Commit 254f5222 by Chen Liqin Committed by Chen Liqin

Because we merge score3 and score7 into the same backend,

so make a lot of changes in the code structure.

Changelog:
        * config.gcc : update score-*-elf(extra_objs).
        * config/score/mac.md : Remove.
        * config/score/misc.md : Remove.
        * config/score/score7.md : Remove.
        * config/score/score-mdaux.h : Remove.
        * config/score/score-mdaux.c : Remove.
        * config/score/score-version.h : Remove.
        * config/score/score-generic.md : New.
        * config/score/score3.h : New.
        * config/score/score3.c : New.
        * config/score/score7.h : New.
        * config/score/score7.c : New.
        * config/score/mul-div.S : add flush_cache score3 support.
        * config/score/elf.h : Fix some typos.
        * config/score/score.md : merge score3 and score7 pattern.
        * config/score/score.c : use to seperate which target it used.
        * config/score/score.h : use to seperate the target macro.
        * config/score/score.opt : remove -mmac option , add -mscore3,
        -mscore3d and -march OPTION support.

From-SVN: r129431
parent 23710ddd
2007-10-18 Chen Liqin <liqin@sunnorth.com.cn>
* config.gcc : update score-*-elf(extra_objs).
* config/score/mac.md : Remove.
* config/score/misc.md : Remove.
* config/score/score7.md : Remove.
* config/score/score-mdaux.h : Remove.
* config/score/score-mdaux.c : Remove.
* config/score/score-version.h : Remove.
* config/score/score-generic.md : New.
* config/score/score3.h : New.
* config/score/score3.c : New.
* config/score/score7.h : New.
* config/score/score7.c : New.
* config/score/mul-div.S : add flush_cache score3 support.
* config/score/elf.h : Fix some typos.
* config/score/score.md : merge score3 and score7 pattern.
* config/score/score.c : use to seperate which target it used.
* config/score/score.h : use to seperate the target macro.
* config/score/score.opt : remove -mmac option , add -mscore3,
-mscore3d and -march OPTION support.
2007-10-17 Andrew Pinski <andrew_pinski@playstation.sony.com>
* cfgexpand.c (expand_stack_vars): Add checking to make sure
......@@ -2127,7 +2127,7 @@ s390x-ibm-tpf*)
score-*-elf)
tm_file="dbxelf.h elfos.h score/elf.h score/score.h"
tmake_file=score/t-score-elf
extra_objs="score-mdaux.o"
extra_objs="score7.o score3.o"
;;
sh-*-elf* | sh[12346l]*-*-elf* | sh*-*-kaos* | \
sh-*-symbianelf* | sh[12346l]*-*-symbianelf* | \
......
......@@ -34,6 +34,7 @@
# This file makes a stack frame for the contents of the .init and
# .fini sections.
.extern _stack
#ifndef __pic__
.section .init, "ax", @progbits
......@@ -88,9 +89,13 @@ _fini:
.weak _start
.ent _start
.frame r0, 0, r3, 0
.mask 0x00000000,0
.mask 0x00000000, 0
_start:
la r28, _gp
mv r29, r3
bl 0f
0:
.cpload r3
mv r3, r29
la r8, __bss_start
la r9, __bss_end__
sub! r9, r8
......@@ -102,22 +107,23 @@ _start:
sw r9, [r8]+, 4
bcnz 1b
la r0, _stack
ldiu! r4, 0
ldiu! r5, 0
la r29, main
bl _init
la r4, _end
la r29, _init_argv
brl r29
la r29, exit
brl r29
.end _start
.weak _init_argv
.ent
.ent _init_argv
.frame r0, 0, r3, 0
.mask 0x00000000, 0
_init_argv:
ldiu! r4, 0
ldiu! r5, 0
j main
la r29, main
brl r29
.end _init_argv
.globl _init
......@@ -126,7 +132,7 @@ _init:
addi r0, -32
sw r3, [r0, 20]
.section .fini, "ax", @progbits
.section .fini, "ax", @progbits
.globl _fini
.type _fini, %function
_fini:
......@@ -134,5 +140,3 @@ _fini:
sw r3, [r0, 20]
#endif
;; Machine description for Sunplus S+CORE
;; Copyright (C) 2005, 2007
;; Free Software Foundation, Inc.
;; Contributed by Sunnorth.
;; This file is part of GCC.
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
;;- See file "rtl.def" for documentation on define_insn, match_*, et. al.
(define_insn "smaxsi3"
[(set (match_operand:SI 0 "register_operand" "=d")
(smax:SI (match_operand:SI 1 "register_operand" "d")
(match_operand:SI 2 "register_operand" "d")))]
"TARGET_MAC || TARGET_SCORE7D"
"max %0, %1, %2"
[(set_attr "type" "arith")
(set_attr "mode" "SI")])
(define_insn "sminsi3"
[(set (match_operand:SI 0 "register_operand" "=d")
(smin:SI (match_operand:SI 1 "register_operand" "d")
(match_operand:SI 2 "register_operand" "d")))]
"TARGET_MAC || TARGET_SCORE7D"
"min %0, %1, %2"
[(set_attr "type" "arith")
(set_attr "mode" "SI")])
(define_insn "abssi2"
[(set (match_operand:SI 0 "register_operand" "=d")
(abs:SI (match_operand:SI 1 "register_operand" "d")))]
"TARGET_MAC || TARGET_SCORE7D"
"abs %0, %1"
[(set_attr "type" "arith")
(set_attr "mode" "SI")])
(define_insn "clzsi2"
[(set (match_operand:SI 0 "register_operand" "=d")
(clz:SI (match_operand:SI 1 "register_operand" "d")))]
"TARGET_MAC || TARGET_SCORE7D"
"clz %0, %1"
[(set_attr "type" "arith")
(set_attr "mode" "SI")])
(define_insn "sffs"
[(set (match_operand:SI 0 "register_operand" "=d")
(unspec:SI [(match_operand:SI 1 "register_operand" "d")] SFFS))]
"TARGET_MAC || TARGET_SCORE7D"
"bitrev %0, %1, r0\;clz %0, %0\;addi %0, 0x1"
[(set_attr "type" "arith")
(set_attr "mode" "SI")])
(define_expand "ffssi2"
[(set (match_operand:SI 0 "register_operand")
(ffs:SI (match_operand:SI 1 "register_operand")))]
"TARGET_MAC || TARGET_SCORE7D"
{
emit_insn (gen_sffs (operands[0], operands[1]));
emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_REG (CC_NZmode, CC_REGNUM),
gen_rtx_COMPARE (CC_NZmode, operands[0],
GEN_INT (33))));
emit_insn (gen_movsicc_internal (operands[0],
gen_rtx_fmt_ee (EQ, VOIDmode, operands[0], GEN_INT (33)),
GEN_INT (0),
operands[0]));
DONE;
})
(define_peephole2
[(set (match_operand:SI 0 "loreg_operand" "")
(match_operand:SI 1 "register_operand" ""))
(set (match_operand:SI 2 "hireg_operand" "")
(match_operand:SI 3 "register_operand" ""))]
"TARGET_MAC || TARGET_SCORE7D"
[(parallel
[(set (match_dup 0) (match_dup 1))
(set (match_dup 2) (match_dup 3))])])
(define_peephole2
[(set (match_operand:SI 0 "hireg_operand" "")
(match_operand:SI 1 "register_operand" ""))
(set (match_operand:SI 2 "loreg_operand" "")
(match_operand:SI 3 "register_operand" ""))]
"TARGET_MAC || TARGET_SCORE7D"
[(parallel
[(set (match_dup 2) (match_dup 3))
(set (match_dup 0) (match_dup 1))])])
(define_insn "movtohilo"
[(parallel
[(set (match_operand:SI 0 "loreg_operand" "=l")
(match_operand:SI 1 "register_operand" "d"))
(set (match_operand:SI 2 "hireg_operand" "=h")
(match_operand:SI 3 "register_operand" "d"))])]
"TARGET_MAC || TARGET_SCORE7D"
"mtcehl %3, %1"
[(set_attr "type" "fce")
(set_attr "mode" "SI")])
(define_insn "mulsi3addsi"
[(set (match_operand:SI 0 "register_operand" "=l,l,d")
(plus:SI (mult:SI (match_operand:SI 2 "register_operand" "d,d,d")
(match_operand:SI 3 "register_operand" "d,d,d"))
(match_operand:SI 1 "register_operand" "0,d,l")))
(clobber (reg:SI HI_REGNUM))]
"TARGET_MAC || TARGET_SCORE7D"
"@
mad %2, %3
mtcel%S1 %1\;mad %2, %3
mad %2, %3\;mfcel%S0 %0"
[(set_attr "mode" "SI")])
(define_insn "mulsi3subsi"
[(set (match_operand:SI 0 "register_operand" "=l,l,d")
(minus:SI (match_operand:SI 1 "register_operand" "0,d,l")
(mult:SI (match_operand:SI 2 "register_operand" "d,d,d")
(match_operand:SI 3 "register_operand" "d,d,d"))))
(clobber (reg:SI HI_REGNUM))]
"TARGET_MAC || TARGET_SCORE7D"
"@
msb %2, %3
mtcel%S1 %1\;msb %2, %3
msb %2, %3\;mfcel%S0 %0"
[(set_attr "mode" "SI")])
(define_insn "mulsidi3adddi"
[(set (match_operand:DI 0 "register_operand" "=x")
(plus:DI (mult:DI
(sign_extend:DI (match_operand:SI 2 "register_operand" "%d"))
(sign_extend:DI (match_operand:SI 3 "register_operand" "d")))
(match_operand:DI 1 "register_operand" "0")))]
"TARGET_MAC || TARGET_SCORE7D"
"mad %2, %3"
[(set_attr "mode" "DI")])
(define_insn "umulsidi3adddi"
[(set (match_operand:DI 0 "register_operand" "=x")
(plus:DI (mult:DI
(zero_extend:DI (match_operand:SI 2 "register_operand" "%d"))
(zero_extend:DI (match_operand:SI 3 "register_operand" "d")))
(match_operand:DI 1 "register_operand" "0")))]
"TARGET_MAC || TARGET_SCORE7D"
"madu %2, %3"
[(set_attr "mode" "DI")])
(define_insn "mulsidi3subdi"
[(set (match_operand:DI 0 "register_operand" "=x")
(minus:DI
(match_operand:DI 1 "register_operand" "0")
(mult:DI
(sign_extend:DI (match_operand:SI 2 "register_operand" "%d"))
(sign_extend:DI (match_operand:SI 3 "register_operand" "d")))))]
"TARGET_MAC || TARGET_SCORE7D"
"msb %2, %3"
[(set_attr "mode" "DI")])
(define_insn "umulsidi3subdi"
[(set (match_operand:DI 0 "register_operand" "=x")
(minus:DI
(match_operand:DI 1 "register_operand" "0")
(mult:DI (zero_extend:DI
(match_operand:SI 2 "register_operand" "%d"))
(zero_extend:DI
(match_operand:SI 3 "register_operand" "d")))))]
"TARGET_MAC || TARGET_SCORE7D"
"msbu %2, %3"
[(set_attr "mode" "DI")])
;; Machine description for Sunplus S+CORE
;; Copyright (C) 2005, 2007
;; Free Software Foundation, Inc.
;; Contributed by Sunnorth.
;; This file is part of GCC.
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
;;- See file "rtl.def" for documentation on define_insn, match_*, et. al.
(define_insn "pushsi"
[(set (match_operand:SI 0 "push_operand" "=<")
(match_operand:SI 1 "register_operand" "d"))]
""
"push! %1, [r0]"
[(set_attr "type" "store")
(set_attr "mode" "SI")])
(define_insn "popsi"
[(set (match_operand:SI 0 "register_operand" "=d")
(match_operand:SI 1 "pop_operand" ">"))]
""
"pop! %0, [r0]"
[(set_attr "type" "store")
(set_attr "mode" "SI")])
(define_peephole2
[(set (match_operand:SI 0 "g32reg_operand" "")
(match_operand:SI 1 "loreg_operand" ""))
(set (match_operand:SI 2 "g32reg_operand" "")
(match_operand:SI 3 "hireg_operand" ""))]
""
[(parallel
[(set (match_dup 0) (match_dup 1))
(set (match_dup 2) (match_dup 3))])])
(define_peephole2
[(set (match_operand:SI 0 "g32reg_operand" "")
(match_operand:SI 1 "hireg_operand" ""))
(set (match_operand:SI 2 "g32reg_operand" "")
(match_operand:SI 3 "loreg_operand" ""))]
""
[(parallel
[(set (match_dup 2) (match_dup 3))
(set (match_dup 0) (match_dup 1))])])
(define_insn "movhilo"
[(parallel
[(set (match_operand:SI 0 "register_operand" "=d")
(match_operand:SI 1 "loreg_operand" ""))
(set (match_operand:SI 2 "register_operand" "=d")
(match_operand:SI 3 "hireg_operand" ""))])]
""
"mfcehl %2, %0"
[(set_attr "type" "fce")
(set_attr "mode" "SI")])
(define_expand "movsicc"
[(set (match_operand:SI 0 "register_operand" "")
(if_then_else:SI (match_operator 1 "comparison_operator"
[(reg:CC CC_REGNUM) (const_int 0)])
(match_operand:SI 2 "register_operand" "")
(match_operand:SI 3 "register_operand" "")))]
""
{
mdx_movsicc (operands);
})
(define_insn "movsicc_internal"
[(set (match_operand:SI 0 "register_operand" "=d")
(if_then_else:SI (match_operator 1 "comparison_operator"
[(reg:CC CC_REGNUM) (const_int 0)])
(match_operand:SI 2 "arith_operand" "d")
(match_operand:SI 3 "arith_operand" "0")))]
""
"mv%C1 %0, %2"
[(set_attr "type" "cndmv")
(set_attr "mode" "SI")])
(define_insn "zero_extract_bittst"
[(set (reg:CC_NZ CC_REGNUM)
(compare:CC_NZ (unspec:SI
[(match_operand:SI 0 "register_operand" "*e,d")
(match_operand:SI 1 "const_uimm5" "")]
BITTST)
(const_int 0)))]
""
"@
bittst! %0, %c1
bittst.c %0, %c1"
[(set_attr "type" "arith")
(set_attr "up_c" "yes")
(set_attr "mode" "SI")])
(define_expand "extzv"
[(set (match_operand:SI 0 "register_operand" "")
(zero_extract (match_operand:SI 1 "memory_operand" "")
(match_operand:SI 2 "immediate_operand" "")
(match_operand:SI 3 "immediate_operand" "")))]
"!TARGET_SCORE5U && !TARGET_LITTLE_ENDIAN && TARGET_ULS"
{
if (mdx_unaligned_load (operands))
DONE;
else
FAIL;
})
(define_expand "insv"
[(set (zero_extract (match_operand:SI 0 "memory_operand" "")
(match_operand:SI 1 "immediate_operand" "")
(match_operand:SI 2 "immediate_operand" ""))
(match_operand:SI 3 "register_operand" ""))]
"!TARGET_SCORE5U && !TARGET_LITTLE_ENDIAN && TARGET_ULS"
{
if (mdx_unaligned_store (operands))
DONE;
else
FAIL;
})
(define_expand "extv"
[(set (match_operand:SI 0 "register_operand" "")
(sign_extract (match_operand:SI 1 "memory_operand" "")
(match_operand:SI 2 "immediate_operand" "")
(match_operand:SI 3 "immediate_operand" "")))]
"!TARGET_SCORE5U && !TARGET_LITTLE_ENDIAN && TARGET_ULS"
{
if (mdx_unaligned_load (operands))
DONE;
else
FAIL;
})
(define_expand "movmemsi"
[(parallel [(set (match_operand:BLK 0 "general_operand")
(match_operand:BLK 1 "general_operand"))
(use (match_operand:SI 2 ""))
(use (match_operand:SI 3 "const_int_operand"))])]
"!TARGET_SCORE5U && TARGET_ULS"
{
if (mdx_block_move (operands))
DONE;
else
FAIL;
})
(define_insn "move_lbu_a"
[(set (match_operand:SI 0 "register_operand" "=d")
(plus:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "const_simm12" "")))
(set (match_operand:QI 3 "register_operand" "=d")
(mem:QI (match_dup 1)))]
""
"lbu %3, [%1]+, %2"
[(set_attr "type" "load")
(set_attr "mode" "QI")])
(define_insn "move_lhu_a"
[(set (match_operand:SI 0 "register_operand" "=d")
(plus:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "const_simm12" "")))
(set (match_operand:HI 3 "register_operand" "=d")
(mem:HI (match_dup 1)))]
""
"lhu %3, [%1]+, %2"
[(set_attr "type" "load")
(set_attr "mode" "HI")])
(define_insn "move_lw_a"
[(set (match_operand:SI 0 "register_operand" "=d")
(plus:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "const_simm12" "")))
(set (match_operand:SI 3 "register_operand" "=d")
(mem:SI (match_dup 1)))]
""
"lw %3, [%1]+, %2"
[(set_attr "type" "load")
(set_attr "mode" "SI")])
(define_insn "move_sb_a"
[(set (match_operand:SI 0 "register_operand" "=d")
(plus:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "const_simm12" "")))
(set (mem:QI (match_dup 1))
(match_operand:QI 3 "register_operand" "d"))]
""
"sb %3, [%1]+, %2"
[(set_attr "type" "store")
(set_attr "mode" "QI")])
(define_insn "move_sh_a"
[(set (match_operand:SI 0 "register_operand" "=d")
(plus:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "const_simm12" "")))
(set (mem:HI (match_dup 1))
(match_operand:HI 3 "register_operand" "d"))]
""
"sh %3, [%1]+, %2"
[(set_attr "type" "store")
(set_attr "mode" "HI")])
(define_insn "move_sw_a"
[(set (match_operand:SI 0 "register_operand" "=d")
(plus:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "const_simm12" "")))
(set (mem:SI (match_dup 1))
(match_operand:SI 3 "register_operand" "d"))]
""
"sw %3, [%1]+, %2"
[(set_attr "type" "store")
(set_attr "mode" "SI")])
(define_insn "move_lbu_b"
[(set (match_operand:SI 0 "register_operand" "=d")
(plus:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "const_simm12" "")))
(set (match_operand:QI 3 "register_operand" "=d")
(mem:QI (plus:SI (match_dup 1)
(match_dup 2))))]
""
"lbu %3, [%1, %2]+"
[(set_attr "type" "load")
(set_attr "mode" "QI")])
(define_insn "move_lhu_b"
[(set (match_operand:SI 0 "register_operand" "=d")
(plus:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "const_simm12" "")))
(set (match_operand:HI 3 "register_operand" "=d")
(mem:HI (plus:SI (match_dup 1)
(match_dup 2))))]
""
"lhu %3, [%1, %2]+"
[(set_attr "type" "load")
(set_attr "mode" "HI")])
(define_insn "move_lw_b"
[(set (match_operand:SI 0 "register_operand" "=d")
(plus:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "const_simm12" "")))
(set (match_operand:SI 3 "register_operand" "=d")
(mem:SI (plus:SI (match_dup 1)
(match_dup 2))))]
""
"lw %3, [%1, %2]+"
[(set_attr "type" "load")
(set_attr "mode" "SI")])
(define_insn "move_sb_b"
[(set (match_operand:SI 0 "register_operand" "=d")
(plus:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "const_simm12" "")))
(set (mem:QI (plus:SI (match_dup 1)
(match_dup 2)))
(match_operand:QI 3 "register_operand" "d"))]
""
"sb %3, [%1, %2]+"
[(set_attr "type" "store")
(set_attr "mode" "QI")])
(define_insn "move_sh_b"
[(set (match_operand:SI 0 "register_operand" "=d")
(plus:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "const_simm12" "")))
(set (mem:HI (plus:SI (match_dup 1)
(match_dup 2)))
(match_operand:HI 3 "register_operand" "d"))]
""
"sh %3, [%1, %2]+"
[(set_attr "type" "store")
(set_attr "mode" "HI")])
(define_insn "move_sw_b"
[(set (match_operand:SI 0 "register_operand" "=d")
(plus:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "const_simm12" "")))
(set (mem:SI (plus:SI (match_dup 1)
(match_dup 2)))
(match_operand:SI 3 "register_operand" "d"))]
""
"sw %3, [%1, %2]+"
[(set_attr "type" "store")
(set_attr "mode" "SI")])
(define_insn "move_lcb"
[(set (match_operand:SI 0 "register_operand" "=d")
(plus:SI (match_operand:SI 1 "register_operand" "0")
(const_int 4)))
(set (reg:SI LC_REGNUM)
(unspec:SI [(mem:BLK (match_dup 1))] LCB))]
"!TARGET_SCORE5U && !TARGET_LITTLE_ENDIAN && TARGET_ULS"
"lcb [%1]+"
[(set_attr "type" "load")
(set_attr "mode" "SI")])
(define_insn "move_lcw"
[(set (match_operand:SI 0 "register_operand" "=d")
(plus:SI (match_operand:SI 1 "register_operand" "0")
(const_int 4)))
(set (match_operand:SI 2 "register_operand" "=d")
(unspec:SI [(mem:BLK (match_dup 1))
(reg:SI LC_REGNUM)] LCW))
(set (reg:SI LC_REGNUM)
(unspec:SI [(mem:BLK (match_dup 1))] LCB))]
"!TARGET_SCORE5U && !TARGET_LITTLE_ENDIAN && TARGET_ULS"
"lcw %2, [%1]+"
[(set_attr "type" "load")
(set_attr "mode" "SI")])
(define_insn "move_lce"
[(set (match_operand:SI 0 "register_operand" "=d")
(plus:SI (match_operand:SI 1 "register_operand" "0")
(const_int 4)))
(set (match_operand:SI 2 "register_operand" "=d")
(unspec:SI [(mem:BLK (match_dup 1))
(reg:SI LC_REGNUM)] LCE))]
"!TARGET_SCORE5U && !TARGET_LITTLE_ENDIAN && TARGET_ULS"
"lce %2, [%1]+"
[(set_attr "type" "load")
(set_attr "mode" "SI")])
(define_insn "move_scb"
[(set (match_operand:SI 0 "register_operand" "=d")
(plus:SI (match_operand:SI 1 "register_operand" "0")
(const_int 4)))
(set (mem:BLK (match_dup 1))
(unspec:BLK [(match_operand:SI 2 "register_operand" "d")] SCB))
(set (reg:SI SC_REGNUM)
(unspec:SI [(match_dup 2)] SCLC))]
"!TARGET_SCORE5U && !TARGET_LITTLE_ENDIAN && TARGET_ULS"
"scb %2, [%1]+"
[(set_attr "type" "store")
(set_attr "mode" "SI")])
(define_insn "move_scw"
[(set (match_operand:SI 0 "register_operand" "=d")
(plus:SI (match_operand:SI 1 "register_operand" "0")
(const_int 4)))
(set (mem:BLK (match_dup 1))
(unspec:BLK [(match_operand:SI 2 "register_operand" "d")
(reg:SI SC_REGNUM)] SCW))
(set (reg:SI SC_REGNUM)
(unspec:SI [(match_dup 2)] SCLC))]
"!TARGET_SCORE5U && !TARGET_LITTLE_ENDIAN && TARGET_ULS"
"scw %2, [%1]+"
[(set_attr "type" "store")
(set_attr "mode" "SI")])
(define_insn "move_sce"
[(set (match_operand:SI 0 "register_operand" "=d")
(plus:SI (match_operand:SI 1 "register_operand" "0")
(const_int 4)))
(set (mem:BLK (match_dup 1))
(unspec:BLK [(reg:SI SC_REGNUM)] SCE))]
"!TARGET_SCORE5U && !TARGET_LITTLE_ENDIAN && TARGET_ULS"
"sce [%1]+"
[(set_attr "type" "store")
(set_attr "mode" "SI")])
(define_insn "andsi3_extzh"
[(set (match_operand:SI 0 "register_operand" "=d")
(and:SI (match_operand:SI 1 "register_operand" "d")
(const_int 65535)))]
""
"extzh %0, %1"
[(set_attr "type" "arith")
(set_attr "mode" "SI")])
......@@ -15,7 +15,7 @@
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
<http://www.gnu.org/licenses/>. */
#define ra r3
#define a0 r4
......@@ -34,6 +34,10 @@
#if !defined(L_mulsi3) && !defined(L_divsi3)
.text
.global _flush_cache
#ifdef __score3__
_flush_cache:
br r3
#else
_flush_cache:
srli r9, r5, 4
mv r8, r4
......@@ -70,6 +74,7 @@ _flush_cache:
bcnz 2b
br r3
#endif
#endif
/* FUNCTION
(U) INT32 v0 = __mulsi3 ((U) INT32 a0, (U) INT32 a1);
......@@ -205,6 +210,10 @@ __modsi3:
.set pic
.text
.global _flush_cache
#ifdef __score3__
_flush_cache:
br r3
#else
_flush_cache:
addi r0, -8 # pic used
.cpload r29 # pic used
......@@ -245,6 +254,7 @@ _flush_cache:
addi r0, 8 # pic used
br r3
#endif
#endif
/* FUNCTION
(U) INT32 v0 = __mulsi3 ((U) INT32 a0, (U) INT32 a1);
......@@ -345,7 +355,6 @@ __umodsi3:
.cpload r29 # pic used
li t1, 0
mv t3, ra
# jl __udivsi3
la r29, __udivsi3
brl r29
mv r4, a1
......@@ -374,7 +383,6 @@ __divsi3:
.cpload r29 # pic used
mv t3, ra
xor t2, a0, a1
# jl __orgsi3
la r29, __orgsi3
brl r29
__divsi3_adjust:
......@@ -394,7 +402,6 @@ __modsi3:
.cpload r29 # pic used
mv t3, ra
mv t2, a0
# jl __orgsi3
la r29, __orgsi3
brl r29
mv r4, a1
......
......@@ -17,16 +17,44 @@
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
(define_predicate "const_uimm5"
(match_code "const_int")
{
return IMM_IN_RANGE (INTVAL (op), 5, 0);
})
(define_predicate "const_simm12"
(match_code "const_int")
{
return IMM_IN_RANGE (INTVAL (op), 12, 1);
})
(define_predicate "const_simm15"
(match_code "const_int")
{
return IMM_IN_RANGE (INTVAL (op), 15, 1);
})
(define_predicate "arith_operand"
(ior (match_code "const_int")
(match_operand 0 "register_operand")))
(define_predicate "score_register_operand"
(match_code "reg,subreg")
{
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
return (GET_CODE (op) == REG)
&& (REGNO (op) != CC_REGNUM);
})
(define_predicate "const_call_insn_operand"
(match_code "const,symbol_ref,label_ref")
{
enum score_symbol_type symbol_type;
return (mda_symbolic_constant_p (op, &symbol_type)
return (score_symbolic_constant_p (op, &symbol_type)
&& (symbol_type == SYMBOL_GENERAL));
})
......@@ -34,12 +62,6 @@
(ior (match_operand 0 "const_call_insn_operand")
(match_operand 0 "register_operand")))
(define_predicate "const_uimm5"
(match_code "const_int")
{
return IMM_IN_RANGE (INTVAL (op), 5, 0);
})
(define_predicate "hireg_operand"
(and (match_code "reg")
(match_test "REGNO (op) == HI_REGNUM")))
......@@ -62,15 +84,73 @@
(define_predicate "branch_nz_operator"
(match_code "eq,ne,lt,ge"))
(define_predicate "const_simm12"
(match_code "const_int")
(define_predicate "score_load_multiple_operation"
(match_code "parallel")
{
return IMM_IN_RANGE (INTVAL (op), 12, 1);
int count = XVECLEN (op, 0);
int dest_regno;
rtx src_addr;
int i;
/* Perform a quick check so we don't blow up below. */
if (count <= 1
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|| GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM)
return 0;
dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0);
for (i = 1; i < count; i++)
{
rtx elt = XVECEXP (op, 0, i);
if (GET_CODE (elt) != SET
|| GET_CODE (SET_DEST (elt)) != REG
|| GET_MODE (SET_DEST (elt)) != SImode
|| REGNO (SET_DEST (elt)) != (unsigned) (dest_regno + i)
|| GET_CODE (SET_SRC (elt)) != MEM
|| GET_MODE (SET_SRC (elt)) != SImode
|| GET_CODE (XEXP (SET_SRC (elt), 0)) != POST_INC)
return 0;
}
return 1;
})
(define_predicate "const_simm15"
(match_code "const_int")
(define_predicate "score_store_multiple_operation"
(match_code "parallel")
{
return IMM_IN_RANGE (INTVAL (op), 15, 1);
int count = XVECLEN (op, 0);
int src_regno;
rtx dest_addr;
int i;
/* Perform a quick check so we don't blow up below. */
if (count <= 1
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|| GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG)
return 0;
src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0)));
dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0);
for (i = 1; i < count; i++)
{
rtx elt = XVECEXP (op, 0, i);
if (GET_CODE (elt) != SET
|| GET_CODE (SET_SRC (elt)) != REG
|| GET_MODE (SET_SRC (elt)) != SImode
|| REGNO (SET_SRC (elt)) != (unsigned) (src_regno + i)
|| GET_CODE (SET_DEST (elt)) != MEM
|| GET_MODE (SET_DEST (elt)) != SImode
|| GET_CODE (XEXP (SET_DEST (elt), 0)) != PRE_DEC)
return 0;
}
return 1;
})
......@@ -17,11 +17,16 @@
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef SCORE_CONV_0601
#define SCORE_CONV_0601
#ifndef GCC_SCORE_CONV_H
#define GCC_SCORE_CONV_H
extern int target_flags;
/* Define the information needed to generate branch insns. This is
stored from the compare operation. */
extern GTY(()) rtx cmp_op0;
extern GTY(()) rtx cmp_op1;
#define GP_REG_FIRST 0U
#define GP_REG_LAST 31U
#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1U)
......@@ -40,10 +45,20 @@ extern int target_flags;
#define GP_REG_P(REGNO) REG_CONTAIN (REGNO, GP_REG_FIRST, GP_REG_NUM)
#define G8_REG_P(REGNO) REG_CONTAIN (REGNO, GP_REG_FIRST, 8)
#define G16_REG_P(REGNO) REG_CONTAIN (REGNO, GP_REG_FIRST, 16)
#define CE_REG_P(REGNO) REG_CONTAIN (REGNO, CE_REG_FIRST, CE_REG_NUM)
#define GR_REG_CLASS_P(C) ((C) == G16_REGS || (C) == G32_REGS)
#define SP_REG_CLASS_P(C) \
((C) == CN_REG || (C) == LC_REG || (C) == SC_REG || (C) == SP_REGS)
#define CP_REG_CLASS_P(C) \
((C) == CP1_REGS || (C) == CP2_REGS || (C) == CP3_REGS || (C) == CPA_REGS)
#define CE_REG_CLASS_P(C) \
((C) == HI_REG || (C) == LO_REG || (C) == CE_REGS)
#define UIMM_IN_RANGE(V, W) ((V) >= 0 && (V) < ((HOST_WIDE_INT) 1 << (W)))
#define SIMM_IN_RANGE(V, W) \
......@@ -58,29 +73,10 @@ extern int target_flags;
&& (V) <= ((unsigned HOST_WIDE_INT) 1 << (E2)) \
&& ((V) & ((V) - 1)) == 0)
#define SCORE_STACK_ALIGN(LOC) (((LOC) + 3) & ~3)
#define SCORE_MAX_FIRST_STACK_STEP (0x3ff0)
#define SCORE_SDATA_MAX score_sdata_max ()
#define DEFAULT_SDATA_MAX 8
#define CONST_HIGH_PART(VALUE) \
(((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
#define CONST_LOW_PART(VALUE) ((VALUE) - CONST_HIGH_PART (VALUE))
#define PROLOGUE_TEMP_REGNUM (GP_REG_FIRST + 8)
#define EPILOGUE_TEMP_REGNUM (GP_REG_FIRST + 8)
enum score_symbol_type
{
SYMBOL_GENERAL,
SYMBOL_SMALL_DATA /* The symbol refers to something in a small data section. */
SYMBOL_SMALL_DATA /* The symbol refers to something in a small data section */
};
int score_sdata_max (void);
#endif
;; Machine description for Sunplus S+CORE
;; Sunplus S+CORE 7 Pipeline Description
;; Sunplus S+CORE Pipeline Description
;; Copyright (C) 2005, 2007
;; Free Software Foundation, Inc.
;; Contributed by Sunnorth.
......
