Random.java 12.3 KB
Newer Older
1 2
/* Random.java -- a pseudo-random number generator
   Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
Tom Tromey committed
3

Tom Tromey committed
4
This file is part of GNU Classpath.
Tom Tromey committed
5

Tom Tromey committed
6 7 8 9
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
Tom Tromey committed
10

Tom Tromey committed
11 12 13 14 15 16 17 18 19 20
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from
or based on this library.  If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so.  If you do not wish to do so, delete this
exception statement from your version. */
Tom Tromey committed
37

Tom Tromey committed
38 39

package java.util;
Tom Tromey committed
40

41 42
import java.io.Serializable;

Tom Tromey committed
43
/**
Tom Tromey committed
44 45 46 47 48
 * This class generates pseudorandom numbers.  It uses the same
 * algorithm as the original JDK-class, so that your programs behave
 * exactly the same way, if started with the same seed.
 *
 * The algorithm is described in <em>The Art of Computer Programming,
49 50
 * Volume 2</em> by Donald Knuth in Section 3.2.1.  It is a 48-bit seed,
 * linear congruential formula.
Tom Tromey committed
51 52 53 54 55 56 57 58 59 60 61 62
 *
 * If two instances of this class are created with the same seed and
 * the same calls to these classes are made, they behave exactly the
 * same way.  This should be even true for foreign implementations
 * (like this), so every port must use the same algorithm as described
 * here.
 *
 * If you want to implement your own pseudorandom algorithm, you
 * should extend this class and overload the <code>next()</code> and
 * <code>setSeed(long)</code> method.  In that case the above
 * paragraph doesn't apply to you.
 *
63
 * This class shouldn't be used for security sensitive purposes (like
Tom Tromey committed
64 65 66 67 68 69 70 71
 * generating passwords or encryption keys.  See <code>SecureRandom</code>
 * in package <code>java.security</code> for this purpose.
 *
 * For simple random doubles between 0.0 and 1.0, you may consider using
 * Math.random instead.
 *
 * @see java.security.SecureRandom
 * @see Math#random()
72 73 74 75 76
 * @author Jochen Hoenicke
 * @author Eric Blake (ebb9@email.byu.edu)
 * @status updated to 1.4
 */
public class Random implements Serializable
Tom Tromey committed
77
{
Tom Tromey committed
78 79 80
  /**
   * True if the next nextGaussian is available.  This is used by
   * nextGaussian, which generates two gaussian numbers by one call,
81 82 83 84 85 86
   * and returns the second on the second call.
   *
   * @serial whether nextNextGaussian is available
   * @see #nextGaussian()
   * @see #nextNextGaussian
   */
Tom Tromey committed
87
  private boolean haveNextNextGaussian;
88

Tom Tromey committed
89
  /**
90
   * The next nextGaussian, when available.  This is used by nextGaussian,
Tom Tromey committed
91 92
   * which generates two gaussian numbers by one call, and returns the
   * second on the second call.
93 94 95 96
   *
   * @serial the second gaussian of a pair
   * @see #nextGaussian()
   * @see #haveNextNextGaussian
Tom Tromey committed
97
   */
98
  private double nextNextGaussian;
99

Tom Tromey committed
100 101 102
  /**
   * The seed.  This is the number set by setSeed and which is used
   * in next.
103 104 105
   *
   * @serial the internal state of this generator
   * @see #next()
Tom Tromey committed
106 107
   */
  private long seed;
108

109 110 111
  /**
   * Compatible with JDK 1.0+.
   */
112
  private static final long serialVersionUID = 3905348978240129619L;
Tom Tromey committed
113

Tom Tromey committed
114 115
  /**
   * Creates a new pseudorandom number generator.  The seed is initialized
116 117 118
   * to the current time, as if by
   * <code>setSeed(System.currentTimeMillis());</code>.
   *
Tom Tromey committed
119 120
   * @see System#currentTimeMillis()
   */
Tom Tromey committed
121 122
  public Random()
  {
123
    this(System.currentTimeMillis());
Tom Tromey committed
124 125
  }

