regexp.go 32.7 KB
Newer Older
1
// Copyright 2009 The Go Authors. All rights reserved.
2 3 4
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

5
// Package regexp implements regular expression search.
6
//
7 8 9 10
// The syntax of the regular expressions accepted is the same
// general syntax used by Perl, Python, and other languages.
// More precisely, it is the syntax accepted by RE2 and described at
// http://code.google.com/p/re2/wiki/Syntax, except for \C.
11 12
// For an overview of the syntax, run
//   godoc regexp/syntax
13
//
14
// All characters are UTF-8-encoded code points.
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
//
// There are 16 methods of Regexp that match a regular expression and identify
// the matched text.  Their names are matched by this regular expression:
//
//	Find(All)?(String)?(Submatch)?(Index)?
//
// If 'All' is present, the routine matches successive non-overlapping
// matches of the entire expression.  Empty matches abutting a preceding
// match are ignored.  The return value is a slice containing the successive
// return values of the corresponding non-'All' routine.  These routines take
// an extra integer argument, n; if n >= 0, the function returns at most n
// matches/submatches.
//
// If 'String' is present, the argument is a string; otherwise it is a slice
// of bytes; return values are adjusted as appropriate.
//
// If 'Submatch' is present, the return value is a slice identifying the
32 33 34 35 36
// successive submatches of the expression. Submatches are matches of
// parenthesized subexpressions (also known as capturing groups) within the
// regular expression, numbered from left to right in order of opening
// parenthesis. Submatch 0 is the match of the entire expression, submatch 1
// the match of the first parenthesized subexpression, and so on.
37 38 39 40 41 42 43 44
//
// If 'Index' is present, matches and submatches are identified by byte index
// pairs within the input string: result[2*n:2*n+1] identifies the indexes of
// the nth submatch.  The pair for n==0 identifies the match of the entire
// expression.  If 'Index' is not present, the match is identified by the
// text of the match/submatch.  If an index is negative, it means that
// subexpression did not match any string in the input.
//
45 46 47 48 49 50 51 52 53 54
// There is also a subset of the methods that can be applied to text read
// from a RuneReader:
//
//	MatchReader, FindReaderIndex, FindReaderSubmatchIndex
//
// This set may grow.  Note that regular expression matches may need to
// examine text beyond the text returned by a match, so the methods that
// match text from a RuneReader may read arbitrarily far into the input
// before returning.
//
55 56 57 58 59 60 61
// (There are a few other methods that do not match this pattern.)
//
package regexp

import (
	"bytes"
	"io"
62 63
	"regexp/syntax"
	"strconv"
64
	"strings"
65
	"sync"
66
	"unicode"
67
	"unicode/utf8"
68 69 70 71 72 73
)

var debug = false

// Regexp is the representation of a compiled regular expression.
// The public interface is entirely through methods.
74
// A Regexp is safe for concurrent use by multiple goroutines.
75
type Regexp struct {
76 77 78 79 80 81
	// read-only after Compile
	expr           string         // as passed to Compile
	prog           *syntax.Prog   // compiled program
	prefix         string         // required prefix in unanchored matches
	prefixBytes    []byte         // prefix, as a []byte
	prefixComplete bool           // prefix is the entire regexp
82
	prefixRune     rune           // first rune in prefix
83 84
	cond           syntax.EmptyOp // empty-width conditions required at start of match
	numSubexp      int
85
	subexpNames    []string
86 87 88 89 90
	longest        bool

	// cache of machines for running regexp
	mu      sync.Mutex
	machine []*machine
91 92
}

93 94 95 96 97
// String returns the source text used to compile the regular expression.
func (re *Regexp) String() string {
	return re.expr
}

98 99 100 101 102 103 104 105 106 107
// Compile parses a regular expression and returns, if successful,
// a Regexp object that can be used to match against text.
//
// When matching against text, the regexp returns a match that
// begins as early as possible in the input (leftmost), and among those
// it chooses the one that a backtracking search would have found first.
// This so-called leftmost-first matching is the same semantics
// that Perl, Python, and other implementations use, although this
// package implements it without the expense of backtracking.
// For POSIX leftmost-longest matching, see CompilePOSIX.
108
func Compile(expr string) (*Regexp, error) {
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
	return compile(expr, syntax.Perl, false)
}