/* score-mdaux.c for Sunplus S+CORE processor
Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
Contributed by Sunnorth
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include <signal.h>
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-attr.h"
#include "recog.h"
#include "toplev.h"
#include "output.h"
#include "tree.h"
#include "function.h"
#include "expr.h"
#include "optabs.h"
#include "flags.h"
#include "reload.h"
#include "tm_p.h"
#include "ggc.h"
#include "gstab.h"
#include "hashtab.h"
#include "debug.h"
#include "target.h"
#include "target-def.h"
#include "integrate.h"
#include "langhooks.h"
#include "cfglayout.h"
#include "score-mdaux.h"
#define BITSET_P(VALUE, BIT) (((VALUE) & (1L << (BIT))) != 0)
#define INS_BUF_SZ 100
/* Define the information needed to generate branch insns. This is
stored from the compare operation. */
rtx cmp_op0, cmp_op1;
static char ins[INS_BUF_SZ + 8];
/* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
to the same object as SYMBOL. */
static int
score_offset_within_object_p (rtx symbol, HOST_WIDE_INT offset)
{
if (GET_CODE (symbol) != SYMBOL_REF)
return 0;
if (CONSTANT_POOL_ADDRESS_P (symbol)
&& offset >= 0
&& offset < (int)GET_MODE_SIZE (get_pool_mode (symbol)))
return 1;
if (SYMBOL_REF_DECL (symbol) != 0
&& offset >= 0
&& offset < int_size_in_bytes (TREE_TYPE (SYMBOL_REF_DECL (symbol))))
return 1;
return 0;
}
/* Split X into a base and a constant offset, storing them in *BASE
and *OFFSET respectively. */
static void
score_split_const (rtx x, rtx *base, HOST_WIDE_INT *offset)
{
*offset = 0;
if (GET_CODE (x) == CONST)
x = XEXP (x, 0);
if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
{
*offset += INTVAL (XEXP (x, 1));
x = XEXP (x, 0);
}
*base = x;
}
/* Classify symbol X, which must be a SYMBOL_REF or a LABEL_REF. */
static enum
score_symbol_type score_classify_symbol (rtx x)
{
if (GET_CODE (x) == LABEL_REF)
return SYMBOL_GENERAL;
gcc_assert (GET_CODE (x) == SYMBOL_REF);
if (CONSTANT_POOL_ADDRESS_P (x))
{
if (GET_MODE_SIZE (get_pool_mode (x)) <= SCORE_SDATA_MAX)
return SYMBOL_SMALL_DATA;
return SYMBOL_GENERAL;
}
if (SYMBOL_REF_SMALL_P (x))
return SYMBOL_SMALL_DATA;
return SYMBOL_GENERAL;
}
/* Return true if the current function must save REGNO. */
static int
score_save_reg_p (unsigned int regno)
{
/* Check call-saved registers. */
if (df_regs_ever_live_p (regno) && !call_used_regs[regno])
return 1;
/* We need to save the old frame pointer before setting up a new one. */
if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed)
return 1;
/* We need to save the incoming return address if it is ever clobbered
within the function. */
if (regno == RA_REGNUM && df_regs_ever_live_p (regno))
return 1;
return 0;
}
/* Return one word of double-word value OP, taking into account the fixed
endianness of certain registers. HIGH_P is true to select the high part,
false to select the low part. */
static rtx
subw (rtx op, int high_p)
{
unsigned int byte;
enum machine_mode mode = GET_MODE (op);
if (mode == VOIDmode)
mode = DImode;
byte = (TARGET_LITTLE_ENDIAN ? high_p : !high_p) ? UNITS_PER_WORD : 0;
if (GET_CODE (op) == REG && REGNO (op) == HI_REGNUM)
return gen_rtx_REG (SImode, high_p ? HI_REGNUM : LO_REGNUM);
if (GET_CODE (op) == MEM)
return adjust_address (op, SImode, byte);
return simplify_gen_subreg (SImode, op, mode, byte);
}
struct score_frame_info *
mda_cached_frame (void)
{
static struct score_frame_info _frame_info;
return &_frame_info;
}
/* Return the bytes needed to compute the frame pointer from the current
stack pointer. SIZE is the size (in bytes) of the local variables. */
struct score_frame_info *
mda_compute_frame_size (HOST_WIDE_INT size)
{
unsigned int regno;
struct score_frame_info *f = mda_cached_frame ();
memset (f, 0, sizeof (struct score_frame_info));
f->gp_reg_size = 0;
f->mask = 0;
f->var_size = SCORE_STACK_ALIGN (size);
f->args_size = current_function_outgoing_args_size;
f->cprestore_size = flag_pic ? UNITS_PER_WORD : 0;
if (f->var_size == 0 && current_function_is_leaf)
f->args_size = f->cprestore_size = 0;
if (f->args_size == 0 && current_function_calls_alloca)
f->args_size = UNITS_PER_WORD;
f->total_size = f->var_size + f->args_size + f->cprestore_size;
for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
{
if (score_save_reg_p (regno))
{
f->gp_reg_size += GET_MODE_SIZE (SImode);
f->mask |= 1 << (regno - GP_REG_FIRST);
}
}
if (current_function_calls_eh_return)
{
unsigned int i;
for (i = 0;; ++i)
{
regno = EH_RETURN_DATA_REGNO (i);
if (regno == INVALID_REGNUM)
break;
f->gp_reg_size += GET_MODE_SIZE (SImode);
f->mask |= 1 << (regno - GP_REG_FIRST);
}
}
f->total_size += f->gp_reg_size;
f->num_gp = f->gp_reg_size / UNITS_PER_WORD;
if (f->mask)
{
HOST_WIDE_INT offset;
offset = (f->args_size + f->cprestore_size + f->var_size
+ f->gp_reg_size - GET_MODE_SIZE (SImode));
f->gp_sp_offset = offset;
}
else
f->gp_sp_offset = 0;
return f;
}
/* Generate the prologue instructions for entry into a S+core function. */
void
mdx_prologue (void)
{
#define EMIT_PL(_rtx) RTX_FRAME_RELATED_P (_rtx) = 1
struct score_frame_info *f = mda_compute_frame_size (get_frame_size ());
HOST_WIDE_INT size;
int regno;
size = f->total_size - f->gp_reg_size;
if (flag_pic)
emit_insn (gen_cpload ());
for (regno = (int) GP_REG_LAST; regno >= (int) GP_REG_FIRST; regno--)
{
if (BITSET_P (f->mask, regno - GP_REG_FIRST))
{
rtx mem = gen_rtx_MEM (SImode,
gen_rtx_PRE_DEC (SImode, stack_pointer_rtx));
rtx reg = gen_rtx_REG (SImode, regno);
if (!current_function_calls_eh_return)
MEM_READONLY_P (mem) = 1;
EMIT_PL (emit_insn (gen_pushsi (mem, reg)));
}
}
if (size > 0)
{
rtx insn;
if (CONST_OK_FOR_LETTER_P (-size, 'L'))
EMIT_PL (emit_insn (gen_add3_insn (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-size))));
else
{
EMIT_PL (emit_move_insn (gen_rtx_REG (Pmode, PROLOGUE_TEMP_REGNUM),
GEN_INT (size)));
EMIT_PL (emit_insn
(gen_sub3_insn (stack_pointer_rtx,
stack_pointer_rtx,
gen_rtx_REG (Pmode,
PROLOGUE_TEMP_REGNUM))));
}
insn = get_last_insn ();
REG_NOTES (insn) =
alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
gen_rtx_SET (VOIDmode, stack_pointer_rtx,
plus_constant (stack_pointer_rtx,
-size)),
REG_NOTES (insn));
}
if (frame_pointer_needed)
EMIT_PL (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx));
if (flag_pic && f->cprestore_size)
{
if (frame_pointer_needed)
emit_insn (gen_cprestore_use_fp (GEN_INT (size - f->cprestore_size)));
else
emit_insn (gen_cprestore_use_sp (GEN_INT (size - f->cprestore_size)));
}
#undef EMIT_PL
}
/* Generate the epilogue instructions in a S+core function. */
void
mdx_epilogue (int sibcall_p)
{
struct score_frame_info *f = mda_compute_frame_size (get_frame_size ());
HOST_WIDE_INT size;
int regno;
rtx base;
size = f->total_size - f->gp_reg_size;
if (!frame_pointer_needed)
base = stack_pointer_rtx;
else
base = hard_frame_pointer_rtx;
if (size)
{
if (CONST_OK_FOR_LETTER_P (size, 'L'))
emit_insn (gen_add3_insn (base, base, GEN_INT (size)));
else
{
emit_move_insn (gen_rtx_REG (Pmode, EPILOGUE_TEMP_REGNUM),
GEN_INT (size));
emit_insn (gen_add3_insn (base, base,
gen_rtx_REG (Pmode,
EPILOGUE_TEMP_REGNUM)));
}
}
if (base != stack_pointer_rtx)
emit_move_insn (stack_pointer_rtx, base);
if (current_function_calls_eh_return)
emit_insn (gen_add3_insn (stack_pointer_rtx,
stack_pointer_rtx,
EH_RETURN_STACKADJ_RTX));
for (regno = (int) GP_REG_FIRST; regno <= (int) GP_REG_LAST; regno++)
{
if (BITSET_P (f->mask, regno - GP_REG_FIRST))
{
rtx mem = gen_rtx_MEM (SImode,
gen_rtx_POST_INC (SImode, stack_pointer_rtx));
rtx reg = gen_rtx_REG (SImode, regno);
if (!current_function_calls_eh_return)
MEM_READONLY_P (mem) = 1;
emit_insn (gen_popsi (reg, mem));
}
}
if (!sibcall_p)
emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode, RA_REGNUM)));
}
/* Return true if X is a valid base register for the given mode.
Allow only hard registers if STRICT. */
int
mda_valid_base_register_p (rtx x, int strict)
{
if (!strict && GET_CODE (x) == SUBREG)
x = SUBREG_REG (x);
return (GET_CODE (x) == REG
&& score_regno_mode_ok_for_base_p (REGNO (x), strict));
}
/* Return true if X is a valid address for machine mode MODE. If it is,
fill in INFO appropriately. STRICT is true if we should only accept
hard base registers. */
int
mda_classify_address (struct score_address_info *info,
enum machine_mode mode, rtx x, int strict)
{
info->code = GET_CODE (x);
switch (info->code)
{
case REG:
case SUBREG:
info->type = ADD_REG;
info->reg = x;
info->offset = const0_rtx;
return mda_valid_base_register_p (info->reg, strict);
case PLUS:
info->type = ADD_REG;
info->reg = XEXP (x, 0);
info->offset = XEXP (x, 1);
return (mda_valid_base_register_p (info->reg, strict)
&& GET_CODE (info->offset) == CONST_INT
&& IMM_IN_RANGE (INTVAL (info->offset), 15, 1));
case PRE_DEC:
case POST_DEC:
case PRE_INC:
case POST_INC:
if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (SImode))
return false;
info->type = ADD_REG;
info->reg = XEXP (x, 0);
info->offset = GEN_INT (GET_MODE_SIZE (mode));
return mda_valid_base_register_p (info->reg, strict);
case CONST_INT:
info->type = ADD_CONST_INT;
return IMM_IN_RANGE (INTVAL (x), 15, 1);
case CONST:
case LABEL_REF:
case SYMBOL_REF:
info->type = ADD_SYMBOLIC;
return (mda_symbolic_constant_p (x, &info->symbol_type)
&& (info->symbol_type == SYMBOL_GENERAL
|| info->symbol_type == SYMBOL_SMALL_DATA));
default:
return 0;
}
}
void
mda_gen_cmp (enum machine_mode mode)
{
emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_REG (mode, CC_REGNUM),
gen_rtx_COMPARE (mode, cmp_op0, cmp_op1)));
}
/* Return true if X is a symbolic constant that can be calculated in
the same way as a bare symbol. If it is, store the type of the
symbol in *SYMBOL_TYPE. */
int
mda_symbolic_constant_p (rtx x, enum score_symbol_type *symbol_type)
{
HOST_WIDE_INT offset;
score_split_const (x, &x, &offset);
if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
*symbol_type = score_classify_symbol (x);
else
return 0;
if (offset == 0)
return 1;
/* if offset > 15bit, must reload */
if (!IMM_IN_RANGE (offset, 15, 1))
return 0;
switch (*symbol_type)
{
case SYMBOL_GENERAL:
return 1;
case SYMBOL_SMALL_DATA:
return score_offset_within_object_p (x, offset);
}
gcc_unreachable ();
}
void
mdx_movsicc (rtx *ops)
{
enum machine_mode mode;
mode = score_select_cc_mode (GET_CODE (ops[1]), ops[2], ops[3]);
emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_REG (mode, CC_REGNUM),
gen_rtx_COMPARE (mode, cmp_op0, cmp_op1)));
}
/* Call and sibcall pattern all need call this function. */
void
mdx_call (rtx *ops, bool sib)
{
rtx addr = XEXP (ops[0], 0);
if (!call_insn_operand (addr, VOIDmode))
{
rtx oaddr = addr;
addr = gen_reg_rtx (Pmode);
gen_move_insn (addr, oaddr);
}
if (sib)
emit_call_insn (gen_sibcall_internal (addr, ops[1]));
else
emit_call_insn (gen_call_internal (addr, ops[1]));
}
/* Call value and sibcall value pattern all need call this function. */
void
mdx_call_value (rtx *ops, bool sib)
{
rtx result = ops[0];
rtx addr = XEXP (ops[1], 0);
rtx arg = ops[2];
if (!call_insn_operand (addr, VOIDmode))
{
rtx oaddr = addr;
addr = gen_reg_rtx (Pmode);
gen_move_insn (addr, oaddr);
}
if (sib)
emit_call_insn (gen_sibcall_value_internal (result, addr, arg));
else
emit_call_insn (gen_call_value_internal (result, addr, arg));
}
/* Machine Split */
void
mds_movdi (rtx *ops)
{
rtx dst = ops[0];
rtx src = ops[1];
rtx dst0 = subw (dst, 0);
rtx dst1 = subw (dst, 1);
rtx src0 = subw (src, 0);
rtx src1 = subw (src, 1);
if (GET_CODE (dst0) == REG && reg_overlap_mentioned_p (dst0, src))
{
emit_move_insn (dst1, src1);
emit_move_insn (dst0, src0);
}
else
{
emit_move_insn (dst0, src0);
emit_move_insn (dst1, src1);
}
}
void
mds_zero_extract_andi (rtx *ops)
{
if (INTVAL (ops[1]) == 1 && const_uimm5 (ops[2], SImode))
emit_insn (gen_zero_extract_bittst (ops[0], ops[2]));
else
{
unsigned HOST_WIDE_INT mask;
mask = (0xffffffffU & ((1U << INTVAL (ops[1])) - 1U));
mask = mask << INTVAL (ops[2]);
emit_insn (gen_andsi3_cmp (ops[3], ops[0],
gen_int_mode (mask, SImode)));
}
}
/* Check addr could be present as PRE/POST mode. */
static bool
mda_pindex_mem (rtx addr)
{
if (GET_CODE (addr) == MEM)
{
switch (GET_CODE (XEXP (addr, 0)))
{
case PRE_DEC:
case POST_DEC:
case PRE_INC:
case POST_INC:
return true;
default:
break;
}
}
return false;
}
/* Output asm code for ld/sw insn. */
static int
pr_addr_post (rtx *ops, int idata, int iaddr, char *ip, enum mda_mem_unit unit)
{
struct score_address_info ai;
gcc_assert (GET_CODE (ops[idata]) == REG);
gcc_assert (mda_classify_address (&ai, SImode, XEXP (ops[iaddr], 0), true));
if (!mda_pindex_mem (ops[iaddr])
&& ai.type == ADD_REG
&& GET_CODE (ai.offset) == CONST_INT
&& G16_REG_P (REGNO (ops[idata]))
&& G16_REG_P (REGNO (ai.reg)))
{
if (INTVAL (ai.offset) == 0)
{
ops[iaddr] = ai.reg;
return snprintf (ip, INS_BUF_SZ,
"! %%%d, [%%%d]", idata, iaddr);
}
if (REGNO (ai.reg) == HARD_FRAME_POINTER_REGNUM)
{
HOST_WIDE_INT offset = INTVAL (ai.offset);
if (MDA_ALIGN_UNIT (offset, unit)
&& CONST_OK_FOR_LETTER_P (offset >> unit, 'J'))
{
ops[iaddr] = ai.offset;
return snprintf (ip, INS_BUF_SZ,
"p! %%%d, %%c%d", idata, iaddr);
}
}
}
return snprintf (ip, INS_BUF_SZ, " %%%d, %%a%d", idata, iaddr);
}
/* Output asm insn for load. */
const char *
mdp_linsn (rtx *ops, enum mda_mem_unit unit, bool sign)
{
const char *pre_ins[] =
{"lbu", "lhu", "lw", "??", "lb", "lh", "lw", "??"};
char *ip;
strcpy (ins, pre_ins[(sign ? 4 : 0) + unit]);
ip = ins + strlen (ins);
if ((!sign && unit != MDA_HWORD)
|| (sign && unit != MDA_BYTE))
pr_addr_post (ops, 0, 1, ip, unit);
else
snprintf (ip, INS_BUF_SZ, " %%0, %%a1");
return ins;
}
/* Output asm insn for store. */
const char *
mdp_sinsn (rtx *ops, enum mda_mem_unit unit)
{
const char *pre_ins[] = {"sb", "sh", "sw"};
char *ip;
strcpy (ins, pre_ins[unit]);
ip = ins + strlen (ins);
pr_addr_post (ops, 1, 0, ip, unit);
return ins;
}
/* Output asm insn for load immediate. */
const char *
mdp_limm (rtx *ops)
{
HOST_WIDE_INT v;
gcc_assert (GET_CODE (ops[0]) == REG);
gcc_assert (GET_CODE (ops[1]) == CONST_INT);
v = INTVAL (ops[1]);
if (G16_REG_P (REGNO (ops[0])) && IMM_IN_RANGE (v, 8, 0))
return "ldiu! %0, %c1";
else if (IMM_IN_RANGE (v, 16, 1))
return "ldi %0, %c1";
else if ((v & 0xffff) == 0)
return "ldis %0, %U1";
else
return "li %0, %c1";
}
/* Output asm insn for move. */
const char *
mdp_move (rtx *ops)
{
gcc_assert (GET_CODE (ops[0]) == REG);
gcc_assert (GET_CODE (ops[1]) == REG);
if (G16_REG_P (REGNO (ops[0])))
{
if (G16_REG_P (REGNO (ops[1])))
return "mv! %0, %1";
else
return "mlfh! %0, %1";
}
else if (G16_REG_P (REGNO (ops[1])))
return "mhfl! %0, %1";
else
return "mv %0, %1";
}
/* Emit lcb/lce insns. */
bool
mdx_unaligned_load (rtx *ops)
{
rtx dst = ops[0];
rtx src = ops[1];
rtx len = ops[2];
rtx off = ops[3];
rtx addr_reg;
if (INTVAL (len) != BITS_PER_WORD
|| (INTVAL (off) % BITS_PER_UNIT) != 0)
return false;
gcc_assert (GET_MODE_SIZE (GET_MODE (dst)) == GET_MODE_SIZE (SImode));
addr_reg = copy_addr_to_reg (XEXP (src, 0));
emit_insn (gen_move_lcb (addr_reg, addr_reg));
emit_insn (gen_move_lce (addr_reg, addr_reg, dst));
return true;
}
/* Emit scb/sce insns. */
bool
mdx_unaligned_store (rtx *ops)
{
rtx dst = ops[0];
rtx len = ops[1];
rtx off = ops[2];
rtx src = ops[3];
rtx addr_reg;
if (INTVAL(len) != BITS_PER_WORD
|| (INTVAL(off) % BITS_PER_UNIT) != 0)
return false;
gcc_assert (GET_MODE_SIZE (GET_MODE (src)) == GET_MODE_SIZE (SImode));
addr_reg = copy_addr_to_reg (XEXP (dst, 0));
emit_insn (gen_move_scb (addr_reg, addr_reg, src));
emit_insn (gen_move_sce (addr_reg, addr_reg));
return true;
}
/* If length is short, generate move insns straight. */
static void
mdx_block_move_straight (rtx dst, rtx src, HOST_WIDE_INT length)
{
HOST_WIDE_INT leftover;
int i, reg_count;
rtx *regs;
leftover = length % UNITS_PER_WORD;
length -= leftover;
reg_count = length / UNITS_PER_WORD;
regs = alloca (sizeof (rtx) * reg_count);
for (i = 0; i < reg_count; i++)
regs[i] = gen_reg_rtx (SImode);
/* Load from src to regs. */
if (MEM_ALIGN (src) >= BITS_PER_WORD)
{
HOST_WIDE_INT offset = 0;
for (i = 0; i < reg_count; offset += UNITS_PER_WORD, i++)
emit_move_insn (regs[i], adjust_address (src, SImode, offset));
}
else if (reg_count >= 1)
{
rtx src_reg = copy_addr_to_reg (XEXP (src, 0));
emit_insn (gen_move_lcb (src_reg, src_reg));
for (i = 0; i < (reg_count - 1); i++)
emit_insn (gen_move_lcw (src_reg, src_reg, regs[i]));
emit_insn (gen_move_lce (src_reg, src_reg, regs[i]));
}
/* Store regs to dest. */
if (MEM_ALIGN (dst) >= BITS_PER_WORD)
{
HOST_WIDE_INT offset = 0;
for (i = 0; i < reg_count; offset += UNITS_PER_WORD, i++)
emit_move_insn (adjust_address (dst, SImode, offset), regs[i]);
}
else if (reg_count >= 1)
{
rtx dst_reg = copy_addr_to_reg (XEXP (dst, 0));
emit_insn (gen_move_scb (dst_reg, dst_reg, regs[0]));
for (i = 1; i < reg_count; i++)
emit_insn (gen_move_scw (dst_reg, dst_reg, regs[i]));
emit_insn (gen_move_sce (dst_reg, dst_reg));
}
/* Mop up any left-over bytes. */
if (leftover > 0)
{
src = adjust_address (src, BLKmode, length);
dst = adjust_address (dst, BLKmode, length);
move_by_pieces (dst, src, leftover,
MIN (MEM_ALIGN (src), MEM_ALIGN (dst)), 0);
}
}
/* Generate loop head when dst or src is unaligned. */
static void
mdx_block_move_loop_head (rtx dst_reg, HOST_WIDE_INT dst_align,
rtx src_reg, HOST_WIDE_INT src_align,
HOST_WIDE_INT length)
{
bool src_unaligned = (src_align < BITS_PER_WORD);
bool dst_unaligned = (dst_align < BITS_PER_WORD);
rtx temp = gen_reg_rtx (SImode);
gcc_assert (length == UNITS_PER_WORD);
if (src_unaligned)
{
emit_insn (gen_move_lcb (src_reg, src_reg));
emit_insn (gen_move_lcw (src_reg, src_reg, temp));
}
else
emit_insn (gen_move_lw_a (src_reg,
src_reg, gen_int_mode (4, SImode), temp));
if (dst_unaligned)
emit_insn (gen_move_scb (dst_reg, dst_reg, temp));
else
emit_insn (gen_move_sw_a (dst_reg,
dst_reg, gen_int_mode (4, SImode), temp));
}
/* Generate loop body, copy length bytes per iteration. */
static void
mdx_block_move_loop_body (rtx dst_reg, HOST_WIDE_INT dst_align,
rtx src_reg, HOST_WIDE_INT src_align,
HOST_WIDE_INT length)
{
int reg_count = length / UNITS_PER_WORD;
rtx *regs = alloca (sizeof (rtx) * reg_count);
int i;
bool src_unaligned = (src_align < BITS_PER_WORD);
bool dst_unaligned = (dst_align < BITS_PER_WORD);
for (i = 0; i < reg_count; i++)
regs[i] = gen_reg_rtx (SImode);
if (src_unaligned)
{
for (i = 0; i < reg_count; i++)
emit_insn (gen_move_lcw (src_reg, src_reg, regs[i]));
}
else
{
for (i = 0; i < reg_count; i++)
emit_insn (gen_move_lw_a (src_reg,
src_reg, gen_int_mode (4, SImode), regs[i]));
}
if (dst_unaligned)
{
for (i = 0; i < reg_count; i++)
emit_insn (gen_move_scw (dst_reg, dst_reg, regs[i]));
}
else
{
for (i = 0; i < reg_count; i++)
emit_insn (gen_move_sw_a (dst_reg,
dst_reg, gen_int_mode (4, SImode), regs[i]));
}
}
/* Generate loop foot, copy the leftover bytes. */
static void
mdx_block_move_loop_foot (rtx dst_reg, HOST_WIDE_INT dst_align,
rtx src_reg, HOST_WIDE_INT src_align,
HOST_WIDE_INT length)
{
bool src_unaligned = (src_align < BITS_PER_WORD);
bool dst_unaligned = (dst_align < BITS_PER_WORD);
HOST_WIDE_INT leftover;
leftover = length % UNITS_PER_WORD;
length -= leftover;
if (length > 0)
mdx_block_move_loop_body (dst_reg, dst_align,
src_reg, src_align, length);
if (dst_unaligned)
emit_insn (gen_move_sce (dst_reg, dst_reg));
if (leftover > 0)
{
HOST_WIDE_INT src_adj = src_unaligned ? -4 : 0;
HOST_WIDE_INT dst_adj = dst_unaligned ? -4 : 0;
rtx temp;
gcc_assert (leftover < UNITS_PER_WORD);
if (leftover >= UNITS_PER_WORD / 2
&& src_align >= BITS_PER_WORD / 2
&& dst_align >= BITS_PER_WORD / 2)
{
temp = gen_reg_rtx (HImode);
emit_insn (gen_move_lhu_b (src_reg, src_reg,
gen_int_mode (src_adj, SImode), temp));
emit_insn (gen_move_sh_b (dst_reg, dst_reg,
gen_int_mode (dst_adj, SImode), temp));
leftover -= UNITS_PER_WORD / 2;
src_adj = UNITS_PER_WORD / 2;
dst_adj = UNITS_PER_WORD / 2;
}
while (leftover > 0)
{
temp = gen_reg_rtx (QImode);
emit_insn (gen_move_lbu_b (src_reg, src_reg,
gen_int_mode (src_adj, SImode), temp));
emit_insn (gen_move_sb_b (dst_reg, dst_reg,
gen_int_mode (dst_adj, SImode), temp));
leftover--;
src_adj = 1;
dst_adj = 1;
}
}
}
#define MIN_MOVE_REGS 3
#define MIN_MOVE_BYTES (MIN_MOVE_REGS * UNITS_PER_WORD)
#define MAX_MOVE_REGS 4
#define MAX_MOVE_BYTES (MAX_MOVE_REGS * UNITS_PER_WORD)
/* The length is large, generate a loop if necessary.
The loop is consisted by loop head/body/foot. */
static void
mdx_block_move_loop (rtx dst, rtx src, HOST_WIDE_INT length)
{
HOST_WIDE_INT src_align = MEM_ALIGN (src);
HOST_WIDE_INT dst_align = MEM_ALIGN (dst);
HOST_WIDE_INT loop_mov_bytes;
HOST_WIDE_INT iteration = 0;
HOST_WIDE_INT head_length = 0, leftover;
rtx label, src_reg, dst_reg, final_dst;
bool gen_loop_head = (src_align < BITS_PER_WORD
|| dst_align < BITS_PER_WORD);
if (gen_loop_head)
head_length += UNITS_PER_WORD;
for (loop_mov_bytes = MAX_MOVE_BYTES;
loop_mov_bytes >= MIN_MOVE_BYTES;
loop_mov_bytes -= UNITS_PER_WORD)
{
iteration = (length - head_length) / loop_mov_bytes;
if (iteration > 1)
break;
}
if (iteration <= 1)
{
mdx_block_move_straight (dst, src, length);
return;
}
leftover = (length - head_length) % loop_mov_bytes;
length -= leftover;
src_reg = copy_addr_to_reg (XEXP (src, 0));
dst_reg = copy_addr_to_reg (XEXP (dst, 0));
final_dst = expand_simple_binop (Pmode, PLUS, dst_reg, GEN_INT (length),
0, 0, OPTAB_WIDEN);
if (gen_loop_head)
mdx_block_move_loop_head (dst_reg, dst_align,
src_reg, src_align, head_length);
label = gen_label_rtx ();
emit_label (label);
mdx_block_move_loop_body (dst_reg, dst_align,
src_reg, src_align, loop_mov_bytes);
emit_insn (gen_cmpsi (dst_reg, final_dst));
emit_jump_insn (gen_bne (label));
mdx_block_move_loop_foot (dst_reg, dst_align,
src_reg, src_align, leftover);
}
/* Generate block move, for misc.md: "movmemsi". */
bool
mdx_block_move (rtx *ops)
{
rtx dst = ops[0];
rtx src = ops[1];
rtx length = ops[2];
if (TARGET_LITTLE_ENDIAN
&& (MEM_ALIGN (src) < BITS_PER_WORD || MEM_ALIGN (dst) < BITS_PER_WORD)
&& INTVAL (length) >= UNITS_PER_WORD)
return false;
if (GET_CODE (length) == CONST_INT)
{
if (INTVAL (length) <= 2 * MAX_MOVE_BYTES)
{
mdx_block_move_straight (dst, src, INTVAL (length));
return true;
}
else if (optimize &&
!(flag_unroll_loops || flag_unroll_all_loops))
{
mdx_block_move_loop (dst, src, INTVAL (length));
return true;
}
}
return false;
}
/* Generate add insn. */
const char *
mdp_select_add_imm (rtx *ops, bool set_cc)
{
HOST_WIDE_INT v = INTVAL (ops[2]);
gcc_assert (GET_CODE (ops[2]) == CONST_INT);
gcc_assert (REGNO (ops[0]) == REGNO (ops[1]));
if (set_cc && G16_REG_P (REGNO (ops[0])))
{
if (v > 0 && IMM_IS_POW_OF_2 ((unsigned HOST_WIDE_INT) v, 0, 15))
{
ops[2] = GEN_INT (ffs (v) - 1);
return "addei! %0, %c2";
}
if (v < 0 && IMM_IS_POW_OF_2 ((unsigned HOST_WIDE_INT) (-v), 0, 15))
{
ops[2] = GEN_INT (ffs (-v) - 1);
return "subei! %0, %c2";
}
}
if (set_cc)
return "addi.c %0, %c2";
else
return "addi %0, %c2";
}
/* Output arith insn. */
const char *
mdp_select (rtx *ops, const char *inst_pre,
bool commu, const char *letter, bool set_cc)
{
gcc_assert (GET_CODE (ops[0]) == REG);
gcc_assert (GET_CODE (ops[1]) == REG);
if (set_cc && G16_REG_P (REGNO (ops[0]))
&& (GET_CODE (ops[2]) == REG ? G16_REG_P (REGNO (ops[2])) : 1)
&& REGNO (ops[0]) == REGNO (ops[1]))
{
snprintf (ins, INS_BUF_SZ, "%s! %%0, %%%s2", inst_pre, letter);
return ins;
}
if (commu && set_cc && G16_REG_P (REGNO (ops[0]))
&& G16_REG_P (REGNO (ops[1]))
&& REGNO (ops[0]) == REGNO (ops[2]))
{
gcc_assert (GET_CODE (ops[2]) == REG);
snprintf (ins, INS_BUF_SZ, "%s! %%0, %%%s1", inst_pre, letter);
return ins;
}
if (set_cc)
snprintf (ins, INS_BUF_SZ, "%s.c %%0, %%1, %%%s2", inst_pre, letter);
else
snprintf (ins, INS_BUF_SZ, "%s %%0, %%1, %%%s2", inst_pre, letter);
return ins;
}
/* score-mdaux.h for Sunplus S+CORE processor
Copyright (C) 2005, 2007 Free Software Foundation, Inc.
