vec.h 49.8 KB
Newer Older
1
/* Vector API for GNU compiler.
2 3
   Copyright (C) 2004, 2005, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
4 5 6 7 8 9
   Contributed by Nathan Sidwell <nathan@codesourcery.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11 12 13 14 15 16 17 18
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
19 20
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
21 22 23 24

#ifndef GCC_VEC_H
#define GCC_VEC_H

25 26
#include "statistics.h"		/* For MEM_STAT_DECL.  */

27 28 29 30 31 32 33
/* The macros here implement a set of templated vector types and
   associated interfaces.  These templates are implemented with
   macros, as we're not in C++ land.  The interface functions are
   typesafe and use static inline functions, sometimes backed by
   out-of-line generic functions.  The vectors are designed to
   interoperate with the GTY machinery.

34 35 36 37 38 39 40 41
   Because of the different behavior of structure objects, scalar
   objects and of pointers, there are three flavors, one for each of
   these variants.  Both the structure object and pointer variants
   pass pointers to objects around -- in the former case the pointers
   are stored into the vector and in the latter case the pointers are
   dereferenced and the objects copied into the vector.  The scalar
   object variant is suitable for int-like objects, and the vector
   elements are returned by value.
42

43 44 45 46 47
   There are both 'index' and 'iterate' accessors.  The iterator
   returns a boolean iteration condition and updates the iteration
   variable passed by reference.  Because the iterator will be
   inlined, the address-of can be optimized away.

48 49 50 51 52
   The vectors are implemented using the trailing array idiom, thus
   they are not resizeable without changing the address of the vector
   object itself.  This means you cannot have variables or fields of
   vector type -- always use a pointer to a vector.  The one exception
   is the final field of a structure, which could be a vector type.
53 54 55 56 57 58
   You will have to use the embedded_size & embedded_init calls to
   create such objects, and they will probably not be resizeable (so
   don't use the 'safe' allocation variants).  The trailing array
   idiom is used (rather than a pointer to an array of data), because,
   if we allow NULL to also represent an empty vector, empty vectors
   occupy minimal space in the structure containing them.
59 60 61 62

   Each operation that increases the number of active elements is
   available in 'quick' and 'safe' variants.  The former presumes that
   there is sufficient allocated space for the operation to succeed
63
   (it dies if there is not).  The latter will reallocate the
64 65 66
   vector, if needed.  Reallocation causes an exponential increase in
   vector size.  If you know you will be adding N elements, it would
   be more efficient to use the reserve operation before adding the
67 68 69 70
   elements with the 'quick' operation.  This will ensure there are at
   least as many elements as you ask for, it will exponentially
   increase if there are too few spare slots.  If you want reserve a
   specific number of slots, but do not want the exponential increase
71 72
   (for instance, you know this is the last allocation), use the
   reserve_exact operation.  You can also create a vector of a
73
   specific size from the get go.
74 75

   You should prefer the push and pop operations, as they append and
76 77
   remove from the end of the vector. If you need to remove several
   items in one go, use the truncate operation.  The insert and remove
78 79 80 81
   operations allow you to change elements in the middle of the
   vector.  There are two remove operations, one which preserves the
   element ordering 'ordered_remove', and one which does not
   'unordered_remove'.  The latter function copies the end element
82 83
   into the removed slot, rather than invoke a memmove operation.  The
   'lower_bound' function will determine where to place an item in the
84
   array using insert that will maintain sorted order.
85

86 87 88 89 90 91
   When a vector type is defined, first a non-memory managed version
   is created.  You can then define either or both garbage collected
   and heap allocated versions.  The allocation mechanism is specified
   when the type is defined, and is therefore part of the type.  If
   you need both gc'd and heap allocated versions, you still must have
   *exactly* one definition of the common non-memory managed base vector.
H.J. Lu committed
92

93 94 95 96
   If you need to directly manipulate a vector, then the 'address'
   accessor will return the address of the start of the vector.  Also
   the 'space' predicate will tell you whether there is spare capacity
   in the vector.  You will not normally need to use these two functions.
H.J. Lu committed
97

98
   Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro, to
99
   get the non-memory allocation version, and then a
100
   DEF_VEC_ALLOC_{O,P,I}(TYPEDEF,ALLOC) macro to get memory managed
101 102 103 104 105
   vectors.  Variables of vector type are declared using a
   VEC(TYPEDEF,ALLOC) macro.  The ALLOC argument specifies the
   allocation strategy, and can be either 'gc' or 'heap' for garbage
   collected and heap allocated respectively.  It can be 'none' to get
   a vector that must be explicitly allocated (for instance as a
106 107 108 109 110 111 112 113 114 115
   trailing array of another structure).  The characters O, P and I
   indicate whether TYPEDEF is a pointer (P), object (O) or integral
   (I) type.  Be careful to pick the correct one, as you'll get an
   awkward and inefficient API if you use the wrong one.  There is a
   check, which results in a compile-time warning, for the P and I
   versions, but there is no check for the O versions, as that is not
   possible in plain C.  Due to the way GTY works, you must annotate
   any structures you wish to insert or reference from a vector with a
   GTY(()) tag.  You need to do this even if you never declare the GC
   allocated variants.
116 117 118

   An example of their use would be,

119 120 121
   DEF_VEC_P(tree);   // non-managed tree vector.
   DEF_VEC_ALLOC_P(tree,gc);	// gc'd vector of tree pointers.  This must
   			        // appear at file scope.
122 123

   struct my_struct {
124
     VEC(tree,gc) *v;      // A (pointer to) a vector of tree pointers.
125 126 127 128
   };

   struct my_struct *s;

129
   if (VEC_length(tree,s->v)) { we have some contents }
130
   VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end
131 132
   for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++)
     { do something with elt }
133 134 135 136 137

*/

/* Macros to invoke API calls.  A single macro works for both pointer
   and object vectors, but the argument and return types might well be
138 139 140 141 142
   different.  In each macro, T is the typedef of the vector elements,
   and A is the allocation strategy.  The allocation strategy is only
   present when it is required.  Some of these macros pass the vector,
   V, by reference (by taking its address), this is noted in the
   descriptions.  */
143 144

/* Length of vector
145
   unsigned VEC_T_length(const VEC(T) *v);
146 147 148

   Return the number of active elements in V.  V can be NULL, in which
   case zero is returned.  */
149