// CompilePOSIX is like Compile but restricts the regular expression
// to POSIX ERE (egrep) syntax and changes the match semantics to
// leftmost-longest.
//
// That is, when matching against text, the regexp returns a match that
// begins as early as possible in the input (leftmost), and among those
// it chooses a match that is as long as possible.
// This so-called leftmost-longest matching is the same semantics
// that early regular expression implementations used and that POSIX
// specifies.
//
// However, there can be multiple leftmost-longest matches, with different
// submatch choices, and here this package diverges from POSIX.
// Among the possible leftmost-longest matches, this package chooses
// the one that a backtracking search would have found first, while POSIX
// specifies that the match be chosen to maximize the length of the first
// subexpression, then the second, and so on from left to right.
// The POSIX rule is computationally prohibitive and not even well-defined.
// See http://swtch.com/~rsc/regexp/regexp2.html#posix for details.
131
func CompilePOSIX(expr string) (*Regexp, error) {
132 133 134
	return compile(expr, syntax.POSIX, true)
}

135 136 137 138 139 140 141 142
// Longest makes future searches prefer the leftmost-longest match.
// That is, when matching against text, the regexp returns a match that
// begins as early as possible in the input (leftmost), and among those
// it chooses a match that is as long as possible.
func (re *Regexp) Longest() {
	re.longest = true
}

143
func compile(expr string, mode syntax.Flags, longest bool) (*Regexp, error) {
144 145 146 147 148
	re, err := syntax.Parse(expr, mode)
	if err != nil {
		return nil, err
	}
	maxCap := re.MaxCap()
149 150
	capNames := re.CapNames()

151 152 153 154 155 156
	re = re.Simplify()
	prog, err := syntax.Compile(re)
	if err != nil {
		return nil, err
	}
	regexp := &Regexp{
157 158 159 160 161 162
		expr:        expr,
		prog:        prog,
		numSubexp:   maxCap,
		subexpNames: capNames,
		cond:        prog.StartCond(),
		longest:     longest,
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	}
	regexp.prefix, regexp.prefixComplete = prog.Prefix()
	if regexp.prefix != "" {
		// TODO(rsc): Remove this allocation by adding
		// IndexString to package bytes.
		regexp.prefixBytes = []byte(regexp.prefix)
		regexp.prefixRune, _ = utf8.DecodeRuneInString(regexp.prefix)
	}
	return regexp, nil
}

// get returns a machine to use for matching re.
// It uses the re's machine cache if possible, to avoid
// unnecessary allocation.
func (re *Regexp) get() *machine {
	re.mu.Lock()
	if n := len(re.machine); n > 0 {
		z := re.machine[n-1]
		re.machine = re.machine[:n-1]
		re.mu.Unlock()
		return z
	}
	re.mu.Unlock()
	z := progMachine(re.prog)
	z.re = re
	return z
}

// put returns a machine to the re's machine cache.
// There is no attempt to limit the size of the cache, so it will
// grow to the maximum number of simultaneous matches
// run using re.  (The cache empties when re gets garbage collected.)
func (re *Regexp) put(z *machine) {
	re.mu.Lock()
	re.machine = append(re.machine, z)
	re.mu.Unlock()
199 200 201 202 203 204 205 206
}

// MustCompile is like Compile but panics if the expression cannot be parsed.
// It simplifies safe initialization of global variables holding compiled regular
// expressions.
func MustCompile(str string) *Regexp {
	regexp, error := Compile(str)
	if error != nil {
207
		panic(`regexp: Compile(` + quote(str) + `): ` + error.Error())
208 209 210 211
	}
	return regexp
}

212 213 214 215 216 217
// MustCompilePOSIX is like CompilePOSIX but panics if the expression cannot be parsed.
// It simplifies safe initialization of global variables holding compiled regular
// expressions.
func MustCompilePOSIX(str string) *Regexp {
	regexp, error := CompilePOSIX(str)
	if error != nil {
218
		panic(`regexp: CompilePOSIX(` + quote(str) + `): ` + error.Error())
219
	}
220
	return regexp
221 222
}

223 224 225
func quote(s string) string {
	if strconv.CanBackquote(s) {
		return "`" + s + "`"
226
	}
227
	return strconv.Quote(s)
228 229
}

230 231 232
// NumSubexp returns the number of parenthesized subexpressions in this Regexp.
func (re *Regexp) NumSubexp() int {
	return re.numSubexp
233 234
}

235 236 237 238 239 240 241 242 243
// SubexpNames returns the names of the parenthesized subexpressions
// in this Regexp.  The name for the first sub-expression is names[1],
// so that if m is a match slice, the name for m[i] is SubexpNames()[i].
// Since the Regexp as a whole cannot be named, names[0] is always
// the empty string.  The slice should not be modified.
func (re *Regexp) SubexpNames() []string {
	return re.subexpNames
}