Contributed by Sunnorth
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef SCORE_MDAUX_0621
#define SCORE_MDAUX_0621
/* Machine Auxiliary Functions. */
enum score_address_type
{
ADD_REG,
ADD_CONST_INT,
ADD_SYMBOLIC
};
#ifdef RTX_CODE
struct score_address_info
{
enum score_address_type type;
rtx reg;
rtx offset;
enum rtx_code code;
enum score_symbol_type symbol_type;
};
#endif
struct score_frame_info
{
HOST_WIDE_INT total_size; /* bytes that the entire frame takes up */
HOST_WIDE_INT var_size; /* bytes that variables take up */
HOST_WIDE_INT args_size; /* bytes that outgoing arguments take up */
HOST_WIDE_INT gp_reg_size; /* bytes needed to store gp regs */
HOST_WIDE_INT gp_sp_offset; /* offset from new sp to store gp registers */
HOST_WIDE_INT cprestore_size; /* # bytes that the .cprestore slot takes up */
unsigned int mask; /* mask of saved gp registers */
int num_gp; /* number of gp registers saved */
};
typedef void (*score_save_restore_fn) (rtx, rtx);
int mda_valid_base_register_p (rtx x, int strict);
#ifdef RTX_CODE
int mda_classify_address (struct score_address_info *info,
enum machine_mode mode, rtx x, int strict);
struct score_frame_info *mda_compute_frame_size (HOST_WIDE_INT size);
struct score_frame_info *mda_cached_frame (void);
void mda_gen_cmp (enum machine_mode mode);
#endif
int mda_symbolic_constant_p (rtx x, enum score_symbol_type *symbol_type);
int mda_bp (void);
/* Machine Expand. */
void mdx_prologue (void);
void mdx_epilogue (int sibcall_p);
void mdx_movsicc (rtx *ops);
void mdx_call (rtx *ops, bool sibcall);
void mdx_call_value (rtx *ops, bool sibcall);
/* Machine Split. */
void mds_movdi (rtx *ops);
void mds_zero_extract_andi (rtx *ops);
/* Machine Print. */
enum mda_mem_unit {MDA_BYTE = 0, MDA_HWORD = 1, MDA_WORD = 2};
#define MDA_ALIGN_UNIT(V, UNIT) !(V & ((1 << UNIT) - 1))
const char * mdp_linsn (rtx *ops, enum mda_mem_unit unit, bool sign);
const char * mdp_sinsn (rtx *ops, enum mda_mem_unit unit);
const char * mdp_select_add_imm (rtx *ops, bool set_cc);
const char * mdp_select (rtx *ops, const char *inst_pre,
bool commu, const char *letter, bool set_cc);
const char * mdp_limm (rtx *ops);
const char * mdp_move (rtx *ops);
/* Machine unaligned memory load/store. */
bool mdx_unaligned_load (rtx* ops);
bool mdx_unaligned_store (rtx* ops);
bool mdx_block_move (rtx* ops);
#endif
......@@ -17,76 +17,80 @@
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef __SCORE_PROTOS_H__
#define __SCORE_PROTOS_H__
extern enum reg_class score_char_to_class[];
void score_override_options (void);
void score_init_expanders (void);
int score_hard_regno_mode_ok (unsigned int, enum machine_mode);
int score_reg_class (int regno);
enum reg_class score_preferred_reload_class (rtx x, enum reg_class class);
enum reg_class score_secondary_reload_class (enum reg_class class,
enum machine_mode mode, rtx x);
int score_const_ok_for_letter_p (HOST_WIDE_INT value, char c);
int score_extra_constraint (rtx op, char c);
rtx score_return_addr (int count, rtx frame);
HOST_WIDE_INT score_initial_elimination_offset (int from, int to);
rtx score_function_arg (const CUMULATIVE_ARGS *cum, enum machine_mode mode,
tree type, int named);
int score_arg_partial_nregs (const CUMULATIVE_ARGS *cum,
enum machine_mode mode, tree type, int named);
void score_init_cumulative_args (CUMULATIVE_ARGS *cum,
tree fntype, rtx libname);
void score_function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
#ifndef GCC_SCORE_PROTOS_H
#define GCC_SCORE_PROTOS_H
/* Machine Print. */
enum score_mem_unit {SCORE_BYTE = 0, SCORE_HWORD = 1, SCORE_WORD = 2};
#define SCORE_ALIGN_UNIT(V, UNIT) !(V & ((1 << UNIT) - 1))
extern void score_gen_cmp (enum machine_mode mode);
extern void score_prologue (void);
extern void score_epilogue (int sibcall_p);
extern void score_call (rtx *ops, bool sib);
extern void score_call_value (rtx *ops, bool sib);
extern void score_movdi (rtx *ops);
extern void score_zero_extract_andi (rtx *ops);
extern const char * score_linsn (rtx *ops, enum score_mem_unit unit, bool sign);
extern const char * score_sinsn (rtx *ops, enum score_mem_unit unit);
extern const char * score_limm (rtx *ops);
extern const char * score_move (rtx *ops);
extern bool score_unaligned_load (rtx* ops);
extern bool score_unaligned_store (rtx* ops);
extern bool score_block_move (rtx* ops);
extern int score_address_cost (rtx addr);
extern rtx score_function_arg (const CUMULATIVE_ARGS *cum,
enum machine_mode mode,
tree type, int named);
rtx score_function_value (const_tree valtype, const_tree func, enum machine_mode mode);
rtx score_va_arg (tree va_list, tree type);
void score_initialize_trampoline (rtx ADDR, rtx FUNC, rtx CHAIN);
int score_address_p (enum machine_mode mode, rtx x, int strict);
int score_legitimize_address (rtx *xloc);
int score_regno_mode_ok_for_base_p (int regno, int strict);
int score_register_move_cost (enum machine_mode mode, enum reg_class to,
extern int score_address_p (enum machine_mode mode, rtx x, int strict);
extern int score_reg_class (int regno);
extern int score_register_move_cost (enum machine_mode mode, enum reg_class to,
enum reg_class from);
void score_declare_object (FILE *stream, const char *name,
const char *directive, const char *fmt, ...)
ATTRIBUTE_PRINTF_4;
void score_declare_object_name (FILE *stream, const char *name, tree decl);
int score_output_external (FILE *file, tree decl, const char *name);
void score_print_operand (FILE *file, rtx op, int letter);
void score_print_operand_address (FILE *file, rtx addr);
extern int score_hard_regno_mode_ok (unsigned int, enum machine_mode);
extern int score_const_ok_for_letter_p (HOST_WIDE_INT value, char c);
extern int score_extra_constraint (rtx op, char c);
extern rtx score_return_addr (int count, rtx frame);
extern void score_initialize_trampoline (rtx ADDR, rtx FUNC, rtx CHAIN);
extern int score_regno_mode_ok_for_base_p (int regno, int strict);
extern void score_function_arg_advance (CUMULATIVE_ARGS *cum,
enum machine_mode mode,
tree type, int named);
extern void score_init_cumulative_args (CUMULATIVE_ARGS *cum,
tree fntype, rtx libname);
extern void score_declare_object (FILE *stream, const char *name,
const char *directive, const char *fmt, ...);
extern int score_output_external (FILE *file, tree decl, const char *name);
extern void score_override_options (void);
extern enum reg_class score_secondary_reload_class (enum reg_class class,
enum machine_mode mode,
rtx x);
extern rtx score_function_value (tree valtype, tree func,
enum machine_mode mode);
extern enum reg_class score_preferred_reload_class (rtx x,
enum reg_class class);
extern HOST_WIDE_INT score_initial_elimination_offset (int from, int to);
extern void score_print_operand (FILE *file, rtx op, int letter);
extern void score_print_operand_address (FILE *file, rtx addr);
extern int score_legitimize_address (rtx *xloc);
extern int score_arg_partial_bytes (CUMULATIVE_ARGS *cum,
enum machine_mode mode,
tree type, bool named);
extern int score_symbolic_constant_p (rtx x,
enum score_symbol_type *symbol_type);
extern void score_movsicc (rtx *ops);
extern const char * score_select_add_imm (rtx *ops, bool set_cc);
extern const char * score_select (rtx *ops, const char *inst_pre, bool commu,
const char *letter, bool set_cc);
extern const char * score_output_casesi (rtx *operands);
extern const char * score_rpush (rtx *ops);
extern const char * score_rpop (rtx *ops);
extern bool score_rtx_costs (rtx x, int code, int outer_code, int *total);
#ifdef RTX_CODE
enum machine_mode score_select_cc_mode (enum rtx_code op, rtx x, rtx y);
extern enum machine_mode score_select_cc_mode (enum rtx_code op, rtx x, rtx y);
#endif
#include "score-mdaux.h"
#endif /* __SCORE_PROTOS_H__ */
extern struct extern_list *extern_head;
#endif /* GCC_SCORE_PROTOS_H */
/* score-version.h for Sunplus S+CORE processor
Copyright (C) 2005, 2007 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#define SCORE_GCC_VERSION "1.2"
......@@ -22,7 +22,6 @@
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include <signal.h>
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
......@@ -48,69 +47,52 @@
#include "target-def.h"
#include "integrate.h"
#include "langhooks.h"
#include "cfglayout.h"
#include "score-mdaux.h"
#define GR_REG_CLASS_P(C) ((C) == G16_REGS || (C) == G32_REGS)
#define SP_REG_CLASS_P(C) \
((C) == CN_REG || (C) == LC_REG || (C) == SC_REG || (C) == SP_REGS)
#define CP_REG_CLASS_P(C) \
((C) == CP1_REGS || (C) == CP2_REGS || (C) == CP3_REGS || (C) == CPA_REGS)
#define CE_REG_CLASS_P(C) \
((C) == HI_REG || (C) == LO_REG || (C) == CE_REGS)
static int score_arg_partial_bytes (CUMULATIVE_ARGS *,
enum machine_mode, tree, bool);
static int score_symbol_insns (enum score_symbol_type);
static int score_address_insns (rtx, enum machine_mode);
static bool score_rtx_costs (rtx, enum rtx_code, enum rtx_code, int *);
static int score_address_cost (rtx);
#include "score7.h"
#include "score3.h"
#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START th_asm_file_start
#define TARGET_ASM_FILE_START score_asm_file_start
#undef TARGET_ASM_FILE_END
#define TARGET_ASM_FILE_END th_asm_file_end
#define TARGET_ASM_FILE_END score_asm_file_end
#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE th_function_prologue
#define TARGET_ASM_FUNCTION_PROLOGUE score_function_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE th_function_epilogue
#define TARGET_ASM_FUNCTION_EPILOGUE score_function_epilogue
#undef TARGET_DEFAULT_TARGET_FLAGS
#define TARGET_DEFAULT_TARGET_FLAGS TARGET_DEFAULT
#undef TARGET_HANDLE_OPTION
#define TARGET_HANDLE_OPTION score_handle_option
#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE th_issue_rate
#define TARGET_SCHED_ISSUE_RATE score_issue_rate
#undef TARGET_ASM_SELECT_RTX_SECTION
#define TARGET_ASM_SELECT_RTX_SECTION th_select_rtx_section
#define TARGET_ASM_SELECT_RTX_SECTION score_select_rtx_section
#undef TARGET_IN_SMALL_DATA_P
#define TARGET_IN_SMALL_DATA_P th_in_small_data_p
#define TARGET_IN_SMALL_DATA_P score_in_small_data_p
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL th_function_ok_for_sibcall
#define TARGET_FUNCTION_OK_FOR_SIBCALL score_function_ok_for_sibcall
#undef TARGET_STRICT_ARGUMENT_NAMING
#define TARGET_STRICT_ARGUMENT_NAMING th_strict_argument_naming
#define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK th_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
#define TARGET_ASM_OUTPUT_MI_THUNK score_output_mi_thunk
#undef TARGET_PROMOTE_FUNCTION_ARGS
#define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_const_tree_true
#define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true
#undef TARGET_PROMOTE_FUNCTION_RETURN
#define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_const_tree_true
#define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
......@@ -130,332 +112,146 @@ static int score_address_cost (rtx);
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST score_address_cost
#undef TARGET_DEFAULT_TARGET_FLAGS
#define TARGET_DEFAULT_TARGET_FLAGS TARGET_DEFAULT
struct extern_list *extern_head = 0;
rtx cmp_op0, cmp_op1;
/* default 0 = NO_REGS */
enum reg_class score_char_to_class[256];
/* Implement TARGET_RETURN_IN_MEMORY. In S+core,
small structures are returned in a register.
Objects with varying size must still be returned in memory. */
static bool
score_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED)
score_return_in_memory (tree type, tree fndecl ATTRIBUTE_UNUSED)
{
return ((TYPE_MODE (type) == BLKmode)
|| (int_size_in_bytes (type) > 2 * UNITS_PER_WORD)
|| (int_size_in_bytes (type) == -1));
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_return_in_memory (type, fndecl);
else if (TARGET_SCORE3)
return score3_return_in_memory (type, fndecl);
gcc_unreachable ();
}
/* Return nonzero when an argument must be passed by reference. */
static bool
score_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
enum machine_mode mode, const_tree type,
enum machine_mode mode, tree type,
bool named ATTRIBUTE_UNUSED)
{
/* If we have a variable-sized parameter, we have no choice. */
return targetm.calls.must_pass_in_stack (mode, type);
}
/* Return a legitimate address for REG + OFFSET. */
static rtx
score_add_offset (rtx temp ATTRIBUTE_UNUSED, rtx reg, HOST_WIDE_INT offset)
{
if (!IMM_IN_RANGE (offset, 15, 1))
{
reg = expand_simple_binop (GET_MODE (reg), PLUS,
gen_int_mode (offset & 0xffffc000,
GET_MODE (reg)),
reg, NULL, 0, OPTAB_WIDEN);
offset &= 0x3fff;
}
return plus_constant (reg, offset);
}
/* Implement TARGET_ASM_OUTPUT_MI_THUNK. Generate rtl rather than asm text
in order to avoid duplicating too much logic from elsewhere. */
static void
th_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
score_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
tree function)
{
rtx this, temp1, temp2, insn, fnaddr;
/* Pretend to be a post-reload pass while generating rtl. */
reload_completed = 1;
/* Mark the end of the (empty) prologue. */
emit_note (NOTE_INSN_PROLOGUE_END);
/* We need two temporary registers in some cases. */
temp1 = gen_rtx_REG (Pmode, 8);
temp2 = gen_rtx_REG (Pmode, 9);
/* Find out which register contains the "this" pointer. */
if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
this = gen_rtx_REG (Pmode, ARG_REG_FIRST + 1);
else
this = gen_rtx_REG (Pmode, ARG_REG_FIRST);
/* Add DELTA to THIS. */
if (delta != 0)
{
rtx offset = GEN_INT (delta);
if (!CONST_OK_FOR_LETTER_P (delta, 'L'))
{
emit_move_insn (temp1, offset);
offset = temp1;
}
emit_insn (gen_add3_insn (this, this, offset));
}
/* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
if (vcall_offset != 0)
{
rtx addr;
/* Set TEMP1 to *THIS. */
emit_move_insn (temp1, gen_rtx_MEM (Pmode, this));
/* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET. */
addr = score_add_offset (temp2, temp1, vcall_offset);
/* Load the offset and add it to THIS. */
emit_move_insn (temp1, gen_rtx_MEM (Pmode, addr));
emit_insn (gen_add3_insn (this, this, temp1));
}
/* Jump to the target function. */
fnaddr = XEXP (DECL_RTL (function), 0);
insn = emit_call_insn (gen_sibcall_internal (fnaddr, const0_rtx));
SIBLING_CALL_P (insn) = 1;
/* Run just enough of rest_of_compilation. This sequence was
"borrowed" from alpha.c. */
insn = get_insns ();
insn_locators_alloc ();
split_all_insns_noflow ();
shorten_branches (insn);
final_start_function (insn, file, 1);
final (insn, file, 1);
final_end_function ();
/* Clean up the vars set above. Note that final_end_function resets
the global pointer for us. */
reload_completed = 0;
}
/* Implement TARGET_STRICT_ARGUMENT_NAMING. */
static bool
th_strict_argument_naming (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED)
{
return true;
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_output_mi_thunk (file, thunk_fndecl, delta,
vcall_offset, function);
else if (TARGET_SCORE3)
return score3_output_mi_thunk (file, thunk_fndecl, delta,
vcall_offset, function);
gcc_unreachable ();
}
/* Implement TARGET_FUNCTION_OK_FOR_SIBCALL. */
static bool
th_function_ok_for_sibcall (ATTRIBUTE_UNUSED tree decl,
score_function_ok_for_sibcall (ATTRIBUTE_UNUSED tree decl,
ATTRIBUTE_UNUSED tree exp)
{
return true;
}
struct score_arg_info
{
/* The argument's size, in bytes. */
unsigned int num_bytes;
/* The number of words passed in registers, rounded up. */
unsigned int reg_words;
/* The offset of the first register from GP_ARG_FIRST or FP_ARG_FIRST,
or ARG_REG_NUM if the argument is passed entirely on the stack. */
unsigned int reg_offset;
/* The number of words that must be passed on the stack, rounded up. */
unsigned int stack_words;
/* The offset from the start of the stack overflow area of the argument's
first stack word. Only meaningful when STACK_WORDS is nonzero. */
unsigned int stack_offset;
};
/* Fill INFO with information about a single argument. CUM is the
cumulative state for earlier arguments. MODE is the mode of this
argument and TYPE is its type (if known). NAMED is true if this
is a named (fixed) argument rather than a variable one. */
static void
classify_arg (const CUMULATIVE_ARGS *cum, enum machine_mode mode,
tree type, int named, struct score_arg_info *info)
{
int even_reg_p;
unsigned int num_words, max_regs;
even_reg_p = 0;
if (GET_MODE_CLASS (mode) == MODE_INT
|| GET_MODE_CLASS (mode) == MODE_FLOAT)
even_reg_p = (GET_MODE_SIZE (mode) > UNITS_PER_WORD);
else
if (type != NULL_TREE && TYPE_ALIGN (type) > BITS_PER_WORD && named)
even_reg_p = 1;
if (TARGET_MUST_PASS_IN_STACK (mode, type))
info->reg_offset = ARG_REG_NUM;
else
{
info->reg_offset = cum->num_gprs;
if (even_reg_p)
info->reg_offset += info->reg_offset & 1;
}
if (mode == BLKmode)
info->num_bytes = int_size_in_bytes (type);
else
info->num_bytes = GET_MODE_SIZE (mode);
num_words = (info->num_bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
max_regs = ARG_REG_NUM - info->reg_offset;
/* Partition the argument between registers and stack. */
info->reg_words = MIN (num_words, max_regs);
info->stack_words = num_words - info->reg_words;
/* The alignment applied to registers is also applied to stack arguments. */
if (info->stack_words)
{
info->stack_offset = cum->stack_words;
if (even_reg_p)
info->stack_offset += info->stack_offset & 1;
}
}
/* Set up the stack and frame (if desired) for the function. */
static void
th_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
score_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
const char *fnname;
struct score_frame_info *f = mda_cached_frame ();
HOST_WIDE_INT tsize = f->total_size;
fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
if (!flag_inhibit_size_directive)
{
fputs ("\t.ent\t", file);
assemble_name (file, fnname);
fputs ("\n", file);
}
assemble_name (file, fnname);
fputs (":\n", file);
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_function_prologue (file, size);
else if (TARGET_SCORE3)
return score3_function_prologue (file, size);
if (!flag_inhibit_size_directive)
{
fprintf (file,
"\t.frame\t%s," HOST_WIDE_INT_PRINT_DEC ",%s, %d\t\t"
"# vars= " HOST_WIDE_INT_PRINT_DEC ", regs= %d"
", args= " HOST_WIDE_INT_PRINT_DEC
", gp= " HOST_WIDE_INT_PRINT_DEC "\n",
(reg_names[(frame_pointer_needed)
? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM]),
tsize,
reg_names[RA_REGNUM],
current_function_is_leaf ? 1 : 0,
f->var_size,
f->num_gp,
f->args_size,
f->cprestore_size);
fprintf(file, "\t.mask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n",
f->mask,
(f->gp_sp_offset - f->total_size));
}
gcc_unreachable ();
}
/* Do any necessary cleanup after a function to restore stack, frame,
and regs. */
static void
th_function_epilogue (FILE *file,
score_function_epilogue (FILE *file,
HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
if (!flag_inhibit_size_directive)
{
const char *fnname;
fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
fputs ("\t.end\t", file);
assemble_name (file, fnname);
fputs ("\n", file);
}
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_function_epilogue (file, size);
else if (TARGET_SCORE3)
return score3_function_epilogue (file, size);
gcc_unreachable ();
}
/* Implement TARGET_SCHED_ISSUE_RATE. */
static int
th_issue_rate (void)
score_issue_rate (void)
{
return 1;
}
/* Returns true if X contains a SYMBOL_REF. */
static bool
symbolic_expression_p (rtx x)
{
if (GET_CODE (x) == SYMBOL_REF)
return true;
if (GET_CODE (x) == CONST)
return symbolic_expression_p (XEXP (x, 0));
if (UNARY_P (x))
return symbolic_expression_p (XEXP (x, 0));
if (ARITHMETIC_P (x))
return (symbolic_expression_p (XEXP (x, 0))
|| symbolic_expression_p (XEXP (x, 1)));
return false;
}
/* Choose the section to use for the constant rtx expression X that has
mode MODE. */
static section *
th_select_rtx_section (enum machine_mode mode, rtx x,
score_select_rtx_section (enum machine_mode mode, rtx x,
unsigned HOST_WIDE_INT align)
{
if (GET_MODE_SIZE (mode) <= SCORE_SDATA_MAX)
return get_named_section (0, ".sdata", 0);
else if (flag_pic && symbolic_expression_p (x))
return get_named_section (0, ".data.rel.ro", 3);
else
return mergeable_constant_section (mode, align, 0);
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_select_rtx_section (mode, x, align);
else if (TARGET_SCORE3)
return score3_select_rtx_section (mode, x, align);
gcc_unreachable ();
}
/* Implement TARGET_IN_SMALL_DATA_P. */
static bool
th_in_small_data_p (const_tree decl)
score_in_small_data_p (tree decl)
{
HOST_WIDE_INT size;
if (TREE_CODE (decl) == STRING_CST
|| TREE_CODE (decl) == FUNCTION_DECL)
return false;
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_in_small_data_p (decl);
else if (TARGET_SCORE3)
return score3_in_small_data_p (decl);
if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl) != 0)
{
const char *name;
name = TREE_STRING_POINTER (DECL_SECTION_NAME (decl));
if (strcmp (name, ".sdata") != 0
&& strcmp (name, ".sbss") != 0)
return true;
if (!DECL_EXTERNAL (decl))
return false;
}
size = int_size_in_bytes (TREE_TYPE (decl));
return (size > 0 && size <= SCORE_SDATA_MAX);
gcc_unreachable ();
}
/* Implement TARGET_ASM_FILE_START. */
static void
th_asm_file_start (void)
score_asm_file_start (void)
{
if (TARGET_SCORE5)
fprintf (asm_out_file, "# Sunplus S+core5 %s rev=%s\n",
TARGET_LITTLE_ENDIAN ? "el" : "eb", SCORE_GCC_VERSION);
else if (TARGET_SCORE5U)
fprintf (asm_out_file, "# Sunplus S+core5u %s rev=%s\n",
TARGET_LITTLE_ENDIAN ? "el" : "eb", SCORE_GCC_VERSION);
else if (TARGET_SCORE7D)
fprintf (asm_out_file, "# Sunplus S+core7d %s rev=%s\n",
TARGET_LITTLE_ENDIAN ? "el" : "eb", SCORE_GCC_VERSION);
else if (TARGET_SCORE7)
fprintf (asm_out_file, "# Sunplus S+core7 %s rev=%s\n",
TARGET_LITTLE_ENDIAN ? "el" : "eb", SCORE_GCC_VERSION);
else if (TARGET_SCORE3D)
fprintf (asm_out_file, "# Sunplus S+core3d %s rev=%s\n",
TARGET_LITTLE_ENDIAN ? "el" : "eb", SCORE_GCC_VERSION);
else if (TARGET_SCORE3)
fprintf (asm_out_file, "# Sunplus S+core3 %s rev=%s\n",
TARGET_LITTLE_ENDIAN ? "el" : "eb", SCORE_GCC_VERSION);
else
fprintf (asm_out_file, "# Sunplus S+core unknown %s rev=%s\n",
TARGET_LITTLE_ENDIAN ? "el" : "eb", SCORE_GCC_VERSION);
default_file_start ();
fprintf (asm_out_file, ASM_COMMENT_START
"GCC for S+core %s \n", SCORE_GCC_VERSION);
if (flag_pic)
fprintf (asm_out_file, "\t.set pic\n");
......@@ -463,104 +259,116 @@ th_asm_file_start (void)
/* Implement TARGET_ASM_FILE_END. When using assembler macros, emit
.externs for any small-data variables that turned out to be external. */
struct extern_list *extern_head = 0;
static void
th_asm_file_end (void)
score_asm_file_end (void)
{
tree name_tree;
struct extern_list *p;
if (extern_head)
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_asm_file_end ();
else if (TARGET_SCORE3)
return score3_asm_file_end ();
gcc_unreachable ();
}
#define MASK_ALL_CPU_BITS \
(MASK_SCORE5 | MASK_SCORE5U | MASK_SCORE7 | MASK_SCORE7D \
| MASK_SCORE3 | MASK_SCORE3D)
/* Implement TARGET_HANDLE_OPTION. */
static bool
score_handle_option (size_t code, const char *arg, int value ATTRIBUTE_UNUSED)
{
switch (code)
{
fputs ("\n", asm_out_file);
for (p = extern_head; p != 0; p = p->next)
case OPT_mscore7d:
target_flags &= ~(MASK_ALL_CPU_BITS);
target_flags |= MASK_SCORE7 | MASK_SCORE7D;
return true;
case OPT_mscore3d:
target_flags &= ~(MASK_ALL_CPU_BITS);
target_flags |= MASK_SCORE3 | MASK_SCORE3D;
return true;
case OPT_march_:
if (strcmp (arg, "score5") == 0)
{
name_tree = get_identifier (p->name);
if (!TREE_ASM_WRITTEN (name_tree)
&& TREE_SYMBOL_REFERENCED (name_tree))
target_flags &= ~(MASK_ALL_CPU_BITS);
target_flags |= MASK_SCORE5;
return true;
}
else if (strcmp (arg, "score5u") == 0)
{
target_flags &= ~(MASK_ALL_CPU_BITS);
target_flags |= MASK_SCORE5U;
return true;
}
else if (strcmp (arg, "score7") == 0)
{
TREE_ASM_WRITTEN (name_tree) = 1;
fputs ("\t.extern\t", asm_out_file);
assemble_name (asm_out_file, p->name);
fprintf (asm_out_file, ", %d\n", p->size);
target_flags &= ~(MASK_ALL_CPU_BITS);
target_flags |= MASK_SCORE7;
return true;
}
else if (strcmp (arg, "score7d") == 0)
{
target_flags &= ~(MASK_ALL_CPU_BITS);
target_flags |= MASK_SCORE7 | MASK_SCORE7D;
return true;
}
else if (strcmp (arg, "score3") == 0)
{
target_flags &= ~(MASK_ALL_CPU_BITS);
target_flags |= MASK_SCORE3;
return true;
}
}
static unsigned int sdata_max;
else if (strcmp (arg, "score3d") == 0)
{
target_flags &= ~(MASK_ALL_CPU_BITS);
target_flags |= MASK_SCORE3 | MASK_SCORE3D;
return true;
}
else
return false;
int
score_sdata_max (void)
{
return sdata_max;
default:
return true;
}
}
/* default 0 = NO_REGS */
enum reg_class score_char_to_class[256];
/* Implement OVERRIDE_OPTIONS macro. */
void
score_override_options (void)
{
flag_pic = false;
if (!flag_pic)
sdata_max = g_switch_set ? g_switch_value : DEFAULT_SDATA_MAX;
else
{
sdata_max = 0;
if (g_switch_set && (g_switch_value != 0))
warning (0, "-fPIC and -G are incompatible");
}
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_override_options ();
else if (TARGET_SCORE3)
return score3_override_options ();
score_char_to_class['d'] = G32_REGS;
score_char_to_class['e'] = G16_REGS;
score_char_to_class['t'] = T32_REGS;
score_char_to_class['h'] = HI_REG;
score_char_to_class['l'] = LO_REG;
score_char_to_class['x'] = CE_REGS;
score_char_to_class['q'] = CN_REG;
score_char_to_class['y'] = LC_REG;
score_char_to_class['z'] = SC_REG;
score_char_to_class['a'] = SP_REGS;
score_char_to_class['c'] = CR_REGS;
score_char_to_class['b'] = CP1_REGS;
score_char_to_class['f'] = CP2_REGS;
score_char_to_class['i'] = CP3_REGS;
score_char_to_class['j'] = CPA_REGS;
return score7_override_options ();
}
/* Implement REGNO_REG_CLASS macro. */
int
score_reg_class (int regno)
{
int c;
gcc_assert (regno >= 0 && regno < FIRST_PSEUDO_REGISTER);
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_reg_class (regno);
else if (TARGET_SCORE3)
return score3_reg_class (regno);
if (regno == FRAME_POINTER_REGNUM
|| regno == ARG_POINTER_REGNUM)
return ALL_REGS;
for (c = 0; c < N_REG_CLASSES; c++)
if (TEST_HARD_REG_BIT (reg_class_contents[c], regno))
return c;
return NO_REGS;
gcc_unreachable ();
}
/* Implement PREFERRED_RELOAD_CLASS macro. */
enum reg_class
score_preferred_reload_class (rtx x ATTRIBUTE_UNUSED, enum reg_class class)
{
if (reg_class_subset_p (G16_REGS, class))
return G16_REGS;
if (reg_class_subset_p (G32_REGS, class))
return G32_REGS;
return class;
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_preferred_reload_class (x, class);
else if (TARGET_SCORE3)
return score3_preferred_reload_class (x, class);
gcc_unreachable ();
}
/* Implement SECONDARY_INPUT_RELOAD_CLASS
......@@ -570,50 +378,36 @@ score_secondary_reload_class (enum reg_class class,
enum machine_mode mode ATTRIBUTE_UNUSED,
rtx x)
{
int regno = -1;
if (GET_CODE (x) == REG || GET_CODE(x) == SUBREG)
regno = true_regnum (x);
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_secondary_reload_class (class, mode, x);
else if (TARGET_SCORE3)
return score3_secondary_reload_class (class, mode, x);
if (!GR_REG_CLASS_P (class))
return GP_REG_P (regno) ? NO_REGS : G32_REGS;
return NO_REGS;
gcc_unreachable ();
}
/* Implement CONST_OK_FOR_LETTER_P macro. */
/* imm constraints
I imm16 << 16
J uimm5
K uimm16
L simm16
M uimm14
N simm14 */
int
score_const_ok_for_letter_p (HOST_WIDE_INT value, char c)
{
switch (c)
{
case 'I': return ((value & 0xffff) == 0);
case 'J': return IMM_IN_RANGE (value, 5, 0);
case 'K': return IMM_IN_RANGE (value, 16, 0);
case 'L': return IMM_IN_RANGE (value, 16, 1);
case 'M': return IMM_IN_RANGE (value, 14, 0);
case 'N': return IMM_IN_RANGE (value, 14, 1);
default : return 0;
}
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_const_ok_for_letter_p (value, c);
else if (TARGET_SCORE3)
return score3_const_ok_for_letter_p (value, c);
gcc_unreachable ();