150
#define VEC_length(T,V)	(VEC_OP(T,base,length)(VEC_BASE(V)))
151

152 153 154 155

/* Check if vector is empty
   int VEC_T_empty(const VEC(T) *v);

156
   Return nonzero if V is an empty vector (or V is NULL), zero otherwise.  */
157 158 159 160

#define VEC_empty(T,V)	(VEC_length (T,V) == 0)


161
/* Get the final element of the vector.
162
   T VEC_T_last(VEC(T) *v); // Integer
163 164 165
   T VEC_T_last(VEC(T) *v); // Pointer
   T *VEC_T_last(VEC(T) *v); // Object

166
   Return the final element.  V must not be empty.  */
167

168
#define VEC_last(T,V)	(VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO))
169 170

/* Index into vector
171
   T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
172 173
   T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
   T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
174

175
   Return the IX'th element.  If IX must be in the domain of V.  */
176

177
#define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO))
178 179

/* Iterate over vector
180
   int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
181 182
   int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
   int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
183

184 185 186
   Return iteration condition and update PTR to point to the IX'th
   element.  At the end of iteration, sets PTR to NULL.  Use this to
   iterate over the elements of a vector as follows,
187

188
     for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
189
       continue;  */
190

191
#define VEC_iterate(T,V,I,P)	(VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P)))
192

193 194 195 196 197
/* Convenience macro for forward iteration.  */

#define FOR_EACH_VEC_ELT(T, V, I, P)		\
  for (I = 0; VEC_iterate (T, (V), (I), (P)); ++(I))

198 199 200 201 202 203 204
/* Convenience macro for reverse iteration.  */

#define FOR_EACH_VEC_ELT_REVERSE(T,V,I,P) \
  for (I = VEC_length (T, (V)) - 1;           \
       VEC_iterate (T, (V), (I), (P));	  \
       (I)--)

205
/* Allocate new vector.
206
   VEC(T,A) *VEC_T_A_alloc(int reserve);
207

208
   Allocate a new vector with space for RESERVE objects.  If RESERVE
209
   is zero, NO vector is created.  */
210

211
#define VEC_alloc(T,A,N)	(VEC_OP(T,A,alloc)(N MEM_STAT_INFO))
212

213
/* Free a vector.
214
   void VEC_T_A_free(VEC(T,A) *&);
215 216 217

   Free a vector and set it to NULL.  */

218
#define VEC_free(T,A,V)	(VEC_OP(T,A,free)(&V))
219

220 221
/* Use these to determine the required size and initialization of a
   vector embedded within another structure (as the final member).
H.J. Lu committed
222

223 224
   size_t VEC_T_embedded_size(int reserve);
   void VEC_T_embedded_init(VEC(T) *v, int reserve);
H.J. Lu committed
225

226
   These allow the caller to perform the memory allocation.  */
227

228 229
#define VEC_embedded_size(T,N)	 (VEC_OP(T,base,embedded_size)(N))
#define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N))
230

231 232 233 234
/* Copy a vector.
   VEC(T,A) *VEC_T_A_copy(VEC(T) *);

   Copy the live elements of a vector into a new vector.  The new and
235
   old vectors need not be allocated by the same mechanism.  */
236 237 238

#define VEC_copy(T,A,V) (VEC_OP(T,A,copy)(VEC_BASE(V) MEM_STAT_INFO))

239
/* Determine if a vector has additional capacity.
H.J. Lu committed
240

241 242
   int VEC_T_space (VEC(T) *v,int reserve)

243
   If V has space for RESERVE additional entries, return nonzero.  You
244 245
   usually only need to use this if you are doing your own vector
   reallocation, for instance on an embedded vector.  This returns
246
   nonzero in exactly the same circumstances that VEC_T_reserve
247 248
   will.  */

249 250
#define VEC_space(T,V,R) \
	(VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO))
251 252

/* Reserve space.
253
   int VEC_T_A_reserve(VEC(T,A) *&v, int reserve);
254

255 256 257 258
   Ensure that V has at least RESERVE slots available.  This will
   create additional headroom.  Note this can cause V to be
   reallocated.  Returns nonzero iff reallocation actually
   occurred.  */
259

260 261
#define VEC_reserve(T,A,V,R)	\
	(VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
262

263 264 265 266 267 268 269 270 271 272 273
/* Reserve space exactly.
   int VEC_T_A_reserve_exact(VEC(T,A) *&v, int reserve);

   Ensure that V has at least RESERVE slots available.  This will not
   create additional headroom.  Note this can cause V to be
   reallocated.  Returns nonzero iff reallocation actually
   occurred.  */

#define VEC_reserve_exact(T,A,V,R)	\
	(VEC_OP(T,A,reserve_exact)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
/* Copy elements with no reallocation
   void VEC_T_splice (VEC(T) *dst, VEC(T) *src); // Integer
   void VEC_T_splice (VEC(T) *dst, VEC(T) *src); // Pointer
   void VEC_T_splice (VEC(T) *dst, VEC(T) *src); // Object

   Copy the elements in SRC to the end of DST as if by memcpy.  DST and
   SRC need not be allocated with the same mechanism, although they most
   often will be.  DST is assumed to have sufficient headroom
   available.  */

#define VEC_splice(T,DST,SRC)			\
  (VEC_OP(T,base,splice)(VEC_BASE(DST), VEC_BASE(SRC) VEC_CHECK_INFO))

/* Copy elements with reallocation
   void VEC_T_safe_splice (VEC(T,A) *&dst, VEC(T) *src); // Integer
   void VEC_T_safe_splice (VEC(T,A) *&dst, VEC(T) *src); // Pointer
   void VEC_T_safe_splice (VEC(T,A) *&dst, VEC(T) *src); // Object

   Copy the elements in SRC to the end of DST as if by memcpy.  DST and
   SRC need not be allocated with the same mechanism, although they most
   often will be.  DST need not have sufficient headroom and will be
   reallocated if needed.  */

#define VEC_safe_splice(T,A,DST,SRC)					\
  (VEC_OP(T,A,safe_splice)(&(DST), VEC_BASE(SRC) VEC_CHECK_INFO MEM_STAT_INFO))
  
300
/* Push object with no reallocation
301
   T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
302 303
   T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
   T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
H.J. Lu committed
304

305 306
   Push a new element onto the end, returns a pointer to the slot
   filled in. For object vectors, the new value can be NULL, in which
307 308
   case NO initialization is performed.  There must
   be sufficient space in the vector.  */
309