244
const endOfText rune = -1
245

246 247 248
// input abstracts different representations of the input text. It provides
// one-character lookahead.
type input interface {
249 250
	step(pos int) (r rune, width int) // advance one rune
	canCheckPrefix() bool             // can we look ahead without losing info?
251 252
	hasPrefix(re *Regexp) bool
	index(re *Regexp, pos int) int
253
	context(pos int) syntax.EmptyOp
254 255 256 257 258 259 260
}

// inputString scans a string.
type inputString struct {
	str string
}

261
func (i *inputString) step(pos int) (rune, int) {
262
	if pos < len(i.str) {
263 264
		c := i.str[pos]
		if c < utf8.RuneSelf {
265
			return rune(c), 1
266 267
		}
		return utf8.DecodeRuneInString(i.str[pos:])
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
	}
	return endOfText, 0
}

func (i *inputString) canCheckPrefix() bool {
	return true
}

func (i *inputString) hasPrefix(re *Regexp) bool {
	return strings.HasPrefix(i.str, re.prefix)
}

func (i *inputString) index(re *Regexp, pos int) int {
	return strings.Index(i.str[pos:], re.prefix)
}

284
func (i *inputString) context(pos int) syntax.EmptyOp {
285
	r1, r2 := endOfText, endOfText
286 287 288 289 290 291 292 293 294
	if pos > 0 && pos <= len(i.str) {
		r1, _ = utf8.DecodeLastRuneInString(i.str[:pos])
	}
	if pos < len(i.str) {
		r2, _ = utf8.DecodeRuneInString(i.str[pos:])
	}
	return syntax.EmptyOpContext(r1, r2)
}

295 296 297 298 299
// inputBytes scans a byte slice.
type inputBytes struct {
	str []byte
}

300
func (i *inputBytes) step(pos int) (rune, int) {
301
	if pos < len(i.str) {
302 303
		c := i.str[pos]
		if c < utf8.RuneSelf {
304
			return rune(c), 1
305 306
		}
		return utf8.DecodeRune(i.str[pos:])
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
	}
	return endOfText, 0
}

func (i *inputBytes) canCheckPrefix() bool {
	return true
}

func (i *inputBytes) hasPrefix(re *Regexp) bool {
	return bytes.HasPrefix(i.str, re.prefixBytes)
}

func (i *inputBytes) index(re *Regexp, pos int) int {
	return bytes.Index(i.str[pos:], re.prefixBytes)
}

323
func (i *inputBytes) context(pos int) syntax.EmptyOp {
324
	r1, r2 := endOfText, endOfText
325 326 327 328 329 330 331 332 333
	if pos > 0 && pos <= len(i.str) {
		r1, _ = utf8.DecodeLastRune(i.str[:pos])
	}
	if pos < len(i.str) {
		r2, _ = utf8.DecodeRune(i.str[pos:])
	}
	return syntax.EmptyOpContext(r1, r2)
}

334 335 336 337 338 339 340
// inputReader scans a RuneReader.
type inputReader struct {
	r     io.RuneReader
	atEOT bool
	pos   int
}

341
func (i *inputReader) step(pos int) (rune, int) {
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
	if !i.atEOT && pos != i.pos {
		return endOfText, 0

	}
	r, w, err := i.r.ReadRune()
	if err != nil {
		i.atEOT = true
		return endOfText, 0
	}
	i.pos += w
	return r, w
}

func (i *inputReader) canCheckPrefix() bool {
	return false
}

func (i *inputReader) hasPrefix(re *Regexp) bool {
	return false
}

func (i *inputReader) index(re *Regexp, pos int) int {
	return -1
}

367 368
func (i *inputReader) context(pos int) syntax.EmptyOp {
	return 0
369 370
}

371 372 373 374
// LiteralPrefix returns a literal string that must begin any match
// of the regular expression re.  It returns the boolean true if the
// literal string comprises the entire regular expression.
func (re *Regexp) LiteralPrefix() (prefix string, complete bool) {
375
	return re.prefix, re.prefixComplete
376 377
}

378 379
// MatchReader reports whether the Regexp matches the text read by the
// RuneReader.
380
func (re *Regexp) MatchReader(r io.RuneReader) bool {
381
	return re.doExecute(r, nil, "", 0, 0) != nil
382 383
}

384
// MatchString reports whether the Regexp matches the string s.
385
func (re *Regexp) MatchString(s string) bool {
386
	return re.doExecute(nil, nil, s, 0, 0) != nil
387
}
388

389
// Match reports whether the Regexp matches the byte slice b.
390
func (re *Regexp) Match(b []byte) bool {
391
	return re.doExecute(nil, b, "", 0, 0) != nil
392
}
393