}
/* Implement EXTRA_CONSTRAINT macro. */
/* Z symbol_ref */
int
score_extra_constraint (rtx op, char c)
{
switch (c)
{
case 'Z':
return GET_CODE (op) == SYMBOL_REF;
default:
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_extra_constraint (op, c);
else if (TARGET_SCORE3)
return score3_extra_constraint (op, c);
gcc_unreachable ();
}
}
/* Return truth value on whether or not a given hard register
......@@ -621,23 +415,12 @@ score_extra_constraint (rtx op, char c)
int
score_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode)
{
int size = GET_MODE_SIZE (mode);
enum mode_class class = GET_MODE_CLASS (mode);
if (class == MODE_CC)
return regno == CC_REGNUM;
else if (regno == FRAME_POINTER_REGNUM
|| regno == ARG_POINTER_REGNUM)
return class == MODE_INT;
else if (GP_REG_P (regno))
/* ((regno <= (GP_REG_LAST- HARD_REGNO_NREGS (dummy, mode)) + 1) */
return !(regno & 1) || (size <= UNITS_PER_WORD);
else if (CE_REG_P (regno))
return (class == MODE_INT
&& ((size <= UNITS_PER_WORD)
|| (regno == CE_REG_FIRST && size == 2 * UNITS_PER_WORD)));
else
return (class == MODE_INT) && (size <= UNITS_PER_WORD);
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_hard_regno_mode_ok (regno, mode);
else if (TARGET_SCORE3)
return score3_hard_regno_mode_ok (regno, mode);
gcc_unreachable ();
}
/* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame
......@@ -647,16 +430,12 @@ HOST_WIDE_INT
score_initial_elimination_offset (int from,
int to ATTRIBUTE_UNUSED)
{
struct score_frame_info *f = mda_compute_frame_size (get_frame_size ());
switch (from)
{
case ARG_POINTER_REGNUM:
return f->total_size;
case FRAME_POINTER_REGNUM:
return 0;
default:
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_initial_elimination_offset (from, to);
else if (TARGET_SCORE3)
return score3_initial_elimination_offset (from, to);
gcc_unreachable ();
}
}
/* Argument support functions. */
......@@ -675,22 +454,25 @@ void
score_function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
tree type, int named)
{
struct score_arg_info info;
classify_arg (cum, mode, type, named, &info);
cum->num_gprs = info.reg_offset + info.reg_words;
if (info.stack_words > 0)
cum->stack_words = info.stack_offset + info.stack_words;
cum->arg_number++;
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_function_arg_advance (cum, mode, type, named);
else if (TARGET_SCORE3)
return score3_function_arg_advance (cum, mode, type, named);
gcc_unreachable ();
}
/* Implement TARGET_ARG_PARTIAL_BYTES macro. */
static int
int
score_arg_partial_bytes (CUMULATIVE_ARGS *cum,
enum machine_mode mode, tree type, bool named)
{
struct score_arg_info info;
classify_arg (cum, mode, type, named, &info);
return info.stack_words > 0 ? info.reg_words * UNITS_PER_WORD : 0;
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_arg_partial_bytes (cum, mode, type, named);
else if (TARGET_SCORE3)
return score3_arg_partial_bytes (cum, mode, type, named);
gcc_unreachable ();
}
/* Implement FUNCTION_ARG macro. */
......@@ -698,120 +480,63 @@ rtx
score_function_arg (const CUMULATIVE_ARGS *cum, enum machine_mode mode,
tree type, int named)
{
struct score_arg_info info;
if (mode == VOIDmode || !named)
return 0;
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_function_arg (cum, mode, type, named);
else if (TARGET_SCORE3)
return score3_function_arg (cum, mode, type, named);
classify_arg (cum, mode, type, named, &info);
if (info.reg_offset == ARG_REG_NUM)
return 0;
if (!info.stack_words)
return gen_rtx_REG (mode, ARG_REG_FIRST + info.reg_offset);
else
{
rtx ret = gen_rtx_PARALLEL (mode, rtvec_alloc (info.reg_words));
unsigned int i, part_offset = 0;
for (i = 0; i < info.reg_words; i++)
{
rtx reg;
reg = gen_rtx_REG (SImode, ARG_REG_FIRST + info.reg_offset + i);
XVECEXP (ret, 0, i) = gen_rtx_EXPR_LIST (SImode, reg,
GEN_INT (part_offset));
part_offset += UNITS_PER_WORD;
}
return ret;
}
gcc_unreachable ();
}
/* Implement FUNCTION_VALUE and LIBCALL_VALUE. For normal calls,
VALTYPE is the return type and MODE is VOIDmode. For libcalls,
VALTYPE is null and MODE is the mode of the return value. */
rtx
score_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED,
score_function_value (tree valtype, tree func ATTRIBUTE_UNUSED,
enum machine_mode mode)
{
if (valtype)
{
int unsignedp;
mode = TYPE_MODE (valtype);
unsignedp = TYPE_UNSIGNED (valtype);
mode = promote_mode (valtype, mode, &unsignedp, 1);
}
return gen_rtx_REG (mode, RT_REGNUM);
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_function_value (valtype, func, mode);
else if (TARGET_SCORE3)
return score3_function_value (valtype, func, mode);
gcc_unreachable ();
}
/* Implement INITIALIZE_TRAMPOLINE macro. */
void
score_initialize_trampoline (rtx ADDR, rtx FUNC, rtx CHAIN)
{
#define FFCACHE "_flush_cache"
#define CODE_SIZE (TRAMPOLINE_INSNS * UNITS_PER_WORD)
rtx pfunc, pchain;
pfunc = plus_constant (ADDR, CODE_SIZE);
pchain = plus_constant (ADDR, CODE_SIZE + GET_MODE_SIZE (SImode));
emit_move_insn (gen_rtx_MEM (SImode, pfunc), FUNC);
emit_move_insn (gen_rtx_MEM (SImode, pchain), CHAIN);
emit_library_call (gen_rtx_SYMBOL_REF (Pmode, FFCACHE),
0, VOIDmode, 2,
ADDR, Pmode,
GEN_INT (TRAMPOLINE_SIZE), SImode);
#undef FFCACHE
#undef CODE_SIZE
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_initialize_trampoline (ADDR, FUNC, CHAIN);
else if (TARGET_SCORE3)
return score3_initialize_trampoline (ADDR, FUNC, CHAIN);
gcc_unreachable ();
}
/* This function is used to implement REG_MODE_OK_FOR_BASE_P macro. */
int
score_regno_mode_ok_for_base_p (int regno, int strict)
{
if (regno >= FIRST_PSEUDO_REGISTER)
{
if (!strict)
return 1;
regno = reg_renumber[regno];
}
if (regno == ARG_POINTER_REGNUM
|| regno == FRAME_POINTER_REGNUM)
return 1;
return GP_REG_P (regno);
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_regno_mode_ok_for_base_p (regno, strict);
else if (TARGET_SCORE3)
return score3_regno_mode_ok_for_base_p (regno, strict);
gcc_unreachable ();
}
/* Implement GO_IF_LEGITIMATE_ADDRESS macro. */
int
score_address_p (enum machine_mode mode, rtx x, int strict)
{
struct score_address_info addr;
return mda_classify_address (&addr, mode, x, strict);
}
/* Copy VALUE to a register and return that register. If new psuedos
are allowed, copy it into a new register, otherwise use DEST. */
static rtx
score_force_temporary (rtx dest, rtx value)
{
if (can_create_pseudo_p ())
return force_reg (Pmode, value);
else
{
emit_move_insn (copy_rtx (dest), value);
return dest;
}
}
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_address_p (mode, x, strict);
else if (TARGET_SCORE3)
return score3_address_p (mode, x, strict);
/* Return a LO_SUM expression for ADDR. TEMP is as for score_force_temporary
and is used to load the high part into a register. */
static rtx
score_split_symbol (rtx temp, rtx addr)
{
rtx high = score_force_temporary (temp,
gen_rtx_HIGH (Pmode, copy_rtx (addr)));
return gen_rtx_LO_SUM (Pmode, high, addr);
gcc_unreachable ();
}
/* This function is used to implement LEGITIMIZE_ADDRESS. If *XLOC can
......@@ -820,25 +545,12 @@ score_split_symbol (rtx temp, rtx addr)
int
score_legitimize_address (rtx *xloc)
{
enum score_symbol_type symbol_type;
if (mda_symbolic_constant_p (*xloc, &symbol_type)
&& symbol_type == SYMBOL_GENERAL)
{
*xloc = score_split_symbol (0, *xloc);
return 1;
}
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_legitimize_address (xloc);
else if (TARGET_SCORE3)
return score3_legitimize_address (xloc);
if (GET_CODE (*xloc) == PLUS
&& GET_CODE (XEXP (*xloc, 1)) == CONST_INT)
{
rtx reg = XEXP (*xloc, 0);
if (!mda_valid_base_register_p (reg, 0))
reg = copy_to_mode_reg (Pmode, reg);
*xloc = score_add_offset (NULL, reg, INTVAL (XEXP (*xloc, 1)));
return 1;
}
return 0;
gcc_unreachable ();
}
/* Return a number assessing the cost of moving a register in class
......@@ -847,503 +559,633 @@ int
score_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
enum reg_class from, enum reg_class to)
{
if (GR_REG_CLASS_P (from))
{
if (GR_REG_CLASS_P (to))
return 2;
else if (SP_REG_CLASS_P (to))
return 4;
else if (CP_REG_CLASS_P (to))
return 5;
else if (CE_REG_CLASS_P (to))
return 6;
}
if (GR_REG_CLASS_P (to))
{
if (GR_REG_CLASS_P (from))
return 2;
else if (SP_REG_CLASS_P (from))
return 4;
else if (CP_REG_CLASS_P (from))
return 5;
else if (CE_REG_CLASS_P (from))
return 6;
}
return 12;
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_register_move_cost (mode, from, to);
else if (TARGET_SCORE3)
return score3_register_move_cost (mode, from, to);
gcc_unreachable ();
}
/* Return the number of instructions needed to load a symbol of the
given type into a register. */
static int
score_symbol_insns (enum score_symbol_type type)
/* Implement TARGET_RTX_COSTS macro. */
bool
score_rtx_costs (rtx x, int code, int outer_code, int *total)
{
switch (type)
{
case SYMBOL_GENERAL:
return 2;
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_rtx_costs (x, code, outer_code, total);
else if (TARGET_SCORE3)
return score3_rtx_costs (x, code, outer_code, total);
case SYMBOL_SMALL_DATA:
return 1;
}
gcc_unreachable ();
}
/* Implement TARGET_ADDRESS_COST macro. */
int
score_address_cost (rtx addr)
{
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_address_cost (addr);
else if (TARGET_SCORE3)
return score3_address_cost (addr);
gcc_unreachable ();
}
/* Return the number of instructions needed to load or store a value
of mode MODE at X. Return 0 if X isn't valid for MODE. */
static int
score_address_insns (rtx x, enum machine_mode mode)
/* Implement ASM_OUTPUT_EXTERNAL macro. */
int
score_output_external (FILE *file ATTRIBUTE_UNUSED,
tree decl, const char *name)
{
struct score_address_info addr;
int factor;
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_output_external (file, decl, name);
else if (TARGET_SCORE3)
return score3_output_external (file, decl, name);
if (mode == BLKmode)
factor = 1;
else
factor = (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
gcc_unreachable ();
}
if (mda_classify_address (&addr, mode, x, false))
switch (addr.type)
{
case ADD_REG:
case ADD_CONST_INT:
return factor;
/* Implement RETURN_ADDR_RTX. Note, we do not support moving
back to a previous frame. */
rtx
score_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
{
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_return_addr (count, frame);
else if (TARGET_SCORE3)
return score3_return_addr (count, frame);
case ADD_SYMBOLIC:
return factor * score_symbol_insns (addr.symbol_type);
}
return 0;
gcc_unreachable ();
}
/* Implement TARGET_RTX_COSTS macro. */
static bool
score_rtx_costs (rtx x, enum rtx_code code, enum rtx_code outer_code,
int *total)
/* Implement PRINT_OPERAND macro. */
void
score_print_operand (FILE *file, rtx op, int c)
{
enum machine_mode mode = GET_MODE (x);
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_print_operand (file, op, c);
else if (TARGET_SCORE3)
return score3_print_operand (file, op, c);
switch (code)
{
case CONST_INT:
if (outer_code == SET)
{
if (CONST_OK_FOR_LETTER_P (INTVAL (x), 'I')
|| CONST_OK_FOR_LETTER_P (INTVAL (x), 'L'))
*total = COSTS_N_INSNS (1);
else
*total = COSTS_N_INSNS (2);
}
else if (outer_code == PLUS || outer_code == MINUS)
{
if (CONST_OK_FOR_LETTER_P (INTVAL (x), 'N'))
*total = 0;
else if (CONST_OK_FOR_LETTER_P (INTVAL (x), 'I')
|| CONST_OK_FOR_LETTER_P (INTVAL (x), 'L'))
*total = 1;
else
*total = COSTS_N_INSNS (2);
}
else if (outer_code == AND || outer_code == IOR)
{
if (CONST_OK_FOR_LETTER_P (INTVAL (x), 'M'))
*total = 0;
else if (CONST_OK_FOR_LETTER_P (INTVAL (x), 'I')
|| CONST_OK_FOR_LETTER_P (INTVAL (x), 'K'))
*total = 1;
else
*total = COSTS_N_INSNS (2);
}
else
{
*total = 0;
}
return true;
gcc_unreachable ();
}
case CONST:
case SYMBOL_REF:
case LABEL_REF:
case CONST_DOUBLE:
*total = COSTS_N_INSNS (2);
return true;
/* Implement PRINT_OPERAND_ADDRESS macro. */
void
score_print_operand_address (FILE *file, rtx x)
{
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_print_operand_address (file, x);
else if (TARGET_SCORE3)
return score3_print_operand_address (file, x);
case MEM:
{
/* If the address is legitimate, return the number of
instructions it needs, otherwise use the default handling. */
int n = score_address_insns (XEXP (x, 0), GET_MODE (x));
if (n > 0)
{
*total = COSTS_N_INSNS (n + 1);
return true;
}
return false;
}
gcc_unreachable ();
}
case FFS:
*total = COSTS_N_INSNS (6);
return true;
/* Implement SELECT_CC_MODE macro. */
enum machine_mode
score_select_cc_mode (enum rtx_code op, rtx x, rtx y)
{
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_select_cc_mode (op, x, y);
else if (TARGET_SCORE3)
return score3_select_cc_mode (op, x, y);
case NOT:
*total = COSTS_N_INSNS (1);
return true;
gcc_unreachable ();
}
case AND:
case IOR:
case XOR:
if (mode == DImode)
{
*total = COSTS_N_INSNS (2);
return true;
}
return false;
/* Return true if X is a symbolic constant that can be calculated in
the same way as a bare symbol. If it is, store the type of the
symbol in *SYMBOL_TYPE. */
int
score_symbolic_constant_p (rtx x, enum score_symbol_type *symbol_type)
{
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_symbolic_constant_p (x, symbol_type);
else if (TARGET_SCORE3)
return score3_symbolic_constant_p (x, symbol_type);
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
if (mode == DImode)
{
*total = COSTS_N_INSNS ((GET_CODE (XEXP (x, 1)) == CONST_INT)
? 4 : 12);
return true;
}
return false;
gcc_unreachable ();
}
case ABS:
*total = COSTS_N_INSNS (4);
return true;
/* Generate the prologue instructions for entry into a S+core function. */
void
score_prologue (void)
{
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_prologue ();
else if (TARGET_SCORE3)
return score3_prologue ();
case PLUS:
case MINUS:
if (mode == DImode)
{
*total = COSTS_N_INSNS (4);
return true;
}
*total = COSTS_N_INSNS (1);
return true;
gcc_unreachable ();
}
case NEG:
if (mode == DImode)
{
*total = COSTS_N_INSNS (4);
return true;
}
return false;
/* Generate the epilogue instructions in a S+core function. */
void
score_epilogue (int sibcall_p)
{
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_epilogue (sibcall_p);
else if (TARGET_SCORE3)
return score3_epilogue (sibcall_p);
case MULT:
*total = optimize_size ? COSTS_N_INSNS (2) : COSTS_N_INSNS (12);
return true;
gcc_unreachable ();
}
case DIV:
case MOD:
case UDIV:
case UMOD:
*total = optimize_size ? COSTS_N_INSNS (2) : COSTS_N_INSNS (33);
return true;
void
score_gen_cmp (enum machine_mode mode)
{
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_gen_cmp (mode);
else if (TARGET_SCORE3)
return score3_gen_cmp (mode);
case SIGN_EXTEND:
case ZERO_EXTEND:
switch (GET_MODE (XEXP (x, 0)))
{
case QImode:
case HImode:
if (GET_CODE (XEXP (x, 0)) == MEM)
{
*total = COSTS_N_INSNS (2);
gcc_unreachable ();
}
if (!TARGET_LITTLE_ENDIAN &&
side_effects_p (XEXP (XEXP (x, 0), 0)))
*total = 100;
}
else
*total = COSTS_N_INSNS (1);
break;
/* Call and sibcall pattern all need call this function. */
void
score_call (rtx *ops, bool sib)
{
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_call (ops, sib);
else if (TARGET_SCORE3)
return score3_call (ops, sib);
default:
*total = COSTS_N_INSNS (1);
break;
}
return true;
gcc_unreachable ();
}
default:
return false;
}
/* Call value and sibcall value pattern all need call this function. */
void
score_call_value (rtx *ops, bool sib)
{
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_call_value (ops, sib);
else if (TARGET_SCORE3)
return score3_call_value (ops, sib);
gcc_unreachable ();
}
/* Implement TARGET_ADDRESS_COST macro. */
int
score_address_cost (rtx addr)
void
score_movsicc (rtx *ops)
{
return score_address_insns (addr, SImode);
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_movsicc (ops);
else if (TARGET_SCORE3)
return score3_movsicc (ops);
gcc_unreachable ();
}
/* Implement ASM_OUTPUT_EXTERNAL macro. */
int
score_output_external (FILE *file ATTRIBUTE_UNUSED,
tree decl, const char *name)
/* Machine Split */
void
score_movdi (rtx *ops)
{
register struct extern_list *p;
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_movdi (ops);
else if (TARGET_SCORE3)
return score3_movdi (ops);
if (th_in_small_data_p (decl))
{
p = (struct extern_list *) ggc_alloc (sizeof (struct extern_list));
p->next = extern_head;
p->name = name;
p->size = int_size_in_bytes (TREE_TYPE (decl));
extern_head = p;
}
return 0;
gcc_unreachable ();
}
/* Output format asm string. */
void
score_declare_object (FILE *stream, const char *name,
const char *directive, const char *fmt, ...)
score_zero_extract_andi (rtx *ops)
{
va_list ap;
fputs (directive, stream);
assemble_name (stream, name);
va_start (ap, fmt);
vfprintf (stream, fmt, ap);
va_end (ap);
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_zero_extract_andi (ops);
else if (TARGET_SCORE3)
return score3_zero_extract_andi (ops);
gcc_unreachable ();
}
/* Implement RETURN_ADDR_RTX. Note, we do not support moving
back to a previous frame. */
rtx
score_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
/* Output asm insn for move. */
const char *
score_move (rtx *ops)
{
if (count != 0)
return const0_rtx;
return get_hard_reg_initial_val (Pmode, RA_REGNUM);
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_move (ops);
else if (TARGET_SCORE3)
return score3_move (ops);
gcc_unreachable ();
}
/* Implement PRINT_OPERAND macro. */
/* Score-specific operand codes:
'[' print .set nor1 directive
']' print .set r1 directive
'U' print hi part of a CONST_INT rtx
'E' print log2(v)
'F' print log2(~v)
'D' print SFmode const double
'S' selectively print "!" if operand is 15bit instruction accessible
'V' print "v!" if operand is 15bit instruction accessible, or "lfh!"
'L' low part of DImode reg operand
'H' high part of DImode reg operand
'C' print part of opcode for a branch condition. */
void
score_print_operand (FILE *file, rtx op, int c)
/* Output asm insn for load. */
const char *
score_linsn (rtx *ops, enum score_mem_unit unit, bool sign)
{
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_linsn (ops, unit, sign);
else if (TARGET_SCORE3)
return score3_linsn (ops, unit, sign);
gcc_unreachable ();
}
/* Output asm insn for store. */
const char *
score_sinsn (rtx *ops, enum score_mem_unit unit)
{
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_sinsn (ops, unit);
else if (TARGET_SCORE3)
return score3_sinsn (ops, unit);
gcc_unreachable ();
}
/* Output asm insn for load immediate. */
const char *
score_limm (rtx *ops)
{
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_limm (ops);
else if (TARGET_SCORE3)
return score3_limm (ops);
gcc_unreachable ();
}
/* Generate add insn. */
const char *
score_select_add_imm (rtx *ops, bool set_cc)
{
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_select_add_imm (ops, set_cc);
else if (TARGET_SCORE3)
return score3_select_add_imm (ops, set_cc);
gcc_unreachable ();
}
/* Output arith insn. */
const char *
score_select (rtx *ops, const char *inst_pre,
bool commu, const char *letter, bool set_cc)
{
if (TARGET_SCORE5 || TARGET_SCORE5U || TARGET_SCORE7 || TARGET_SCORE7D)
return score7_select (ops, inst_pre, commu, letter, set_cc);
else if (TARGET_SCORE3)
return score3_select (ops, inst_pre, commu, letter, set_cc);
gcc_unreachable ();
}
/* Output switch case insn, only supported in score3. */
const char *
score_output_casesi (rtx *operands)
{
if (TARGET_SCORE3)
return score3_output_casesi (operands);
gcc_unreachable ();
}
/* Output rpush insn, only supported in score3. */
const char *
score_rpush (rtx *operands)
{
if (TARGET_SCORE3)
return score3_rpush (operands);
gcc_unreachable ();
}
/* Output rpop insn, only supported in score3. */
const char *
score_rpop (rtx *operands)
{
enum rtx_code code = -1;
if (!PRINT_OPERAND_PUNCT_VALID_P (c))
code = GET_CODE (op);
if (TARGET_SCORE3)
return score3_rpop (operands);
if (c == '[')
gcc_unreachable ();
}
/* Emit lcb/lce insns. */
bool
score_unaligned_load (rtx *ops)
{
rtx dst = ops[0];
rtx src = ops[1];
rtx len = ops[2];
rtx off = ops[3];
rtx addr_reg;
if (INTVAL (len) != BITS_PER_WORD
|| (INTVAL (off) % BITS_PER_UNIT) != 0)
return false;
gcc_assert (GET_MODE_SIZE (GET_MODE (dst)) == GET_MODE_SIZE (SImode));
addr_reg = copy_addr_to_reg (XEXP (src, 0));
emit_insn (gen_move_lcb (addr_reg, addr_reg));
emit_insn (gen_move_lce (addr_reg, addr_reg, dst));
return true;
}
/* Emit scb/sce insns. */
bool
score_unaligned_store (rtx *ops)
{
rtx dst = ops[0];
rtx len = ops[1];
rtx off = ops[2];
rtx src = ops[3];
rtx addr_reg;
if (INTVAL(len) != BITS_PER_WORD
|| (INTVAL(off) % BITS_PER_UNIT) != 0)
return false;
gcc_assert (GET_MODE_SIZE (GET_MODE (src)) == GET_MODE_SIZE (SImode));
addr_reg = copy_addr_to_reg (XEXP (dst, 0));
emit_insn (gen_move_scb (addr_reg, addr_reg, src));
emit_insn (gen_move_sce (addr_reg, addr_reg));
return true;
}
/* If length is short, generate move insns straight. */
static void
score_block_move_straight (rtx dst, rtx src, HOST_WIDE_INT length)
{
HOST_WIDE_INT leftover;
int i, reg_count;
rtx *regs;
leftover = length % UNITS_PER_WORD;
length -= leftover;
reg_count = length / UNITS_PER_WORD;
regs = alloca (sizeof (rtx) * reg_count);
for (i = 0; i < reg_count; i++)
regs[i] = gen_reg_rtx (SImode);
/* Load from src to regs. */
if (MEM_ALIGN (src) >= BITS_PER_WORD)
{
fprintf (file, ".set r1\n");
HOST_WIDE_INT offset = 0;
for (i = 0; i < reg_count; offset += UNITS_PER_WORD, i++)
emit_move_insn (regs[i], adjust_address (src, SImode, offset));
}
else if (c == ']')
else if (reg_count >= 1)
{
fprintf (file, "\n\t.set nor1");
rtx src_reg = copy_addr_to_reg (XEXP (src, 0));
emit_insn (gen_move_lcb (src_reg, src_reg));
for (i = 0; i < (reg_count - 1); i++)
emit_insn (gen_move_lcw (src_reg, src_reg, regs[i]));
emit_insn (gen_move_lce (src_reg, src_reg, regs[i]));
}
else if (c == 'U')
/* Store regs to dest. */
if (MEM_ALIGN (dst) >= BITS_PER_WORD)
{
gcc_assert (code == CONST_INT);
fprintf (file, HOST_WIDE_INT_PRINT_HEX,
(INTVAL (op) >> 16) & 0xffff);
HOST_WIDE_INT offset = 0;
for (i = 0; i < reg_count; offset += UNITS_PER_WORD, i++)
emit_move_insn (adjust_address (dst, SImode, offset), regs[i]);
}
else if (c == 'D')
else if (reg_count >= 1)
{
if (GET_CODE (op) == CONST_DOUBLE)
{
rtx temp = gen_lowpart (SImode, op);
gcc_assert (GET_MODE (op) == SFmode);
fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (temp) & 0xffffffff);
}
else
output_addr_const (file, op);
rtx dst_reg = copy_addr_to_reg (XEXP (dst, 0));
emit_insn (gen_move_scb (dst_reg, dst_reg, regs[0]));
for (i = 1; i < reg_count; i++)
emit_insn (gen_move_scw (dst_reg, dst_reg, regs[i]));
emit_insn (gen_move_sce (dst_reg, dst_reg));
}
else if (c == 'S')
/* Mop up any left-over bytes. */
if (leftover > 0)
{
gcc_assert (code == REG);
if (G16_REG_P (REGNO (op)))
fprintf (file, "!");
src = adjust_address (src, BLKmode, length);
dst = adjust_address (dst, BLKmode, length);
move_by_pieces (dst, src, leftover,
MIN (MEM_ALIGN (src), MEM_ALIGN (dst)), 0);
}
else if (c == 'V')
}
/* Generate loop head when dst or src is unaligned. */
static void
score_block_move_loop_head (rtx dst_reg, HOST_WIDE_INT dst_align,
rtx src_reg, HOST_WIDE_INT src_align,
HOST_WIDE_INT length)
{
bool src_unaligned = (src_align < BITS_PER_WORD);
bool dst_unaligned = (dst_align < BITS_PER_WORD);
rtx temp = gen_reg_rtx (SImode);
gcc_assert (length == UNITS_PER_WORD);
if (src_unaligned)
{
gcc_assert (code == REG);
fprintf (file, G16_REG_P (REGNO (op)) ? "v!" : "lfh!");
emit_insn (gen_move_lcb (src_reg, src_reg));
emit_insn (gen_move_lcw (src_reg, src_reg, temp));
}
else if (c == 'C')
{
enum machine_mode mode = GET_MODE (XEXP (op, 0));
else
emit_insn (gen_move_lw_a (src_reg,
src_reg, gen_int_mode (4, SImode), temp));
switch (code)
if (dst_unaligned)
emit_insn (gen_move_scb (dst_reg, dst_reg, temp));
else
emit_insn (gen_move_sw_a (dst_reg,
dst_reg, gen_int_mode (4, SImode), temp));
}
/* Generate loop body, copy length bytes per iteration. */
static void
score_block_move_loop_body (rtx dst_reg, HOST_WIDE_INT dst_align,
rtx src_reg, HOST_WIDE_INT src_align,
HOST_WIDE_INT length)
{
int reg_count = length / UNITS_PER_WORD;
rtx *regs = alloca (sizeof (rtx) * reg_count);
int i;
bool src_unaligned = (src_align < BITS_PER_WORD);
bool dst_unaligned = (dst_align < BITS_PER_WORD);
for (i = 0; i < reg_count; i++)
regs[i] = gen_reg_rtx (SImode);
if (src_unaligned)
{
case EQ: fputs ("eq", file); break;
case NE: fputs ("ne", file); break;
case GT: fputs ("gt", file); break;
case GE: fputs (mode != CCmode ? "pl" : "ge", file); break;
case LT: fputs (mode != CCmode ? "mi" : "lt", file); break;
case LE: fputs ("le", file); break;
case GTU: fputs ("gtu", file); break;
case GEU: fputs ("cs", file); break;
case LTU: fputs ("cc", file); break;
case LEU: fputs ("leu", file); break;
default:
output_operand_lossage ("invalid operand for code: '%c'", code);
}
for (i = 0; i < reg_count; i++)
emit_insn (gen_move_lcw (src_reg, src_reg, regs[i]));
}
else if (c == 'E')
else
{
unsigned HOST_WIDE_INT i;
unsigned HOST_WIDE_INT pow2mask = 1;
unsigned HOST_WIDE_INT val;
for (i = 0; i < reg_count; i++)
emit_insn (gen_move_lw_a (src_reg,
src_reg, gen_int_mode (4, SImode), regs[i]));
}
val = INTVAL (op);
for (i = 0; i < 32; i++)
if (dst_unaligned)
{
if (val == pow2mask)
break;
pow2mask <<= 1;
for (i = 0; i < reg_count; i++)
emit_insn (gen_move_scw (dst_reg, dst_reg, regs[i]));
}
gcc_assert (i < 32);
fprintf (file, HOST_WIDE_INT_PRINT_HEX, i);
}
else if (c == 'F')
else
{
unsigned HOST_WIDE_INT i;
unsigned HOST_WIDE_INT pow2mask = 1;
unsigned HOST_WIDE_INT val;
for (i = 0; i < reg_count; i++)
emit_insn (gen_move_sw_a (dst_reg,
dst_reg, gen_int_mode (4, SImode), regs[i]));
}
}
val = ~INTVAL (op);
for (i = 0; i < 32; i++)
/* Generate loop foot, copy the leftover bytes. */
static void
score_block_move_loop_foot (rtx dst_reg, HOST_WIDE_INT dst_align,
rtx src_reg, HOST_WIDE_INT src_align,
HOST_WIDE_INT length)
{
bool src_unaligned = (src_align < BITS_PER_WORD);
bool dst_unaligned = (dst_align < BITS_PER_WORD);
HOST_WIDE_INT leftover;
leftover = length % UNITS_PER_WORD;
length -= leftover;
if (length > 0)
score_block_move_loop_body (dst_reg, dst_align,
src_reg, src_align, length);
if (dst_unaligned)
emit_insn (gen_move_sce (dst_reg, dst_reg));
if (leftover > 0)
{
if (val == pow2mask)
break;
pow2mask <<= 1;
}
gcc_assert (i < 32);
fprintf (file, HOST_WIDE_INT_PRINT_HEX, i);
}
else if (code == REG)
HOST_WIDE_INT src_adj = src_unaligned ? -4 : 0;
HOST_WIDE_INT dst_adj = dst_unaligned ? -4 : 0;
rtx temp;
gcc_assert (leftover < UNITS_PER_WORD);
if (leftover >= UNITS_PER_WORD / 2
&& src_align >= BITS_PER_WORD / 2
&& dst_align >= BITS_PER_WORD / 2)
{
int regnum = REGNO (op);
if ((c == 'H' && !WORDS_BIG_ENDIAN)
|| (c == 'L' && WORDS_BIG_ENDIAN))
regnum ++;
fprintf (file, "%s", reg_names[regnum]);
temp = gen_reg_rtx (HImode);
emit_insn (gen_move_lhu_b (src_reg, src_reg,
gen_int_mode (src_adj, SImode), temp));
emit_insn (gen_move_sh_b (dst_reg, dst_reg,
gen_int_mode (dst_adj, SImode), temp));
leftover -= UNITS_PER_WORD / 2;
src_adj = UNITS_PER_WORD / 2;
dst_adj = UNITS_PER_WORD / 2;
}
else
{
switch (code)
while (leftover > 0)
{
case MEM:
score_print_operand_address (file, op);
break;
default:
output_addr_const (file, op);
temp = gen_reg_rtx (QImode);
emit_insn (gen_move_lbu_b (src_reg, src_reg,
gen_int_mode (src_adj, SImode), temp));
emit_insn (gen_move_sb_b (dst_reg, dst_reg,
gen_int_mode (dst_adj, SImode), temp));
leftover--;
src_adj = 1;
dst_adj = 1;
}
}
}
/* Implement PRINT_OPERAND_ADDRESS macro. */
void
score_print_operand_address (FILE *file, rtx x)
#define MIN_MOVE_REGS 3
#define MIN_MOVE_BYTES (MIN_MOVE_REGS * UNITS_PER_WORD)
#define MAX_MOVE_REGS 4
#define MAX_MOVE_BYTES (MAX_MOVE_REGS * UNITS_PER_WORD)
/* The length is large, generate a loop if necessary.