Tom Tromey committed
126 127
  /**
   * Creates a new pseudorandom number generator, starting with the
128 129 130
   * specified seed, using <code>setSeed(seed);</code>.
   *
   * @param seed the initial seed
Tom Tromey committed
131
   */
Tom Tromey committed
132 133 134 135 136
  public Random(long seed)
  {
    setSeed(seed);
  }

Tom Tromey committed
137 138 139 140 141
  /**
   * Sets the seed for this pseudorandom number generator.  As described
   * above, two instances of the same random class, starting with the
   * same seed, should produce the same results, if the same methods
   * are called.  The implementation for java.util.Random is:
142 143 144 145 146 147 148 149
   *
<pre>public synchronized void setSeed(long seed)
{
  this.seed = (seed ^ 0x5DEECE66DL) & ((1L &lt;&lt; 48) - 1);
  haveNextNextGaussian = false;
}</pre>
   *
   * @param seed the new seed
Tom Tromey committed
150
   */
Tom Tromey committed
151
  public synchronized void setSeed(long seed)
Tom Tromey committed
152
  {
Tom Tromey committed
153 154
    this.seed = (seed ^ 0x5DEECE66DL) & ((1L << 48) - 1);
    haveNextNextGaussian = false;
Tom Tromey committed
155 156
  }

Tom Tromey committed
157 158 159 160 161
  /**
   * Generates the next pseudorandom number.  This returns
   * an int value whose <code>bits</code> low order bits are
   * independent chosen random bits (0 and 1 are equally likely).
   * The implementation for java.util.Random is:
162 163 164 165 166 167 168 169 170 171
   *
<pre>protected synchronized int next(int bits)
{
  seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L &lt;&lt; 48) - 1);
  return (int) (seed &gt;&gt;&gt; (48 - bits));
}</pre>
   *
   * @param bits the number of random bits to generate, in the range 1..32
   * @return the next pseudorandom value
   * @since 1.1
Tom Tromey committed
172 173
   */
  protected synchronized int next(int bits)
Tom Tromey committed
174
  {
Tom Tromey committed
175 176
    seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1);
    return (int) (seed >>> (48 - bits));
Tom Tromey committed
177 178
  }

Tom Tromey committed
179 180 181 182
  /**
   * Fills an array of bytes with random numbers.  All possible values
   * are (approximately) equally likely.
   * The JDK documentation gives no implementation, but it seems to be:
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
   *
<pre>public void nextBytes(byte[] bytes)
{
  for (int i = 0; i &lt; bytes.length; i += 4)
  {
    int random = next(32);
    for (int j = 0; i + j &lt; bytes.length && j &lt; 4; j++)
    {
      bytes[i+j] = (byte) (random & 0xff)
      random &gt;&gt;= 8;
    }
  }
}</pre>
   *
   * @param bytes the byte array that should be filled
   * @throws NullPointerException if bytes is null
   * @since 1.1
Tom Tromey committed
200 201
   */
  public void nextBytes(byte[] bytes)
Tom Tromey committed
202
  {
Tom Tromey committed
203
    int random;
204
    // Do a little bit unrolling of the above algorithm.
Tom Tromey committed
205 206
    int max = bytes.length & ~0x3;
    for (int i = 0; i < max; i += 4)
Tom Tromey committed
207
      {
208 209 210 211 212
        random = next(32);
        bytes[i] = (byte) random;
        bytes[i + 1] = (byte) (random >> 8);
        bytes[i + 2] = (byte) (random >> 16);
        bytes[i + 3] = (byte) (random >> 24);
Tom Tromey committed
213
      }
Tom Tromey committed
214
    if (max < bytes.length)
Tom Tromey committed
215
      {
216 217 218 219 220 221
        random = next(32);
        for (int j = max; j < bytes.length; j++)
          {
            bytes[j] = (byte) random;
            random >>= 8;
          }
Tom Tromey committed
222 223 224
      }
  }

Tom Tromey committed
225 226 227 228 229
  /**
   * Generates the next pseudorandom number.  This returns
   * an int value whose 32 bits are independent chosen random bits
   * (0 and 1 are equally likely).  The implementation for
   * java.util.Random is:
230 231 232 233 234
   * 
<pre>public int nextInt()
{
  return next(32);
}</pre>
Tom Tromey committed
235
   *
236 237
   * @return the next pseudorandom value
   */
Tom Tromey committed
238 239 240 241 242
  public int nextInt()
  {
    return next(32);
  }

Tom Tromey committed
243 244 245 246 247 248
  /**
   * Generates the next pseudorandom number.  This returns
   * a value between 0(inclusive) and <code>n</code>(exclusive), and
   * each value has the same likelihodd (1/<code>n</code>).
   * (0 and 1 are equally likely).  The implementation for
   * java.util.Random is:
249 250 251 252 253 254 255 256 257 258 259 260 261
   * 
<pre>
public int nextInt(int n)
{
  if (n &lt;= 0)
    throw new IllegalArgumentException("n must be positive");

  if ((n & -n) == n)  // i.e., n is a power of 2
    return (int)((n * (long) next(31)) &gt;&gt; 31);

  int bits, val;
  do
  {
262
    bits = next(31);
263 264 265 266 267 268 269 270
    val = bits % n;
  }
  while(bits - val + (n-1) &lt; 0);

  return val;
}</pre>
   *   
   * <p>This algorithm would return every value with exactly the same
Tom Tromey committed
271 272
   * probability, if the next()-method would be a perfect random number
   * generator.
273
   *
Tom Tromey committed
274 275 276 277 278
   * The loop at the bottom only accepts a value, if the random
   * number was between 0 and the highest number less then 1<<31,
   * which is divisible by n.  The probability for this is high for small
   * n, and the worst case is 1/2 (for n=(1<<30)+1).
   *
279
   * The special treatment for n = power of 2, selects the high bits of
Tom Tromey committed
280 281
   * the random number (the loop at the bottom would select the low order
   * bits).  This is done, because the low order bits of linear congruential
282
   * number generators (like the one used in this class) are known to be
Tom Tromey committed
283 284
   * ``less random'' than the high order bits.
   *
285 286 287 288
   * @param n the upper bound
   * @throws IllegalArgumentException if the given upper bound is negative
   * @return the next pseudorandom value
   * @since 1.2
Tom Tromey committed
289
   */
Tom Tromey committed
290 291 292 293
  public int nextInt(int n)
  {
    if (n <= 0)
      throw new IllegalArgumentException("n must be positive");
294
    if ((n & -n) == n) // i.e., n is a power of 2
Tom Tromey committed
295
      return (int) ((n * (long) next(31)) >> 31);
Tom Tromey committed
296 297 298
    int bits, val;
    do
      {
299
        bits = next(31);
300
        val = bits % n;
Tom Tromey committed
301 302
      }
    while (bits - val + (n - 1) < 0);
Tom Tromey committed
303 304 305
    return val;
  }

Tom Tromey committed
306 307 308 309
  /**
   * Generates the next pseudorandom long number.  All bits of this
   * long are independently chosen and 0 and 1 have equal likelihood.
   * The implementation for java.util.Random is:
310 311 312 313 314 315 316
   *
<pre>public long nextLong()
{
  return ((long) next(32) &lt;&lt; 32) + next(32);
}</pre>
   *
   * @return the next pseudorandom value
Tom Tromey committed
317
   */
Tom Tromey committed
318 319
  public long nextLong()
  {
Tom Tromey committed
320
    return ((long) next(32) << 32) + next(32);
Tom Tromey committed
321 322
  }

Tom Tromey committed
323 324 325
  /**
   * Generates the next pseudorandom boolean.  True and false have
   * the same probability.  The implementation is:
326 327 328 329 330 331 332 333
   * 
<pre>public boolean nextBoolean()
{
  return next(1) != 0;
}</pre>
   *
   * @return the next pseudorandom boolean
   * @since 1.2
Tom Tromey committed
334 335
   */
  public boolean nextBoolean()
Tom Tromey committed
336
  {
Tom Tromey committed
337 338 339 340 341
    return next(1) != 0;
  }

  /**
   * Generates the next pseudorandom float uniformly distributed
342
   * between 0.0f (inclusive) and 1.0f (exclusive).  The
Tom Tromey committed
343
   * implementation is as follows.
344 345 346 347 348 349 350 351
   * 
<pre>public float nextFloat()
{
  return next(24) / ((float)(1 &lt;&lt; 24));
}</pre>
   *
   * @return the next pseudorandom float
   */
Tom Tromey committed
352 353
  public float nextFloat()
  {
354
    return next(24) / (float) (1 << 24);
Tom Tromey committed
355 356 357 358
  }

  /**
   * Generates the next pseudorandom double uniformly distributed
359
   * between 0.0 (inclusive) and 1.0 (exclusive).  The
Tom Tromey committed
360
   * implementation is as follows.
361 362 363 364 365 366 367 368
   *
<pre>public double nextDouble()
{
  return (((long) next(26) &lt;&lt; 27) + next(27)) / (double)(1L &lt;&lt; 53);
}</pre>
   *
   * @return the next pseudorandom double
   */
Tom Tromey committed
369 370 371 372 373 374
  public double nextDouble()
  {
    return (((long) next(26) << 27) + next(27)) / (double) (1L << 53);
  }

  /**
375
   * Generates the next pseudorandom, Gaussian (normally) distributed
Tom Tromey committed
376 377
   * double value, with mean 0.0 and standard deviation 1.0.
   * The algorithm is as follows.
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
   * 
<pre>public synchronized double nextGaussian()
{
  if (haveNextNextGaussian)
  {
    haveNextNextGaussian = false;
    return nextNextGaussian;
  }
  else
  {
    double v1, v2, s;
    do
    {
      v1 = 2 * nextDouble() - 1; // between -1.0 and 1.0
      v2 = 2 * nextDouble() - 1; // between -1.0 and 1.0
      s = v1 * v1 + v2 * v2;
    }
    while (s >= 1);

    double norm = Math.sqrt(-2 * Math.log(s) / s);
    nextNextGaussian = v2 * norm;
    haveNextNextGaussian = true;
    return v1 * norm;
  }
}</pre>
   *
   * <p>This is described in section 3.4.1 of <em>The Art of Computer
Tom Tromey committed
405 406
   * Programming, Volume 2</em> by Donald Knuth.
   *
407
   * @return the next pseudorandom Gaussian distributed double
Tom Tromey committed
408 409 410 411 412
   */
  public synchronized double nextGaussian()
  {
    if (haveNextNextGaussian)
      {
413 414
        haveNextNextGaussian = false;
        return nextNextGaussian;
Tom Tromey committed
415
      }
416 417
    double v1, v2, s;
    do
Tom Tromey committed
418
      {
419 420 421
        v1 = 2 * nextDouble() - 1; // Between -1.0 and 1.0.
        v2 = 2 * nextDouble() - 1; // Between -1.0 and 1.0.
        s = v1 * v1 + v2 * v2;
Tom Tromey committed
422
      }
423 424 425 426 427
    while (s >= 1);
    double norm = Math.sqrt(-2 * Math.log(s) / s);
    nextNextGaussian = v2 * norm;
    haveNextNextGaussian = true;
    return v1 * norm;
Tom Tromey committed
428 429
  }
}