394 395 396
// MatchReader checks whether a textual regular expression matches the text
// read by the RuneReader.  More complicated queries need to use Compile and
// the full Regexp interface.
397
func MatchReader(pattern string, r io.RuneReader) (matched bool, err error) {
398 399 400 401 402 403
	re, err := Compile(pattern)
	if err != nil {
		return false, err
	}
	return re.MatchReader(r), nil
}
404 405 406 407

// MatchString checks whether a textual regular expression
// matches a string.  More complicated queries need
// to use Compile and the full Regexp interface.
408
func MatchString(pattern string, s string) (matched bool, err error) {
409 410 411 412 413 414 415 416 417 418
	re, err := Compile(pattern)
	if err != nil {
		return false, err
	}
	return re.MatchString(s), nil
}

// Match checks whether a textual regular expression
// matches a byte slice.  More complicated queries need
// to use Compile and the full Regexp interface.
419
func Match(pattern string, b []byte) (matched bool, err error) {
420 421 422 423 424 425 426
	re, err := Compile(pattern)
	if err != nil {
		return false, err
	}
	return re.Match(b), nil
}

427 428 429
// ReplaceAllString returns a copy of src, replacing matches of the Regexp
// with the replacement string repl.  Inside repl, $ signs are interpreted as
// in Expand, so for instance $1 represents the text of the first submatch.
430
func (re *Regexp) ReplaceAllString(src, repl string) string {
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
	n := 2
	if strings.Index(repl, "$") >= 0 {
		n = 2 * (re.numSubexp + 1)
	}
	b := re.replaceAll(nil, src, n, func(dst []byte, match []int) []byte {
		return re.expand(dst, repl, nil, src, match)
	})
	return string(b)
}

// ReplaceAllStringLiteral returns a copy of src, replacing matches of the Regexp
// with the replacement string repl.  The replacement repl is substituted directly,
// without using Expand.
func (re *Regexp) ReplaceAllLiteralString(src, repl string) string {
	return string(re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
		return append(dst, repl...)
	}))
448 449
}

450
// ReplaceAllStringFunc returns a copy of src in which all matches of the
451
// Regexp have been replaced by the return value of function repl applied
452 453
// to the matched substring.  The replacement returned by repl is substituted
// directly, without using Expand.
454
func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string {
455 456 457 458 459 460 461
	b := re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
		return append(dst, repl(src[match[0]:match[1]])...)
	})
	return string(b)
}

func (re *Regexp) replaceAll(bsrc []byte, src string, nmatch int, repl func(dst []byte, m []int) []byte) []byte {
462 463
	lastMatchEnd := 0 // end position of the most recent match
	searchPos := 0    // position where we next look for a match
464 465 466 467 468 469 470 471 472
	var buf []byte
	var endPos int
	if bsrc != nil {
		endPos = len(bsrc)
	} else {
		endPos = len(src)
	}
	for searchPos <= endPos {
		a := re.doExecute(nil, bsrc, src, searchPos, nmatch)
473 474 475 476 477
		if len(a) == 0 {
			break // no more matches
		}

		// Copy the unmatched characters before this match.
478 479 480 481 482
		if bsrc != nil {
			buf = append(buf, bsrc[lastMatchEnd:a[0]]...)
		} else {
			buf = append(buf, src[lastMatchEnd:a[0]]...)
		}
483 484 485 486 487 488

		// Now insert a copy of the replacement string, but not for a
		// match of the empty string immediately after another match.
		// (Otherwise, we get double replacement for patterns that
		// match both empty and nonempty strings.)
		if a[1] > lastMatchEnd || a[0] == 0 {
489
			buf = repl(buf, a)
490 491 492 493
		}
		lastMatchEnd = a[1]

		// Advance past this match; always advance at least one character.
494 495 496 497 498 499
		var width int
		if bsrc != nil {
			_, width = utf8.DecodeRune(bsrc[searchPos:])
		} else {
			_, width = utf8.DecodeRuneInString(src[searchPos:])
		}
500 501 502 503 504 505 506 507 508 509 510 511
		if searchPos+width > a[1] {
			searchPos += width
		} else if searchPos+1 > a[1] {
			// This clause is only needed at the end of the input
			// string.  In that case, DecodeRuneInString returns width=0.
			searchPos++
		} else {
			searchPos = a[1]
		}
	}

	// Copy the unmatched characters after the last match.
512 513 514 515 516
	if bsrc != nil {
		buf = append(buf, bsrc[lastMatchEnd:]...)
	} else {
		buf = append(buf, src[lastMatchEnd:]...)
	}
517

518
	return buf
519 520
}

521
// ReplaceAll returns a copy of src, replacing matches of the Regexp
522
// with the replacement text repl.  Inside repl, $ signs are interpreted as
523
// in Expand, so for instance $1 represents the text of the first submatch.
524
func (re *Regexp) ReplaceAll(src, repl []byte) []byte {
525 526 527 528 529 530 531 532
	n := 2
	if bytes.IndexByte(repl, '$') >= 0 {
		n = 2 * (re.numSubexp + 1)
	}
	srepl := ""
	b := re.replaceAll(src, "", n, func(dst []byte, match []int) []byte {
		if len(srepl) != len(repl) {
			srepl = string(repl)
533
		}
534 535 536 537
		return re.expand(dst, srepl, src, "", match)
	})
	return b
}
538

539 540 541 542 543 544 545 546
// ReplaceAllLiteral returns a copy of src, replacing matches of the Regexp
// with the replacement bytes repl.  The replacement repl is substituted directly,
// without using Expand.
func (re *Regexp) ReplaceAllLiteral(src, repl []byte) []byte {
	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
		return append(dst, repl...)
	})
}
547

548
// ReplaceAllFunc returns a copy of src in which all matches of the
549
// Regexp have been replaced by the return value of function repl applied
550 551 552 553 554 555
// to the matched byte slice.  The replacement returned by repl is substituted
// directly, without using Expand.
func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte {
	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
		return append(dst, repl(src[match[0]:match[1]])...)
	})
556 557
}

558 559 560 561 562 563
var specialBytes = []byte(`\.+*?()|[]{}^$`)

func special(b byte) bool {
	return bytes.IndexByte(specialBytes, b) >= 0
}

564 565 566 567 568 569 570 571 572
// QuoteMeta returns a string that quotes all regular expression metacharacters
// inside the argument text; the returned string is a regular expression matching
// the literal text.  For example, QuoteMeta(`[foo]`) returns `\[foo\]`.
func QuoteMeta(s string) string {
	b := make([]byte, 2*len(s))

	// A byte loop is correct because all metacharacters are ASCII.
	j := 0
	for i := 0; i < len(s); i++ {
573
		if special(s[i]) {
574 575 576 577 578 579 580 581 582
			b[j] = '\\'
			j++
		}
		b[j] = s[i]
		j++
	}
	return string(b[0:j])
}

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
// The number of capture values in the program may correspond
// to fewer capturing expressions than are in the regexp.
// For example, "(a){0}" turns into an empty program, so the
// maximum capture in the program is 0 but we need to return
// an expression for \1.  Pad appends -1s to the slice a as needed.
func (re *Regexp) pad(a []int) []int {
	if a == nil {
		// No match.
		return nil
	}
	n := (1 + re.numSubexp) * 2
	for len(a) < n {
		a = append(a, -1)
	}
	return a
}

600 601 602 603 604 605 606 607 608 609
// Find matches in slice b if b is non-nil, otherwise find matches in string s.
func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) {
	var end int
	if b == nil {
		end = len(s)
	} else {
		end = len(b)
	}

	for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; {
610
		matches := re.doExecute(nil, b, s, pos, re.prog.NumCap)
611 612 613 614 615 616 617 618 619 620 621 622 623
		if len(matches) == 0 {
			break
		}

		accept := true
		if matches[1] == pos {
			// We've found an empty match.
			if matches[0] == prevMatchEnd {
				// We don't allow an empty match right
				// after a previous match, so ignore it.
				accept = false
			}
			var width int
624
			// TODO: use step()
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
			if b == nil {
				_, width = utf8.DecodeRuneInString(s[pos:end])
			} else {
				_, width = utf8.DecodeRune(b[pos:end])
			}
			if width > 0 {
				pos += width
			} else {
				pos = end + 1
			}
		} else {
			pos = matches[1]
		}
		prevMatchEnd = matches[1]

		if accept {
641
			deliver(re.pad(matches))
642 643 644 645 646 647 648 649
			i++
		}
	}
}

// Find returns a slice holding the text of the leftmost match in b of the regular expression.
// A return value of nil indicates no match.
func (re *Regexp) Find(b []byte) []byte {
650
	a := re.doExecute(nil, b, "", 0, 2)
651 652 653 654 655 656 657 658 659 660 661
	if a == nil {
		return nil
	}
	return b[a[0]:a[1]]
}

// FindIndex returns a two-element slice of integers defining the location of
// the leftmost match in b of the regular expression.  The match itself is at
// b[loc[0]:loc[1]].
// A return value of nil indicates no match.
func (re *Regexp) FindIndex(b []byte) (loc []int) {
662
	a := re.doExecute(nil, b, "", 0, 2)
663 664 665 666 667 668 669 670 671 672 673 674
	if a == nil {
		return nil
	}
	return a[0:2]
}