The loop is consisted by loop head/body/foot. */
static void
score_block_move_loop (rtx dst, rtx src, HOST_WIDE_INT length)
{
struct score_address_info addr;
enum rtx_code code = GET_CODE (x);
enum machine_mode mode = GET_MODE (x);
HOST_WIDE_INT src_align = MEM_ALIGN (src);
HOST_WIDE_INT dst_align = MEM_ALIGN (dst);
HOST_WIDE_INT loop_mov_bytes;
HOST_WIDE_INT iteration = 0;
HOST_WIDE_INT head_length = 0, leftover;
rtx label, src_reg, dst_reg, final_dst;
if (code == MEM)
x = XEXP (x, 0);
bool gen_loop_head = (src_align < BITS_PER_WORD
|| dst_align < BITS_PER_WORD);
if (mda_classify_address (&addr, mode, x, true))
{
switch (addr.type)
{
case ADD_REG:
{
switch (addr.code)
if (gen_loop_head)
head_length += UNITS_PER_WORD;
for (loop_mov_bytes = MAX_MOVE_BYTES;
loop_mov_bytes >= MIN_MOVE_BYTES;
loop_mov_bytes -= UNITS_PER_WORD)
{
case PRE_DEC:
fprintf (file, "[%s,-%ld]+", reg_names[REGNO (addr.reg)],
INTVAL (addr.offset));
iteration = (length - head_length) / loop_mov_bytes;
if (iteration > 1)
break;
case POST_DEC:
fprintf (file, "[%s]+,-%ld", reg_names[REGNO (addr.reg)],
INTVAL (addr.offset));
break;
case PRE_INC:
fprintf (file, "[%s, %ld]+", reg_names[REGNO (addr.reg)],
INTVAL (addr.offset));
break;
case POST_INC:
fprintf (file, "[%s]+, %ld", reg_names[REGNO (addr.reg)],
INTVAL (addr.offset));
break;
default:
if (INTVAL(addr.offset) == 0)
fprintf(file, "[%s]", reg_names[REGNO (addr.reg)]);
else
fprintf(file, "[%s, %ld]", reg_names[REGNO (addr.reg)],
INTVAL(addr.offset));
break;
}
}
return;
case ADD_CONST_INT:
case ADD_SYMBOLIC:
output_addr_const (file, x);
if (iteration <= 1)
{
score_block_move_straight (dst, src, length);
return;
}
}
print_rtl (stderr, x);
gcc_unreachable ();
leftover = (length - head_length) % loop_mov_bytes;
length -= leftover;
src_reg = copy_addr_to_reg (XEXP (src, 0));
dst_reg = copy_addr_to_reg (XEXP (dst, 0));
final_dst = expand_simple_binop (Pmode, PLUS, dst_reg, GEN_INT (length),
0, 0, OPTAB_WIDEN);
if (gen_loop_head)
score_block_move_loop_head (dst_reg, dst_align,
src_reg, src_align, head_length);
label = gen_label_rtx ();
emit_label (label);
score_block_move_loop_body (dst_reg, dst_align,
src_reg, src_align, loop_mov_bytes);
emit_insn (gen_cmpsi (dst_reg, final_dst));
emit_jump_insn (gen_bne (label));
score_block_move_loop_foot (dst_reg, dst_align,
src_reg, src_align, leftover);
}
/* Implement SELECT_CC_MODE macro. */
enum machine_mode
score_select_cc_mode (enum rtx_code op, rtx x, rtx y)
/* Generate block move, for misc.md: "movmemsi". */
bool
score_block_move (rtx *ops)
{
if ((op == EQ || op == NE || op == LT || op == GE)
&& y == const0_rtx
&& GET_MODE (x) == SImode)
rtx dst = ops[0];
rtx src = ops[1];
rtx length = ops[2];
if (TARGET_LITTLE_ENDIAN
&& (MEM_ALIGN (src) < BITS_PER_WORD || MEM_ALIGN (dst) < BITS_PER_WORD)
&& INTVAL (length) >= UNITS_PER_WORD)
return false;
if (GET_CODE (length) == CONST_INT)
{
switch (GET_CODE (x))
if (INTVAL (length) <= 2 * MAX_MOVE_BYTES)
{
case PLUS:
case MINUS:
case NEG:
case AND:
case IOR:
case XOR:
case NOT:
case ASHIFT:
case LSHIFTRT:
case ASHIFTRT:
return CC_NZmode;
case SIGN_EXTEND:
case ZERO_EXTEND:
case ROTATE:
case ROTATERT:
return (op == LT || op == GE) ? CC_Nmode : CCmode;
default:
return CCmode;
}
score_block_move_straight (dst, src, INTVAL (length));
return true;
}
if ((op == EQ || op == NE)
&& (GET_CODE (y) == NEG)
&& register_operand (XEXP (y, 0), SImode)
&& register_operand (x, SImode))
else if (optimize &&
!(flag_unroll_loops || flag_unroll_all_loops))
{
return CC_NZmode;
score_block_move_loop (dst, src, INTVAL (length));
return true;
}
return CCmode;
}
return false;
}
struct gcc_target targetm = TARGET_INITIALIZER;
......@@ -19,30 +19,53 @@
<http://www.gnu.org/licenses/>. */
#include "score-conv.h"
#include "score-version.h"
/* Define the information needed to generate branch insns. This is
stored from the compare operation. */
extern GTY(()) rtx cmp_op0;
extern GTY(()) rtx cmp_op1;
/* Controlling the Compilation Driver. */
#undef SWITCH_TAKES_ARG
#define SWITCH_TAKES_ARG(CHAR) \
(DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
/* CC1_SPEC is the set of arguments to pass to the compiler proper. */
#undef CPP_SPEC
#define CPP_SPEC "%{mscore3:-D__score3__} %{G*}"
#undef CC1_SPEC
#define CC1_SPEC "%{G*} %{!mel:-meb}"
#define CC1_SPEC "%{!mel:-meb} %{mel:-mel } \
%{!mscore*:-mscore7} \
%{mscore3:-mscore3} \
%{mscore3d:-mscore3d} \
%{mscore7:-mscore7} \
%{mscore7d:-mscore7d} \
%{G*}"
#undef ASM_SPEC
#define ASM_SPEC \
"%{!mel:-EB} %{mel:-EL} %{mscore5:-SCORE5} %{mscore5u:-SCORE5U} \
%{mscore7:%{!mmac:-SCORE7}} %{mscore7:%{mmac:-SCORE7D}} \
%{mscore7d:-SCORE7D} %{G*}"
#define ASM_SPEC "%{!mel:-EB} %{mel:-EL} \
%{!mscore*:-march=score7} \
%{mscore7:-march=score7} \
%{mscore7d:-march=score7} \
%{mscore3:-march=score3} \
%{mscore3d:-march=score3} \
%{march=score5:-march=score7} \
%{march=score5u:-march=score7} \
%{march=score7:-march=score7} \
%{march=score7d:-march=score7} \
%{march=score3:-march=score3} \
%{march=score3d:-march=score3} \
%{G*}"
#undef LINK_SPEC
#define LINK_SPEC "%{!mel:-EB} %{mel:-EL} %{G*}"
#define LINK_SPEC "%{!mel:-EB} %{mel:-EL} \
%{!mscore*:-mscore7_elf} \
%{mscore7:-mscore7_elf} \
%{mscore7d:-mscore7_elf} \
%{mscore3:-mscore3_elf} \
%{mscore3d:-mscore3_elf} \
%{march=score5:-mscore7_elf} \
%{march=score5u:-mscore7_elf} \
%{march=score7:-mscore7_elf} \
%{march=score7d:-mscore7_elf} \
%{march=score3:-mscore3_elf} \
%{march=score3d:-mscore3_elf} \
%{G*}"
/* Run-time Target Specification. */
#define TARGET_CPU_CPP_BUILTINS() \
......@@ -54,16 +77,26 @@ extern GTY(()) rtx cmp_op1;
builtin_define ("__scorele__"); \
else \
builtin_define ("__scorebe__"); \
if (TARGET_SCORE5) \
builtin_define ("__score5__"); \
if (TARGET_SCORE5U) \
builtin_define ("__score5u__"); \
else \
if (TARGET_SCORE7) \
builtin_define ("__score7__"); \
if (TARGET_SCORE7D) \
builtin_define ("__score7d__"); \
if (TARGET_SCORE3) \
builtin_define ("__score3__"); \
if (TARGET_SCORE3D) \
builtin_define ("__score3d__"); \
} while (0)
#define TARGET_DEFAULT MASK_SCORE7
#define TARGET_DEFAULT 0
#define SCORE_GCC_VERSION "1.6"
#define TARGET_VERSION \
fprintf (stderr, "Sunplus S+CORE %s", SCORE_GCC_VERSION);
fprintf (stderr, "Sunplus S+core rev=%s", SCORE_GCC_VERSION);
#define OVERRIDE_OPTIONS score_override_options ()
......@@ -415,6 +448,7 @@ enum reg_class
/* The class value for index registers. */
#define INDEX_REG_CLASS NO_REGS
extern enum reg_class score_char_to_class[256];
#define REG_CLASS_FROM_LETTER(C) score_char_to_class[(unsigned char) (C)]
/* Addressing modes, and classification of registers for them. */
......@@ -620,16 +654,29 @@ typedef struct score_args
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry. */
#define FUNCTION_PROFILER(FILE, LABELNO) \
{ \
do { \
if (TARGET_SCORE7) \
{ \
fprintf (FILE, " .set r1 \n"); \
fprintf (FILE, " mv r%d,r%d \n", AT_REGNUM, RA_REGNUM); \
fprintf (FILE, " subi r%d, %d \n", STACK_POINTER_REGNUM, 8); \
fprintf (FILE, " jl _mcount \n"); \
fprintf (FILE, " .set nor1 \n"); \
}
} \
else if (TARGET_SCORE3) \
{ \
fprintf (FILE, " .set r1 \n"); \
fprintf (FILE, " mv! r%d,r%d \n", AT_REGNUM, RA_REGNUM); \
fprintf (FILE, " addi! r%d, %d \n", STACK_POINTER_REGNUM, -8);\
fprintf (FILE, " jl _mcount \n"); \
fprintf (FILE, " .set nor1 \n"); \
} \
} while (0)
#define TRAMPOLINE_TEMPLATE(STREAM) \
{ \
do { \
if (TARGET_SCORE7) \
{ \
fprintf (STREAM, "\t.set r1\n"); \
fprintf (STREAM, "\tmv r31, r3\n"); \
fprintf (STREAM, "\tbl nextinsn\n"); \
......@@ -640,7 +687,24 @@ typedef struct score_args
fprintf (STREAM, "\tbr! r1\n"); \
fprintf (STREAM, "\tnop!\n"); \
fprintf (STREAM, "\t.set nor1\n"); \
}
} \
else if (TARGET_SCORE3) \
{ \
fprintf (STREAM, "\t.set r1\n"); \
fprintf (STREAM, "\tmv! r31, r3\n"); \
fprintf (STREAM, "\tnop!\n"); \
fprintf (STREAM, "\tbl nextinsn\n"); \
fprintf (STREAM, "nextinsn:\n"); \
fprintf (STREAM, "\tlw! r1, [r3, 6*4-8]\n"); \
fprintf (STREAM, "\tnop!\n"); \
fprintf (STREAM, "\tlw r23, [r3, 6*4-4]\n"); \
fprintf (STREAM, "\tmv! r3, r31\n"); \
fprintf (STREAM, "\tnop!\n"); \
fprintf (STREAM, "\tbr! r1\n"); \
fprintf (STREAM, "\tnop!\n"); \
fprintf (STREAM, "\t.set nor1\n"); \
} \
} while (0)
/* Trampolines for Nested Functions. */
#define TRAMPOLINE_INSNS 6
......@@ -765,17 +829,23 @@ typedef struct score_args
/* Output of Uninitialized Variables. */
/* This says how to define a global common symbol. */
#define ASM_OUTPUT_ALIGNED_DECL_COMMON(STREAM, DECL, NAME, SIZE, ALIGN) \
score_declare_object (STREAM, NAME, "\n\t.comm\t", \
","HOST_WIDE_INT_PRINT_UNSIGNED",%u\n", \
SIZE, ALIGN / BITS_PER_UNIT);
do { \
fputs ("\n\t.comm\t", STREAM); \
assemble_name (STREAM, NAME); \
fprintf (STREAM, " , " HOST_WIDE_INT_PRINT_UNSIGNED ", %u\n", \
SIZE, ALIGN / BITS_PER_UNIT); \
} while (0)
/* This says how to define a local common symbol (i.e., not visible to
linker). */
#undef ASM_OUTPUT_ALIGNED_LOCAL
#define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
score_declare_object (STREAM, NAME, "\n\t.lcomm\t", \
","HOST_WIDE_INT_PRINT_UNSIGNED",%u\n", \
SIZE, ALIGN / BITS_PER_UNIT);
do { \
fputs ("\n\t.lcomm\t", STREAM); \
assemble_name (STREAM, NAME); \
fprintf (STREAM, " , " HOST_WIDE_INT_PRINT_UNSIGNED ", %u\n", \
SIZE, ALIGN / BITS_PER_UNIT); \
} while (0)
/* Globalizing directive for a label. */
#define GLOBAL_ASM_OP "\t.globl\t"
......@@ -791,7 +861,10 @@ typedef struct score_args
#undef ASM_DECLARE_OBJECT_NAME
#define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
score_declare_object (STREAM, NAME, "", ":\n")
do { \
assemble_name (STREAM, NAME); \
fprintf (STREAM, ":\n"); \
} while (0)
/* This says how to output an external. It would be possible not to
output anything and let undefined symbol become external. However
......@@ -808,7 +881,7 @@ typedef struct score_args
/* Local compiler-generated symbols must have a prefix that the assembler
understands. */
#define LOCAL_LABEL_PREFIX "."
#define LOCAL_LABEL_PREFIX (TARGET_SCORE7 ? "." : "$")
#undef ASM_GENERATE_INTERNAL_LABEL
#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
......@@ -861,17 +934,25 @@ typedef struct score_args
/* This is how to output an insn to push a register on the stack. */
#define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
do { \
if (TARGET_SCORE7) \
fprintf (STREAM, "\tpush! %s,[%s]\n", \
reg_names[REGNO], \
reg_names[STACK_POINTER_REGNUM]); \
else if (TARGET_SCORE3) \
fprintf (STREAM, "\tpush!\t%s\n", \
reg_names[REGNO]); \
} while (0)
/* This is how to output an insn to pop a register from the stack. */
#define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
do { \
if (TARGET_SCORE7) \
fprintf (STREAM, "\tpop! %s,[%s]\n", \
reg_names[REGNO], \
reg_names[STACK_POINTER_REGNUM]); \
else if (TARGET_SCORE3) \
fprintf (STREAM, "\tpop!\t%s\n", \
reg_names[REGNO]); \
} while (0)
/* Output of Dispatch Tables. */
......@@ -879,12 +960,60 @@ typedef struct score_args
entries PC-relative in GP-relative when .gp(d)word is supported. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
do { \
if (TARGET_SCORE7) \
if (flag_pic) \
fprintf (STREAM, "\t.gpword %sL%d\n", LOCAL_LABEL_PREFIX, VALUE); \
else \
fprintf (STREAM, "\t.word %sL%d\n", LOCAL_LABEL_PREFIX, VALUE); \
else if (TARGET_SCORE3) \
{ \
switch (GET_MODE(BODY)) \
{ \
case QImode: /* TBB */ \
asm_fprintf (STREAM, "\t.byte\t(%LL%d-%LL%d_tbb)/2\n", \
VALUE, REL); \
break; \
case HImode: /* TBH */ \
asm_fprintf (STREAM, "\t.2byte\t(%LL%d-%LL%d_tbb)/2\n", \
VALUE, REL); \
break; \
case SImode: \
if (flag_pic) \
fprintf (STREAM, "\t.gpword %sL%d\n", LOCAL_LABEL_PREFIX, VALUE); \
else \
fprintf (STREAM, "\t.word %sL%d\n", LOCAL_LABEL_PREFIX, VALUE); \
break; \
default: \
gcc_unreachable(); \
} \
} \
} while (0)
/* Jump table alignment is explicit in ASM_OUTPUT_CASE_LABEL. */
#define ADDR_VEC_ALIGN(JUMPTABLE) (GET_MODE (PATTERN (JUMPTABLE)) == SImode ? 2 \
: GET_MODE (PATTERN (JUMPTABLE)) == HImode ? 1 : 0)
/* This is how to output a label which precedes a jumptable. Since
Score3 instructions are 2 bytes, we may need explicit alignment here. */
#undef ASM_OUTPUT_CASE_LABEL
#define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, JUMPTABLE) \
do { \
if ((TARGET_SCORE7) && GET_MODE (PATTERN (JUMPTABLE)) == SImode) \
ASM_OUTPUT_ALIGN (FILE, 2); \
(*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); \
} while (0)
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE SImode
#define CASE_VECTOR_PC_RELATIVE (TARGET_SCORE3)
#define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
((min < 0 || max >= 0x2000 || TARGET_SCORE7) ? SImode \
: (max >= 0x200) ? HImode \
: QImode)
/* This is how to output an element of a case-vector that is absolute. */
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
fprintf (STREAM, "\t.word %sL%d\n", LOCAL_LABEL_PREFIX, VALUE)
......@@ -927,10 +1056,6 @@ typedef struct score_args
/* The DWARF 2 CFA column which tracks the return address. */
#define DWARF_FRAME_RETURN_COLUMN 3
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE SImode
/* Define if operations between registers always perform the operation
on the full register even if a narrower mode is specified. */
#define WORD_REGISTER_OPERATIONS
......
This source diff could not be displayed because it is too large. You can view the blob instead.
......@@ -34,10 +34,6 @@ muls
Target RejectNegative Report Mask(ULS)
Enable unaligned load/store instruction
mmac
Target RejectNegative Report Mask(MAC)
Enable mac instruction
mscore5
Target RejectNegative Report Mask(SCORE5)
Support SCORE 5 ISA
......@@ -53,3 +49,15 @@ Support SCORE 7 ISA
mscore7d
Target RejectNegative Report Mask(SCORE7D)
Support SCORE 7D ISA
mscore3
Target RejectNegative Report Mask(SCORE3)
Support SCORE 3 ISA
mscore3d
Target RejectNegative Report Mask(SCORE3D)
Support SCORE 3d ISA
march=
Target RejectNegative Joined
Specify the name of the target architecture
/* score3.c for Sunplus S+CORE processor
Copyright (C) 2005, 2007 Free Software Foundation, Inc.
Contributed by Sunnorth
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-attr.h"
#include "recog.h"
#include "toplev.h"
#include "output.h"
#include "tree.h"
#include "function.h"
#include "expr.h"
#include "optabs.h"
#include "flags.h"
#include "reload.h"
#include "tm_p.h"
#include "ggc.h"
#include "gstab.h"
#include "hashtab.h"
#include "debug.h"
#include "target.h"
#include "target-def.h"
#include "integrate.h"
#include "langhooks.h"
#include "cfglayout.h"
#include "score3.h"
#define BITSET_P(VALUE, BIT) (((VALUE) & (1L << (BIT))) != 0)
#define INS_BUF_SZ 128
/* Define the information needed to generate branch insns. This is
stored from the compare operation. */
extern rtx cmp_op0, cmp_op1;
extern enum reg_class score_char_to_class[256];
static int score3_sdata_max;
static char score3_ins[INS_BUF_SZ + 8];
/* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
to the same object as SYMBOL. */
static int
score3_offset_within_object_p (rtx symbol, HOST_WIDE_INT offset)
{
if (GET_CODE (symbol) != SYMBOL_REF)
return 0;
if (CONSTANT_POOL_ADDRESS_P (symbol)
&& offset >= 0
&& offset < (int)GET_MODE_SIZE (get_pool_mode (symbol)))
return 1;
if (SYMBOL_REF_DECL (symbol) != 0
&& offset >= 0
&& offset < int_size_in_bytes (TREE_TYPE (SYMBOL_REF_DECL (symbol))))
return 1;
return 0;
}
/* Split X into a base and a constant offset, storing them in *BASE
and *OFFSET respectively. */
static void
score3_split_const (rtx x, rtx *base, HOST_WIDE_INT *offset)
{
*offset = 0;
if (GET_CODE (x) == CONST)
x = XEXP (x, 0);
if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
{
*offset += INTVAL (XEXP (x, 1));
x = XEXP (x, 0);
}
*base = x;
}
/* Classify symbol X, which must be a SYMBOL_REF or a LABEL_REF. */
static enum score_symbol_type
score3_classify_symbol (rtx x)
{
if (GET_CODE (x) == LABEL_REF)
return SYMBOL_GENERAL;
gcc_assert (GET_CODE (x) == SYMBOL_REF);
if (CONSTANT_POOL_ADDRESS_P (x))
{
if (GET_MODE_SIZE (get_pool_mode (x)) <= SCORE3_SDATA_MAX)
return SYMBOL_SMALL_DATA;
return SYMBOL_GENERAL;
}
if (SYMBOL_REF_SMALL_P (x))
return SYMBOL_SMALL_DATA;
return SYMBOL_GENERAL;
}
/* Return true if the current function must save REGNO. */
static int
score3_save_reg_p (unsigned int regno)
{
/* Check call-saved registers. */
if (df_regs_ever_live_p (regno) && !call_used_regs[regno])
return 1;
/* We need to save the old frame pointer before setting up a new one. */
if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed)
return 1;
/* We need to save the incoming return address if it is ever clobbered
within the function. */
if (regno == RA_REGNUM && df_regs_ever_live_p (regno))
return 1;
return 0;
}
/* Return one word of double-word value OP, taking into account the fixed
endianness of certain registers. HIGH_P is true to select the high part,
false to select the low part. */
static rtx
score3_subw (rtx op, int high_p)
{
unsigned int byte;
enum machine_mode mode = GET_MODE (op);
if (mode == VOIDmode)
mode = DImode;
byte = (TARGET_LITTLE_ENDIAN ? high_p : !high_p) ? UNITS_PER_WORD : 0;
if (GET_CODE (op) == REG && REGNO (op) == HI_REGNUM)
return gen_rtx_REG (SImode, high_p ? HI_REGNUM : LO_REGNUM);
if (GET_CODE (op) == MEM)
return adjust_address (op, SImode, byte);
return simplify_gen_subreg (SImode, op, mode, byte);
}
static struct score3_frame_info *
score3_cached_frame (void)
{
static struct score3_frame_info _frame_info;
return &_frame_info;
}
/* Return the bytes needed to compute the frame pointer from the current
stack pointer. SIZE is the size (in bytes) of the local variables. */
static struct score3_frame_info *
score3_compute_frame_size (HOST_WIDE_INT size)
{
unsigned int regno;
struct score3_frame_info *f = score3_cached_frame ();
memset (f, 0, sizeof (struct score3_frame_info));
f->gp_reg_size = 0;
f->mask = 0;
f->var_size = SCORE3_STACK_ALIGN (size);
f->args_size = current_function_outgoing_args_size;
f->cprestore_size = flag_pic ? UNITS_PER_WORD : 0;
if (f->var_size == 0 && current_function_is_leaf)
f->args_size = f->cprestore_size = 0;
if (f->args_size == 0 && current_function_calls_alloca)
f->args_size = UNITS_PER_WORD;
f->total_size = f->var_size + f->args_size + f->cprestore_size;
for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
{
if (score3_save_reg_p (regno))
{
f->gp_reg_size += GET_MODE_SIZE (SImode);
f->mask |= 1 << (regno - GP_REG_FIRST);
}
}
if (current_function_calls_eh_return)
{
unsigned int i;
for (i = 0;; ++i)
{
regno = EH_RETURN_DATA_REGNO (i);
if (regno == INVALID_REGNUM)
break;
f->gp_reg_size += GET_MODE_SIZE (SImode);
f->mask |= 1 << (regno - GP_REG_FIRST);
}
}
f->total_size += f->gp_reg_size;
f->num_gp = f->gp_reg_size / UNITS_PER_WORD;
if (f->mask)
{
HOST_WIDE_INT offset;
offset = (f->args_size + f->cprestore_size + f->var_size
+ f->gp_reg_size - GET_MODE_SIZE (SImode));
f->gp_sp_offset = offset;
}
else
f->gp_sp_offset = 0;
return f;
}
/* Return true if X is a valid base register for the given mode.
Allow only hard registers if STRICT. */
static int
score3_valid_base_register_p (rtx x, int strict)
{
if (!strict && GET_CODE (x) == SUBREG)
x = SUBREG_REG (x);
return (GET_CODE (x) == REG
&& score3_regno_mode_ok_for_base_p (REGNO (x), strict));
}
/* Return true if X is a valid address for machine mode MODE. If it is,
fill in INFO appropriately. STRICT is true if we should only accept
hard base registers. */
static int
score3_classify_address (struct score3_address_info *info,
enum machine_mode mode, rtx x, int strict)
{
info->code = GET_CODE (x);
switch (info->code)
{
case REG:
case SUBREG:
info->type = SCORE3_ADD_REG;
info->reg = x;
info->offset = const0_rtx;
return score3_valid_base_register_p (info->reg, strict);
case PLUS:
info->type = SCORE3_ADD_REG;
info->reg = XEXP (x, 0);
info->offset = XEXP (x, 1);
return (score3_valid_base_register_p (info->reg, strict)
&& GET_CODE (info->offset) == CONST_INT
&& IMM_IN_RANGE (INTVAL (info->offset), 15, 1));
case PRE_DEC:
case POST_DEC:
case PRE_INC:
case POST_INC:
if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (SImode))
return false;
info->type = SCORE3_ADD_REG;
info->reg = XEXP (x, 0);
info->offset = GEN_INT (GET_MODE_SIZE (mode));
return score3_valid_base_register_p (info->reg, strict);
case CONST_INT:
info->type = SCORE3_ADD_CONST_INT;
return 1;
case CONST:
case LABEL_REF:
case SYMBOL_REF:
info->type = SCORE3_ADD_SYMBOLIC;
return (score3_symbolic_constant_p (x, &info->symbol_type)
&& (info->symbol_type == SYMBOL_GENERAL
|| info->symbol_type == SYMBOL_SMALL_DATA));
default:
return 0;
}
}
bool
score3_return_in_memory (tree type, tree fndecl ATTRIBUTE_UNUSED)
{
return ((TYPE_MODE (type) == BLKmode)
|| (int_size_in_bytes (type) > 2 * UNITS_PER_WORD)
|| (int_size_in_bytes (type) == -1));
}
/* Return a legitimate address for REG + OFFSET. */
static rtx
score3_add_offset (rtx reg, HOST_WIDE_INT offset)
{
if (!IMM_IN_RANGE (offset, 15, 1))
{
reg = expand_simple_binop (GET_MODE (reg), PLUS,
gen_int_mode (offset & 0xffffc000,
GET_MODE (reg)),
reg, NULL, 0, OPTAB_WIDEN);
offset &= 0x3fff;
}
return plus_constant (reg, offset);
}
/* Implement TARGET_ASM_OUTPUT_MI_THUNK. Generate rtl rather than asm text
in order to avoid duplicating too much logic from elsewhere. */
void
score3_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
tree function)
{
rtx this, temp1, insn, fnaddr;
/* Pretend to be a post-reload pass while generating rtl. */
reload_completed = 1;
/* Mark the end of the (empty) prologue. */
emit_note (NOTE_INSN_PROLOGUE_END);
/* We need two temporary registers in some cases. */
temp1 = gen_rtx_REG (Pmode, 8);
/* Find out which register contains the "this" pointer. */
if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
this = gen_rtx_REG (Pmode, ARG_REG_FIRST + 1);
else
this = gen_rtx_REG (Pmode, ARG_REG_FIRST);
/* Add DELTA to THIS. */
if (delta != 0)
{
rtx offset = GEN_INT (delta);
if (!CONST_OK_FOR_LETTER_P (delta, 'L'))
{
emit_move_insn (temp1, offset);
offset = temp1;
}
emit_insn (gen_add3_insn (this, this, offset));
}
/* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
if (vcall_offset != 0)
{
rtx addr;
/* Set TEMP1 to *THIS. */
emit_move_insn (temp1, gen_rtx_MEM (Pmode, this));
/* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET. */
addr = score3_add_offset (temp1, vcall_offset);
/* Load the offset and add it to THIS. */
emit_move_insn (temp1, gen_rtx_MEM (Pmode, addr));
emit_insn (gen_add3_insn (this, this, temp1));
}
/* Jump to the target function. */
fnaddr = XEXP (DECL_RTL (function), 0);
insn = emit_call_insn (gen_sibcall_internal_score3 (fnaddr, const0_rtx));
SIBLING_CALL_P (insn) = 1;
/* Run just enough of rest_of_compilation. This sequence was
"borrowed" from alpha.c. */
insn = get_insns ();
insn_locators_alloc ();
split_all_insns_noflow ();
shorten_branches (insn);
final_start_function (insn, file, 1);
final (insn, file, 1);
final_end_function ();
/* Clean up the vars set above. Note that final_end_function resets
the global pointer for us. */
reload_completed = 0;
}
/* Copy VALUE to a register and return that register. If new psuedos
are allowed, copy it into a new register, otherwise use DEST. */
static rtx
score3_force_temporary (rtx dest, rtx value)
{
if (can_create_pseudo_p ())
return force_reg (Pmode, value);
else
{
emit_move_insn (copy_rtx (dest), value);
return dest;
}
}
/* Return a LO_SUM expression for ADDR. TEMP is as for score_force_temporary
and is used to load the high part into a register. */
static rtx
score3_split_symbol (rtx temp, rtx addr)
{
rtx high = score3_force_temporary (temp,
gen_rtx_HIGH (Pmode, copy_rtx (addr)));
return gen_rtx_LO_SUM (Pmode, high, addr);
}
/* This function is used to implement LEGITIMIZE_ADDRESS. If *XLOC can
be legitimized in a way that the generic machinery might not expect,
put the new address in *XLOC and return true. */
int
score3_legitimize_address (rtx *xloc)
{
enum score_symbol_type symbol_type;
if (score3_symbolic_constant_p (*xloc, &symbol_type)
&& symbol_type == SYMBOL_GENERAL)
{
*xloc = score3_split_symbol (0, *xloc);
return 1;
}
if (GET_CODE (*xloc) == PLUS
&& GET_CODE (XEXP (*xloc, 1)) == CONST_INT)
{
rtx reg = XEXP (*xloc, 0);
if (!score3_valid_base_register_p (reg, 0))
reg = copy_to_mode_reg (Pmode, reg);
*xloc = score3_add_offset (reg, INTVAL (XEXP (*xloc, 1)));
return 1;
}
return 0;
}
/* Fill INFO with information about a single argument. CUM is the
cumulative state for earlier arguments. MODE is the mode of this
argument and TYPE is its type (if known). NAMED is true if this
is a named (fixed) argument rather than a variable one. */
static void
score3_classify_arg (const CUMULATIVE_ARGS *cum, enum machine_mode mode,
tree type, int named, struct score3_arg_info *info)
{
int even_reg_p;
unsigned int num_words, max_regs;
even_reg_p = 0;
if (GET_MODE_CLASS (mode) == MODE_INT
|| GET_MODE_CLASS (mode) == MODE_FLOAT)
even_reg_p = (GET_MODE_SIZE (mode) > UNITS_PER_WORD);
else
if (type != NULL_TREE && TYPE_ALIGN (type) > BITS_PER_WORD && named)
even_reg_p = 1;
if (TARGET_MUST_PASS_IN_STACK (mode, type))
info->reg_offset = ARG_REG_NUM;
else
{
info->reg_offset = cum->num_gprs;
if (even_reg_p)
info->reg_offset += info->reg_offset & 1;
}
if (mode == BLKmode)
info->num_bytes = int_size_in_bytes (type);
else
info->num_bytes = GET_MODE_SIZE (mode);
num_words = (info->num_bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
max_regs = ARG_REG_NUM - info->reg_offset;
/* Partition the argument between registers and stack. */
info->reg_words = MIN (num_words, max_regs);
info->stack_words = num_words - info->reg_words;
/* The alignment applied to registers is also applied to stack arguments. */
if (info->stack_words)
{
info->stack_offset = cum->stack_words;
if (even_reg_p)
info->stack_offset += info->stack_offset & 1;
}
}
/* Set up the stack and frame (if desired) for the function. */
void
score3_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
const char *fnname;
struct score3_frame_info *f = score3_cached_frame ();
HOST_WIDE_INT tsize = f->total_size;
fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
if (!flag_inhibit_size_directive)
{
fputs ("\t.ent\t", file);
assemble_name (file, fnname);
fputs ("\n", file);
}
assemble_name (file, fnname);
fputs (":\n", file);
if (!flag_inhibit_size_directive)
{
fprintf (file,
"\t.frame\t%s," HOST_WIDE_INT_PRINT_DEC ",%s, %d\t\t"
"# vars= " HOST_WIDE_INT_PRINT_DEC ", regs= %d"
", args= " HOST_WIDE_INT_PRINT_DEC
", gp= " HOST_WIDE_INT_PRINT_DEC "\n",
(reg_names[(frame_pointer_needed)
? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM]),
tsize,
reg_names[RA_REGNUM],
current_function_is_leaf ? 1 : 0,
f->var_size,
f->num_gp,
f->args_size,
f->cprestore_size);
fprintf(file, "\t.mask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n",
f->mask,
(f->gp_sp_offset - f->total_size));
}
}
/* Do any necessary cleanup after a function to restore stack, frame,
and regs. */
void
score3_function_epilogue (FILE *file,
HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
if (!flag_inhibit_size_directive)
{
const char *fnname;
fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
fputs ("\t.end\t", file);
assemble_name (file, fnname);
fputs ("\n", file);
}
}
/* Returns true if X contains a SYMBOL_REF. */
static bool
score3_symbolic_expression_p (rtx x)
{
if (GET_CODE (x) == SYMBOL_REF)
return true;
if (GET_CODE (x) == CONST)
return score3_symbolic_expression_p (XEXP (x, 0));
if (UNARY_P (x))
return score3_symbolic_expression_p (XEXP (x, 0));
if (ARITHMETIC_P (x))
return (score3_symbolic_expression_p (XEXP (x, 0))
|| score3_symbolic_expression_p (XEXP (x, 1)));
return false;
}
/* Choose the section to use for the constant rtx expression X that has
mode MODE. */
section *
score3_select_rtx_section (enum machine_mode mode, rtx x,
unsigned HOST_WIDE_INT align)
{
if (GET_MODE_SIZE (mode) <= SCORE3_SDATA_MAX)
return get_named_section (0, ".sdata", 0);
else if (flag_pic && score3_symbolic_expression_p (x))
return get_named_section (0, ".data.rel.ro", 3);
else
return mergeable_constant_section (mode, align, 0);
}
/* Implement TARGET_IN_SMALL_DATA_P. */
bool
score3_in_small_data_p (tree decl)
{
HOST_WIDE_INT size;
if (TREE_CODE (decl) == STRING_CST
|| TREE_CODE (decl) == FUNCTION_DECL)
return false;
if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl) != 0)
{
const char *name;
name = TREE_STRING_POINTER (DECL_SECTION_NAME (decl));
if (strcmp (name, ".sdata") != 0
&& strcmp (name, ".sbss") != 0)
return true;
if (!DECL_EXTERNAL (decl))
return false;
}
size = int_size_in_bytes (TREE_TYPE (decl));