310 311
#define VEC_quick_push(T,V,O)	\
	(VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO))
312 313

/* Push object with reallocation
314
   T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer
315 316
   T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer
   T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object
H.J. Lu committed
317

318 319 320
   Push a new element onto the end, returns a pointer to the slot
   filled in. For object vectors, the new value can be NULL, in which
   case NO initialization is performed.  Reallocates V, if needed.  */
321

322 323
#define VEC_safe_push(T,A,V,O)		\
	(VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO))
324 325

/* Pop element off end
326
   T VEC_T_pop (VEC(T) *v);		// Integer
327 328 329 330 331
   T VEC_T_pop (VEC(T) *v);		// Pointer
   void VEC_T_pop (VEC(T) *v);		// Object

   Pop the last element off the end. Returns the element popped, for
   pointer vectors.  */
332

333
#define VEC_pop(T,V)	(VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO))
334

335
/* Truncate to specific length
336
   void VEC_T_truncate (VEC(T) *v, unsigned len);
H.J. Lu committed
337

338 339
   Set the length as specified.  The new length must be less than or
   equal to the current length.  This is an O(1) operation.  */
340

341 342 343 344 345 346 347 348 349 350 351
#define VEC_truncate(T,V,I)		\
	(VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO))

/* Grow to a specific length.
   void VEC_T_A_safe_grow (VEC(T,A) *&v, int len);

   Grow the vector to a specific length.  The LEN must be as
   long or longer than the current length.  The new elements are
   uninitialized.  */

#define VEC_safe_grow(T,A,V,I)		\
352
	(VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
353

354 355 356 357 358 359 360 361 362 363
/* Grow to a specific length.
   void VEC_T_A_safe_grow_cleared (VEC(T,A) *&v, int len);

   Grow the vector to a specific length.  The LEN must be as
   long or longer than the current length.  The new elements are
   initialized to zero.  */

#define VEC_safe_grow_cleared(T,A,V,I)		\
	(VEC_OP(T,A,safe_grow_cleared)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))

364
/* Replace element
365
   T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
366 367
   T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
   T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val);  // Object
H.J. Lu committed
368

369 370 371 372 373
   Replace the IXth element of V with a new value, VAL.  For pointer
   vectors returns the original value. For object vectors returns a
   pointer to the new value.  For object vectors the new value can be
   NULL, in which case no overwriting of the slot is actually
   performed.  */
374

375 376
#define VEC_replace(T,V,I,O)		\
	(VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO))
377 378

/* Insert object with no reallocation
379
   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
380 381
   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
H.J. Lu committed
382

383 384 385
   Insert an element, VAL, at the IXth position of V. Return a pointer
   to the slot created.  For vectors of object, the new value can be
   NULL, in which case no initialization of the inserted slot takes
386
   place. There must be sufficient space.  */
387

388 389
#define VEC_quick_insert(T,V,I,O)	\
	(VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO))
390 391

/* Insert object with reallocation
392
   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
393 394
   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
H.J. Lu committed
395

396 397 398 399
   Insert an element, VAL, at the IXth position of V. Return a pointer
   to the slot created.  For vectors of object, the new value can be
   NULL, in which case no initialization of the inserted slot takes
   place. Reallocate V, if necessary.  */
400

401 402
#define VEC_safe_insert(T,A,V,I,O)	\
	(VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO))
H.J. Lu committed
403

404
/* Remove element retaining order
405
   T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
406 407
   T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
   void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
H.J. Lu committed
408

409
   Remove an element from the IXth position of V. Ordering of
410
   remaining elements is preserved.  For pointer vectors returns the
411
   removed object.  This is an O(N) operation due to a memmove.  */
412

413 414
#define VEC_ordered_remove(T,V,I)	\
	(VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
415 416

/* Remove element destroying order
417
   T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
418 419
   T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
   void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
H.J. Lu committed
420

421 422 423
   Remove an element from the IXth position of V. Ordering of
   remaining elements is destroyed.  For pointer vectors returns the
   removed object.  This is an O(1) operation.  */
424

425 426
#define VEC_unordered_remove(T,V,I)	\
	(VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
427

428 429
/* Remove a block of elements
   void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
H.J. Lu committed
430

431
   Remove LEN elements starting at the IXth.  Ordering is retained.
432
   This is an O(N) operation due to memmove.  */
433 434 435 436

#define VEC_block_remove(T,V,I,L)	\
	(VEC_OP(T,base,block_remove)(VEC_BASE(V),I,L VEC_CHECK_INFO))

437 438 439 440 441
/* Get the address of the array of elements
   T *VEC_T_address (VEC(T) v)

   If you need to directly manipulate the array (for instance, you
   want to feed it to qsort), use this accessor.  */
442

443
#define VEC_address(T,V)		(VEC_OP(T,base,address)(VEC_BASE(V)))
444

445 446 447 448 449 450
/* Conveniently sort the contents of the vector with qsort.
   void VEC_qsort (VEC(T) *v, int (*cmp_func)(const void *, const void *))  */

#define VEC_qsort(T,V,CMP) qsort(VEC_address (T,V), VEC_length(T,V),	\
				 sizeof (T), CMP)

451
/* Find the first index in the vector not less than the object.
H.J. Lu committed
452
   unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
453
                               bool (*lessthan) (const T, const T)); // Integer
H.J. Lu committed
454
   unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
455 456 457
                               bool (*lessthan) (const T, const T)); // Pointer
   unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
                               bool (*lessthan) (const T*, const T*)); // Object
H.J. Lu committed
458

459 460
   Find the first position in which VAL could be inserted without
   changing the ordering of V.  LESSTHAN is a function that returns
461
   true if the first argument is strictly less than the second.  */
H.J. Lu committed
462

463 464
#define VEC_lower_bound(T,V,O,LT)    \
       (VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO))
465

466
/* Reallocate an array of elements with prefix.  */
467
extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL);
468
extern void *vec_gc_p_reserve_exact (void *, int MEM_STAT_DECL);
469
extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
470 471
extern void *vec_gc_o_reserve_exact (void *, int, size_t, size_t
				     MEM_STAT_DECL);
472 473
extern void ggc_free (void *);
#define vec_gc_free(V) ggc_free (V)
474
extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL);
475
extern void *vec_heap_p_reserve_exact (void *, int MEM_STAT_DECL);
476
extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
477 478
extern void *vec_heap_o_reserve_exact (void *, int, size_t, size_t
				       MEM_STAT_DECL);
479 480 481 482
extern void dump_vec_loc_statistics (void);
#ifdef GATHER_STATISTICS
void vec_heap_free (void *);
#else
483 484
/* Avoid problems with frontends that #define free(x).  */
#define vec_heap_free(V) (free) (V)
485
#endif
486 487