// FindString returns a string holding the text of the leftmost match in s of the regular
// expression.  If there is no match, the return value is an empty string,
// but it will also be empty if the regular expression successfully matches
// an empty string.  Use FindStringIndex or FindStringSubmatch if it is
// necessary to distinguish these cases.
func (re *Regexp) FindString(s string) string {
675
	a := re.doExecute(nil, nil, s, 0, 2)
676 677 678 679 680 681 682 683 684 685
	if a == nil {
		return ""
	}
	return s[a[0]:a[1]]
}

// FindStringIndex returns a two-element slice of integers defining the
// location of the leftmost match in s of the regular expression.  The match
// itself is at s[loc[0]:loc[1]].
// A return value of nil indicates no match.
686
func (re *Regexp) FindStringIndex(s string) (loc []int) {
687
	a := re.doExecute(nil, nil, s, 0, 2)
688 689 690 691 692 693 694 695
	if a == nil {
		return nil
	}
	return a[0:2]
}

// FindReaderIndex returns a two-element slice of integers defining the
// location of the leftmost match of the regular expression in text read from
696 697 698
// the RuneReader.  The match text was found in the input stream at
// byte offset loc[0] through loc[1]-1.
// A return value of nil indicates no match.
699
func (re *Regexp) FindReaderIndex(r io.RuneReader) (loc []int) {
700
	a := re.doExecute(r, nil, "", 0, 2)
701 702 703 704 705 706 707 708 709 710 711 712
	if a == nil {
		return nil
	}
	return a[0:2]
}

// FindSubmatch returns a slice of slices holding the text of the leftmost
// match of the regular expression in b and the matches, if any, of its
// subexpressions, as defined by the 'Submatch' descriptions in the package
// comment.
// A return value of nil indicates no match.
func (re *Regexp) FindSubmatch(b []byte) [][]byte {
713
	a := re.doExecute(nil, b, "", 0, re.prog.NumCap)
714 715 716
	if a == nil {
		return nil
	}
717
	ret := make([][]byte, 1+re.numSubexp)
718
	for i := range ret {
719
		if 2*i < len(a) && a[2*i] >= 0 {
720 721 722 723 724 725
			ret[i] = b[a[2*i]:a[2*i+1]]
		}
	}
	return ret
}

726 727 728 729
// Expand appends template to dst and returns the result; during the
// append, Expand replaces variables in the template with corresponding
// matches drawn from src.  The match slice should have been returned by
// FindSubmatchIndex.
730
//
731 732 733 734 735 736
// In the template, a variable is denoted by a substring of the form
// $name or ${name}, where name is a non-empty sequence of letters,
// digits, and underscores.  A purely numeric name like $1 refers to
// the submatch with the corresponding index; other names refer to
// capturing parentheses named with the (?P<name>...) syntax.  A
// reference to an out of range or unmatched index or a name that is not
737
// present in the regular expression is replaced with an empty slice.
738
//
739 740
// In the $name form, name is taken to be as long as possible: $1x is
// equivalent to ${1x}, not ${1}x, and, $10 is equivalent to ${10}, not ${1}0.
741
//
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
// To insert a literal $ in the output, use $$ in the template.
func (re *Regexp) Expand(dst []byte, template []byte, src []byte, match []int) []byte {
	return re.expand(dst, string(template), src, "", match)
}

// ExpandString is like Expand but the template and source are strings.
// It appends to and returns a byte slice in order to give the calling
// code control over allocation.
func (re *Regexp) ExpandString(dst []byte, template string, src string, match []int) []byte {
	return re.expand(dst, template, nil, src, match)
}

func (re *Regexp) expand(dst []byte, template string, bsrc []byte, src string, match []int) []byte {
	for len(template) > 0 {
		i := strings.Index(template, "$")
		if i < 0 {
			break
		}
		dst = append(dst, template[:i]...)
		template = template[i:]
		if len(template) > 1 && template[1] == '$' {
			// Treat $$ as $.
			dst = append(dst, '$')
			template = template[2:]
			continue
		}
		name, num, rest, ok := extract(template)
		if !ok {
			// Malformed; treat $ as raw text.
			dst = append(dst, '$')
			template = template[1:]
			continue
		}
		template = rest
		if num >= 0 {
777
			if 2*num+1 < len(match) && match[2*num] >= 0 {
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
				if bsrc != nil {
					dst = append(dst, bsrc[match[2*num]:match[2*num+1]]...)
				} else {
					dst = append(dst, src[match[2*num]:match[2*num+1]]...)
				}
			}
		} else {
			for i, namei := range re.subexpNames {
				if name == namei && 2*i+1 < len(match) && match[2*i] >= 0 {
					if bsrc != nil {
						dst = append(dst, bsrc[match[2*i]:match[2*i+1]]...)
					} else {
						dst = append(dst, src[match[2*i]:match[2*i+1]]...)
					}
					break
				}
			}
		}
	}
	dst = append(dst, template...)
	return dst
}