return (size > 0 && size <= SCORE3_SDATA_MAX);
}
/* Implement TARGET_ASM_FILE_START. */
void
score3_asm_file_start (void)
{
default_file_start ();
fprintf (asm_out_file, ASM_COMMENT_START
"GCC for S+core %s \n", SCORE_GCC_VERSION);
if (flag_pic)
fprintf (asm_out_file, "\t.set pic\n");
}
/* Implement TARGET_ASM_FILE_END. When using assembler macros, emit
.externs for any small-data variables that turned out to be external. */
void
score3_asm_file_end (void)
{
tree name_tree;
struct extern_list *p;
if (extern_head)
{
fputs ("\n", asm_out_file);
for (p = extern_head; p != 0; p = p->next)
{
name_tree = get_identifier (p->name);
if (!TREE_ASM_WRITTEN (name_tree)
&& TREE_SYMBOL_REFERENCED (name_tree))
{
TREE_ASM_WRITTEN (name_tree) = 1;
fputs ("\t.extern\t", asm_out_file);
assemble_name (asm_out_file, p->name);
fprintf (asm_out_file, ", %d\n", p->size);
}
}
}
}
/* Implement OVERRIDE_OPTIONS macro. */
void
score3_override_options (void)
{
flag_pic = false;
if (!flag_pic)
score3_sdata_max = g_switch_set ? g_switch_value : SCORE3_DEFAULT_SDATA_MAX;
else
{
score3_sdata_max = 0;
if (g_switch_set && (g_switch_value != 0))
warning (0, "-fPIC and -G are incompatible");
}
score_char_to_class['d'] = G32_REGS;
score_char_to_class['e'] = G16_REGS;
score_char_to_class['t'] = T32_REGS;
score_char_to_class['h'] = HI_REG;
score_char_to_class['l'] = LO_REG;
score_char_to_class['x'] = CE_REGS;
score_char_to_class['q'] = CN_REG;
score_char_to_class['y'] = LC_REG;
score_char_to_class['z'] = SC_REG;
score_char_to_class['a'] = SP_REGS;
score_char_to_class['c'] = CR_REGS;
}
/* Implement REGNO_REG_CLASS macro. */
int
score3_reg_class (int regno)
{
int c;
gcc_assert (regno >= 0 && regno < FIRST_PSEUDO_REGISTER);
if (regno == FRAME_POINTER_REGNUM
|| regno == ARG_POINTER_REGNUM)
return ALL_REGS;
for (c = 0; c < N_REG_CLASSES; c++)
if (TEST_HARD_REG_BIT (reg_class_contents[c], regno))
return c;
return NO_REGS;
}
/* Implement PREFERRED_RELOAD_CLASS macro. */
enum reg_class
score3_preferred_reload_class (rtx x ATTRIBUTE_UNUSED, enum reg_class class)
{
if (reg_class_subset_p (G16_REGS, class))
return G16_REGS;
if (reg_class_subset_p (G32_REGS, class))
return G32_REGS;
return class;
}
/* Implement SECONDARY_INPUT_RELOAD_CLASS
and SECONDARY_OUTPUT_RELOAD_CLASS macro. */
enum reg_class
score3_secondary_reload_class (enum reg_class class,
enum machine_mode mode ATTRIBUTE_UNUSED,
rtx x)
{
int regno = -1;
if (GET_CODE (x) == REG || GET_CODE(x) == SUBREG)
regno = true_regnum (x);
if (!GR_REG_CLASS_P (class))
return GP_REG_P (regno) ? NO_REGS : G32_REGS;
return NO_REGS;
}
/* Implement CONST_OK_FOR_LETTER_P macro. */
/* imm constraints
I imm16 << 16
J uimm5
K uimm16
L simm16
M uimm14
N simm14
O simm14
P simm5
Q uimm32 */
int
score3_const_ok_for_letter_p (HOST_WIDE_INT value, char c)
{
switch (c)
{
case 'I': return ((value & 0xffff) == 0);
case 'J': return IMM_IN_RANGE (value, 5, 0);
case 'K': return IMM_IN_RANGE (value, 16, 0);
case 'L': return IMM_IN_RANGE (value, 16, 1);
case 'M': return IMM_IN_RANGE (value, 14, 0);
case 'N': return IMM_IN_RANGE (value, 14, 1);
case 'O': return IMM_IN_RANGE (value, 5, 1);
case 'P': return IMM_IN_RANGE (value, 6, 1);
case 'Q': return score_extra_constraint (GEN_INT(value), c);
default : return 0;
}
}
/* Implement EXTRA_CONSTRAINT macro. */
/*
Q uimm32
Z symbol_ref */
int
score3_extra_constraint (rtx op, char c)
{
switch (c)
{
case 'Q': return IMM_IN_RANGE (INTVAL(op), 32, 0);
case 'Z':
return GET_CODE (op) == SYMBOL_REF;
default:
gcc_unreachable ();
}
}
/* Return truth value on whether or not a given hard register
can support a given mode. */
int
score3_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode)
{
int size = GET_MODE_SIZE (mode);
enum mode_class class = GET_MODE_CLASS (mode);
if (class == MODE_CC)
return regno == CC_REGNUM;
else if (regno == FRAME_POINTER_REGNUM
|| regno == ARG_POINTER_REGNUM)
return class == MODE_INT;
else if (GP_REG_P (regno))
return !(regno & 1) || (size <= UNITS_PER_WORD);
else if (CE_REG_P (regno))
return (class == MODE_INT
&& ((size <= UNITS_PER_WORD)
|| (regno == CE_REG_FIRST && size == 2 * UNITS_PER_WORD)));
else
return (class == MODE_INT) && (size <= UNITS_PER_WORD);
}
/* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame
pointer or argument pointer. TO is either the stack pointer or
hard frame pointer. */
HOST_WIDE_INT
score3_initial_elimination_offset (int from,
int to ATTRIBUTE_UNUSED)
{
struct score3_frame_info *f = score3_compute_frame_size (get_frame_size ());
switch (from)
{
case ARG_POINTER_REGNUM:
return f->total_size;
case FRAME_POINTER_REGNUM:
return 0;
default:
gcc_unreachable ();
}
}
/* Implement FUNCTION_ARG_ADVANCE macro. */
void
score3_function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
tree type, int named)
{
struct score3_arg_info info;
score3_classify_arg (cum, mode, type, named, &info);
cum->num_gprs = info.reg_offset + info.reg_words;
if (info.stack_words > 0)
cum->stack_words = info.stack_offset + info.stack_words;
cum->arg_number++;
}
/* Implement TARGET_ARG_PARTIAL_BYTES macro. */
int
score3_arg_partial_bytes (CUMULATIVE_ARGS *cum,
enum machine_mode mode, tree type, bool named)
{
struct score3_arg_info info;
score3_classify_arg (cum, mode, type, named, &info);
return info.stack_words > 0 ? info.reg_words * UNITS_PER_WORD : 0;
}
/* Implement FUNCTION_ARG macro. */
rtx
score3_function_arg (const CUMULATIVE_ARGS *cum, enum machine_mode mode,
tree type, int named)
{
struct score3_arg_info info;
if (mode == VOIDmode || !named)
return 0;
score3_classify_arg (cum, mode, type, named, &info);
if (info.reg_offset == ARG_REG_NUM)
return 0;
if (!info.stack_words)
return gen_rtx_REG (mode, ARG_REG_FIRST + info.reg_offset);
else
{
rtx ret = gen_rtx_PARALLEL (mode, rtvec_alloc (info.reg_words));
unsigned int i, part_offset = 0;
for (i = 0; i < info.reg_words; i++)
{
rtx reg;
reg = gen_rtx_REG (SImode, ARG_REG_FIRST + info.reg_offset + i);
XVECEXP (ret, 0, i) = gen_rtx_EXPR_LIST (SImode, reg,
GEN_INT (part_offset));
part_offset += UNITS_PER_WORD;
}
return ret;
}
}
/* Implement FUNCTION_VALUE and LIBCALL_VALUE. For normal calls,
VALTYPE is the return type and MODE is VOIDmode. For libcalls,
VALTYPE is null and MODE is the mode of the return value. */
rtx
score3_function_value (tree valtype, tree func ATTRIBUTE_UNUSED,
enum machine_mode mode)
{
if (valtype)
{
int unsignedp;
mode = TYPE_MODE (valtype);
unsignedp = TYPE_UNSIGNED (valtype);
mode = promote_mode (valtype, mode, &unsignedp, 1);
}
return gen_rtx_REG (mode, RT_REGNUM);
}
/* Implement INITIALIZE_TRAMPOLINE macro. */
void
score3_initialize_trampoline (rtx ADDR, rtx FUNC, rtx CHAIN)
{
#define FFCACHE "_flush_cache"
#define CODE_SIZE (TRAMPOLINE_INSNS * UNITS_PER_WORD)
rtx pfunc, pchain;
pfunc = plus_constant (ADDR, CODE_SIZE);
pchain = plus_constant (ADDR, CODE_SIZE + GET_MODE_SIZE (SImode));
emit_move_insn (gen_rtx_MEM (SImode, pfunc), FUNC);
emit_move_insn (gen_rtx_MEM (SImode, pchain), CHAIN);
emit_library_call (gen_rtx_SYMBOL_REF (Pmode, FFCACHE),
0, VOIDmode, 2,
ADDR, Pmode,
GEN_INT (TRAMPOLINE_SIZE), SImode);
#undef FFCACHE
#undef CODE_SIZE
}
/* This function is used to implement REG_MODE_OK_FOR_BASE_P macro. */
int
score3_regno_mode_ok_for_base_p (int regno, int strict)
{
if (regno >= FIRST_PSEUDO_REGISTER)
{
if (!strict)
return 1;
regno = reg_renumber[regno];
}
if (regno == ARG_POINTER_REGNUM
|| regno == FRAME_POINTER_REGNUM)
return 1;
return GP_REG_P (regno);
}
/* Implement GO_IF_LEGITIMATE_ADDRESS macro. */
int
score3_address_p (enum machine_mode mode, rtx x, int strict)
{
struct score3_address_info addr;
return score3_classify_address (&addr, mode, x, strict);
}
/* Return a number assessing the cost of moving a register in class
FROM to class TO. */
int
score3_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
enum reg_class from, enum reg_class to)
{
if (GR_REG_CLASS_P (from))
{
if (GR_REG_CLASS_P (to))
return 2;
else if (SP_REG_CLASS_P (to))
return 4;
else if (CP_REG_CLASS_P (to))
return 5;
else if (CE_REG_CLASS_P (to))
return 6;
}
if (GR_REG_CLASS_P (to))
{
if (GR_REG_CLASS_P (from))
return 2;
else if (SP_REG_CLASS_P (from))
return 4;
else if (CP_REG_CLASS_P (from))
return 5;
else if (CE_REG_CLASS_P (from))
return 6;
}
return 12;
}
/* Return the number of instructions needed to load a symbol of the
given type into a register. */
static int
score3_symbol_insns (enum score_symbol_type type)
{
switch (type)
{
case SYMBOL_GENERAL:
return 2;
case SYMBOL_SMALL_DATA:
return 1;
}
gcc_unreachable ();
}
/* Return the number of instructions needed to load or store a value
of mode MODE at X. Return 0 if X isn't valid for MODE. */
static int
score3_address_insns (rtx x, enum machine_mode mode)
{
struct score3_address_info addr;
int factor;
if (mode == BLKmode)
factor = 1;
else
factor = (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
if (score3_classify_address (&addr, mode, x, false))
switch (addr.type)
{
case SCORE3_ADD_REG:
case SCORE3_ADD_CONST_INT:
return factor;
case SCORE3_ADD_SYMBOLIC:
return factor * score3_symbol_insns (addr.symbol_type);
}
return 0;
}
/* Implement TARGET_RTX_COSTS macro. */
bool
score3_rtx_costs (rtx x, int code, int outer_code, int *total)
{
enum machine_mode mode = GET_MODE (x);
switch (code)
{
case CONST_INT:
if (outer_code == SET)
{
if (CONST_OK_FOR_LETTER_P (INTVAL (x), 'I')
|| CONST_OK_FOR_LETTER_P (INTVAL (x), 'L'))
*total = COSTS_N_INSNS (1);
else
*total = COSTS_N_INSNS (2);
}
else if (outer_code == PLUS || outer_code == MINUS)
{
if (CONST_OK_FOR_LETTER_P (INTVAL (x), 'N'))
*total = 0;
else if (CONST_OK_FOR_LETTER_P (INTVAL (x), 'I')
|| CONST_OK_FOR_LETTER_P (INTVAL (x), 'L'))
*total = 1;
else
*total = COSTS_N_INSNS (2);
}
else if (outer_code == AND || outer_code == IOR)
{
if (CONST_OK_FOR_LETTER_P (INTVAL (x), 'M'))
*total = 0;
else if (CONST_OK_FOR_LETTER_P (INTVAL (x), 'I')
|| CONST_OK_FOR_LETTER_P (INTVAL (x), 'K'))
*total = 1;
else
*total = COSTS_N_INSNS (2);
}
else
{
*total = 0;
}
return true;
case CONST:
case SYMBOL_REF:
case LABEL_REF:
case CONST_DOUBLE:
*total = COSTS_N_INSNS (2);
return true;
case MEM:
{
/* If the address is legitimate, return the number of
instructions it needs, otherwise use the default handling. */
int n = score3_address_insns (XEXP (x, 0), GET_MODE (x));
if (n > 0)
{
*total = COSTS_N_INSNS (n + 1);
return true;
}
return false;
}
case FFS:
*total = COSTS_N_INSNS (6);
return true;
case NOT:
*total = COSTS_N_INSNS (1);
return true;
case AND:
case IOR:
case XOR:
if (mode == DImode)
{
*total = COSTS_N_INSNS (2);
return true;
}
return false;
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
if (mode == DImode)
{
*total = COSTS_N_INSNS ((GET_CODE (XEXP (x, 1)) == CONST_INT)
? 4 : 12);
return true;
}
return false;
case ABS:
*total = COSTS_N_INSNS (4);
return true;
case PLUS:
case MINUS:
if (mode == DImode)
{
*total = COSTS_N_INSNS (4);
return true;
}
*total = COSTS_N_INSNS (1);
return true;
case NEG:
if (mode == DImode)
{
*total = COSTS_N_INSNS (4);
return true;
}
return false;
case MULT:
*total = optimize_size ? COSTS_N_INSNS (2) : COSTS_N_INSNS (12);
return true;
case DIV:
case MOD:
case UDIV:
case UMOD:
*total = optimize_size ? COSTS_N_INSNS (2) : COSTS_N_INSNS (33);
return true;
case SIGN_EXTEND:
case ZERO_EXTEND:
switch (GET_MODE (XEXP (x, 0)))
{
case QImode:
case HImode:
if (GET_CODE (XEXP (x, 0)) == MEM)
{
*total = COSTS_N_INSNS (2);
if (!TARGET_LITTLE_ENDIAN &&
side_effects_p (XEXP (XEXP (x, 0), 0)))
*total = 100;
}
else
*total = COSTS_N_INSNS (1);
break;
default:
*total = COSTS_N_INSNS (1);
break;
}
return true;
default:
return false;
}
}
/* Implement TARGET_ADDRESS_COST macro. */
int
score3_address_cost (rtx addr)
{
return score3_address_insns (addr, SImode);
}
/* Implement ASM_OUTPUT_EXTERNAL macro. */
int
score3_output_external (FILE *file ATTRIBUTE_UNUSED,
tree decl, const char *name)
{
register struct extern_list *p;
if (score3_in_small_data_p (decl))
{
p = (struct extern_list *) ggc_alloc (sizeof (struct extern_list));
p->next = extern_head;
p->name = name;
p->size = int_size_in_bytes (TREE_TYPE (decl));
extern_head = p;
}
return 0;
}
/* Implement RETURN_ADDR_RTX. Note, we do not support moving
back to a previous frame. */
rtx
score3_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
{
if (count != 0)
return const0_rtx;
return get_hard_reg_initial_val (Pmode, RA_REGNUM);
}
/* Implement PRINT_OPERAND macro. */
/* Score-specific operand codes:
'[' print .set nor1 directive
']' print .set r1 directive
'U' print hi part of a CONST_INT rtx
'E' print log2(v)
'F' print log2(~v)
'D' print SFmode const double
'S' selectively print "!" if operand is 15bit instruction accessible
'V' print "v!" if operand is 15bit instruction accessible, or "lfh!"
'L' low part of DImode reg operand
'H' high part of DImode reg operand
'C' print part of opcode for a branch condition. */
void
score3_print_operand (FILE *file, rtx op, int c)
{
enum rtx_code code = -1;
if (!PRINT_OPERAND_PUNCT_VALID_P (c))
code = GET_CODE (op);
if (c == '[')
{
fprintf (file, ".set r1\n");
}
else if (c == ']')
{
fprintf (file, "\n\t.set nor1");
}
else if (c == 'U')
{
gcc_assert (code == CONST_INT);
fprintf (file, HOST_WIDE_INT_PRINT_HEX,
(INTVAL (op) >> 16) & 0xffff);
}
else if (c == 'D')
{
if (GET_CODE (op) == CONST_DOUBLE)
{
rtx temp = gen_lowpart (SImode, op);
gcc_assert (GET_MODE (op) == SFmode);
fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (temp) & 0xffffffff);
}
else
output_addr_const (file, op);
}
else if (c == 'S')
{
gcc_assert (code == REG);
if (G16_REG_P (REGNO (op)))
fprintf (file, "!");
}
else if (c == 'V')
{
gcc_assert (code == REG);
fprintf (file, G16_REG_P (REGNO (op)) ? "v!" : "lfh!");
}
else if (c == 'C')
{
enum machine_mode mode = GET_MODE (XEXP (op, 0));
switch (code)
{
case EQ: fputs ("eq!", file); break;
case NE: fputs ("ne!", file); break;
case GT: fputs ("gt!", file); break;
case GE: fputs (mode != CCmode ? "pl" : "ge", file); break;
case LT: fputs (mode != CCmode ? "mi" : "lt", file); break;
case LE: fputs ("le!", file); break;
case GTU: fputs ("gtu!", file); break;
case GEU: fputs ("cs", file); break;
case LTU: fputs ("cc", file); break;
case LEU: fputs ("leu!", file); break;
default:
output_operand_lossage ("invalid operand for code: '%c'", code);
}
}
else if (c == 'G') /* Seperate from b<cond>, use for mv<cond>. */
{
enum machine_mode mode = GET_MODE (XEXP (op, 0));
switch (code)
{
case EQ: fputs ("eq", file); break;
case NE: fputs ("ne", file); break;
case GT: fputs ("gt", file); break;
case GE: fputs (mode != CCmode ? "pl" : "ge", file); break;
case LT: fputs (mode != CCmode ? "mi" : "lt", file); break;
case LE: fputs ("le", file); break;
case GTU: fputs ("gtu", file); break;
case GEU: fputs ("cs", file); break;
case LTU: fputs ("cc", file); break;
case LEU: fputs ("leu", file); break;
default:
output_operand_lossage ("invalid operand for code: '%c'", code);
}
}
else if (c == 'E')
{
unsigned HOST_WIDE_INT i;
unsigned HOST_WIDE_INT pow2mask = 1;
unsigned HOST_WIDE_INT val;
val = INTVAL (op);
for (i = 0; i < 32; i++)
{
if (val == pow2mask)
break;
pow2mask <<= 1;
}
gcc_assert (i < 32);
fprintf (file, HOST_WIDE_INT_PRINT_HEX, i);
}
else if (c == 'F')
{
unsigned HOST_WIDE_INT i;
unsigned HOST_WIDE_INT pow2mask = 1;
unsigned HOST_WIDE_INT val;
val = ~INTVAL (op);
for (i = 0; i < 32; i++)
{
if (val == pow2mask)
break;
pow2mask <<= 1;
}
gcc_assert (i < 32);
fprintf (file, HOST_WIDE_INT_PRINT_HEX, i);
}
else if (code == REG)
{
int regnum = REGNO (op);
if ((c == 'H' && !WORDS_BIG_ENDIAN)
|| (c == 'L' && WORDS_BIG_ENDIAN))
regnum ++;
fprintf (file, "%s", reg_names[regnum]);
}
else
{
switch (code)
{
case MEM:
score3_print_operand_address (file, op);
break;
default:
output_addr_const (file, op);
}
}
}
/* Implement PRINT_OPERAND_ADDRESS macro. */
void
score3_print_operand_address (FILE *file, rtx x)
{
struct score3_address_info addr;
enum rtx_code code = GET_CODE (x);
enum machine_mode mode = GET_MODE (x);
if (code == MEM)
x = XEXP (x, 0);
if (score3_classify_address (&addr, mode, x, true))
{
switch (addr.type)
{
case SCORE3_ADD_REG:
{
switch (addr.code)
{
case PRE_DEC:
fprintf (file, "[%s,-%ld]+", reg_names[REGNO (addr.reg)],
INTVAL (addr.offset));
break;
case POST_DEC:
fprintf (file, "[%s]+,-%ld", reg_names[REGNO (addr.reg)],
INTVAL (addr.offset));
break;
case PRE_INC:
fprintf (file, "[%s, %ld]+", reg_names[REGNO (addr.reg)],
INTVAL (addr.offset));
break;
case POST_INC:
fprintf (file, "[%s]+, %ld", reg_names[REGNO (addr.reg)],
INTVAL (addr.offset));
break;
default:
if (INTVAL(addr.offset) == 0)
fprintf(file, "[%s]", reg_names[REGNO (addr.reg)]);
else
fprintf(file, "[%s, %ld]", reg_names[REGNO (addr.reg)],
INTVAL(addr.offset));
break;
}
}
return;
case SCORE3_ADD_CONST_INT:
case SCORE3_ADD_SYMBOLIC:
output_addr_const (file, x);
return;
}
}
print_rtl (stderr, x);
gcc_unreachable ();
}
/* Implement SELECT_CC_MODE macro. */
enum machine_mode
score3_select_cc_mode (enum rtx_code op, rtx x, rtx y)
{
if ((op == EQ || op == NE || op == LT || op == GE)
&& y == const0_rtx
&& GET_MODE (x) == SImode)
{
switch (GET_CODE (x))
{
case PLUS:
case MINUS:
case NEG:
case AND:
case IOR:
case XOR:
case NOT:
case ASHIFT:
case LSHIFTRT:
case ASHIFTRT:
return CC_NZmode;
case SIGN_EXTEND:
case ZERO_EXTEND:
case ROTATE:
case ROTATERT:
return (op == LT || op == GE) ? CC_Nmode : CCmode;
default:
return CCmode;
}
}
if ((op == EQ || op == NE)
&& (GET_CODE (y) == NEG)
&& register_operand (XEXP (y, 0), SImode)
&& register_operand (x, SImode))
{
return CC_NZmode;
}
return CCmode;
}
#define EMIT_PL(_rtx) RTX_FRAME_RELATED_P (_rtx) = 1
/* return 0, no more bit set in mask. */
static int rpush_first (int mask, int sb, int *rd)
{
int i, cnt = 1;
if ((mask & (1 << sb)) == 0)
return 0;
*rd = sb;
for (i = sb-1; i >= 0; i--)
{
if (mask & (1 << i))
{
cnt ++;
continue;
}
*rd = i+1;
break;;
}
return cnt;
}
static void
rpush (int rd, int cnt)
{
rtx mem = gen_rtx_MEM (SImode, gen_rtx_PRE_DEC (SImode, stack_pointer_rtx));
rtx reg = gen_rtx_REG (SImode, rd);
if (!current_function_calls_eh_return)
MEM_READONLY_P (mem) = 1;
if (cnt == 1)
EMIT_PL (emit_insn (gen_pushsi_score3 (mem, reg)));
else
{
int i;
rtx insn = gen_store_multiple (gen_rtx_MEM (SImode, stack_pointer_rtx),
gen_rtx_REG (SImode, rd),
GEN_INT (cnt));
rtx pat = PATTERN (insn);
for (i = 0; i < XVECLEN (pat, 0); i++)
if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
RTX_FRAME_RELATED_P (XVECEXP (pat, 0, i)) = 1;
EMIT_PL (emit_insn (insn));
}
}
/* Generate the prologue instructions for entry into a S+core function. */
void
score3_prologue (void)
{
struct score3_frame_info *f = score3_compute_frame_size (get_frame_size ());
HOST_WIDE_INT size;
int regno;
size = f->total_size - f->gp_reg_size;
if (flag_pic)
emit_insn (gen_cpload_score3 ());
{
int cnt, rd;
for (regno = (int) GP_REG_LAST; regno >= (int) GP_REG_FIRST; regno--)
{
cnt = rpush_first (f->mask, regno, &rd);
if (cnt != 0)
{
rpush (rd, cnt);
regno = regno - cnt;
}
}
}
if (size > 0)
{
rtx insn;
if (CONST_OK_FOR_LETTER_P (-size, 'L'))
EMIT_PL (emit_insn (gen_add3_insn (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-size))));
else
{
EMIT_PL (emit_move_insn (gen_rtx_REG (Pmode, SCORE3_PROLOGUE_TEMP_REGNUM),
GEN_INT (size)));
EMIT_PL (emit_insn
(gen_sub3_insn (stack_pointer_rtx,
stack_pointer_rtx,
gen_rtx_REG (Pmode,
SCORE3_PROLOGUE_TEMP_REGNUM))));
}
insn = get_last_insn ();
REG_NOTES (insn) =
alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
gen_rtx_SET (VOIDmode, stack_pointer_rtx,
plus_constant (stack_pointer_rtx,
-size)),
REG_NOTES (insn));
}
if (frame_pointer_needed)
EMIT_PL (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx));
if (flag_pic && f->cprestore_size)
{
if (frame_pointer_needed)
emit_insn (gen_cprestore_use_fp_score3 (GEN_INT (size - f->cprestore_size)));
else
emit_insn (gen_cprestore_use_sp_score3 (GEN_INT (size - f->cprestore_size)));
}
}
/* return 0, no more bit set in mask. */
static int
rpop_first (int mask, int sb, int *rd)
{
int i, cnt = 1;
if ((mask & (1 << sb)) == 0)
return 0;
*rd = sb;
for (i = sb+1; i < 32; i++)
if (mask & (1 << i))
cnt++;
else
break;;
return cnt;
}
static void
rpop (int rd, int cnt)
{
rtx mem = gen_rtx_MEM (SImode, gen_rtx_POST_INC (SImode, stack_pointer_rtx));
rtx reg = gen_rtx_REG (SImode, rd);
if (!current_function_calls_eh_return)
MEM_READONLY_P (mem) = 1;
if (cnt == 1)
emit_insn (gen_popsi_score3 (reg, mem));
else
emit_insn (gen_load_multiple (reg,
gen_rtx_MEM (SImode, stack_pointer_rtx),
GEN_INT (cnt)));
}
/* Generate the epilogue instructions in a S+core function. */
void
score3_epilogue (int sibcall_p)
{
struct score3_frame_info *f = score3_compute_frame_size (get_frame_size ());
HOST_WIDE_INT size;
int regno;
rtx base;
size = f->total_size - f->gp_reg_size;
if (!frame_pointer_needed)
base = stack_pointer_rtx;
else
base = hard_frame_pointer_rtx;
if (size)
{
if (CONST_OK_FOR_LETTER_P (size, 'L'))
emit_insn (gen_add3_insn (base, base, GEN_INT (size)));
else
{
emit_move_insn (gen_rtx_REG (Pmode, SCORE3_EPILOGUE_TEMP_REGNUM),
GEN_INT (size));
emit_insn (gen_add3_insn (base, base,
gen_rtx_REG (Pmode,
SCORE3_EPILOGUE_TEMP_REGNUM)));
}
}
if (base != stack_pointer_rtx)
emit_move_insn (stack_pointer_rtx, base);
if (current_function_calls_eh_return)
emit_insn (gen_add3_insn (stack_pointer_rtx,
stack_pointer_rtx,
EH_RETURN_STACKADJ_RTX));
{
int cnt, rd;
for (regno = (int) GP_REG_FIRST; regno <= (int) GP_REG_LAST; regno++)
{
cnt = rpop_first (f->mask, regno, &rd);
if (cnt != 0)
{
rpop (rd, cnt);
regno = regno + cnt;
}
}
}
if (!sibcall_p)
emit_jump_insn (gen_return_internal_score3 (gen_rtx_REG (Pmode, RA_REGNUM)));
}
void
score3_gen_cmp (enum machine_mode mode)
{
emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_REG (mode, CC_REGNUM),
gen_rtx_COMPARE (mode, cmp_op0, cmp_op1)));
}
/* Return true if X is a symbolic constant that can be calculated in
the same way as a bare symbol. If it is, store the type of the
symbol in *SYMBOL_TYPE. */
int
score3_symbolic_constant_p (rtx x, enum score_symbol_type *symbol_type)
{
HOST_WIDE_INT offset;
score3_split_const (x, &x, &offset);
if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
*symbol_type = score3_classify_symbol (x);
else
return 0;
if (offset == 0)
return 1;
/* if offset > 15bit, must reload */
if (!IMM_IN_RANGE (offset, 15, 1))
return 0;
switch (*symbol_type)
{
case SYMBOL_GENERAL:
return 1;
case SYMBOL_SMALL_DATA:
return score3_offset_within_object_p (x, offset);
}
gcc_unreachable ();
}
void
score3_movsicc (rtx *ops)
{
enum machine_mode mode;
mode = score3_select_cc_mode (GET_CODE (ops[1]), ops[2], ops[3]);
emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_REG (mode, CC_REGNUM),
gen_rtx_COMPARE (mode, cmp_op0, cmp_op1)));
}
/* Call and sibcall pattern all need call this function. */
void
score3_call (rtx *ops, bool sib)
{
rtx addr = XEXP (ops[0], 0);
if (!call_insn_operand (addr, VOIDmode))
{
rtx oaddr = addr;
addr = gen_reg_rtx (Pmode);
gen_move_insn (addr, oaddr);
}
if (sib)
emit_call_insn (gen_sibcall_internal_score3 (addr, ops[1]));
else
emit_call_insn (gen_call_internal_score3 (addr, ops[1]));
}
/* Call value and sibcall value pattern all need call this function. */
void
score3_call_value (rtx *ops, bool sib)
{
rtx result = ops[0];
rtx addr = XEXP (ops[1], 0);
rtx arg = ops[2];
if (!call_insn_operand (addr, VOIDmode))
{
rtx oaddr = addr;
addr = gen_reg_rtx (Pmode);
gen_move_insn (addr, oaddr);
}
if (sib)
emit_call_insn (gen_sibcall_value_internal_score3 (result, addr, arg));
else
emit_call_insn (gen_call_value_internal_score3 (result, addr, arg));
}
/* Machine Split */
void
score3_movdi (rtx *ops)
{
rtx dst = ops[0];
rtx src = ops[1];
rtx dst0 = score3_subw (dst, 0);
rtx dst1 = score3_subw (dst, 1);
rtx src0 = score3_subw (src, 0);
rtx src1 = score3_subw (src, 1);
if (GET_CODE (dst0) == REG && reg_overlap_mentioned_p (dst0, src))
{
emit_move_insn (dst1, src1);
emit_move_insn (dst0, src0);
}
else
{
emit_move_insn (dst0, src0);
emit_move_insn (dst1, src1);
}
}
void
score3_zero_extract_andi (rtx *ops)
{
if (INTVAL (ops[1]) == 1 && const_uimm5 (ops[2], SImode))
emit_insn (gen_zero_extract_bittst_score3 (ops[0], ops[2]));
else
{
unsigned HOST_WIDE_INT mask;
mask = (0xffffffffU & ((1U << INTVAL (ops[1])) - 1U));
mask = mask << INTVAL (ops[2]);
emit_insn (gen_andsi3_cmp_score3 (ops[3], ops[0],
gen_int_mode (mask, SImode)));
}
}
const char *
score3_rpush (rtx *ops)
{
snprintf (score3_ins, INS_BUF_SZ, "rpush!\t%%1, %d", XVECLEN (ops[0], 0));
return score3_ins;
}
const char *
score3_rpop (rtx *ops)
{
snprintf (score3_ins, INS_BUF_SZ, "rpop!\t%%1, %d", XVECLEN (ops[0], 0));
return score3_ins;
}
/* Output asm code for ld/sw insn. */
static int
score3_pr_addr_post (rtx *ops, int idata, int iaddr, char *ip,
enum score_mem_unit unit ATTRIBUTE_UNUSED)
{
struct score3_address_info ai;
gcc_assert (GET_CODE (ops[idata]) == REG);
gcc_assert (score3_classify_address (&ai, SImode, XEXP (ops[iaddr], 0), true));
if (ai.type == SCORE3_ADD_REG
&& ai.code == REG
&& GET_CODE (ai.offset) == CONST_INT
&& G16_REG_P (REGNO (ops[idata]))
&& G8_REG_P (REGNO (ai.reg))
&& ((INTVAL (ai.offset) & 3) == 0)
&& (IMM_IN_RANGE (INTVAL (ai.offset), 7, 0)))
{
ops[iaddr] = ai.reg;
return snprintf (ip, INS_BUF_SZ, "!\t%%%d, [%%%d, "
HOST_WIDE_INT_PRINT_DEC "]",
idata, iaddr, INTVAL (ai.offset));
}
if (ai.type == SCORE3_ADD_SYMBOLIC)
return snprintf (ip, INS_BUF_SZ, "48\t%%%d, %%a%d", idata, iaddr);
return snprintf (ip, INS_BUF_SZ, "\t%%%d, %%a%d", idata, iaddr);
}
/* Output asm insn for load. */
const char *
score3_linsn (rtx *ops, enum score_mem_unit unit, bool sign)
{
const char *pre_ins[] =
{"lbu", "lhu", "lw", "??", "lb", "lh", "lw", "??"};
char *ip;
strcpy (score3_ins, pre_ins[(sign ? 4 : 0) + unit]);
ip = score3_ins + strlen (score3_ins);
if (unit == SCORE_WORD)
score3_pr_addr_post (ops, 0, 1, ip, unit);
else
snprintf (ip, INS_BUF_SZ, "\t%%0, %%a1");
return score3_ins;
}
/* Output asm insn for store. */
const char *
score3_sinsn (rtx *ops, enum score_mem_unit unit)
{
const char *pre_ins[] = {"sb", "sh", "sw"};
char *ip;
strcpy (score3_ins, pre_ins[unit]);
ip = score3_ins + strlen (score3_ins);
if (unit == SCORE_WORD)
score3_pr_addr_post (ops, 1, 0, ip, unit);
else
snprintf (ip, INS_BUF_SZ, "\t%%1, %%a0");
return score3_ins;
}
/* Output asm insn for load immediate. */
const char *
score3_limm (rtx *ops)
{
HOST_WIDE_INT v;
gcc_assert (GET_CODE (ops[0]) == REG);
gcc_assert (GET_CODE (ops[1]) == CONST_INT);
v = INTVAL (ops[1]);
if (G16_REG_P (REGNO (ops[0])) && IMM_IN_RANGE (v, 5, 0))
return "ldiu!\t%0, %c1";
else if (IMM_IN_RANGE (v, 16, 1))
return "ldi\t%0, %c1";
else if ((v & 0xffff) == 0)
return "ldis\t%0, %U1";
else
return "li\t%0, %c1";
}
/* Output asm insn for move. */
const char *
score3_move (rtx *ops)
{
gcc_assert (GET_CODE (ops[0]) == REG);
gcc_assert (GET_CODE (ops[1]) == REG);
return "mv!\t%0, %1";
}
/* Generate add insn. */
const char *
score3_select_add_imm (rtx *ops, bool set_cc)
{
HOST_WIDE_INT v = INTVAL (ops[2]);
gcc_assert (GET_CODE (ops[2]) == CONST_INT);
gcc_assert (REGNO (ops[0]) == REGNO (ops[1]));
if (set_cc)
return "addi.c\t%0, %c2";
else
if (IMM_IN_RANGE (v, 6, 1) && G16_REG_P (REGNO (ops[0])))
return "addi!\t%0, %c2";
else
return "addi\t%0, %c2";
}
/* Output arith insn. */
const char *
score3_select (rtx *ops, const char *inst_pre, bool commu ATTRIBUTE_UNUSED,
const char *letter, bool set_cc)
{
gcc_assert (GET_CODE (ops[0]) == REG);
gcc_assert (GET_CODE (ops[1]) == REG);
if (set_cc)
snprintf (score3_ins, INS_BUF_SZ, "%s.c\t%%0, %%1, %%%s2", inst_pre, letter);
else
snprintf (score3_ins, INS_BUF_SZ, "%s\t%%0, %%1, %%%s2", inst_pre, letter);
return score3_ins;
}
/* Output a Score3 casesi instruction. */
const char *
score3_output_casesi (rtx *operands)
{
rtx diff_vec = PATTERN (next_real_insn (operands[2]));
gcc_assert (GET_CODE (diff_vec) == ADDR_DIFF_VEC);
output_asm_insn ("cmpi.c\t%0, %1", operands);
output_asm_insn ("bgtu\t%3", operands);
switch (GET_MODE(diff_vec))
{
case QImode:
output_asm_insn ("ldi48\t%4, %2", operands);
output_asm_insn ("ltbb\t%4, [%4, %0]\n%2_tbb:", operands);
return "brr!\t%4";
case HImode:
output_asm_insn ("ldi48\t%4, %2", operands);
output_asm_insn ("ltbh\t%4, [%4, %0]\n%2_tbb:", operands);
return "brr!\t%4";
case SImode:
output_asm_insn ("ldi48\t%4, %2", operands);
output_asm_insn ("ltbw\t%4, [%4, %0]", operands);
return "br!\t%4";
default:
gcc_unreachable ();
}
}
/* score3.h for Sunplus S+CORE processor
Copyright (C) 2005, 2007 Free Software Foundation, Inc.
Contributed by Sunnorth
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_SCORE3_H
#define GCC_SCORE3_H
enum score3_address_type
{
SCORE3_ADD_REG,
SCORE3_ADD_CONST_INT,
SCORE3_ADD_SYMBOLIC
};
struct score3_frame_info
{
HOST_WIDE_INT total_size; /* bytes that the entire frame takes up */
HOST_WIDE_INT var_size; /* bytes that variables take up */
HOST_WIDE_INT args_size; /* bytes that outgoing arguments take up */
HOST_WIDE_INT gp_reg_size; /* bytes needed to store gp regs */
HOST_WIDE_INT gp_sp_offset; /* offset from new sp to store gp registers */
HOST_WIDE_INT cprestore_size; /* # bytes that the .cprestore slot takes up */
unsigned int mask; /* mask of saved gp registers */
int num_gp; /* number of gp registers saved */
};
struct score3_arg_info
{
unsigned int num_bytes; /* The argument's size in bytes */
unsigned int reg_words; /* The number of words passed in registers */
unsigned int reg_offset; /* The offset of the first register from */
/* GP_ARG_FIRST or FP_ARG_FIRST etc */
unsigned int stack_words; /* The number of words that must be passed */
/* on the stack */
unsigned int stack_offset; /* The offset from the start of the stack */
/* overflow area */
};
#ifdef RTX_CODE
struct score3_address_info
{
enum score3_address_type type;
rtx reg;
rtx offset;
enum rtx_code code;
enum score_symbol_type symbol_type;
};
#endif
#define SCORE3_SDATA_MAX score3_sdata_max
#define SCORE3_STACK_ALIGN(LOC) (((LOC) + 3) & ~3)
#define SCORE3_PROLOGUE_TEMP_REGNUM (GP_REG_FIRST + 8)
#define SCORE3_EPILOGUE_TEMP_REGNUM (GP_REG_FIRST + 8)
#define SCORE3_DEFAULT_SDATA_MAX 8
extern int score3_symbolic_constant_p (rtx x,
enum score_symbol_type *symbol_type);
extern bool score3_return_in_memory (tree type,
tree fndecl ATTRIBUTE_UNUSED);
extern void score3_output_mi_thunk (FILE *file,
tree thunk_fndecl ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta,
HOST_WIDE_INT vcall_offset,
tree function);
extern int score3_legitimize_address (rtx *xloc);
extern void
score3_function_prologue (FILE *file,
HOST_WIDE_INT size ATTRIBUTE_UNUSED);
extern void
score3_function_epilogue (FILE *file,
HOST_WIDE_INT size ATTRIBUTE_UNUSED);
extern section *score3_select_rtx_section (enum machine_mode mode, rtx x,
unsigned HOST_WIDE_INT align);
extern bool score3_in_small_data_p (tree decl);
extern void score3_asm_file_start (void);
extern void score3_asm_file_end (void);
extern void score3_override_options (void);
extern int score3_reg_class (int regno);
extern enum reg_class score3_preferred_reload_class (rtx x ATTRIBUTE_UNUSED,
enum reg_class class);
extern enum reg_class
score3_secondary_reload_class (enum reg_class class,
enum machine_mode mode ATTRIBUTE_UNUSED,
rtx x);
extern int score3_const_ok_for_letter_p (HOST_WIDE_INT value, char c);
extern int score3_extra_constraint (rtx op, char c);
extern int score3_hard_regno_mode_ok (unsigned int regno,
enum machine_mode mode);
extern HOST_WIDE_INT
score3_initial_elimination_offset (int from,
int to ATTRIBUTE_UNUSED);
extern void score3_function_arg_advance (CUMULATIVE_ARGS *cum,
enum machine_mode mode,
tree type,
int named);
extern int score3_arg_partial_bytes (CUMULATIVE_ARGS *cum,
enum machine_mode mode,
tree type,
bool named);
extern rtx score3_function_arg (const CUMULATIVE_ARGS *cum,
enum machine_mode mode,
tree type,
int named);
extern rtx score3_function_value (tree valtype,
tree func ATTRIBUTE_UNUSED,
enum machine_mode mode);
extern void score3_initialize_trampoline (rtx ADDR, rtx FUNC, rtx CHAIN);
extern int score3_regno_mode_ok_for_base_p (int regno, int strict);
extern int score3_address_p (enum machine_mode mode, rtx x, int strict);
extern int score3_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
enum reg_class from,
enum reg_class to);
extern bool score3_rtx_costs (rtx x, int code, int outer_code, int *total);
extern int score3_address_cost (rtx addr);
extern int score3_output_external (FILE *file ATTRIBUTE_UNUSED,
tree decl,
const char *name);
extern rtx score3_return_addr (int count, rtx frame ATTRIBUTE_UNUSED);
extern void score3_print_operand (FILE *file, rtx op, int c);
extern void score3_print_operand_address (FILE *file, rtx x);
extern enum machine_mode
score3_select_cc_mode (enum rtx_code op, rtx x, rtx y);
extern void score3_prologue (void);
extern void score3_epilogue (int sibcall_p);
extern void score3_gen_cmp (enum machine_mode mode);
extern void score3_call (rtx *ops, bool sib);
extern void score3_call_value (rtx *ops, bool sib);
extern void score3_movsicc (rtx *ops);
extern void score3_movdi (rtx *ops);
extern void score3_zero_extract_andi (rtx *ops);
extern const char * score3_select_add_imm (rtx *ops, bool set_cc);
extern const char * score3_select (rtx *ops, const char *inst_pre, bool commu,
const char *letter, bool set_cc);
extern const char * score3_move (rtx *ops);
extern const char * score3_limm (rtx *ops);
extern const char *
score3_linsn (rtx *ops, enum score_mem_unit unit, bool sign);
extern const char *
score3_sinsn (rtx *ops, enum score_mem_unit unit);
extern const char * score3_output_casesi (rtx *operands);
extern const char * score3_rpush (rtx *ops);
extern const char * score3_rpop (rtx *ops);
#endif
/* score7.c for Sunplus S+CORE processor
Copyright (C) 2005, 2007 Free Software Foundation, Inc.
Contributed by Sunnorth
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-attr.h"
#include "recog.h"
#include "toplev.h"
#include "output.h"
#include "tree.h"
#include "function.h"
#include "expr.h"
#include "optabs.h"
#include "flags.h"
#include "reload.h"
#include "tm_p.h"
#include "ggc.h"
#include "gstab.h"
#include "hashtab.h"
#include "debug.h"
#include "target.h"
#include "target-def.h"
#include "integrate.h"
#include "langhooks.h"
#include "cfglayout.h"
#include "score7.h"
#define BITSET_P(VALUE, BIT) (((VALUE) & (1L << (BIT))) != 0)
#define INS_BUF_SZ 128
/* Define the information needed to generate branch insns. This is
stored from the compare operation. */
extern rtx cmp_op0, cmp_op1;
extern enum reg_class score_char_to_class[256];
static int score7_sdata_max;
static char score7_ins[INS_BUF_SZ + 8];
/* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
to the same object as SYMBOL. */
static int
score7_offset_within_object_p (rtx symbol, HOST_WIDE_INT offset)
{
if (GET_CODE (symbol) != SYMBOL_REF)
return 0;
if (CONSTANT_POOL_ADDRESS_P (symbol)
&& offset >= 0
&& offset < (int)GET_MODE_SIZE (get_pool_mode (symbol)))
return 1;
if (SYMBOL_REF_DECL (symbol) != 0
&& offset >= 0
&& offset < int_size_in_bytes (TREE_TYPE (SYMBOL_REF_DECL (symbol))))
return 1;
return 0;
}
/* Split X into a base and a constant offset, storing them in *BASE
and *OFFSET respectively. */
static void
score7_split_const (rtx x, rtx *base, HOST_WIDE_INT *offset)
{
*offset = 0;
if (GET_CODE (x) == CONST)
x = XEXP (x, 0);
if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
{
*offset += INTVAL (XEXP (x, 1));
x = XEXP (x, 0);
}
*base = x;
}
/* Classify symbol X, which must be a SYMBOL_REF or a LABEL_REF. */
static enum score_symbol_type
score7_classify_symbol (rtx x)
{
if (GET_CODE (x) == LABEL_REF)
return SYMBOL_GENERAL;
gcc_assert (GET_CODE (x) == SYMBOL_REF);
if (CONSTANT_POOL_ADDRESS_P (x))
{
if (GET_MODE_SIZE (get_pool_mode (x)) <= SCORE7_SDATA_MAX)
return SYMBOL_SMALL_DATA;
return SYMBOL_GENERAL;
}
if (SYMBOL_REF_SMALL_P (x))
return SYMBOL_SMALL_DATA;
return SYMBOL_GENERAL;
}
/* Return true if the current function must save REGNO. */
static int
score7_save_reg_p (unsigned int regno)
{
/* Check call-saved registers. */
if (df_regs_ever_live_p (regno) && !call_used_regs[regno])
return 1;
/* We need to save the old frame pointer before setting up a new one. */
if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed)
return 1;
/* We need to save the incoming return address if it is ever clobbered
within the function. */
if (regno == RA_REGNUM && df_regs_ever_live_p (regno))
return 1;
return 0;
}
/* Return one word of double-word value OP, taking into account the fixed
endianness of certain registers. HIGH_P is true to select the high part,
false to select the low part. */
static rtx
score7_subw (rtx op, int high_p)
{
unsigned int byte;
enum machine_mode mode = GET_MODE (op);
if (mode == VOIDmode)
mode = DImode;
byte = (TARGET_LITTLE_ENDIAN ? high_p : !high_p) ? UNITS_PER_WORD : 0;
if (GET_CODE (op) == REG && REGNO (op) == HI_REGNUM)
return gen_rtx_REG (SImode, high_p ? HI_REGNUM : LO_REGNUM);
if (GET_CODE (op) == MEM)
return adjust_address (op, SImode, byte);
return simplify_gen_subreg (SImode, op, mode, byte);
}
static struct score7_frame_info *
score7_cached_frame (void)
{
static struct score7_frame_info _frame_info;
return &_frame_info;
}
/* Return the bytes needed to compute the frame pointer from the current
stack pointer. SIZE is the size (in bytes) of the local variables. */
static struct score7_frame_info *
score7_compute_frame_size (HOST_WIDE_INT size)
{
unsigned int regno;
struct score7_frame_info *f = score7_cached_frame ();
memset (f, 0, sizeof (struct score7_frame_info));
f->gp_reg_size = 0;
f->mask = 0;
f->var_size = SCORE7_STACK_ALIGN (size);
f->args_size = current_function_outgoing_args_size;
f->cprestore_size = flag_pic ? UNITS_PER_WORD : 0;
if (f->var_size == 0 && current_function_is_leaf)
f->args_size = f->cprestore_size = 0;
if (f->args_size == 0 && current_function_calls_alloca)
f->args_size = UNITS_PER_WORD;
f->total_size = f->var_size + f->args_size + f->cprestore_size;
for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
{
if (score7_save_reg_p (regno))
{
f->gp_reg_size += GET_MODE_SIZE (SImode);
f->mask |= 1 << (regno - GP_REG_FIRST);
}
}
if (current_function_calls_eh_return)
{
unsigned int i;
for (i = 0;; ++i)
{
regno = EH_RETURN_DATA_REGNO (i);
if (regno == INVALID_REGNUM)
break;
f->gp_reg_size += GET_MODE_SIZE (SImode);
f->mask |= 1 << (regno - GP_REG_FIRST);
}
}
f->total_size += f->gp_reg_size;
f->num_gp = f->gp_reg_size / UNITS_PER_WORD;
if (f->mask)
{
HOST_WIDE_INT offset;
offset = (f->args_size + f->cprestore_size + f->var_size
+ f->gp_reg_size - GET_MODE_SIZE (SImode));
f->gp_sp_offset = offset;
}
else
f->gp_sp_offset = 0;
return f;
}
/* Return true if X is a valid base register for the given mode.
Allow only hard registers if STRICT. */
static int
score7_valid_base_register_p (rtx x, int strict)
{
if (!strict && GET_CODE (x) == SUBREG)
x = SUBREG_REG (x);
return (GET_CODE (x) == REG
&& score7_regno_mode_ok_for_base_p (REGNO (x), strict));
}
/* Return true if X is a valid address for machine mode MODE. If it is,
fill in INFO appropriately. STRICT is true if we should only accept
hard base registers. */
static int
score7_classify_address (struct score7_address_info *info,
enum machine_mode mode, rtx x, int strict)
{
info->code = GET_CODE (x);
switch (info->code)
{
case REG:
case SUBREG:
info->type = SCORE7_ADD_REG;
info->reg = x;
info->offset = const0_rtx;
return score7_valid_base_register_p (info->reg, strict);
case PLUS:
info->type = SCORE7_ADD_REG;
info->reg = XEXP (x, 0);
info->offset = XEXP (x, 1);
return (score7_valid_base_register_p (info->reg, strict)
&& GET_CODE (info->offset) == CONST_INT
&& IMM_IN_RANGE (INTVAL (info->offset), 15, 1));
case PRE_DEC:
case POST_DEC:
case PRE_INC:
case POST_INC:
if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (SImode))
return false;
info->type = SCORE7_ADD_REG;
info->reg = XEXP (x, 0);
info->offset = GEN_INT (GET_MODE_SIZE (mode));
return score7_valid_base_register_p (info->reg, strict);
case CONST_INT:
info->type = SCORE7_ADD_CONST_INT;
return IMM_IN_RANGE (INTVAL (x), 15, 1);
case CONST:
case LABEL_REF:
case SYMBOL_REF:
info->type = SCORE7_ADD_SYMBOLIC;
return (score7_symbolic_constant_p (x, &info->symbol_type)
&& (info->symbol_type == SYMBOL_GENERAL
|| info->symbol_type == SYMBOL_SMALL_DATA));
default:
return 0;
}
}
bool
score7_return_in_memory (tree type, tree fndecl ATTRIBUTE_UNUSED)
{
return ((TYPE_MODE (type) == BLKmode)
|| (int_size_in_bytes (type) > 2 * UNITS_PER_WORD)
|| (int_size_in_bytes (type) == -1));
}
/* Return a legitimate address for REG + OFFSET. */
static rtx
score7_add_offset (rtx reg, HOST_WIDE_INT offset)
{
if (!IMM_IN_RANGE (offset, 15, 1))
{
reg = expand_simple_binop (GET_MODE (reg), PLUS,
gen_int_mode (offset & 0xffffc000,
GET_MODE (reg)),
reg, NULL, 0, OPTAB_WIDEN);
offset &= 0x3fff;
}
return plus_constant (reg, offset);
}
/* Implement TARGET_ASM_OUTPUT_MI_THUNK. Generate rtl rather than asm text
in order to avoid duplicating too much logic from elsewhere. */
void
score7_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
tree function)
{
rtx this, temp1, insn, fnaddr;
/* Pretend to be a post-reload pass while generating rtl. */
reload_completed = 1;
/* Mark the end of the (empty) prologue. */
emit_note (NOTE_INSN_PROLOGUE_END);
/* We need two temporary registers in some cases. */
temp1 = gen_rtx_REG (Pmode, 8);
/* Find out which register contains the "this" pointer. */
if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
this = gen_rtx_REG (Pmode, ARG_REG_FIRST + 1);
else
this = gen_rtx_REG (Pmode, ARG_REG_FIRST);
/* Add DELTA to THIS. */
if (delta != 0)
{
rtx offset = GEN_INT (delta);
if (!CONST_OK_FOR_LETTER_P (delta, 'L'))
{
emit_move_insn (temp1, offset);
offset = temp1;
}
emit_insn (gen_add3_insn (this, this, offset));
}
/* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
if (vcall_offset != 0)
{
rtx addr;
/* Set TEMP1 to *THIS. */
emit_move_insn (temp1, gen_rtx_MEM (Pmode, this));
/* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET. */
addr = score7_add_offset (temp1, vcall_offset);
/* Load the offset and add it to THIS. */
emit_move_insn (temp1, gen_rtx_MEM (Pmode, addr));
emit_insn (gen_add3_insn (this, this, temp1));
}
/* Jump to the target function. */
fnaddr = XEXP (DECL_RTL (function), 0);
insn = emit_call_insn (gen_sibcall_internal_score7 (fnaddr, const0_rtx));
SIBLING_CALL_P (insn) = 1;
/* Run just enough of rest_of_compilation. This sequence was
"borrowed" from alpha.c. */
insn = get_insns ();
insn_locators_alloc ();
split_all_insns_noflow ();
shorten_branches (insn);
final_start_function (insn, file, 1);
final (insn, file, 1);
final_end_function ();
/* Clean up the vars set above. Note that final_end_function resets
the global pointer for us. */
reload_completed = 0;
}
/* Copy VALUE to a register and return that register. If new psuedos
are allowed, copy it into a new register, otherwise use DEST. */
static rtx
score7_force_temporary (rtx dest, rtx value)
{
if (can_create_pseudo_p ())
return force_reg (Pmode, value);
else
{
emit_move_insn (copy_rtx (dest), value);
return dest;
}
}
/* Return a LO_SUM expression for ADDR. TEMP is as for score_force_temporary
and is used to load the high part into a register. */
static rtx
score7_split_symbol (rtx temp, rtx addr)
{
rtx high = score7_force_temporary (temp,
gen_rtx_HIGH (Pmode, copy_rtx (addr)));
return gen_rtx_LO_SUM (Pmode, high, addr);
}
/* This function is used to implement LEGITIMIZE_ADDRESS. If *XLOC can
be legitimized in a way that the generic machinery might not expect,
put the new address in *XLOC and return true. */
int
score7_legitimize_address (rtx *xloc)
{
enum score_symbol_type symbol_type;
if (score7_symbolic_constant_p (*xloc, &symbol_type)
&& symbol_type == SYMBOL_GENERAL)
{
*xloc = score7_split_symbol (0, *xloc);
return 1;
}
if (GET_CODE (*xloc) == PLUS
&& GET_CODE (XEXP (*xloc, 1)) == CONST_INT)
{
rtx reg = XEXP (*xloc, 0);
if (!score7_valid_base_register_p (reg, 0))
reg = copy_to_mode_reg (Pmode, reg);
*xloc = score7_add_offset (reg, INTVAL (XEXP (*xloc, 1)));
return 1;
}
return 0;
}
/* Fill INFO with information about a single argument. CUM is the
cumulative state for earlier arguments. MODE is the mode of this
argument and TYPE is its type (if known). NAMED is true if this
is a named (fixed) argument rather than a variable one. */
static void
score7_classify_arg (const CUMULATIVE_ARGS *cum, enum machine_mode mode,
tree type, int named, struct score7_arg_info *info)
{
int even_reg_p;
unsigned int num_words, max_regs;
even_reg_p = 0;
if (GET_MODE_CLASS (mode) == MODE_INT
|| GET_MODE_CLASS (mode) == MODE_FLOAT)
even_reg_p = (GET_MODE_SIZE (mode) > UNITS_PER_WORD);
else
if (type != NULL_TREE && TYPE_ALIGN (type) > BITS_PER_WORD && named)
even_reg_p = 1;
if (TARGET_MUST_PASS_IN_STACK (mode, type))
info->reg_offset = ARG_REG_NUM;
else
{
info->reg_offset = cum->num_gprs;
if (even_reg_p)
info->reg_offset += info->reg_offset & 1;
}
if (mode == BLKmode)
info->num_bytes = int_size_in_bytes (type);
else
info->num_bytes = GET_MODE_SIZE (mode);
num_words = (info->num_bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
max_regs = ARG_REG_NUM - info->reg_offset;
/* Partition the argument between registers and stack. */
info->reg_words = MIN (num_words, max_regs);
info->stack_words = num_words - info->reg_words;
/* The alignment applied to registers is also applied to stack arguments. */
if (info->stack_words)
{
info->stack_offset = cum->stack_words;
if (even_reg_p)
info->stack_offset += info->stack_offset & 1;
}
}
/* Set up the stack and frame (if desired) for the function. */
void
score7_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
const char *fnname;
struct score7_frame_info *f = score7_cached_frame ();
HOST_WIDE_INT tsize = f->total_size;
fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
if (!flag_inhibit_size_directive)
{
fputs ("\t.ent\t", file);
assemble_name (file, fnname);
fputs ("\n", file);
}
assemble_name (file, fnname);
fputs (":\n", file);
if (!flag_inhibit_size_directive)
{
fprintf (file,
"\t.frame\t%s," HOST_WIDE_INT_PRINT_DEC ",%s, %d\t\t"
"# vars= " HOST_WIDE_INT_PRINT_DEC ", regs= %d"
", args= " HOST_WIDE_INT_PRINT_DEC
", gp= " HOST_WIDE_INT_PRINT_DEC "\n",
(reg_names[(frame_pointer_needed)
? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM]),
tsize,
reg_names[RA_REGNUM],
current_function_is_leaf ? 1 : 0,
f->var_size,
f->num_gp,
f->args_size,
f->cprestore_size);
fprintf(file, "\t.mask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n",
f->mask,
(f->gp_sp_offset - f->total_size));
}
}
/* Do any necessary cleanup after a function to restore stack, frame,
and regs. */
void
score7_function_epilogue (FILE *file,
HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
if (!flag_inhibit_size_directive)
{
const char *fnname;
fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
fputs ("\t.end\t", file);
assemble_name (file, fnname);
fputs ("\n", file);
}
}
/* Returns true if X contains a SYMBOL_REF. */
static bool
score7_symbolic_expression_p (rtx x)
{
if (GET_CODE (x) == SYMBOL_REF)
return true;
if (GET_CODE (x) == CONST)
return score7_symbolic_expression_p (XEXP (x, 0));
if (UNARY_P (x))
return score7_symbolic_expression_p (XEXP (x, 0));
if (ARITHMETIC_P (x))
return (score7_symbolic_expression_p (XEXP (x, 0))
|| score7_symbolic_expression_p (XEXP (x, 1)));
return false;
}
/* Choose the section to use for the constant rtx expression X that has
mode MODE. */
section *
score7_select_rtx_section (enum machine_mode mode, rtx x,
unsigned HOST_WIDE_INT align)
{
if (GET_MODE_SIZE (mode) <= SCORE7_SDATA_MAX)
return get_named_section (0, ".sdata", 0);
else if (flag_pic && score7_symbolic_expression_p (x))
return get_named_section (0, ".data.rel.ro", 3);
else
return mergeable_constant_section (mode, align, 0);
}
/* Implement TARGET_IN_SMALL_DATA_P. */
bool
score7_in_small_data_p (tree decl)
{
HOST_WIDE_INT size;
if (TREE_CODE (decl) == STRING_CST
|| TREE_CODE (decl) == FUNCTION_DECL)
return false;
if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl) != 0)
{
const char *name;
name = TREE_STRING_POINTER (DECL_SECTION_NAME (decl));
if (strcmp (name, ".sdata") != 0
&& strcmp (name, ".sbss") != 0)
return true;
if (!DECL_EXTERNAL (decl))
return false;
}
size = int_size_in_bytes (TREE_TYPE (decl));
return (size > 0 && size <= SCORE7_SDATA_MAX);
}
/* Implement TARGET_ASM_FILE_START. */
void
score7_asm_file_start (void)
{
default_file_start ();
fprintf (asm_out_file, ASM_COMMENT_START
"GCC for S+core %s \n", SCORE_GCC_VERSION);
if (flag_pic)
fprintf (asm_out_file, "\t.set pic\n");
}
/* Implement TARGET_ASM_FILE_END. When using assembler macros, emit
.externs for any small-data variables that turned out to be external. */
void
score7_asm_file_end (void)
{
tree name_tree;
struct extern_list *p;
if (extern_head)
{
fputs ("\n", asm_out_file);
for (p = extern_head; p != 0; p = p->next)
{
name_tree = get_identifier (p->name);
if (!TREE_ASM_WRITTEN (name_tree)
&& TREE_SYMBOL_REFERENCED (name_tree))
{
TREE_ASM_WRITTEN (name_tree) = 1;
fputs ("\t.extern\t", asm_out_file);
assemble_name (asm_out_file, p->name);
fprintf (asm_out_file, ", %d\n", p->size);
}
}
}
}
/* Implement OVERRIDE_OPTIONS macro. */
void
score7_override_options (void)
{
flag_pic = false;
if (!flag_pic)
score7_sdata_max = g_switch_set ? g_switch_value : SCORE7_DEFAULT_SDATA_MAX;
else
{
score7_sdata_max = 0;
if (g_switch_set && (g_switch_value != 0))
warning (0, "-fPIC and -G are incompatible");
}
score_char_to_class['d'] = G32_REGS;
score_char_to_class['e'] = G16_REGS;
score_char_to_class['t'] = T32_REGS;
score_char_to_class['h'] = HI_REG;
score_char_to_class['l'] = LO_REG;
score_char_to_class['x'] = CE_REGS;
score_char_to_class['q'] = CN_REG;
score_char_to_class['y'] = LC_REG;
score_char_to_class['z'] = SC_REG;
score_char_to_class['a'] = SP_REGS;
score_char_to_class['c'] = CR_REGS;
}
/* Implement REGNO_REG_CLASS macro. */
int
score7_reg_class (int regno)
{
int c;
gcc_assert (regno >= 0 && regno < FIRST_PSEUDO_REGISTER);
if (regno == FRAME_POINTER_REGNUM
|| regno == ARG_POINTER_REGNUM)
return ALL_REGS;
for (c = 0; c < N_REG_CLASSES; c++)
if (TEST_HARD_REG_BIT (reg_class_contents[c], regno))
return c;
return NO_REGS;
}
/* Implement PREFERRED_RELOAD_CLASS macro. */
enum reg_class
score7_preferred_reload_class (rtx x ATTRIBUTE_UNUSED, enum reg_class class)
{
if (reg_class_subset_p (G16_REGS, class))
return G16_REGS;
if (reg_class_subset_p (G32_REGS, class))
return G32_REGS;
return class;
}
/* Implement SECONDARY_INPUT_RELOAD_CLASS
and SECONDARY_OUTPUT_RELOAD_CLASS macro. */
enum reg_class
score7_secondary_reload_class (enum reg_class class,
enum machine_mode mode ATTRIBUTE_UNUSED,
rtx x)
{
int regno = -1;
if (GET_CODE (x) == REG || GET_CODE(x) == SUBREG)
regno = true_regnum (x);
if (!GR_REG_CLASS_P (class))
return GP_REG_P (regno) ? NO_REGS : G32_REGS;
return NO_REGS;
}
/* Implement CONST_OK_FOR_LETTER_P macro. */
/* imm constraints
I imm16 << 16
J uimm5
K uimm16
L simm16
M uimm14
N simm14 */
int
score7_const_ok_for_letter_p (HOST_WIDE_INT value, char c)
{
switch (c)
{
case 'I': return ((value & 0xffff) == 0);
case 'J': return IMM_IN_RANGE (value, 5, 0);
case 'K': return IMM_IN_RANGE (value, 16, 0);
case 'L': return IMM_IN_RANGE (value, 16, 1);
case 'M': return IMM_IN_RANGE (value, 14, 0);
case 'N': return IMM_IN_RANGE (value, 14, 1);
default : return 0;
}
}
/* Implement EXTRA_CONSTRAINT macro. */
/* Z symbol_ref */
int
score7_extra_constraint (rtx op, char c)
{
switch (c)
{
case 'Z':
return GET_CODE (op) == SYMBOL_REF;
default:
gcc_unreachable ();
}
}
/* Return truth value on whether or not a given hard register
can support a given mode. */
int
score7_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode)
{
int size = GET_MODE_SIZE (mode);
enum mode_class class = GET_MODE_CLASS (mode);
if (class == MODE_CC)
return regno == CC_REGNUM;
else if (regno == FRAME_POINTER_REGNUM
|| regno == ARG_POINTER_REGNUM)
return class == MODE_INT;
else if (GP_REG_P (regno))
/* ((regno <= (GP_REG_LAST- HARD_REGNO_NREGS (dummy, mode)) + 1) */
return !(regno & 1) || (size <= UNITS_PER_WORD);
else if (CE_REG_P (regno))
return (class == MODE_INT
&& ((size <= UNITS_PER_WORD)
|| (regno == CE_REG_FIRST && size == 2 * UNITS_PER_WORD)));
else
return (class == MODE_INT) && (size <= UNITS_PER_WORD);
}
/* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame
pointer or argument pointer. TO is either the stack pointer or
hard frame pointer. */
HOST_WIDE_INT
score7_initial_elimination_offset (int from,
int to ATTRIBUTE_UNUSED)
{
struct score7_frame_info *f = score7_compute_frame_size (get_frame_size ());
switch (from)
{
case ARG_POINTER_REGNUM:
return f->total_size;
case FRAME_POINTER_REGNUM:
return 0;
default:
gcc_unreachable ();
}
}
/* Implement FUNCTION_ARG_ADVANCE macro. */
void
score7_function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
tree type, int named)
{
struct score7_arg_info info;
score7_classify_arg (cum, mode, type, named, &info);
cum->num_gprs = info.reg_offset + info.reg_words;
if (info.stack_words > 0)
cum->stack_words = info.stack_offset + info.stack_words;
cum->arg_number++;
}
/* Implement TARGET_ARG_PARTIAL_BYTES macro. */
int
score7_arg_partial_bytes (CUMULATIVE_ARGS *cum,
enum machine_mode mode, tree type, bool named)
{
struct score7_arg_info info;
score7_classify_arg (cum, mode, type, named, &info);
return info.stack_words > 0 ? info.reg_words * UNITS_PER_WORD : 0;
}
/* Implement FUNCTION_ARG macro. */
rtx
score7_function_arg (const CUMULATIVE_ARGS *cum, enum machine_mode mode,
tree type, int named)
{
struct score7_arg_info info;
if (mode == VOIDmode || !named)
return 0;
score7_classify_arg (cum, mode, type, named, &info);
if (info.reg_offset == ARG_REG_NUM)
return 0;
if (!info.stack_words)
return gen_rtx_REG (mode, ARG_REG_FIRST + info.reg_offset);
else
{
rtx ret = gen_rtx_PARALLEL (mode, rtvec_alloc (info.reg_words));
unsigned int i, part_offset = 0;
for (i = 0; i < info.reg_words; i++)
{
rtx reg;
reg = gen_rtx_REG (SImode, ARG_REG_FIRST + info.reg_offset + i);
XVECEXP (ret, 0, i) = gen_rtx_EXPR_LIST (SImode, reg,
GEN_INT (part_offset));
part_offset += UNITS_PER_WORD;
}
return ret;
}
}
/* Implement FUNCTION_VALUE and LIBCALL_VALUE. For normal calls,
VALTYPE is the return type and MODE is VOIDmode. For libcalls,
VALTYPE is null and MODE is the mode of the return value. */
rtx
score7_function_value (tree valtype, tree func ATTRIBUTE_UNUSED,
enum machine_mode mode)
{
if (valtype)
{
int unsignedp;
mode = TYPE_MODE (valtype);
unsignedp = TYPE_UNSIGNED (valtype);
mode = promote_mode (valtype, mode, &unsignedp, 1);
}
return gen_rtx_REG (mode, RT_REGNUM);
}
/* Implement INITIALIZE_TRAMPOLINE macro. */
void
score7_initialize_trampoline (rtx ADDR, rtx FUNC, rtx CHAIN)
{
#define FFCACHE "_flush_cache"
#define CODE_SIZE (TRAMPOLINE_INSNS * UNITS_PER_WORD)
rtx pfunc, pchain;
pfunc = plus_constant (ADDR, CODE_SIZE);
pchain = plus_constant (ADDR, CODE_SIZE + GET_MODE_SIZE (SImode));
emit_move_insn (gen_rtx_MEM (SImode, pfunc), FUNC);
emit_move_insn (gen_rtx_MEM (SImode, pchain), CHAIN);
emit_library_call (gen_rtx_SYMBOL_REF (Pmode, FFCACHE),
0, VOIDmode, 2,
ADDR, Pmode,
GEN_INT (TRAMPOLINE_SIZE), SImode);
#undef FFCACHE
#undef CODE_SIZE
}
/* This function is used to implement REG_MODE_OK_FOR_BASE_P macro. */
int
score7_regno_mode_ok_for_base_p (int regno, int strict)
{
if (regno >= FIRST_PSEUDO_REGISTER)
{
if (!strict)
return 1;
regno = reg_renumber[regno];
}
if (regno == ARG_POINTER_REGNUM
|| regno == FRAME_POINTER_REGNUM)
return 1;
return GP_REG_P (regno);
}
/* Implement GO_IF_LEGITIMATE_ADDRESS macro. */
int
score7_address_p (enum machine_mode mode, rtx x, int strict)
{
struct score7_address_info addr;
return score7_classify_address (&addr, mode, x, strict);
}
/* Return a number assessing the cost of moving a register in class
FROM to class TO. */
int
score7_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
enum reg_class from, enum reg_class to)
{
if (GR_REG_CLASS_P (from))
{
if (GR_REG_CLASS_P (to))
return 2;
else if (SP_REG_CLASS_P (to))
return 4;
else if (CP_REG_CLASS_P (to))
return 5;
else if (CE_REG_CLASS_P (to))
return 6;
}
if (GR_REG_CLASS_P (to))
{
if (GR_REG_CLASS_P (from))
return 2;
else if (SP_REG_CLASS_P (from))
return 4;
else if (CP_REG_CLASS_P (from))
return 5;
else if (CE_REG_CLASS_P (from))
return 6;
}
return 12;
}
/* Return the number of instructions needed to load a symbol of the
given type into a register. */
static int
score7_symbol_insns (enum score_symbol_type type)
{
switch (type)
{
case SYMBOL_GENERAL:
return 2;
case SYMBOL_SMALL_DATA:
return 1;
}
gcc_unreachable ();
}
/* Return the number of instructions needed to load or store a value
of mode MODE at X. Return 0 if X isn't valid for MODE. */
static int
score7_address_insns (rtx x, enum machine_mode mode)
{
struct score7_address_info addr;
int factor;
if (mode == BLKmode)
factor = 1;
else
factor = (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
if (score7_classify_address (&addr, mode, x, false))
switch (addr.type)
{
case SCORE7_ADD_REG:
case SCORE7_ADD_CONST_INT:
return factor;
case SCORE7_ADD_SYMBOLIC:
return factor * score7_symbol_insns (addr.symbol_type);
}
return 0;
}
/* Implement TARGET_RTX_COSTS macro. */
bool
score7_rtx_costs (rtx x, int code, int outer_code, int *total)
{
enum machine_mode mode = GET_MODE (x);
switch (code)
{
case CONST_INT:
if (outer_code == SET)
{
if (CONST_OK_FOR_LETTER_P (INTVAL (x), 'I')
|| CONST_OK_FOR_LETTER_P (INTVAL (x), 'L'))
*total = COSTS_N_INSNS (1);
else
*total = COSTS_N_INSNS (2);
}
else if (outer_code == PLUS || outer_code == MINUS)
{
if (CONST_OK_FOR_LETTER_P (INTVAL (x), 'N'))
*total = 0;
else if (CONST_OK_FOR_LETTER_P (INTVAL (x), 'I')
|| CONST_OK_FOR_LETTER_P (INTVAL (x), 'L'))
*total = 1;
else
*total = COSTS_N_INSNS (2);
}
else if (outer_code == AND || outer_code == IOR)
{
if (CONST_OK_FOR_LETTER_P (INTVAL (x), 'M'))
*total = 0;
else if (CONST_OK_FOR_LETTER_P (INTVAL (x), 'I')
|| CONST_OK_FOR_LETTER_P (INTVAL (x), 'K'))
*total = 1;
else
*total = COSTS_N_INSNS (2);
}
else
{
*total = 0;
}
return true;
case CONST:
case SYMBOL_REF:
case LABEL_REF:
case CONST_DOUBLE:
*total = COSTS_N_INSNS (2);
return true;
case MEM:
{
/* If the address is legitimate, return the number of
instructions it needs, otherwise use the default handling. */
int n = score7_address_insns (XEXP (x, 0), GET_MODE (x));
if (n > 0)
{
*total = COSTS_N_INSNS (n + 1);
return true;
}
return false;
}
case FFS:
*total = COSTS_N_INSNS (6);
return true;
case NOT:
*total = COSTS_N_INSNS (1);
return true;
case AND:
case IOR:
case XOR:
if (mode == DImode)
{
*total = COSTS_N_INSNS (2);
return true;
}
return false;
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
if (mode == DImode)
{
*total = COSTS_N_INSNS ((GET_CODE (XEXP (x, 1)) == CONST_INT)
? 4 : 12);
return true;
}
return false;
case ABS:
*total = COSTS_N_INSNS (4);
return true;
case PLUS:
case MINUS:
if (mode == DImode)
{
*total = COSTS_N_INSNS (4);
return true;
}
*total = COSTS_N_INSNS (1);
return true;
case NEG:
if (mode == DImode)
{
*total = COSTS_N_INSNS (4);
return true;
}
return false;
case MULT:
*total = optimize_size ? COSTS_N_INSNS (2) : COSTS_N_INSNS (12);
return true;
case DIV:
case MOD:
case UDIV:
case UMOD:
*total = optimize_size ? COSTS_N_INSNS (2) : COSTS_N_INSNS (33);
return true;
case SIGN_EXTEND:
case ZERO_EXTEND:
switch (GET_MODE (XEXP (x, 0)))
{
case QImode:
case HImode:
if (GET_CODE (XEXP (x, 0)) == MEM)
{
*total = COSTS_N_INSNS (2);
if (!TARGET_LITTLE_ENDIAN &&
side_effects_p (XEXP (XEXP (x, 0), 0)))
*total = 100;
}
else
*total = COSTS_N_INSNS (1);
break;
default:
*total = COSTS_N_INSNS (1);
break;
}
return true;
default:
return false;
}
}
/* Implement TARGET_ADDRESS_COST macro. */
int
score7_address_cost (rtx addr)
{
return score7_address_insns (addr, SImode);
}
/* Implement ASM_OUTPUT_EXTERNAL macro. */
int
score7_output_external (FILE *file ATTRIBUTE_UNUSED,
tree decl, const char *name)
{
register struct extern_list *p;
if (score7_in_small_data_p (decl))
{
p = (struct extern_list *) ggc_alloc (sizeof (struct extern_list));
p->next = extern_head;
p->name = name;
p->size = int_size_in_bytes (TREE_TYPE (decl));
extern_head = p;
}
return 0;
}
/* Implement RETURN_ADDR_RTX. Note, we do not support moving
back to a previous frame. */
rtx
score7_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
{
if (count != 0)
return const0_rtx;
return get_hard_reg_initial_val (Pmode, RA_REGNUM);
}
/* Implement PRINT_OPERAND macro. */
/* Score-specific operand codes:
'[' print .set nor1 directive
']' print .set r1 directive
'U' print hi part of a CONST_INT rtx
'E' print log2(v)
'F' print log2(~v)
'D' print SFmode const double
'S' selectively print "!" if operand is 15bit instruction accessible
'V' print "v!" if operand is 15bit instruction accessible, or "lfh!"