#if ENABLE_CHECKING
488 489 490
#define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__
#define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_
#define VEC_CHECK_PASS ,file_,line_,function_
H.J. Lu committed
491

492 493
#define VEC_ASSERT(EXPR,OP,T,A) \
  (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0))
494 495 496 497

extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL)
     ATTRIBUTE_NORETURN;
#define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS)
498
#else
499 500 501
#define VEC_CHECK_INFO
#define VEC_CHECK_DECL
#define VEC_CHECK_PASS
502
#define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR)
503 504
#endif

505 506 507 508
/* Note: gengtype has hardwired knowledge of the expansions of the
   VEC, DEF_VEC_*, and DEF_VEC_ALLOC_* macros.  If you change the
   expansions of these macros you may need to change gengtype too.  */

509 510
#define VEC(T,A) VEC_##T##_##A
#define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP
511

H.J. Lu committed
512
/* Base of vector type, not user visible.  */
513
#define VEC_T(T,B)							  \
514 515 516 517 518 519 520 521
typedef struct VEC(T,B) 				 		  \
{									  \
  unsigned num;								  \
  unsigned alloc;							  \
  T vec[1];								  \
} VEC(T,B)

#define VEC_T_GTY(T,B)							  \
522
typedef struct GTY(()) VEC(T,B)				 		  \
523
{									  \
524 525
  unsigned num;								  \
  unsigned alloc;							  \
526 527 528 529
  T GTY ((length ("%h.num"))) vec[1];					  \
} VEC(T,B)

/* Derived vector type, user visible.  */
530
#define VEC_TA_GTY(T,B,A,GTY)						  \
531
typedef struct GTY VEC(T,A)						  \
532 533 534 535
{									  \
  VEC(T,B) base;							  \
} VEC(T,A)

536 537 538 539 540 541
#define VEC_TA(T,B,A)							  \
typedef struct VEC(T,A)							  \
{									  \
  VEC(T,B) base;							  \
} VEC(T,A)

542 543
/* Convert to base type.  */
#define VEC_BASE(P)  ((P) ? &(P)->base : 0)
544

545 546 547 548 549 550 551 552
/* Vector of integer-like object.  */
#define DEF_VEC_I(T)							  \
static inline void VEC_OP (T,must_be,integral_type) (void) 		  \
{									  \
  (void)~(T)0;								  \
}									  \
									  \
VEC_T(T,base);								  \
553
VEC_TA(T,base,none);							  \
554 555 556
DEF_VEC_FUNC_P(T)							  \
struct vec_swallow_trailing_semi
#define DEF_VEC_ALLOC_I(T,A)						  \
557
VEC_TA(T,base,A);							  \
558
DEF_VEC_ALLOC_FUNC_I(T,A)						  \
559
DEF_VEC_NONALLOC_FUNCS_I(T,A)						  \
560 561
struct vec_swallow_trailing_semi

562
/* Vector of pointer to object.  */
563
#define DEF_VEC_P(T) 							  \
564
static inline void VEC_OP (T,must_be,pointer_type) (void) 		  \
565
{									  \
566
  (void)((T)1 == (void *)1);						  \
567 568
}									  \
									  \
569
VEC_T_GTY(T,base);							  \
570
VEC_TA(T,base,none);							  \
571 572 573
DEF_VEC_FUNC_P(T)							  \
struct vec_swallow_trailing_semi
#define DEF_VEC_ALLOC_P(T,A)						  \
574
VEC_TA(T,base,A);							  \
575
DEF_VEC_ALLOC_FUNC_P(T,A)						  \
576
DEF_VEC_NONALLOC_FUNCS_P(T,A)						  \
577 578 579
struct vec_swallow_trailing_semi

#define DEF_VEC_FUNC_P(T)						  \
580
static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_)   \
581 582 583 584
{									  \
  return vec_ ? vec_->num : 0;						  \
}									  \
									  \
585 586
static inline T VEC_OP (T,base,last)					  \
     (const VEC(T,base) *vec_ VEC_CHECK_DECL)				  \
587
{									  \
588
  VEC_ASSERT (vec_ && vec_->num, "last", T, base);			  \
589
  									  \
Nathan Sidwell committed
590
  return vec_->vec[vec_->num - 1];					  \
591 592
}									  \
									  \
593 594
static inline T VEC_OP (T,base,index)					  \
     (const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)		  \
595
{									  \
596
  VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base);		  \
597 598 599 600
  									  \
  return vec_->vec[ix_];						  \
}									  \
									  \
601 602
static inline int VEC_OP (T,base,iterate)			  	  \
     (const VEC(T,base) *vec_, unsigned ix_, T *ptr)			  \
603
{									  \
604 605 606 607 608 609 610
  if (vec_ && ix_ < vec_->num)						  \
    {									  \
      *ptr = vec_->vec[ix_];						  \
      return 1;								  \
    }									  \
  else									  \
    {									  \
611
      *ptr = (T) 0;							  \
612 613
      return 0;								  \
    }									  \
614 615
}									  \
									  \
616
static inline size_t VEC_OP (T,base,embedded_size)			  \
617
     (int alloc_)							  \
618
{									  \
619
  return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T);		  \
620 621
}									  \
									  \
622 623
static inline void VEC_OP (T,base,embedded_init)			  \
     (VEC(T,base) *vec_, int alloc_)					  \
624 625 626
{									  \
  vec_->num = 0;							  \
  vec_->alloc = alloc_;							  \
627 628
}									  \
									  \
629 630
static inline int VEC_OP (T,base,space)	       				  \
     (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL)			  \
631
{									  \
632 633
  VEC_ASSERT (alloc_ >= 0, "space", T, base);				  \
  return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_;	  \
634 635
}									  \
									  \
636 637 638 639 640 641 642 643 644 645 646 647 648
static inline void VEC_OP(T,base,splice)				  \
     (VEC(T,base) *dst_, VEC(T,base) *src_ VEC_CHECK_DECL)		  \
{									  \
  if (src_)								  \
    {									  \
      unsigned len_ = src_->num;					  \
      VEC_ASSERT (dst_->num + len_ <= dst_->alloc, "splice", T, base);	  \
									  \
      memcpy (&dst_->vec[dst_->num], &src_->vec[0], len_ * sizeof (T));	  \
      dst_->num += len_;						  \
    }									  \
}									  \
									  \
649 650
static inline T *VEC_OP (T,base,quick_push)				  \
     (VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL)				  \
651
{									  \
652
  T *slot_;								  \
653
  									  \
654
  VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base);		  \
655 656 657 658 659 660
  slot_ = &vec_->vec[vec_->num++];					  \
  *slot_ = obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
661
static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL)	  \
662
{									  \
663
  T obj_;								  \
664
									  \
665
  VEC_ASSERT (vec_->num, "pop", T, base);				  \
666 667 668 669 670
  obj_ = vec_->vec[--vec_->num];					  \
									  \
  return obj_;								  \
}									  \
									  \
671 672
static inline void VEC_OP (T,base,truncate)				  \
     (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL)			  \
673
{									  \
674
  VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base);	  \
675 676
  if (vec_)								  \
    vec_->num = size_;							  \
677 678
}									  \
									  \
679 680
static inline T VEC_OP (T,base,replace)		  	     		  \
     (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL)		  \
681
{									  \
682
  T old_obj_;								  \
683
									  \
684
  VEC_ASSERT (ix_ < vec_->num, "replace", T, base);			  \
685 686 687 688 689 690
  old_obj_ = vec_->vec[ix_];						  \
  vec_->vec[ix_] = obj_;						  \
									  \
  return old_obj_;							  \
}									  \
									  \
691 692 693 694 695 696 697
static inline T *VEC_OP (T,base,quick_insert)				  \
     (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL)		  \
{									  \
  T *slot_;								  \
									  \
  VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base);		  \
  VEC_ASSERT (ix_ <= vec_->num, "insert", T, base);			  \
698
  slot_ = &vec_->vec[ix_];						  \
699
  memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T));		  \
700 701 702 703 704
  *slot_ = obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
705 706
static inline T VEC_OP (T,base,ordered_remove)				  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
707
{									  \
708 709
  T *slot_;								  \
  T obj_;								  \
710
									  \
711
  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
712 713
  slot_ = &vec_->vec[ix_];						  \
  obj_ = *slot_;							  \
714
  memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T));     	  \
715 716 717 718
									  \
  return obj_;								  \
}									  \
									  \
719 720
static inline T VEC_OP (T,base,unordered_remove)			  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
721
{									  \
722 723
  T *slot_;								  \
  T obj_;								  \
724
									  \
725
  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
726 727 728 729 730 731 732
  slot_ = &vec_->vec[ix_];						  \
  obj_ = *slot_;							  \
  *slot_ = vec_->vec[--vec_->num];					  \
									  \
  return obj_;								  \
}									  \
									  \
733 734 735 736 737 738 739 740 741 742 743
static inline void VEC_OP (T,base,block_remove)				  \
     (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL)	  \
{									  \
  T *slot_;								  \
									  \
  VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base);	  \
  slot_ = &vec_->vec[ix_];						  \
  vec_->num -= len_;							  \
  memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T));	  \
}									  \
									  \
744 745
static inline T *VEC_OP (T,base,address)				  \
     (VEC(T,base) *vec_)						  \
746 747 748 749
{									  \
  return vec_ ? vec_->vec : 0;						  \
}									  \
									  \
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
static inline unsigned VEC_OP (T,base,lower_bound)			  \
     (VEC(T,base) *vec_, const T obj_,					  \
      bool (*lessthan_)(const T, const T) VEC_CHECK_DECL)		  \
{									  \
   unsigned int len_ = VEC_OP (T,base, length) (vec_);			  \
   unsigned int half_, middle_;						  \
   unsigned int first_ = 0;						  \
   while (len_ > 0)							  \
     {									  \
        T middle_elem_;							  \
        half_ = len_ >> 1;						  \
        middle_ = first_;						  \
        middle_ += half_;						  \
        middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
        if (lessthan_ (middle_elem_, obj_))				  \
          {								  \
             first_ = middle_;						  \
             ++first_;							  \
             len_ = len_ - half_ - 1;					  \
          }								  \
        else								  \
          len_ = half_;							  \
     }									  \
   return first_;							  \
774 775 776
}

#define DEF_VEC_ALLOC_FUNC_P(T,A)					  \
777 778 779
static inline VEC(T,A) *VEC_OP (T,A,alloc)				  \
     (int alloc_ MEM_STAT_DECL)						  \
{									  \
780 781
  return (VEC(T,A) *) vec_##A##_p_reserve_exact (NULL, alloc_		  \
						 PASS_MEM_STAT);	  \
782 783 784 785
}


#define DEF_VEC_NONALLOC_FUNCS_P(T,A)					  \
786 787 788 789 790 791 792 793
static inline void VEC_OP (T,A,free)					  \
     (VEC(T,A) **vec_)							  \
{									  \
  if (*vec_)								  \
    vec_##A##_free (*vec_);						  \
  *vec_ = NULL;								  \
}									  \
									  \
794 795 796 797 798 799 800
static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
{									  \
  size_t len_ = vec_ ? vec_->num : 0;					  \
  VEC (T,A) *new_vec_ = NULL;						  \
									  \
  if (len_)								  \
    {									  \
801 802
      new_vec_ = (VEC (T,A) *)(vec_##A##_p_reserve_exact		  \
			       (NULL, len_ PASS_MEM_STAT));		  \
803 804 805 806 807 808 809
									  \
      new_vec_->base.num = len_;					  \
      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
    }									  \
  return new_vec_;							  \
}									  \
									  \
810 811 812
static inline int VEC_OP (T,A,reserve)	       				  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
813
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
814 815 816 817 818 819 820 821
				       VEC_CHECK_PASS);			  \
		  							  \
  if (extend)	  							  \
    *vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \
		  							  \
  return extend;							  \
}									  \
									  \
822 823 824 825 826 827 828 829 830 831 832 833 834
static inline int VEC_OP (T,A,reserve_exact)  				  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
				       VEC_CHECK_PASS);			  \
		  							  \
  if (extend)	  							  \
    *vec_ = (VEC(T,A) *) vec_##A##_p_reserve_exact (*vec_, alloc_	  \
						    PASS_MEM_STAT);	  \
		  							  \
  return extend;							  \
}									  \
									  \
835 836 837 838 839 840
static inline void VEC_OP (T,A,safe_grow)				  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  VEC_ASSERT (size_ >= 0						  \
	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
						 "grow", T, A);		  \
841 842 843
  VEC_OP (T,A,reserve_exact) (vec_,					  \
			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
844 845 846
  VEC_BASE (*vec_)->num = size_;					  \
}									  \
									  \
847 848 849 850 851 852 853 854 855
static inline void VEC_OP (T,A,safe_grow_cleared)			  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_);			  \
  VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT);	  \
  memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0,	  \
	  sizeof (T) * (size_ - oldsize));				  \
}									  \
									  \
856 857 858 859 860 861 862 863 864 865 866 867 868
static inline void VEC_OP(T,A,safe_splice)				  \
     (VEC(T,A) **dst_, VEC(T,base) *src_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
{									  \
  if (src_)								  \
    {									  \
      VEC_OP (T,A,reserve_exact) (dst_, src_->num			  \
				  VEC_CHECK_PASS MEM_STAT_INFO);	  \
									  \
      VEC_OP (T,base,splice) (VEC_BASE (*dst_), src_			  \
			      VEC_CHECK_PASS);				  \
    }									  \
}									  \
									  \
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
static inline T *VEC_OP (T,A,safe_push)					  \
     (VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL)       	  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
     (VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL)  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
 				       VEC_CHECK_PASS);			  \
884
}
885 886

/* Vector of object.  */
887
#define DEF_VEC_O(T)							  \
888
VEC_T_GTY(T,base);							  \
889
VEC_TA(T,base,none);						  \
890 891 892
DEF_VEC_FUNC_O(T)							  \
struct vec_swallow_trailing_semi
#define DEF_VEC_ALLOC_O(T,A)						  \
893
VEC_TA(T,base,A);							  \
894
DEF_VEC_ALLOC_FUNC_O(T,A)						  \
895
DEF_VEC_NONALLOC_FUNCS_O(T,A)						  \
896 897 898
struct vec_swallow_trailing_semi

#define DEF_VEC_FUNC_O(T)						  \
899
static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_)	  \
900 901 902 903
{									  \
  return vec_ ? vec_->num : 0;						  \
}									  \
									  \
904
static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL)  \
905
{									  \
906
  VEC_ASSERT (vec_ && vec_->num, "last", T, base);			  \
907 908 909 910
  									  \
  return &vec_->vec[vec_->num - 1];					  \
}									  \
									  \
911 912
static inline T *VEC_OP (T,base,index)					  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
913
{									  \
914
  VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base);		  \
915 916 917 918
  									  \
  return &vec_->vec[ix_];						  \
}									  \
									  \
919 920
static inline int VEC_OP (T,base,iterate)			     	  \
     (VEC(T,base) *vec_, unsigned ix_, T **ptr)				  \
921
{									  \
922 923 924 925 926 927 928 929 930 931
  if (vec_ && ix_ < vec_->num)						  \
    {									  \
      *ptr = &vec_->vec[ix_];						  \
      return 1;								  \
    }									  \
  else									  \
    {									  \
      *ptr = 0;								  \
      return 0;								  \
    }									  \
932 933
}									  \
									  \
934
static inline size_t VEC_OP (T,base,embedded_size)			  \
935
     (int alloc_)							  \
936
{									  \
937
  return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T);		  \
938 939
}									  \
									  \
940 941
static inline void VEC_OP (T,base,embedded_init)			  \
     (VEC(T,base) *vec_, int alloc_)					  \
942
{									  \
943 944
  vec_->num = 0;							  \
  vec_->alloc = alloc_;							  \
945 946
}									  \
									  \
947 948
static inline int VEC_OP (T,base,space)	       				  \
     (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL)			  \
949
{									  \
950 951
  VEC_ASSERT (alloc_ >= 0, "space", T, base);				  \
  return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_;	  \
952 953
}									  \
									  \
954 955 956 957 958 959 960 961 962 963 964 965 966
static inline void VEC_OP(T,base,splice)				  \
     (VEC(T,base) *dst_, VEC(T,base) *src_ VEC_CHECK_DECL)		  \
{									  \
  if (src_)								  \
    {									  \
      unsigned len_ = src_->num;					  \
      VEC_ASSERT (dst_->num + len_ <= dst_->alloc, "splice", T, base);	  \
									  \
      memcpy (&dst_->vec[dst_->num], &src_->vec[0], len_ * sizeof (T));	  \
      dst_->num += len_;						  \
    }									  \
}									  \
									  \
967 968
static inline T *VEC_OP (T,base,quick_push)				  \
     (VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL)			  \
969
{									  \
970
  T *slot_;								  \
971
  									  \
972
  VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base);		  \
973 974 975 976 977 978 979
  slot_ = &vec_->vec[vec_->num++];					  \
  if (obj_)								  \
    *slot_ = *obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
980
static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
981
{									  \
982
  VEC_ASSERT (vec_->num, "pop", T, base);				  \
983 984 985
  --vec_->num;								  \
}									  \
									  \
986 987
static inline void VEC_OP (T,base,truncate)				  \
     (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL)			  \
988
{									  \
989
  VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base);	  \
990 991
  if (vec_)								  \
    vec_->num = size_;							  \
992 993
}									  \
									  \
994 995
static inline T *VEC_OP (T,base,replace)				  \
     (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL)	  \
996
{									  \
997
  T *slot_;								  \
998
									  \
999
  VEC_ASSERT (ix_ < vec_->num, "replace", T, base);			  \
1000 1001 1002 1003 1004 1005 1006
  slot_ = &vec_->vec[ix_];						  \
  if (obj_)								  \
    *slot_ = *obj_;							  \
									  \
  return slot_;								  \
}									  \
									  \
1007 1008 1009 1010 1011 1012 1013
static inline T *VEC_OP (T,base,quick_insert)				  \
     (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL)	  \
{									  \
  T *slot_;								  \
									  \
  VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base);		  \
  VEC_ASSERT (ix_ <= vec_->num, "insert", T, base);			  \
1014
  slot_ = &vec_->vec[ix_];						  \
1015
  memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T));		  \
1016 1017 1018 1019 1020 1021
  if (obj_)								  \
    *slot_ = *obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
1022 1023
static inline void VEC_OP (T,base,ordered_remove)			  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
1024
{									  \
1025
  T *slot_;								  \
1026
									  \
1027 1028 1029
  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
  slot_ = &vec_->vec[ix_];						  \
  memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T));		  \
1030 1031
}									  \
									  \
1032 1033
static inline void VEC_OP (T,base,unordered_remove)			  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
1034
{									  \
1035 1036 1037
  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
  vec_->vec[ix_] = vec_->vec[--vec_->num];				  \
}									  \
1038
									  \
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
static inline void VEC_OP (T,base,block_remove)				  \
     (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL)	  \
{									  \
  T *slot_;								  \
									  \
  VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base);	  \
  slot_ = &vec_->vec[ix_];						  \
  vec_->num -= len_;							  \
  memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T));	  \
}									  \
									  \
1050 1051 1052 1053
static inline T *VEC_OP (T,base,address)				  \
     (VEC(T,base) *vec_)						  \
{									  \
  return vec_ ? vec_->vec : 0;						  \
1054 1055
}									  \
									  \
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
static inline unsigned VEC_OP (T,base,lower_bound)			  \
     (VEC(T,base) *vec_, const T *obj_,					  \
      bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL)		  \
{									  \
   unsigned int len_ = VEC_OP (T, base, length) (vec_);			  \
   unsigned int half_, middle_;						  \
   unsigned int first_ = 0;						  \
   while (len_ > 0)							  \
     {									  \
        T *middle_elem_;						  \
        half_ = len_ >> 1;						  \
        middle_ = first_;						  \
        middle_ += half_;						  \
        middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
        if (lessthan_ (middle_elem_, obj_))				  \
          {								  \
             first_ = middle_;						  \
             ++first_;							  \
             len_ = len_ - half_ - 1;					  \
          }								  \
        else								  \
          len_ = half_;							  \
     }									  \
   return first_;							  \
1080
}
1081

1082
#define DEF_VEC_ALLOC_FUNC_O(T,A)					  \
1083 1084
static inline VEC(T,A) *VEC_OP (T,A,alloc)      			  \
     (int alloc_ MEM_STAT_DECL)						  \
1085
{									  \
1086 1087 1088 1089
  return (VEC(T,A) *) vec_##A##_o_reserve_exact (NULL, alloc_,		  \
						 offsetof (VEC(T,A),base.vec), \
						 sizeof (T)		  \
						 PASS_MEM_STAT);	  \
1090 1091 1092
}

#define DEF_VEC_NONALLOC_FUNCS_O(T,A)					  \
1093 1094 1095 1096 1097 1098 1099
static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
{									  \
  size_t len_ = vec_ ? vec_->num : 0;					  \
  VEC (T,A) *new_vec_ = NULL;						  \
									  \
  if (len_)								  \
    {									  \
1100 1101
      new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact		  \
			       (NULL, len_,				  \
1102 1103 1104 1105 1106 1107 1108 1109 1110
				offsetof (VEC(T,A),base.vec), sizeof (T)  \
				PASS_MEM_STAT));			  \
									  \
      new_vec_->base.num = len_;					  \
      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
    }									  \
  return new_vec_;							  \
}									  \
									  \
1111 1112
static inline void VEC_OP (T,A,free)					  \
     (VEC(T,A) **vec_)							  \
1113
{									  \
1114 1115 1116 1117 1118 1119 1120 1121
  if (*vec_)								  \
    vec_##A##_free (*vec_);						  \
  *vec_ = NULL;								  \
}									  \
									  \
static inline int VEC_OP (T,A,reserve)	   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
1122
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_,		  \
			   		      offsetof (VEC(T,A),base.vec),\
 					      sizeof (T)		  \
			   		      PASS_MEM_STAT);		  \
									  \
  return extend;							  \
}									  \
									  \
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
static inline int VEC_OP (T,A,reserve_exact)   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact			  \
			 (*vec_, alloc_,				  \
			  offsetof (VEC(T,A),base.vec),			  \
			  sizeof (T) PASS_MEM_STAT);			  \
									  \
  return extend;							  \
}									  \
									  \
1149 1150 1151 1152 1153 1154
static inline void VEC_OP (T,A,safe_grow)				  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  VEC_ASSERT (size_ >= 0						  \
	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
						 "grow", T, A);		  \
1155 1156 1157
  VEC_OP (T,A,reserve_exact) (vec_,					  \
			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
1158 1159 1160
  VEC_BASE (*vec_)->num = size_;					  \
}									  \
									  \
1161 1162 1163 1164 1165 1166 1167 1168 1169
static inline void VEC_OP (T,A,safe_grow_cleared)			  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_);			  \
  VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT);	  \
  memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0,	  \
	  sizeof (T) * (size_ - oldsize));				  \
}									  \
									  \
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
static inline void VEC_OP(T,A,safe_splice)				  \
     (VEC(T,A) **dst_, VEC(T,base) *src_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
{									  \
  if (src_)								  \
    {									  \
      VEC_OP (T,A,reserve_exact) (dst_, src_->num			  \
				  VEC_CHECK_PASS MEM_STAT_INFO);	  \
									  \
      VEC_OP (T,base,splice) (VEC_BASE (*dst_), src_			  \
			      VEC_CHECK_PASS);				  \
    }									  \
}									  \
									  \
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
static inline T *VEC_OP (T,A,safe_push)					  \
     (VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS);  \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
     (VEC(T,A) **vec_, unsigned ix_, const T *obj_			  \
 		VEC_CHECK_DECL MEM_STAT_DECL)				  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
				       VEC_CHECK_PASS);			  \
1199
}
1200 1201 1202 1203 1204

#define DEF_VEC_ALLOC_FUNC_I(T,A)					  \
static inline VEC(T,A) *VEC_OP (T,A,alloc)      			  \
     (int alloc_ MEM_STAT_DECL)						  \
{									  \
1205 1206 1207
  return (VEC(T,A) *) vec_##A##_o_reserve_exact				  \
		      (NULL, alloc_, offsetof (VEC(T,A),base.vec),	  \
		       sizeof (T) PASS_MEM_STAT);			  \
1208 1209 1210
}

#define DEF_VEC_NONALLOC_FUNCS_I(T,A)					  \
1211 1212 1213 1214 1215 1216 1217
static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
{									  \
  size_t len_ = vec_ ? vec_->num : 0;					  \
  VEC (T,A) *new_vec_ = NULL;						  \
									  \
  if (len_)								  \
    {									  \
1218 1219
      new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact		  \
			       (NULL, len_,				  \
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
				offsetof (VEC(T,A),base.vec), sizeof (T)  \
				PASS_MEM_STAT));			  \
									  \
      new_vec_->base.num = len_;					  \
      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
    }									  \
  return new_vec_;							  \
}									  \
									  \
static inline void VEC_OP (T,A,free)					  \
     (VEC(T,A) **vec_)							  \
{									  \
  if (*vec_)								  \
    vec_##A##_free (*vec_);						  \
  *vec_ = NULL;								  \
}									  \
									  \
static inline int VEC_OP (T,A,reserve)	   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
1240
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_,		  \
			   		      offsetof (VEC(T,A),base.vec),\
 					      sizeof (T)		  \
			   		      PASS_MEM_STAT);		  \
									  \
  return extend;							  \
}									  \
									  \
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
static inline int VEC_OP (T,A,reserve_exact)   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact			  \
			 (*vec_, alloc_, offsetof (VEC(T,A),base.vec),	  \
			  sizeof (T) PASS_MEM_STAT);			  \
									  \
  return extend;							  \
}									  \
									  \
1266 1267 1268 1269 1270 1271
static inline void VEC_OP (T,A,safe_grow)				  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  VEC_ASSERT (size_ >= 0						  \
	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
						 "grow", T, A);		  \
1272 1273 1274
  VEC_OP (T,A,reserve_exact) (vec_,					  \
			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
1275 1276 1277
  VEC_BASE (*vec_)->num = size_;					  \
}									  \
									  \
1278 1279 1280 1281 1282 1283 1284 1285 1286
static inline void VEC_OP (T,A,safe_grow_cleared)			  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_);			  \
  VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT);	  \
  memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0,	  \
	  sizeof (T) * (size_ - oldsize));				  \
}									  \
									  \
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
static inline void VEC_OP(T,A,safe_splice)				  \
     (VEC(T,A) **dst_, VEC(T,base) *src_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
{									  \
  if (src_)								  \
    {									  \
      VEC_OP (T,A,reserve_exact) (dst_, src_->num			  \
				  VEC_CHECK_PASS MEM_STAT_INFO);	  \
									  \
      VEC_OP (T,base,splice) (VEC_BASE (*dst_), src_			  \
			      VEC_CHECK_PASS);				  \
    }									  \
}									  \
									  \
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
static inline T *VEC_OP (T,A,safe_push)					  \
     (VEC(T,A) **vec_, const T obj_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS);  \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
     (VEC(T,A) **vec_, unsigned ix_, const T obj_			  \
 		VEC_CHECK_DECL MEM_STAT_DECL)				  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
				       VEC_CHECK_PASS);			  \
}

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
/* We support a vector which starts out with space on the stack and
   switches to heap space when forced to reallocate.  This works a
   little differently.  Instead of DEF_VEC_ALLOC_P(TYPE, heap|gc), use
   DEF_VEC_ALLOC_P_STACK(TYPE).  This uses alloca to get the initial
   space; because alloca can not be usefully called in an inline
   function, and because a macro can not define a macro, you must then
   write a #define for each type:

   #define VEC_{TYPE}_stack_alloc(alloc)                          \
     VEC_stack_alloc({TYPE}, alloc)

   This is really a hack and perhaps can be made better.  Note that
   this macro will wind up evaluating the ALLOC parameter twice.

   Only the initial allocation will be made using alloca, so pass a
   reasonable estimate that doesn't use too much stack space; don't
   pass zero.  Don't return a VEC(TYPE,stack) vector from the function
   which allocated it.  */

extern void *vec_stack_p_reserve (void *, int MEM_STAT_DECL);
extern void *vec_stack_p_reserve_exact (void *, int MEM_STAT_DECL);
extern void *vec_stack_p_reserve_exact_1 (int, void *);
extern void *vec_stack_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
extern void *vec_stack_o_reserve_exact (void *, int, size_t, size_t
					 MEM_STAT_DECL);
extern void vec_stack_free (void *);

1345 1346 1347 1348 1349
#ifdef GATHER_STATISTICS
#define VEC_stack_alloc(T,alloc,name,line,function)			  \
  (VEC_OP (T,stack,alloc1)						  \
   (alloc, XALLOCAVAR (VEC(T,stack), VEC_embedded_size (T, alloc))))
#else
1350 1351 1352
#define VEC_stack_alloc(T,alloc)					  \
  (VEC_OP (T,stack,alloc1)						  \
   (alloc, XALLOCAVAR (VEC(T,stack), VEC_embedded_size (T, alloc))))
1353
#endif
1354 1355 1356 1357 1358 1359 1360 1361 1362

#define DEF_VEC_ALLOC_P_STACK(T)					  \
VEC_TA(T,base,stack);							  \
DEF_VEC_ALLOC_FUNC_P_STACK(T)						  \
DEF_VEC_NONALLOC_FUNCS_P(T,stack)					  \
struct vec_swallow_trailing_semi

#define DEF_VEC_ALLOC_FUNC_P_STACK(T)					  \
static inline VEC(T,stack) *VEC_OP (T,stack,alloc1)			  \
1363
     (int alloc_, VEC(T,stack)* space)					  \
1364
{									  \
1365
  return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space);	  \
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
}

#define DEF_VEC_ALLOC_O_STACK(T)					  \
VEC_TA(T,base,stack);							  \
DEF_VEC_ALLOC_FUNC_O_STACK(T)						  \
DEF_VEC_NONALLOC_FUNCS_O(T,stack)					  \
struct vec_swallow_trailing_semi

#define DEF_VEC_ALLOC_FUNC_O_STACK(T)					  \
static inline VEC(T,stack) *VEC_OP (T,stack,alloc1)			  \
1376
     (int alloc_, VEC(T,stack)* space)					  \
1377
{									  \
1378
  return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space);	  \
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
}

#define DEF_VEC_ALLOC_I_STACK(T)					  \
VEC_TA(T,base,stack);							  \
DEF_VEC_ALLOC_FUNC_I_STACK(T)						  \
DEF_VEC_NONALLOC_FUNCS_I(T,stack)					  \
struct vec_swallow_trailing_semi

#define DEF_VEC_ALLOC_FUNC_I_STACK(T)					  \
static inline VEC(T,stack) *VEC_OP (T,stack,alloc1)			  \
1389
     (int alloc_, VEC(T,stack)* space)					  \
1390
{									  \
1391
  return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space);   \
1392 1393
}

1394
#endif /* GCC_VEC_H */