// extract returns the name from a leading "$name" or "${name}" in str.
// If it is a number, extract returns num set to that number; otherwise num = -1.
func extract(str string) (name string, num int, rest string, ok bool) {
	if len(str) < 2 || str[0] != '$' {
		return
	}
	brace := false
	if str[1] == '{' {
		brace = true
		str = str[2:]
	} else {
		str = str[1:]
	}
	i := 0
	for i < len(str) {
		rune, size := utf8.DecodeRuneInString(str[i:])
		if !unicode.IsLetter(rune) && !unicode.IsDigit(rune) && rune != '_' {
			break
		}
		i += size
	}
	if i == 0 {
		// empty name is not okay
		return
	}
	name = str[:i]
	if brace {
		if i >= len(str) || str[i] != '}' {
			// missing closing brace
			return
		}
		i++
	}

	// Parse number.
	num = 0
	for i := 0; i < len(name); i++ {
		if name[i] < '0' || '9' < name[i] || num >= 1e8 {
			num = -1
			break
		}
		num = num*10 + int(name[i]) - '0'
	}
	// Disallow leading zeros.
	if name[0] == '0' && len(name) > 1 {
		num = -1
	}

	rest = str[i:]
	ok = true
	return
}

854 855 856 857 858 859
// FindSubmatchIndex returns a slice holding the index pairs identifying the
// leftmost match of the regular expression in b and the matches, if any, of
// its subexpressions, as defined by the 'Submatch' and 'Index' descriptions
// in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindSubmatchIndex(b []byte) []int {
860
	return re.pad(re.doExecute(nil, b, "", 0, re.prog.NumCap))
861 862 863 864 865 866 867 868
}

// FindStringSubmatch returns a slice of strings holding the text of the
// leftmost match of the regular expression in s and the matches, if any, of
// its subexpressions, as defined by the 'Submatch' description in the
// package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindStringSubmatch(s string) []string {
869
	a := re.doExecute(nil, nil, s, 0, re.prog.NumCap)
870 871 872
	if a == nil {
		return nil
	}
873
	ret := make([]string, 1+re.numSubexp)
874
	for i := range ret {
875
		if 2*i < len(a) && a[2*i] >= 0 {
876 877 878 879 880 881 882 883 884 885 886 887
			ret[i] = s[a[2*i]:a[2*i+1]]
		}
	}
	return ret
}

// FindStringSubmatchIndex returns a slice holding the index pairs
// identifying the leftmost match of the regular expression in s and the
// matches, if any, of its subexpressions, as defined by the 'Submatch' and
// 'Index' descriptions in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindStringSubmatchIndex(s string) []int {
888
	return re.pad(re.doExecute(nil, nil, s, 0, re.prog.NumCap))
889 890 891 892 893 894 895 896
}

// FindReaderSubmatchIndex returns a slice holding the index pairs
// identifying the leftmost match of the regular expression of text read by
// the RuneReader, and the matches, if any, of its subexpressions, as defined
// by the 'Submatch' and 'Index' descriptions in the package comment.  A
// return value of nil indicates no match.
func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int {
897
	return re.pad(re.doExecute(r, nil, "", 0, re.prog.NumCap))
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
}

const startSize = 10 // The size at which to start a slice in the 'All' routines.

// FindAll is the 'All' version of Find; it returns a slice of all successive
// matches of the expression, as defined by the 'All' description in the
// package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAll(b []byte, n int) [][]byte {
	if n < 0 {
		n = len(b) + 1
	}
	result := make([][]byte, 0, startSize)
	re.allMatches("", b, n, func(match []int) {
		result = append(result, b[match[0]:match[1]])
	})
	if len(result) == 0 {
		return nil
	}
	return result
}

// FindAllIndex is the 'All' version of FindIndex; it returns a slice of all
// successive matches of the expression, as defined by the 'All' description
// in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllIndex(b []byte, n int) [][]int {
	if n < 0 {
		n = len(b) + 1
	}
	result := make([][]int, 0, startSize)
	re.allMatches("", b, n, func(match []int) {
		result = append(result, match[0:2])
	})
	if len(result) == 0 {
		return nil
	}
	return result
}

// FindAllString is the 'All' version of FindString; it returns a slice of all
// successive matches of the expression, as defined by the 'All' description
// in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllString(s string, n int) []string {
	if n < 0 {
		n = len(s) + 1
	}
	result := make([]string, 0, startSize)
	re.allMatches(s, nil, n, func(match []int) {
		result = append(result, s[match[0]:match[1]])
	})
	if len(result) == 0 {
		return nil
	}
	return result
}

// FindAllStringIndex is the 'All' version of FindStringIndex; it returns a
// slice of all successive matches of the expression, as defined by the 'All'
// description in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllStringIndex(s string, n int) [][]int {
	if n < 0 {
		n = len(s) + 1
	}
	result := make([][]int, 0, startSize)
	re.allMatches(s, nil, n, func(match []int) {
		result = append(result, match[0:2])
	})
	if len(result) == 0 {
		return nil
	}
	return result
}

// FindAllSubmatch is the 'All' version of FindSubmatch; it returns a slice
// of all successive matches of the expression, as defined by the 'All'
// description in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllSubmatch(b []byte, n int) [][][]byte {
	if n < 0 {
		n = len(b) + 1
	}
	result := make([][][]byte, 0, startSize)
	re.allMatches("", b, n, func(match []int) {
		slice := make([][]byte, len(match)/2)
		for j := range slice {
			if match[2*j] >= 0 {
				slice[j] = b[match[2*j]:match[2*j+1]]
			}
		}
		result = append(result, slice)
	})
	if len(result) == 0 {
		return nil
	}
	return result
}

// FindAllSubmatchIndex is the 'All' version of FindSubmatchIndex; it returns
// a slice of all successive matches of the expression, as defined by the
// 'All' description in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllSubmatchIndex(b []byte, n int) [][]int {
	if n < 0 {
		n = len(b) + 1
	}
	result := make([][]int, 0, startSize)
	re.allMatches("", b, n, func(match []int) {
		result = append(result, match)
	})
	if len(result) == 0 {
		return nil
	}
	return result
}

// FindAllStringSubmatch is the 'All' version of FindStringSubmatch; it
// returns a slice of all successive matches of the expression, as defined by
// the 'All' description in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllStringSubmatch(s string, n int) [][]string {
	if n < 0 {
		n = len(s) + 1
	}
	result := make([][]string, 0, startSize)
	re.allMatches(s, nil, n, func(match []int) {
		slice := make([]string, len(match)/2)
		for j := range slice {
			if match[2*j] >= 0 {
				slice[j] = s[match[2*j]:match[2*j+1]]
			}
		}
		result = append(result, slice)
	})
	if len(result) == 0 {
		return nil
	}
	return result
}

// FindAllStringSubmatchIndex is the 'All' version of
// FindStringSubmatchIndex; it returns a slice of all successive matches of
// the expression, as defined by the 'All' description in the package
// comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllStringSubmatchIndex(s string, n int) [][]int {
	if n < 0 {
		n = len(s) + 1
	}
	result := make([][]int, 0, startSize)
	re.allMatches(s, nil, n, func(match []int) {
		result = append(result, match)
	})
	if len(result) == 0 {
		return nil
	}
	return result
}
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

// Split slices s into substrings separated by the expression and returns a slice of
// the substrings between those expression matches.
//
// The slice returned by this method consists of all the substrings of s
// not contained in the slice returned by FindAllString. When called on an expression
// that contains no metacharacters, it is equivalent to strings.SplitN.
//
// Example:
//   s := regexp.MustCompile("a*").Split("abaabaccadaaae", 5)
//   // s: ["", "b", "b", "c", "cadaaae"]
//
// The count determines the number of substrings to return:
//   n > 0: at most n substrings; the last substring will be the unsplit remainder.
//   n == 0: the result is nil (zero substrings)
//   n < 0: all substrings
func (re *Regexp) Split(s string, n int) []string {

	if n == 0 {
		return nil
	}

	if len(re.expr) > 0 && len(s) == 0 {
		return []string{""}
	}

	matches := re.FindAllStringIndex(s, n)
	strings := make([]string, 0, len(matches))

	beg := 0
	end := 0
	for _, match := range matches {
		if n > 0 && len(strings) >= n-1 {
			break
		}

		end = match[0]
		if match[1] != 0 {
			strings = append(strings, s[beg:end])
		}
		beg = match[1]
	}

	if end != len(s) {
		strings = append(strings, s[beg:])
	}

	return strings
}