'L' low part of DImode reg operand
'H' high part of DImode reg operand
'C' print part of opcode for a branch condition. */
void
score7_print_operand (FILE *file, rtx op, int c)
{
enum rtx_code code = -1;
if (!PRINT_OPERAND_PUNCT_VALID_P (c))
code = GET_CODE (op);
if (c == '[')
{
fprintf (file, ".set r1\n");
}
else if (c == ']')
{
fprintf (file, "\n\t.set nor1");
}
else if (c == 'U')
{
gcc_assert (code == CONST_INT);
fprintf (file, HOST_WIDE_INT_PRINT_HEX,
(INTVAL (op) >> 16) & 0xffff);
}
else if (c == 'D')
{
if (GET_CODE (op) == CONST_DOUBLE)
{
rtx temp = gen_lowpart (SImode, op);
gcc_assert (GET_MODE (op) == SFmode);
fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (temp) & 0xffffffff);
}
else
output_addr_const (file, op);
}
else if (c == 'S')
{
gcc_assert (code == REG);
if (G16_REG_P (REGNO (op)))
fprintf (file, "!");
}
else if (c == 'V')
{
gcc_assert (code == REG);
fprintf (file, G16_REG_P (REGNO (op)) ? "v!" : "lfh!");
}
else if (c == 'C')
{
enum machine_mode mode = GET_MODE (XEXP (op, 0));
switch (code)
{
case EQ: fputs ("eq", file); break;
case NE: fputs ("ne", file); break;
case GT: fputs ("gt", file); break;
case GE: fputs (mode != CCmode ? "pl" : "ge", file); break;
case LT: fputs (mode != CCmode ? "mi" : "lt", file); break;
case LE: fputs ("le", file); break;
case GTU: fputs ("gtu", file); break;
case GEU: fputs ("cs", file); break;
case LTU: fputs ("cc", file); break;
case LEU: fputs ("leu", file); break;
default:
output_operand_lossage ("invalid operand for code: '%c'", code);
}
}
else if (c == 'E')
{
unsigned HOST_WIDE_INT i;
unsigned HOST_WIDE_INT pow2mask = 1;
unsigned HOST_WIDE_INT val;
val = INTVAL (op);
for (i = 0; i < 32; i++)
{
if (val == pow2mask)
break;
pow2mask <<= 1;
}
gcc_assert (i < 32);
fprintf (file, HOST_WIDE_INT_PRINT_HEX, i);
}
else if (c == 'F')
{
unsigned HOST_WIDE_INT i;
unsigned HOST_WIDE_INT pow2mask = 1;
unsigned HOST_WIDE_INT val;
val = ~INTVAL (op);
for (i = 0; i < 32; i++)
{
if (val == pow2mask)
break;
pow2mask <<= 1;
}
gcc_assert (i < 32);
fprintf (file, HOST_WIDE_INT_PRINT_HEX, i);
}
else if (code == REG)
{
int regnum = REGNO (op);
if ((c == 'H' && !WORDS_BIG_ENDIAN)
|| (c == 'L' && WORDS_BIG_ENDIAN))
regnum ++;
fprintf (file, "%s", reg_names[regnum]);
}
else
{
switch (code)
{
case MEM:
score7_print_operand_address (file, op);
break;
default:
output_addr_const (file, op);
}
}
}
/* Implement PRINT_OPERAND_ADDRESS macro. */
void
score7_print_operand_address (FILE *file, rtx x)
{
struct score7_address_info addr;
enum rtx_code code = GET_CODE (x);
enum machine_mode mode = GET_MODE (x);
if (code == MEM)
x = XEXP (x, 0);
if (score7_classify_address (&addr, mode, x, true))
{
switch (addr.type)
{
case SCORE7_ADD_REG:
{
switch (addr.code)
{
case PRE_DEC:
fprintf (file, "[%s,-%ld]+", reg_names[REGNO (addr.reg)],
INTVAL (addr.offset));
break;
case POST_DEC:
fprintf (file, "[%s]+,-%ld", reg_names[REGNO (addr.reg)],
INTVAL (addr.offset));
break;
case PRE_INC:
fprintf (file, "[%s, %ld]+", reg_names[REGNO (addr.reg)],
INTVAL (addr.offset));
break;
case POST_INC:
fprintf (file, "[%s]+, %ld", reg_names[REGNO (addr.reg)],
INTVAL (addr.offset));
break;
default:
if (INTVAL(addr.offset) == 0)
fprintf(file, "[%s]", reg_names[REGNO (addr.reg)]);
else
fprintf(file, "[%s, %ld]", reg_names[REGNO (addr.reg)],
INTVAL(addr.offset));
break;
}
}
return;
case SCORE7_ADD_CONST_INT:
case SCORE7_ADD_SYMBOLIC:
output_addr_const (file, x);
return;
}
}
print_rtl (stderr, x);
gcc_unreachable ();
}
/* Implement SELECT_CC_MODE macro. */
enum machine_mode
score7_select_cc_mode (enum rtx_code op, rtx x, rtx y)
{
if ((op == EQ || op == NE || op == LT || op == GE)
&& y == const0_rtx
&& GET_MODE (x) == SImode)
{
switch (GET_CODE (x))
{
case PLUS:
case MINUS:
case NEG:
case AND:
case IOR:
case XOR:
case NOT:
case ASHIFT:
case LSHIFTRT:
case ASHIFTRT:
return CC_NZmode;
case SIGN_EXTEND:
case ZERO_EXTEND:
case ROTATE:
case ROTATERT:
return (op == LT || op == GE) ? CC_Nmode : CCmode;
default:
return CCmode;
}
}
if ((op == EQ || op == NE)
&& (GET_CODE (y) == NEG)
&& register_operand (XEXP (y, 0), SImode)
&& register_operand (x, SImode))
{
return CC_NZmode;
}
return CCmode;
}
/* Generate the prologue instructions for entry into a S+core function. */
void
score7_prologue (void)
{
#define EMIT_PL(_rtx) RTX_FRAME_RELATED_P (_rtx) = 1
struct score7_frame_info *f = score7_compute_frame_size (get_frame_size ());
HOST_WIDE_INT size;
int regno;
size = f->total_size - f->gp_reg_size;
if (flag_pic)
emit_insn (gen_cpload_score7 ());
for (regno = (int) GP_REG_LAST; regno >= (int) GP_REG_FIRST; regno--)
{
if (BITSET_P (f->mask, regno - GP_REG_FIRST))
{
rtx mem = gen_rtx_MEM (SImode,
gen_rtx_PRE_DEC (SImode, stack_pointer_rtx));
rtx reg = gen_rtx_REG (SImode, regno);
if (!current_function_calls_eh_return)
MEM_READONLY_P (mem) = 1;
EMIT_PL (emit_insn (gen_pushsi_score7 (mem, reg)));
}
}
if (size > 0)
{
rtx insn;
if (CONST_OK_FOR_LETTER_P (-size, 'L'))
EMIT_PL (emit_insn (gen_add3_insn (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-size))));
else
{
EMIT_PL (emit_move_insn (gen_rtx_REG (Pmode, SCORE7_PROLOGUE_TEMP_REGNUM),
GEN_INT (size)));
EMIT_PL (emit_insn
(gen_sub3_insn (stack_pointer_rtx,
stack_pointer_rtx,
gen_rtx_REG (Pmode,
SCORE7_PROLOGUE_TEMP_REGNUM))));
}
insn = get_last_insn ();
REG_NOTES (insn) =
alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
gen_rtx_SET (VOIDmode, stack_pointer_rtx,
plus_constant (stack_pointer_rtx,
-size)),
REG_NOTES (insn));
}
if (frame_pointer_needed)
EMIT_PL (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx));
if (flag_pic && f->cprestore_size)
{
if (frame_pointer_needed)
emit_insn (gen_cprestore_use_fp_score7 (GEN_INT (size - f->cprestore_size)));
else
emit_insn (gen_cprestore_use_sp_score7 (GEN_INT (size - f->cprestore_size)));
}
#undef EMIT_PL
}
/* Generate the epilogue instructions in a S+core function. */
void
score7_epilogue (int sibcall_p)
{
struct score7_frame_info *f = score7_compute_frame_size (get_frame_size ());
HOST_WIDE_INT size;
int regno;
rtx base;
size = f->total_size - f->gp_reg_size;
if (!frame_pointer_needed)
base = stack_pointer_rtx;
else
base = hard_frame_pointer_rtx;
if (size)
{
if (CONST_OK_FOR_LETTER_P (size, 'L'))
emit_insn (gen_add3_insn (base, base, GEN_INT (size)));
else
{
emit_move_insn (gen_rtx_REG (Pmode, SCORE7_EPILOGUE_TEMP_REGNUM),
GEN_INT (size));
emit_insn (gen_add3_insn (base, base,
gen_rtx_REG (Pmode,
SCORE7_EPILOGUE_TEMP_REGNUM)));
}
}
if (base != stack_pointer_rtx)
emit_move_insn (stack_pointer_rtx, base);
if (current_function_calls_eh_return)
emit_insn (gen_add3_insn (stack_pointer_rtx,
stack_pointer_rtx,
EH_RETURN_STACKADJ_RTX));
for (regno = (int) GP_REG_FIRST; regno <= (int) GP_REG_LAST; regno++)
{
if (BITSET_P (f->mask, regno - GP_REG_FIRST))
{
rtx mem = gen_rtx_MEM (SImode,
gen_rtx_POST_INC (SImode, stack_pointer_rtx));
rtx reg = gen_rtx_REG (SImode, regno);
if (!current_function_calls_eh_return)
MEM_READONLY_P (mem) = 1;
emit_insn (gen_popsi_score7 (reg, mem));
}
}
if (!sibcall_p)
emit_jump_insn (gen_return_internal_score7 (gen_rtx_REG (Pmode, RA_REGNUM)));
}
void
score7_gen_cmp (enum machine_mode mode)
{
emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_REG (mode, CC_REGNUM),
gen_rtx_COMPARE (mode, cmp_op0, cmp_op1)));
}
/* Return true if X is a symbolic constant that can be calculated in
the same way as a bare symbol. If it is, store the type of the
symbol in *SYMBOL_TYPE. */
int
score7_symbolic_constant_p (rtx x, enum score_symbol_type *symbol_type)
{
HOST_WIDE_INT offset;
score7_split_const (x, &x, &offset);
if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
*symbol_type = score7_classify_symbol (x);
else
return 0;
if (offset == 0)
return 1;
/* if offset > 15bit, must reload */
if (!IMM_IN_RANGE (offset, 15, 1))
return 0;
switch (*symbol_type)
{
case SYMBOL_GENERAL:
return 1;
case SYMBOL_SMALL_DATA:
return score7_offset_within_object_p (x, offset);
}
gcc_unreachable ();
}
void
score7_movsicc (rtx *ops)
{
enum machine_mode mode;
mode = score7_select_cc_mode (GET_CODE (ops[1]), ops[2], ops[3]);
emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_REG (mode, CC_REGNUM),
gen_rtx_COMPARE (mode, cmp_op0, cmp_op1)));
}
/* Call and sibcall pattern all need call this function. */
void
score7_call (rtx *ops, bool sib)
{
rtx addr = XEXP (ops[0], 0);
if (!call_insn_operand (addr, VOIDmode))
{
rtx oaddr = addr;
addr = gen_reg_rtx (Pmode);
gen_move_insn (addr, oaddr);
}
if (sib)
emit_call_insn (gen_sibcall_internal_score7 (addr, ops[1]));
else
emit_call_insn (gen_call_internal_score7 (addr, ops[1]));
}
/* Call value and sibcall value pattern all need call this function. */
void
score7_call_value (rtx *ops, bool sib)
{
rtx result = ops[0];
rtx addr = XEXP (ops[1], 0);
rtx arg = ops[2];
if (!call_insn_operand (addr, VOIDmode))
{
rtx oaddr = addr;
addr = gen_reg_rtx (Pmode);
gen_move_insn (addr, oaddr);
}
if (sib)
emit_call_insn (gen_sibcall_value_internal_score7 (result, addr, arg));
else
emit_call_insn (gen_call_value_internal_score7 (result, addr, arg));
}
/* Machine Split */
void
score7_movdi (rtx *ops)
{
rtx dst = ops[0];
rtx src = ops[1];
rtx dst0 = score7_subw (dst, 0);
rtx dst1 = score7_subw (dst, 1);
rtx src0 = score7_subw (src, 0);
rtx src1 = score7_subw (src, 1);
if (GET_CODE (dst0) == REG && reg_overlap_mentioned_p (dst0, src))
{
emit_move_insn (dst1, src1);
emit_move_insn (dst0, src0);
}
else
{
emit_move_insn (dst0, src0);
emit_move_insn (dst1, src1);
}
}
void
score7_zero_extract_andi (rtx *ops)
{
if (INTVAL (ops[1]) == 1 && const_uimm5 (ops[2], SImode))
emit_insn (gen_zero_extract_bittst_score7 (ops[0], ops[2]));
else
{
unsigned HOST_WIDE_INT mask;
mask = (0xffffffffU & ((1U << INTVAL (ops[1])) - 1U));
mask = mask << INTVAL (ops[2]);
emit_insn (gen_andsi3_cmp_score7 (ops[3], ops[0],
gen_int_mode (mask, SImode)));
}
}
/* Check addr could be present as PRE/POST mode. */
static bool
score7_pindex_mem (rtx addr)
{
if (GET_CODE (addr) == MEM)
{
switch (GET_CODE (XEXP (addr, 0)))
{
case PRE_DEC:
case POST_DEC:
case PRE_INC:
case POST_INC:
return true;
default:
break;
}
}
return false;
}
/* Output asm code for ld/sw insn. */
static int
score7_pr_addr_post (rtx *ops, int idata, int iaddr, char *ip, enum score_mem_unit unit)
{
struct score7_address_info ai;
gcc_assert (GET_CODE (ops[idata]) == REG);
gcc_assert (score7_classify_address (&ai, SImode, XEXP (ops[iaddr], 0), true));
if (!score7_pindex_mem (ops[iaddr])
&& ai.type == SCORE7_ADD_REG
&& GET_CODE (ai.offset) == CONST_INT
&& G16_REG_P (REGNO (ops[idata]))
&& G16_REG_P (REGNO (ai.reg)))
{
if (INTVAL (ai.offset) == 0)
{
ops[iaddr] = ai.reg;
return snprintf (ip, INS_BUF_SZ,
"!\t%%%d, [%%%d]", idata, iaddr);
}
if (REGNO (ai.reg) == HARD_FRAME_POINTER_REGNUM)
{
HOST_WIDE_INT offset = INTVAL (ai.offset);
if (SCORE_ALIGN_UNIT (offset, unit)
&& CONST_OK_FOR_LETTER_P (offset >> unit, 'J'))
{
ops[iaddr] = ai.offset;
return snprintf (ip, INS_BUF_SZ,
"p!\t%%%d, %%c%d", idata, iaddr);
}
}
}
return snprintf (ip, INS_BUF_SZ, "\t%%%d, %%a%d", idata, iaddr);
}
/* Output asm insn for load. */
const char *
score7_linsn (rtx *ops, enum score_mem_unit unit, bool sign)
{
const char *pre_ins[] =
{"lbu", "lhu", "lw", "??", "lb", "lh", "lw", "??"};
char *ip;
strcpy (score7_ins, pre_ins[(sign ? 4 : 0) + unit]);
ip = score7_ins + strlen (score7_ins);
if ((!sign && unit != SCORE_HWORD)
|| (sign && unit != SCORE_BYTE))
score7_pr_addr_post (ops, 0, 1, ip, unit);
else
snprintf (ip, INS_BUF_SZ, "\t%%0, %%a1");
return score7_ins;
}
/* Output asm insn for store. */
const char *
score7_sinsn (rtx *ops, enum score_mem_unit unit)
{
const char *pre_ins[] = {"sb", "sh", "sw"};
char *ip;
strcpy (score7_ins, pre_ins[unit]);
ip = score7_ins + strlen (score7_ins);
score7_pr_addr_post (ops, 1, 0, ip, unit);
return score7_ins;
}
/* Output asm insn for load immediate. */
const char *
score7_limm (rtx *ops)
{
HOST_WIDE_INT v;
gcc_assert (GET_CODE (ops[0]) == REG);
gcc_assert (GET_CODE (ops[1]) == CONST_INT);
v = INTVAL (ops[1]);
if (G16_REG_P (REGNO (ops[0])) && IMM_IN_RANGE (v, 8, 0))
return "ldiu!\t%0, %c1";
else if (IMM_IN_RANGE (v, 16, 1))
return "ldi\t%0, %c1";
else if ((v & 0xffff) == 0)
return "ldis\t%0, %U1";
else
return "li\t%0, %c1";
}
/* Output asm insn for move. */
const char *
score7_move (rtx *ops)
{
gcc_assert (GET_CODE (ops[0]) == REG);
gcc_assert (GET_CODE (ops[1]) == REG);
if (G16_REG_P (REGNO (ops[0])))
{
if (G16_REG_P (REGNO (ops[1])))
return "mv!\t%0, %1";
else
return "mlfh!\t%0, %1";
}
else if (G16_REG_P (REGNO (ops[1])))
return "mhfl!\t%0, %1";
else
return "mv\t%0, %1";
}
/* Generate add insn. */
const char *
score7_select_add_imm (rtx *ops, bool set_cc)
{
HOST_WIDE_INT v = INTVAL (ops[2]);
gcc_assert (GET_CODE (ops[2]) == CONST_INT);
gcc_assert (REGNO (ops[0]) == REGNO (ops[1]));
if (set_cc && G16_REG_P (REGNO (ops[0])))
{
if (v > 0 && IMM_IS_POW_OF_2 ((unsigned HOST_WIDE_INT) v, 0, 15))
{
ops[2] = GEN_INT (ffs (v) - 1);
return "addei!\t%0, %c2";
}
if (v < 0 && IMM_IS_POW_OF_2 ((unsigned HOST_WIDE_INT) (-v), 0, 15))
{
ops[2] = GEN_INT (ffs (-v) - 1);
return "subei!\t%0, %c2";
}
}
if (set_cc)
return "addi.c\t%0, %c2";
else
return "addi\t%0, %c2";
}
/* Output arith insn. */
const char *
score7_select (rtx *ops, const char *inst_pre,
bool commu, const char *letter, bool set_cc)
{
gcc_assert (GET_CODE (ops[0]) == REG);
gcc_assert (GET_CODE (ops[1]) == REG);
if (set_cc && G16_REG_P (REGNO (ops[0]))
&& (GET_CODE (ops[2]) == REG ? G16_REG_P (REGNO (ops[2])) : 1)
&& REGNO (ops[0]) == REGNO (ops[1]))
{
snprintf (score7_ins, INS_BUF_SZ, "%s!\t%%0, %%%s2", inst_pre, letter);
return score7_ins;
}
if (commu && set_cc && G16_REG_P (REGNO (ops[0]))
&& G16_REG_P (REGNO (ops[1]))
&& REGNO (ops[0]) == REGNO (ops[2]))
{
gcc_assert (GET_CODE (ops[2]) == REG);
snprintf (score7_ins, INS_BUF_SZ, "%s!\t%%0, %%%s1", inst_pre, letter);
return score7_ins;
}
if (set_cc)
snprintf (score7_ins, INS_BUF_SZ, "%s.c\t%%0, %%1, %%%s2", inst_pre, letter);
else
snprintf (score7_ins, INS_BUF_SZ, "%s\t%%0, %%1, %%%s2", inst_pre, letter);
return score7_ins;
}
/* score7.h for Sunplus S+CORE processor
Copyright (C) 2005, 2007 Free Software Foundation, Inc.
Contributed by Sunnorth
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_SCORE7_H
#define GCC_SCORE7_H
enum score7_address_type
{
SCORE7_ADD_REG,
SCORE7_ADD_CONST_INT,
SCORE7_ADD_SYMBOLIC
};
struct score7_frame_info
{
HOST_WIDE_INT total_size; /* bytes that the entire frame takes up */
HOST_WIDE_INT var_size; /* bytes that variables take up */
HOST_WIDE_INT args_size; /* bytes that outgoing arguments take up */
HOST_WIDE_INT gp_reg_size; /* bytes needed to store gp regs */
HOST_WIDE_INT gp_sp_offset; /* offset from new sp to store gp registers */
HOST_WIDE_INT cprestore_size; /* # bytes that the .cprestore slot takes up */
unsigned int mask; /* mask of saved gp registers */
int num_gp; /* number of gp registers saved */
};
struct score7_arg_info
{
unsigned int num_bytes; /* The argument's size in bytes */
unsigned int reg_words; /* The number of words passed in registers */
unsigned int reg_offset; /* The offset of the first register from */
/* GP_ARG_FIRST or FP_ARG_FIRST etc */
unsigned int stack_words; /* The number of words that must be passed */
/* on the stack */
unsigned int stack_offset; /* The offset from the start of the stack */
/* overflow area */
};
#ifdef RTX_CODE
struct score7_address_info
{
enum score7_address_type type;
rtx reg;
rtx offset;
enum rtx_code code;
enum score_symbol_type symbol_type;
};
#endif
#define SCORE7_SDATA_MAX score7_sdata_max
#define SCORE7_STACK_ALIGN(LOC) (((LOC) + 3) & ~3)
#define SCORE7_PROLOGUE_TEMP_REGNUM (GP_REG_FIRST + 8)
#define SCORE7_EPILOGUE_TEMP_REGNUM (GP_REG_FIRST + 8)
#define SCORE7_DEFAULT_SDATA_MAX 8
extern int score7_symbolic_constant_p (rtx x,
enum score_symbol_type *symbol_type);
extern bool score7_return_in_memory (tree type,
tree fndecl ATTRIBUTE_UNUSED);
extern void score7_output_mi_thunk (FILE *file,
tree thunk_fndecl ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta,
HOST_WIDE_INT vcall_offset,
tree function);
extern int score7_legitimize_address (rtx *xloc);
extern void
score7_function_prologue (FILE *file,
HOST_WIDE_INT size ATTRIBUTE_UNUSED);
extern void
score7_function_epilogue (FILE *file,
HOST_WIDE_INT size ATTRIBUTE_UNUSED);
extern section *score7_select_rtx_section (enum machine_mode mode, rtx x,
unsigned HOST_WIDE_INT align);
extern bool score7_in_small_data_p (tree decl);
extern void score7_asm_file_start (void);
extern void score7_asm_file_end (void);
extern void score7_override_options (void);
extern int score7_reg_class (int regno);
extern enum reg_class score7_preferred_reload_class (rtx x ATTRIBUTE_UNUSED,
enum reg_class class);
extern enum
reg_class score7_secondary_reload_class (enum reg_class class,
enum machine_mode mode ATTRIBUTE_UNUSED,
rtx x);
extern int score7_const_ok_for_letter_p (HOST_WIDE_INT value, char c);
extern int score7_extra_constraint (rtx op, char c);
extern int score7_hard_regno_mode_ok (unsigned int regno,
enum machine_mode mode);
extern HOST_WIDE_INT
score7_initial_elimination_offset (int from,
int to ATTRIBUTE_UNUSED);
extern void score7_function_arg_advance (CUMULATIVE_ARGS *cum,
enum machine_mode mode,
tree type,
int named);
extern int score7_arg_partial_bytes (CUMULATIVE_ARGS *cum,
enum machine_mode mode,
tree type,
bool named);
extern rtx score7_function_arg (const CUMULATIVE_ARGS *cum,
enum machine_mode mode,
tree type,
int named);
extern rtx score7_function_value (tree valtype,
tree func ATTRIBUTE_UNUSED,
enum machine_mode mode);
extern void score7_initialize_trampoline (rtx ADDR, rtx FUNC, rtx CHAIN);
extern int score7_regno_mode_ok_for_base_p (int regno, int strict);
extern int score7_address_p (enum machine_mode mode, rtx x, int strict);
extern int score7_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
enum reg_class from,
enum reg_class to);
extern bool score7_rtx_costs (rtx x, int code, int outer_code, int *total);
extern int score7_address_cost (rtx addr);
extern int score7_output_external (FILE *file ATTRIBUTE_UNUSED,
tree decl,
const char *name);
extern rtx score7_return_addr (int count, rtx frame ATTRIBUTE_UNUSED);
extern void score7_print_operand (FILE *file, rtx op, int c);
extern void score7_print_operand_address (FILE *file, rtx x);
extern enum machine_mode score7_select_cc_mode (enum rtx_code op,
rtx x,
rtx y);
extern void score7_prologue (void);
extern void score7_epilogue (int sibcall_p);
extern void score7_gen_cmp (enum machine_mode mode);
extern void score7_call (rtx *ops, bool sib);
extern void score7_call_value (rtx *ops, bool sib);
extern void score7_movsicc (rtx *ops);
extern void score7_movdi (rtx *ops);
extern void score7_zero_extract_andi (rtx *ops);
extern const char * score7_select_add_imm (rtx *ops, bool set_cc);
extern const char * score7_select (rtx *ops, const char *inst_pre, bool commu,
const char *letter, bool set_cc);
extern const char * score7_move (rtx *ops);
extern const char * score7_limm (rtx *ops);
extern const char *
score7_linsn (rtx *ops, enum score_mem_unit unit, bool sign);
extern const char *
score7_sinsn (rtx *ops, enum score_mem_unit unit);
#endif
# Additional Backend Files
score-mdaux.o: $(srcdir)/config/score/score-mdaux.c $(CONFIG_H) $(SYSTEM_H) \
score7.o: $(srcdir)/config/score/score7.c $(CONFIG_H) $(SYSTEM_H) \
coretypes.h $(TM_H) $(RTL_H) output.h flags.h $(TREE_H) \
expr.h toplev.h $(TM_P_H)
$(CC) -c $(ALL_CFLAGS) $(ALL_CPPFLAGS) $(INCLUDES) \
$(srcdir)/config/score/score-mdaux.c
$(srcdir)/config/score/score7.c
score3.o: $(srcdir)/config/score/score3.c $(CONFIG_H) $(SYSTEM_H) \
coretypes.h $(TM_H) $(RTL_H) output.h flags.h $(TREE_H) \
expr.h toplev.h $(TM_P_H)
$(CC) -c $(ALL_CFLAGS) $(ALL_CPPFLAGS) $(INCLUDES) \
$(srcdir)/config/score/score3.c
# Assemble startup files.
$(T)crti.o: $(srcdir)/config/score/crti.asm $(GCC_PASSES)
......@@ -35,8 +42,8 @@ dp-bit.c: $(srcdir)/config/fp-bit.c
# without the $gp register.
TARGET_LIBGCC2_CFLAGS = -G 0
MULTILIB_OPTIONS = mmac mel fPIC
MULTILIB_MATCHES = fPIC=fpic
MULTILIB_OPTIONS = mscore3 mel
MULTILIB_MATCHES = mscore3=march?score3
EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o crti.o crtn.o
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment