[0], operands[1]);
DONE;
})
;; 8-bit, 16-bit and 32-bit moves
(define_insn "*mov<I:mode>_internal"
[(set (match_operand:I 0 "nonimmediate_operand" "=r,r,r,r, m,r")
(match_operand:I 1 "input_operand" " r,M,K,I,rO,m"))]
"register_operand (operands[0], <I:MODE>mode)
|| reg_or_0_operand (operands[1], <I:MODE>mode)"
"@
l.or\t%0, %1, %1
l.movhi\t%0, hi(%1)
l.ori\t%0, r0, %1
l.xori\t%0, r0, %1
l.s<I:ldst>\t%0, %r1
l.l<I:ldst>z\t%0, %1"
[(set_attr "type" "alu,alu,alu,alu,st,ld")])
;; Hi/Low moves for constant and symbol loading
(define_insn "movsi_high"
[(set (match_operand:SI 0 "register_operand" "=r")
(high:SI (match_operand:SI 1 "high_operand" "")))]
""
"l.movhi\t%0, %h1"
[(set_attr "type" "alu")])
(define_insn "*movsi_lo_sum_iori"
[(set (match_operand:SI 0 "register_operand" "=r")
(lo_sum:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "losum_ior_operand" "")))]
""
"l.ori\t%0, %1, %L2"
[(set_attr "type" "alu")])
(define_insn "*movsi_lo_sum_addi"
[(set (match_operand:SI 0 "register_operand" "=r")
(lo_sum:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "losum_add_operand" "")))]
""
"l.addi\t%0, %1, %L2"
[(set_attr "type" "alu")])
;; 64-bit moves
;; ??? The clobber that emit_move_multi_word emits is arguably incorrect.
;; Consider gcc.c-torture/execute/20030222-1.c, where a reg-reg DImode
;; move gets register allocated to a no-op move. At which point the
;; we actively clobber the input.
(define_expand "movdi"
[(set (match_operand:DI 0 "nonimmediate_operand" "")
(match_operand:DI 1 "general_operand" ""))]
""
{
if (MEM_P (operands[0]) && !const0_operand(operands[1], DImode))
operands[1] = force_reg (DImode, operands[1]);
})
(define_insn_and_split "*movdi"
[(set (match_operand:DI 0 "nonimmediate_operand" "=r,r,o,r")
(match_operand:DI 1 "general_operand" " r,o,rO,n"))]
"register_operand (operands[0], DImode)
|| reg_or_0_operand (operands[1], DImode)"
"#"
""
[(const_int 0)]
{
rtx l0 = operand_subword (operands[0], 0, 0, DImode);
rtx l1 = operand_subword (operands[1], 0, 0, DImode);
rtx h0 = operand_subword (operands[0], 1, 0, DImode);
rtx h1 = operand_subword (operands[1], 1, 0, DImode);
if (reload_completed && reg_overlap_mentioned_p (l0, h1))
{
gcc_assert (!reg_overlap_mentioned_p (h0, l1));
emit_move_insn (h0, h1);
emit_move_insn (l0, l1);
}
else
{
emit_move_insn (l0, l1);
emit_move_insn (h0, h1);
}
DONE;
})
;; -------------------------------------------------------------------------
;; Sign Extending
;; -------------------------------------------------------------------------
;; Zero extension can always be done with AND and an extending load.
(define_insn "zero_extend<mode>si2"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(zero_extend:SI (match_operand:I12 1 "nonimmediate_operand" "r,m")))]
""
"@
l.andi\t%0, %1, <zext_andi>
l.l<ldst>z\t%0, %1")
;; Sign extension in registers is an optional extension, but the
;; extending load is always available. If SEXT is not available,
;; force the middle-end to do the expansion to shifts.
(define_insn "extend<mode>si2"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(sign_extend:SI (match_operand:I12 1 "nonimmediate_operand" "r,m")))]
"TARGET_SEXT"
"@
l.ext<ldst>s\t%0, %1
l.l<ldst>s\t%0, %1")
(define_insn "*extend<mode>si2_mem"
[(set (match_operand:SI 0 "register_operand" "=r")
(sign_extend:SI (match_operand:I12 1 "memory_operand" "m")))]
""
"l.l<ldst>s\t%0, %1")
;; -------------------------------------------------------------------------
;; Compare instructions
;; -------------------------------------------------------------------------
;; OpenRISC supports these integer comparisons:
;;
;; l.sfeq[i] - equality, r r or r i
;; l.sfne[i] - not equal, r r or r i
;; l.sflt{s,u}[i] - less than, signed or unsigned, r r or r i
;; l.sfle{s,u}[i] - less than or equal, signed or unsigned, r r or r i
;; l.sfgt{s,u}[i] - greater than, signed or unsigned, r r or r i
;; l.sfge{s,u}[i] - greater than or equal, signed or unsigned, r r or r i
;;
;; EQ,NE,LT,LTU,LE,LEU,GT,GTU,GE,GEU
;; We iterate through all of these
;;
(define_code_iterator intcmpcc [ne eq lt ltu gt gtu ge le geu leu])
(define_code_attr insn [(ne "ne") (eq "eq") (lt "lts") (ltu "ltu")
(gt "gts") (gtu "gtu") (ge "ges") (le "les")
(geu "geu") (leu "leu") ])
(define_insn "*sf_insn"
[(set (reg:BI SR_F_REGNUM)
(intcmpcc:BI (match_operand:SI 0 "reg_or_0_operand" "rO,rO")
(match_operand:SI 1 "reg_or_s16_operand" "r,I")))]
""
"@
l.sf<insn>\t%r0, %1
l.sf<insn>i\t%r0, %1"
[(set_attr "insn_support" "*,sfimm")])
;; -------------------------------------------------------------------------
;; Conditional Store instructions
;; -------------------------------------------------------------------------
(define_expand "cstoresi4"
[(set (match_operand:SI 0 "register_operand" "")
(if_then_else:SI
(match_operator 1 "comparison_operator"
[(match_operand:SI 2 "reg_or_0_operand" "")
(match_operand:SI 3 "reg_or_s16_operand" "")])
(match_dup 0)
(const_int 0)))]
""
{
or1k_expand_compare (operands + 1);
PUT_MODE (operands[1], SImode);
emit_insn (gen_rtx_SET (operands[0], operands[1]));
DONE;
})
;; Being able to "copy" SR_F to a general register is helpful for
;; the atomic insns, wherein the usual usage is to test the success
;; of the compare-and-swap. Representing the operation in this way,
;; rather than exposing the cmov immediately, allows the optimizers
;; to propagate the use of SR_F directly into a branch.
(define_expand "sne_sr_f"
[(set (match_operand:SI 0 "register_operand" "=r")
(ne:SI (reg:BI SR_F_REGNUM) (const_int 0)))]
"")
(define_insn_and_split "*scc"
[(set (match_operand:SI 0 "register_operand" "=r")
(match_operator:SI 1 "equality_comparison_operator"
[(reg:BI SR_F_REGNUM) (const_int 0)]))]
""
"#"
"reload_completed"
[(set (match_dup 0) (const_int 1))
(set (match_dup 0)
(if_then_else:SI (match_dup 1)
(match_dup 0)
(const_int 0)))]
"")
(define_expand "mov<I:mode>cc"
[(set (match_operand:I 0 "register_operand" "")
(if_then_else:I (match_operand 1 "comparison_operator" "")
(match_operand:I 2 "reg_or_0_operand" "")
(match_operand:I 3 "reg_or_0_operand" "")))]
""
{
rtx xops[3] = { operands[1], XEXP (operands[1], 0), XEXP (operands[1], 1) };
or1k_expand_compare (xops);
operands[1] = xops[0];
})
(define_insn_and_split "*cmov<I:mode>"
[(set (match_operand:I 0 "register_operand" "=r")
(if_then_else:I
(match_operator 3 "equality_comparison_operator"
[(reg:BI SR_F_REGNUM) (const_int 0)])
(match_operand:I 1 "reg_or_0_operand" "rO")
(match_operand:I 2 "reg_or_0_operand" "rO")))]
""
{
return (GET_CODE (operands[3]) == NE
? "l.cmov\t%0, %r1, %r2"
: "l.cmov\t%0, %r2, %r1");
}
"!TARGET_CMOV"
[(const_int 0)]
{
rtx x;
rtx label = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
/* Generated a *cbranch pattern. */
if (rtx_equal_p (operands[0], operands[2]))
{
PUT_CODE (operands[3], (GET_CODE (operands[3]) == NE) ? EQ : NE);
x = gen_rtx_IF_THEN_ELSE (VOIDmode, operands[3], label, pc_rtx);
emit_jump_insn (gen_rtx_SET (pc_rtx, x));
emit_move_insn (operands[0], operands[1]);
}
else
{
x = gen_rtx_IF_THEN_ELSE (VOIDmode, operands[3], label, pc_rtx);
emit_move_insn (operands[0], operands[1]);
emit_jump_insn (gen_rtx_SET (pc_rtx, x));
emit_move_insn (operands[0], operands[2]);
}
emit_label (XEXP (label, 0));
DONE;
})
;; -------------------------------------------------------------------------
;; Branch instructions
;; -------------------------------------------------------------------------
(define_expand "cbranchsi4"
[(set (pc)
(if_then_else
(match_operator 0 "comparison_operator"
[(match_operand:SI 1 "reg_or_0_operand" "")
(match_operand:SI 2 "reg_or_s16_operand" "")])
(label_ref (match_operand 3 "" ""))
(pc)))]
""
{
or1k_expand_compare (operands);
})
(define_insn "*cbranch"
[(set (pc)
(if_then_else
(match_operator 1 "equality_comparison_operator"
[(reg:BI SR_F_REGNUM) (const_int 0)])
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
return (GET_CODE (operands[1]) == NE
? "l.bf\t%0%#"
: "l.bnf\t%0%#");
}
[(set_attr "type" "control")])
;; -------------------------------------------------------------------------
;; Jump instructions
;; -------------------------------------------------------------------------
(define_insn "jump"
[(set (pc) (label_ref (match_operand 0 "" "")))]
""
"l.j\t%0%#"
[(set_attr "type" "control")])
(define_insn "indirect_jump"
[(set (pc) (match_operand:SI 0 "register_operand" "r"))]
""
"l.jr\t%0%#"
[(set_attr "type" "control")])
;; -------------------------------------------------------------------------
;; Prologue & Epilogue
;; -------------------------------------------------------------------------
(define_expand "prologue"
[(const_int 1)]
""
{
or1k_expand_prologue ();
DONE;
})
;; Expand epilogue as RTL
(define_expand "epilogue"
[(return)]
""
{
or1k_expand_epilogue ();
emit_jump_insn (gen_simple_return ());
DONE;
})
(define_expand "sibcall_epilogue"
[(return)]
""
{
or1k_expand_epilogue ();
/* Placing a USE of LR here, rather than as a REG_USE on the
sibcall itself, means that LR is not unnecessarily live
within the function itself, which would force creation of
a stack frame. */
emit_insn (gen_rtx_USE (VOIDmode, gen_rtx_REG (Pmode, LR_REGNUM)));
DONE;
})
(define_expand "simple_return"
[(parallel [(simple_return) (use (match_dup 0))])]
""
{
operands[0] = gen_rtx_REG (Pmode, LR_REGNUM);
})
(define_insn "*simple_return"
[(simple_return)
(use (match_operand:SI 0 "register_operand" "r"))]
""
"l.jr\t%0%#"
[(set_attr "type" "control")])
(define_expand "eh_return"
[(use (match_operand 0 "general_operand"))]
""
{
or1k_expand_eh_return (operands[0]);
DONE;
})
;; This is a placeholder, during RA, in order to create the PIC regiter.
;; We do this so that we don't unconditionally mark the LR register as
;; clobbered. It is replaced during prologue generation with the proper
;; set_got pattern below. This works because the set_got_tmp insn is the
;; first insn in the stream and that it isn't moved during RA.
(define_insn "set_got_tmp"
[(set (match_operand:SI 0 "register_operand" "=r")
(unspec_volatile:SI [(const_int 0)] UNSPECV_SET_GOT))]
""
{
gcc_unreachable ();
})
;; The insn to initialize the GOT.
(define_insn "set_got"
[(set (match_operand:SI 0 "register_operand" "=r")
(unspec:SI [(const_int 0)] UNSPEC_SET_GOT))
(clobber (reg:SI LR_REGNUM))]
""
{
return ("l.jal\t8\;"
" l.movhi\t%0, gotpchi(_GLOBAL_OFFSET_TABLE_-4)\;"
"l.ori\t%0, %0, gotpclo(_GLOBAL_OFFSET_TABLE_+0)\;"
"l.add\t%0, %0, r9");
}
[(set_attr "length" "16")
(set_attr "type" "multi")])
;; Block memory operations from being scheduled across frame (de)allocation.
(define_insn "frame_addsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(plus:SI
(match_operand:SI 1 "register_operand" "%r,r")
(match_operand:SI 2 "reg_or_s16_operand" " r,I")))
(clobber (mem:BLK (scratch)))]
"reload_completed"
"@
l.add\t%0, %1, %2
l.addi\t%0, %1, %2")
;; -------------------------------------------------------------------------
;; Atomic Operations
;; -------------------------------------------------------------------------
;; Note that MULT stands in for the non-existant NAND rtx_code.
(define_code_iterator FETCHOP [plus minus ior xor and mult])
(define_code_attr fetchop_name
[(plus "add")
(minus "sub")
(ior "or")
(xor "xor")
(and "and")
(mult "nand")])
(define_code_attr fetchop_pred
[(plus "reg_or_s16_operand")
(minus "register_operand")
(ior "reg_or_u16_operand")
(xor "reg_or_s16_operand")
(and "reg_or_u16_operand")
(mult "reg_or_u16_operand")])
(define_expand "mem_thread_fence"
[(match_operand:SI 0 "const_int_operand" "")] ;; model
""
{
memmodel model = memmodel_base (INTVAL (operands[0]));
if (model != MEMMODEL_RELAXED)
emit_insn (gen_msync ());
DONE;
})
(define_expand "msync"
[(set (match_dup 0) (unspec:BLK [(match_dup 0)] UNSPEC_MSYNC))]
""
{
operands[0] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode));
MEM_VOLATILE_P (operands[0]) = 1;
})
(define_insn "*msync"
[(set (match_operand:BLK 0 "" "")
(unspec:BLK [(match_dup 0)] UNSPEC_MSYNC))]
""
"l.msync")
(define_insn "load_locked_si"
[(set (match_operand:SI 0 "register_operand" "=r")
(unspec_volatile:SI
[(match_operand:SI 1 "memory_operand" "m")] UNSPECV_LL))]
""
"l.lwa\t%0,%1"
[(set_attr "type" "ld")])
(define_insn "store_conditional_si"
[(set (reg:BI SR_F_REGNUM)
(unspec_volatile:BI [(const_int 0)] UNSPECV_SC))
(set (match_operand:SI 0 "memory_operand" "=m")
(match_operand:SI 1 "reg_or_0_operand" "rO"))]
""
"l.swa\t%0,%r1"
[(set_attr "type" "st")])
(define_expand "atomic_compare_and_swapsi"
[(match_operand:SI 0 "register_operand") ;; bool output
(match_operand:SI 1 "register_operand") ;; val output
(match_operand:SI 2 "memory_operand") ;; memory
(match_operand:SI 3 "reg_or_s16_operand") ;; expected
(match_operand:SI 4 "reg_or_0_operand") ;; desired
(match_operand:SI 5 "const_int_operand") ;; is_weak
(match_operand:SI 6 "const_int_operand") ;; mod_s
(match_operand:SI 7 "const_int_operand")] ;; mod_f
""
{
or1k_expand_atomic_compare_and_swap (operands);
DONE;
})
(define_expand "atomic_compare_and_swap<mode>"
[(match_operand:SI 0 "register_operand") ;; bool output
(match_operand:I12 1 "register_operand") ;; val output
(match_operand:I12 2 "memory_operand") ;; memory
(match_operand:I12 3 "register_operand") ;; expected
(match_operand:I12 4 "reg_or_0_operand") ;; desired
(match_operand:SI 5 "const_int_operand") ;; is_weak
(match_operand:SI 6 "const_int_operand") ;; mod_s
(match_operand:SI 7 "const_int_operand")] ;; mod_f
""
{
or1k_expand_atomic_compare_and_swap_qihi (operands);
DONE;
})
(define_expand "atomic_exchangesi"
[(match_operand:SI 0 "register_operand") ;; output
(match_operand:SI 1 "memory_operand") ;; memory
(match_operand:SI 2 "reg_or_0_operand") ;; input
(match_operand:SI 3 "const_int_operand")] ;; model
""
{
or1k_expand_atomic_exchange (operands);
DONE;
})
(define_expand "atomic_exchange<mode>"
[(match_operand:I12 0 "register_operand") ;; output
(match_operand:I12 1 "memory_operand") ;; memory
(match_operand:I12 2 "reg_or_0_operand") ;; input
(match_operand:SI 3 "const_int_operand")] ;; model
""
{
or1k_expand_atomic_exchange_qihi (operands);
DONE;
})
(define_expand "atomic_<fetchop_name>si"
[(match_operand:SI 0 "memory_operand") ;; memory
(FETCHOP:SI (match_dup 0)
(match_operand:SI 1 "<fetchop_pred>")) ;; operand
(match_operand:SI 2 "const_int_operand")] ;; model
""
{
or1k_expand_atomic_op (<CODE>, operands[0], operands[1], NULL, NULL);
DONE;
})
(define_expand "atomic_<fetchop_name><mode>"
[(match_operand:I12 0 "memory_operand") ;; memory
(FETCHOP:I12 (match_dup 0)
(match_operand:I12 1 "register_operand")) ;; operand
(match_operand:SI 2 "const_int_operand")] ;; model
""
{
or1k_expand_atomic_op_qihi (<CODE>, operands[0], operands[1], NULL, NULL);
DONE;
})
(define_expand "atomic_fetch_<fetchop_name>si"
[(match_operand:SI 0 "register_operand" "") ;; output
(match_operand:SI 1 "memory_operand" "") ;; memory
(FETCHOP:SI (match_dup 1)
(match_operand:SI 2 "<fetchop_pred>" "")) ;; operand
(match_operand:SI 3 "const_int_operand" "")] ;; model
""
{
or1k_expand_atomic_op (<CODE>, operands[1], operands[2], operands[0], NULL);
DONE;
})
(define_expand "atomic_fetch_<fetchop_name><mode>"
[(match_operand:I12 0 "register_operand" "") ;; output
(match_operand:I12 1 "memory_operand" "") ;; memory
(FETCHOP:I12 (match_dup 1)
(match_operand:I12 2 "<fetchop_pred>" "")) ;; operand
(match_operand:SI 3 "const_int_operand" "")] ;; model
""
{
or1k_expand_atomic_op_qihi (<CODE>, operands[1], operands[2],
operands[0], NULL);
DONE;
})
(define_expand "atomic_<fetchop_name>_fetchsi"
[(match_operand:SI 0 "register_operand" "") ;; output
(match_operand:SI 1 "memory_operand" "") ;; memory
(FETCHOP:SI (match_dup 1)
(match_operand:SI 2 "<fetchop_pred>" "")) ;; operand
(match_operand:SI 3 "const_int_operand" "")] ;; model
""
{
or1k_expand_atomic_op (<CODE>, operands[1], operands[2], NULL, operands[0]);
DONE;
})
(define_expand "atomic_<fetchop_name>_fetch<mode>"
[(match_operand:I12 0 "register_operand" "") ;; output
(match_operand:I12 1 "memory_operand" "") ;; memory
(FETCHOP:I12 (match_dup 1)
(match_operand:I12 2 "<fetchop_pred>" "")) ;; operand
(match_operand:SI 3 "const_int_operand" "")] ;; model
""
{
or1k_expand_atomic_op_qihi (<CODE>, operands[1], operands[2],
NULL, operands[0]);
DONE;
})
;; -------------------------------------------------------------------------
;; Call Instructions
;; -------------------------------------------------------------------------
;; Leave these to last, as the modeless operand for call_value
;; interferes with normal patterns.
(define_expand "call"
[(call (match_operand 0) (match_operand 1))]
""
{
or1k_expand_call (NULL, operands[0], operands[1], false);
DONE;
})
(define_expand "sibcall"
[(call (match_operand 0) (match_operand 1))]
""
{
or1k_expand_call (NULL, operands[0], operands[1], true);
DONE;
})
(define_expand "call_value"
[(set (match_operand 0) (call (match_operand 1) (match_operand 2)))]
""
{
or1k_expand_call (operands[0], operands[1], operands[2], false);
DONE;
})
(define_expand "sibcall_value"
[(set (match_operand 0) (call (match_operand 1) (match_operand 2)))]
""
{
or1k_expand_call (operands[0], operands[1], operands[2], true);
DONE;
})
(define_insn "*call"
[(call (mem:SI (match_operand:SI 0 "call_insn_operand" "r,s"))
(match_operand 1))
(clobber (reg:SI LR_REGNUM))]
"!SIBLING_CALL_P (insn)"
"@
l.jalr\t%0%#
l.jal\t%P0%#"
[(set_attr "type" "control")])
(define_insn "*sibcall"
[(call (mem:SI (match_operand:SI 0 "call_insn_operand" "c,s"))
(match_operand 1))]
"SIBLING_CALL_P (insn)"
"@
l.jr\t%0%#
l.j\t%P0%#"
[(set_attr "type" "control")])
(define_insn "*call_value"
[(set (match_operand 0)
(call (mem:SI (match_operand:SI 1 "call_insn_operand" "r,s"))
(match_operand 2)))
(clobber (reg:SI LR_REGNUM))]
"!SIBLING_CALL_P (insn)"
"@
l.jalr\t%1%#
l.jal\t%P1%#"
[(set_attr "type" "control")])
(define_insn "*sibcall_value"
[(set (match_operand 0)
(call (mem:SI (match_operand:SI 1 "call_insn_operand" "c,s"))
(match_operand 2)))]
"SIBLING_CALL_P (insn)"
"@
l.jr\t%1%#
l.j\t%P1%#"
[(set_attr "type" "control")])
; OpenRISC command line options
; Copyright (C) 2010-2018 Free Software Foundation, Inc.
;
; This file is part of GCC.
;
; GCC is free software; you can redistribute it and/or modify it under
; the terms of the GNU General Public License as published by the Free
; Software Foundation; either version 3, or (at your option) any later
; version.
;
; GCC is distributed in the hope that it will be useful, but WITHOUT ANY
; WARRANTY; without even the implied warranty of MERCHANTABILITY or
; FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
; for more details.
;
; You should have received a copy of the GNU General Public License
; along with GCC; see the file COPYING3. If not see
; <http://www.gnu.org/licenses/>.
; See the GCC internals manual (options.texi) for a description of
; this file's format.
; Please try to keep this file in ASCII collating order.
mhard-div
Target RejectNegative InverseMask(SOFT_DIV)
Use hardware divide instructions, use -msoft-div for emulation.
mhard-mul
Target RejectNegative InverseMask(SOFT_MUL).
Use hardware multiply instructions, use -msoft-mul for emulation.
mcmov
Target RejectNegative Mask(CMOV)
Allows generation of binaries which use the l.cmov instruction. If your target
does not support this the compiler will generate the equivalent using set and
branch.
mror
Target RejectNegative Mask(ROR)
Allows generation of binaries which use the l.rori instructions.
msext
Target RejectNegative Mask(SEXT)
Allows generation of binaries which use sign-extension instructions. If your
target does not support this the compiler will use memory loads to perform sign
extension.
msfimm
Target RejectNegative Mask(SFIMM)
Allows generation of binaries which use l.sf*i instructions. If your target
does not support this the compiler will generate instructions to store the
immediate to a register first.
mshftimm
Target RejectNegative Mask(SHFTIMM)
Allows generation of binaries which support shifts and rotate instructions
supporting immediate arguments, for example l.rori.
msoft-div
Target RejectNegative Mask(SOFT_DIV)
Use divide emulation.
msoft-mul
Target RejectNegative Mask(SOFT_MUL).
Use multiply emulation.
;; Predicate definitions for OpenRISC
;; Copyright (C) 2018 Free Software Foundation, Inc.
;; Contributed by Stafford Horne
;; This file is part of GCC.
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published
;; by the Free Software Foundation; either version 3, or (at your
;; option) any later version.
;; GCC is distributed in the hope that it will be useful, but WITHOUT
;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
;; License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
;; -------------------------------------------------------------------------
;; Predicates
;; -------------------------------------------------------------------------
(define_predicate "input_operand"
(ior (match_operand 0 "register_operand")
(match_operand 0 "memory_operand")
(and (match_code "const_int")
(match_test "satisfies_constraint_I (op)
|| satisfies_constraint_K (op)
|| satisfies_constraint_M (op)"))))
(define_predicate "const0_operand"
(and (match_code "const_int,const_wide_int,const_double,const_vector")
(match_test "op == CONST0_RTX (mode)")))
(define_predicate "reg_or_0_operand"
(ior (match_operand 0 "register_operand")
(match_operand 0 "const0_operand")))
(define_predicate "reg_or_u6_operand"
(if_then_else (match_code "const_int")
(match_test "INTVAL (op) >= 0 && INTVAL (op) <= 0x3f")
(match_operand 0 "register_operand")))
(define_predicate "reg_or_u16_operand"
(if_then_else (match_code "const_int")
(match_test "INTVAL (op) >= 0 && INTVAL (op) <= 0xffff")
(match_operand 0 "register_operand")))
(define_predicate "reg_or_s16_operand"
(if_then_else (match_code "const_int")
(match_test "INTVAL (op) >= -32768 && INTVAL (op) <= 32767")
(match_operand 0 "register_operand")))
(define_predicate "call_insn_operand"
(ior (match_code "symbol_ref")
(match_operand 0 "register_operand")))
(define_predicate "high_operand"
(match_code "symbol_ref,label_ref,const,unspec"))
;; Return true for relocations that must use MOVHI+ADDI
(define_predicate "losum_add_operand"
(match_code "symbol_ref,label_ref,const,unspec"))
;; Return true for relocations that must use MOVHI+ORI
(define_predicate "losum_ior_operand"
(and (match_code "unspec")
(match_test "XINT(op, 1) == UNSPEC_TLSGD")))
;; Return true for a "virtual" or "soft" register that will be
;; adjusted to a "soft" or "hard" register during elimination.
(define_predicate "virtual_frame_reg_operand"
(match_code "reg")
{
unsigned regno = REGNO (op);
return (regno != STACK_POINTER_REGNUM
&& regno != HARD_FRAME_POINTER_REGNUM
&& REGNO_PTR_FRAME_P (regno));
})
(define_predicate "equality_comparison_operator"
(match_code "ne,eq"))
/* Target Newlib Definitions for OpenRISC.
Copyright (C) 2018 Free Software Foundation, Inc.
Contributed by Joel Sherrill (joel.sherrill@OARcorp.com).
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* Target OS builtins. */
#undef TARGET_OS_CPP_BUILTINS
#define TARGET_OS_CPP_BUILTINS() \
do \
{ \
builtin_define ("__rtems__"); \
builtin_define ("__USE_INIT_FINI__"); \
builtin_assert ("system=rtems"); \
} \
while (0)
# Target Makefile Fragment for OpenRISC
# Copyright (C) 2018 Free Software Foundation, Inc.
# Contributed by Stafford Horne.
#
# This file is part of GCC.
#
# GCC is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published
# by the Free Software Foundation; either version 3, or (at your
# option) any later version.
#
# GCC is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
# License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GCC; see the file COPYING3. If not see
# <http://www.gnu.org/licenses/>.
comma=,
MULTILIB_OPTIONS = $(subst $(comma), ,$(TM_MULTILIB_CONFIG))
# RTEMS OR1K multilibs
# No custom multilibs defined
......@@ -24391,6 +24391,18 @@ foo: .long 25
tls_first_minor=20
tls_as_opt='--fatal-warnings'
;;
or1k*-*-*)
conftest_s='
.section ".tdata","awT",@progbits
foo: .long 25
.text
l.movhi r3, tpoffha(foo)
l.add r3, r3, r10
l.lwz r4, tpofflo(foo)(r3)'
tls_first_major=2
tls_first_minor=30
tls_as_opt=--fatal-warnings
;;
powerpc-ibm-aix*)
conftest_s='
.extern __get_tpointer
......
......@@ -3473,6 +3473,18 @@ foo: .long 25
tls_first_minor=20
tls_as_opt='--fatal-warnings'
;;
or1k*-*-*)
conftest_s='
.section ".tdata","awT",@progbits
foo: .long 25
.text
l.movhi r3, tpoffha(foo)
l.add r3, r3, r10
l.lwz r4, tpofflo(foo)(r3)'
tls_first_major=2
tls_first_minor=30
tls_as_opt=--fatal-warnings
;;
powerpc-ibm-aix*)
conftest_s='
.extern __get_tpointer
......
......@@ -3269,6 +3269,10 @@ information have to.
@item
@uref{#nvptx-x-none,,nvptx-*-none}
@item
@uref{#or1k-x-elf,,or1k-*-elf}
@item
@uref{#or1k-x-linux,,or1k-*-linux}
@item
@uref{#powerpc-x-x,,powerpc*-*-*}
@item
@uref{#powerpc-x-darwin,,powerpc-*-darwin*}
......@@ -4239,6 +4243,21 @@ Use the @option{--disable-sjlj-exceptions} and
@html
<hr />
@end html
@anchor{or1k-x-elf}
@heading or1k-*-elf
The OpenRISC 1000 32-bit processor with delay slots.
This configuration is intended for embedded systems.
@html
<hr />
@end html
@anchor{or1k-x-linux}
@heading or1k-*-linux
The OpenRISC 1000 32-bit processor with delay slots.
@html
<hr />
@end html
@anchor{powerpc-x-x}
@heading powerpc-*-*
You can specify a default version for the @option{-mcpu=@var{cpu_type}}
......
......@@ -1010,6 +1010,11 @@ Objective-C and Objective-C++ Dialects}.
@emph{Nvidia PTX Options}
@gccoptlist{-m32 -m64 -mmainkernel -moptimize}
@emph{OpenRISC Options}
@gccoptlist{-mboard=@var{name} -mnewlib -mhard-mul -mhard-div @gol
-msoft-mul -msoft-div @gol
-mcmov -mror -msext -msfimm -mshftimm}
@emph{PDP-11 Options}
@gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol
-mint32 -mno-int16 -mint16 -mno-int32 @gol
......@@ -14984,6 +14989,7 @@ platform.
* NDS32 Options::
* Nios II Options::
* Nvidia PTX Options::
* OpenRISC Options::
* PDP-11 Options::
* picoChip Options::
* PowerPC Options::
......@@ -22762,6 +22768,68 @@ Generate code for use in OpenMP offloading: enables @option{-msoft-stack} and
@end table
@node OpenRISC Options
@subsection OpenRISC Options
@cindex OpenRISC Options
These options are defined for OpenRISC:
@table @gcctabopt
@item -mboard=@var{name}
@opindex mboard
Configure a board specific runtime. This will be passed to the linker for
newlib board library linking. The default is @code{or1ksim}.
@item -mnewlib
@opindex mnewlib
For compatibility, it's always newlib for elf now.
@item -mhard-div
@opindex mhard-div
Generate code for hardware which supports divide instructions. This is the
default.
@item -mhard-mul
@opindex mhard-mul
Generate code for hardware which supports multiply instructions. This is the
default.
@item -mcmov
@opindex mcmov
Generate code for hardware which supports the conditional move (@code{l.cmov})
instruction.
@item -mror
@opindex mror
Generate code for hardware which supports rotate right instructions.
@item -msext
@opindex msext
Generate code for hardware which supports sign-extension instructions.
@item -msfimm
@opindex msfimm
Generate code for hardware which supports set flag immediate (@code{l.sf*i})
instructions.
@item -mshftimm
@opindex mshftimm
Generate code for hardware which supports shift immediate related instructions
(i.e. @code{l.srai}, @code{l.srli}, @code{l.slli}, @code{1.rori}). Note, to
enable generation of the @code{l.rori} instruction the @option{-mror} flag must
also be specified.
@item -msoft-div
@opindex msoft-div
Generate code for hardware which requires divide instruction emulation.
@item -msoft-mul
@opindex msoft-mul
Generate code for hardware which requires multiply instruction emulation.
@end table
@node PDP-11 Options
@subsection PDP-11 Options
@cindex PDP-11 Options
......@@ -3003,6 +3003,31 @@ representing a supported PIC or TLS relocation.
@end table
@item OpenRISC---@file{config/or1k/constraints.md}
@table @code
@item I
Integer that is valid as an immediate operand in an
instruction taking a signed 16-bit number. Range
@minus{}32768 to 32767.
@item K
Integer that is valid as an immediate operand in an
instruction taking an unsigned 16-bit number. Range
0 to 65535.
@item M
Signed 16-bit constant shifted left 16 bits. (Used with @code{l.movhi})
@item O
Zero
@ifset INTERNALS
@item c
Register usable for sibcalls.
@end ifset
@end table
@item PDP-11---@file{config/pdp11/constraints.md}
@table @code
@item a
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment