dse.c 109 KB
Newer Older
1
/* RTL dead store elimination.
2 3
   Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
4 5 6 7 8 9 10 11

   Contributed by Richard Sandiford <rsandifor@codesourcery.com>
   and Kenneth Zadeck <zadeck@naturalbridge.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
12
Software Foundation; either version 3, or (at your option) any later
13 14 15 16 17 18 19 20
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
21 22
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
23 24 25 26 27 28 29 30 31 32

#undef BASELINE

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "hashtab.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
33
#include "tm_p.h"
34 35 36 37 38 39 40 41 42 43 44 45 46
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "df.h"
#include "cselib.h"
#include "timevar.h"
#include "tree-pass.h"
#include "alloc-pool.h"
#include "alias.h"
#include "insn-config.h"
#include "expr.h"
#include "recog.h"
#include "dse.h"
47
#include "optabs.h"
48
#include "dbgcnt.h"
49
#include "target.h"
50 51

/* This file contains three techniques for performing Dead Store
H.J. Lu committed
52
   Elimination (dse).
53 54 55 56 57

   * The first technique performs dse locally on any base address.  It
   is based on the cselib which is a local value numbering technique.
   This technique is local to a basic block but deals with a fairly
   general addresses.
H.J. Lu committed
58

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
   * The second technique performs dse globally but is restricted to
   base addresses that are either constant or are relative to the
   frame_pointer.

   * The third technique, (which is only done after register allocation)
   processes the spill spill slots.  This differs from the second
   technique because it takes advantage of the fact that spilling is
   completely free from the effects of aliasing.

   Logically, dse is a backwards dataflow problem.  A store can be
   deleted if it if cannot be reached in the backward direction by any
   use of the value being stored.  However, the local technique uses a
   forwards scan of the basic block because cselib requires that the
   block be processed in that order.

   The pass is logically broken into 7 steps:

   0) Initialization.

   1) The local algorithm, as well as scanning the insns for the two
   global algorithms.

   2) Analysis to see if the global algs are necessary.  In the case
   of stores base on a constant address, there must be at least two
   stores to that address, to make it possible to delete some of the
   stores.  In the case of stores off of the frame or spill related
   stores, only one store to an address is necessary because those
   stores die at the end of the function.

H.J. Lu committed
88
   3) Set up the global dataflow equations based on processing the
89 90 91 92 93 94 95
   info parsed in the first step.

   4) Solve the dataflow equations.

   5) Delete the insns that the global analysis has indicated are
   unnecessary.

96 97 98 99
   6) Delete insns that store the same value as preceeding store
   where the earlier store couldn't be eliminated.

   7) Cleanup.
100 101 102 103 104

   This step uses cselib and canon_rtx to build the largest expression
   possible for each address.  This pass is a forwards pass through
   each basic block.  From the point of view of the global technique,
   the first pass could examine a block in either direction.  The
105
   forwards ordering is to accommodate cselib.
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

   We a simplifying assumption: addresses fall into four broad
   categories:

   1) base has rtx_varies_p == false, offset is constant.
   2) base has rtx_varies_p == false, offset variable.
   3) base has rtx_varies_p == true, offset constant.
   4) base has rtx_varies_p == true, offset variable.

   The local passes are able to process all 4 kinds of addresses.  The
   global pass only handles (1).

   The global problem is formulated as follows:

     A store, S1, to address A, where A is not relative to the stack
     frame, can be eliminated if all paths from S1 to the end of the
     of the function contain another store to A before a read to A.

     If the address A is relative to the stack frame, a store S2 to A
     can be eliminated if there are no paths from S1 that reach the
     end of the function that read A before another store to A.  In
     this case S2 can be deleted if there are paths to from S2 to the
     end of the function that have no reads or writes to A.  This
     second case allows stores to the stack frame to be deleted that
     would otherwise die when the function returns.  This cannot be
     done if stores_off_frame_dead_at_return is not true.  See the doc
     for that variable for when this variable is false.

     The global problem is formulated as a backwards set union
     dataflow problem where the stores are the gens and reads are the
     kills.  Set union problems are rare and require some special
     handling given our representation of bitmaps.  A straightforward
     implementation of requires a lot of bitmaps filled with 1s.
     These are expensive and cumbersome in our bitmap formulation so
     care has been taken to avoid large vectors filled with 1s.  See
     the comments in bb_info and in the dataflow confluence functions
H.J. Lu committed
142
     for details.
143 144

   There are two places for further enhancements to this algorithm:
H.J. Lu committed
145

146 147 148 149 150 151 152
   1) The original dse which was embedded in a pass called flow also
   did local address forwarding.  For example in

   A <- r100
   ... <- A

   flow would replace the right hand side of the second insn with a
153
   reference to r100.  Most of the information is available to add this
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
   to this pass.  It has not done it because it is a lot of work in
   the case that either r100 is assigned to between the first and
   second insn and/or the second insn is a load of part of the value
   stored by the first insn.

   insn 5 in gcc.c-torture/compile/990203-1.c simple case.
   insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
   insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
   insn 44 in gcc.c-torture/execute/20010910-1.c simple case.

   2) The cleaning up of spill code is quite profitable.  It currently
   depends on reading tea leaves and chicken entrails left by reload.
   This pass depends on reload creating a singleton alias set for each
   spill slot and telling the next dse pass which of these alias sets
   are the singletons.  Rather than analyze the addresses of the
   spills, dse's spill processing just does analysis of the loads and
   stores that use those alias sets.  There are three cases where this
   falls short:

     a) Reload sometimes creates the slot for one mode of access, and
     then inserts loads and/or stores for a smaller mode.  In this
     case, the current code just punts on the slot.  The proper thing
     to do is to back out and use one bit vector position for each
     byte of the entity associated with the slot.  This depends on
     KNOWING that reload always generates the accesses for each of the
     bytes in some canonical (read that easy to understand several
     passes after reload happens) way.

     b) Reload sometimes decides that spill slot it allocated was not
     large enough for the mode and goes back and allocates more slots
     with the same mode and alias set.  The backout in this case is a
     little more graceful than (a).  In this case the slot is unmarked
     as being a spill slot and if final address comes out to be based
H.J. Lu committed
187
     off the frame pointer, the global algorithm handles this slot.
188 189 190 191

     c) For any pass that may prespill, there is currently no
     mechanism to tell the dse pass that the slot being used has the
     special properties that reload uses.  It may be that all that is
192
     required is to have those passes make the same calls that reload
193 194 195 196 197 198 199 200 201 202 203 204 205 206
     does, assuming that the alias sets can be manipulated in the same
     way.  */

/* There are limits to the size of constant offsets we model for the
   global problem.  There are certainly test cases, that exceed this
   limit, however, it is unlikely that there are important programs
   that really have constant offsets this size.  */
#define MAX_OFFSET (64 * 1024)


static bitmap scratch = NULL;
struct insn_info;

/* This structure holds information about a candidate store.  */
H.J. Lu committed
207
struct store_info
208 209 210 211 212
{

  /* False means this is a clobber.  */
  bool is_set;

213 214 215
  /* False if a single HOST_WIDE_INT bitmap is used for positions_needed.  */
  bool is_large;

216 217 218 219
  /* The id of the mem group of the base address.  If rtx_varies_p is
     true, this is -1.  Otherwise, it is the index into the group
     table.  */
  int group_id;
H.J. Lu committed
220

221 222 223 224 225 226
  /* This is the cselib value.  */
  cselib_val *cse_base;

  /* This canonized mem.  */
  rtx mem;

227
  /* Canonized MEM address for use by canon_true_dependence.  */
228 229 230
  rtx mem_addr;

  /* If this is non-zero, it is the alias set of a spill location.  */
231
  alias_set_type alias_set;
232 233 234

  /* The offset of the first and byte before the last byte associated
     with the operation.  */
235 236 237 238 239 240 241 242 243 244 245 246 247
  HOST_WIDE_INT begin, end;

  union
    {
      /* A bitmask as wide as the number of bytes in the word that
	 contains a 1 if the byte may be needed.  The store is unused if
	 all of the bits are 0.  This is used if IS_LARGE is false.  */
      unsigned HOST_WIDE_INT small_bitmask;

      struct
	{
	  /* A bitmap with one bit per byte.  Cleared bit means the position
	     is needed.  Used if IS_LARGE is false.  */
248
	  bitmap bmap;
249

250 251 252 253 254
	  /* Number of set bits (i.e. unneeded bytes) in BITMAP.  If it is
	     equal to END - BEGIN, the whole store is unused.  */
	  int count;
	} large;
    } positions_needed;
255 256 257 258 259 260 261

  /* The next store info for this insn.  */
  struct store_info *next;

  /* The right hand side of the store.  This is used if there is a
     subsequent reload of the mems address somewhere later in the
     basic block.  */
262 263 264 265 266 267 268 269 270 271
  rtx rhs;

  /* If rhs is or holds a constant, this contains that constant,
     otherwise NULL.  */
  rtx const_rhs;

  /* Set if this store stores the same constant value as REDUNDANT_REASON
     insn stored.  These aren't eliminated early, because doing that
     might prevent the earlier larger store to be eliminated.  */
  struct insn_info *redundant_reason;
272 273
};

274 275 276 277 278 279 280 281 282
/* Return a bitmask with the first N low bits set.  */

static unsigned HOST_WIDE_INT
lowpart_bitmask (int n)
{
  unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
  return mask >> (HOST_BITS_PER_WIDE_INT - n);
}

283 284 285 286 287 288
typedef struct store_info *store_info_t;
static alloc_pool cse_store_info_pool;
static alloc_pool rtx_store_info_pool;

/* This structure holds information about a load.  These are only
   built for rtx bases.  */
H.J. Lu committed
289
struct read_info
290 291 292 293 294
{
  /* The id of the mem group of the base address.  */
  int group_id;

  /* If this is non-zero, it is the alias set of a spill location.  */
295
  alias_set_type alias_set;
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

  /* The offset of the first and byte after the last byte associated
     with the operation.  If begin == end == 0, the read did not have
     a constant offset.  */
  int begin, end;

  /* The mem being read.  */
  rtx mem;

  /* The next read_info for this insn.  */
  struct read_info *next;
};
typedef struct read_info *read_info_t;
static alloc_pool read_info_pool;


/* One of these records is created for each insn.  */

H.J. Lu committed
314
struct insn_info
315 316 317 318 319 320 321 322 323 324 325 326 327
{
  /* Set true if the insn contains a store but the insn itself cannot
     be deleted.  This is set if the insn is a parallel and there is
     more than one non dead output or if the insn is in some way
     volatile.  */
  bool cannot_delete;

  /* This field is only used by the global algorithm.  It is set true
     if the insn contains any read of mem except for a (1).  This is
     also set if the insn is a call or has a clobber mem.  If the insn
     contains a wild read, the use_rec will be null.  */
  bool wild_read;

328 329
  /* This field is only used for the processing of const functions.
     These functions cannot read memory, but they can read the stack
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
     because that is where they may get their parms.  We need to be
     this conservative because, like the store motion pass, we don't
     consider CALL_INSN_FUNCTION_USAGE when processing call insns.
     Moreover, we need to distinguish two cases:
     1. Before reload (register elimination), the stores related to
	outgoing arguments are stack pointer based and thus deemed
	of non-constant base in this pass.  This requires special
	handling but also means that the frame pointer based stores
	need not be killed upon encountering a const function call.
     2. After reload, the stores related to outgoing arguments can be
	either stack pointer or hard frame pointer based.  This means
	that we have no other choice than also killing all the frame
	pointer based stores upon encountering a const function call.
     This field is set after reload for const function calls.  Having
     this set is less severe than a wild read, it just means that all
     the frame related stores are killed rather than all the stores.  */
  bool frame_read;

  /* This field is only used for the processing of const functions.
     It is set if the insn may contain a stack pointer based store.  */
350
  bool stack_pointer_based;
351 352 353 354 355 356 357 358 359 360 361 362 363

  /* This is true if any of the sets within the store contains a
     cselib base.  Such stores can only be deleted by the local
     algorithm.  */
  bool contains_cselib_groups;

  /* The insn. */
  rtx insn;

  /* The list of mem sets or mem clobbers that are contained in this
     insn.  If the insn is deletable, it contains only one mem set.
     But it could also contain clobbers.  Insns that contain more than
     one mem set are not deletable, but each of those mems are here in
364
     order to provide info to delete other insns.  */
365 366 367 368 369 370 371 372 373 374 375 376 377 378
  store_info_t store_rec;

  /* The linked list of mem uses in this insn.  Only the reads from
     rtx bases are listed here.  The reads to cselib bases are
     completely processed during the first scan and so are never
     created.  */
  read_info_t read_rec;

  /* The prev insn in the basic block.  */
  struct insn_info * prev_insn;

  /* The linked list of insns that are in consideration for removal in
     the forwards pass thru the basic block.  This pointer may be
     trash as it is not cleared when a wild read occurs.  The only
379
     time it is guaranteed to be correct is when the traversal starts
380 381 382 383 384 385 386 387
     at active_local_stores.  */
  struct insn_info * next_local_store;
};

typedef struct insn_info *insn_info_t;
static alloc_pool insn_info_pool;

/* The linked list of stores that are under consideration in this
H.J. Lu committed
388
   basic block.  */
389 390
static insn_info_t active_local_stores;

H.J. Lu committed
391
struct bb_info
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
{

  /* Pointer to the insn info for the last insn in the block.  These
     are linked so this is how all of the insns are reached.  During
     scanning this is the current insn being scanned.  */
  insn_info_t last_insn;

  /* The info for the global dataflow problem.  */


  /* This is set if the transfer function should and in the wild_read
     bitmap before applying the kill and gen sets.  That vector knocks
     out most of the bits in the bitmap and thus speeds up the
     operations.  */
  bool apply_wild_read;

408 409 410 411
  /* The following 4 bitvectors hold information about which positions
     of which stores are live or dead.  They are indexed by
     get_bitmap_index.  */

412 413
  /* The set of store positions that exist in this block before a wild read.  */
  bitmap gen;
H.J. Lu committed
414

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
  /* The set of load positions that exist in this block above the
     same position of a store.  */
  bitmap kill;

  /* The set of stores that reach the top of the block without being
     killed by a read.

     Do not represent the in if it is all ones.  Note that this is
     what the bitvector should logically be initialized to for a set
     intersection problem.  However, like the kill set, this is too
     expensive.  So initially, the in set will only be created for the
     exit block and any block that contains a wild read.  */
  bitmap in;

  /* The set of stores that reach the bottom of the block from it's
     successors.

     Do not represent the in if it is all ones.  Note that this is
     what the bitvector should logically be initialized to for a set
     intersection problem.  However, like the kill and in set, this is
     too expensive.  So what is done is that the confluence operator
     just initializes the vector from one of the out sets of the
     successors of the block.  */
  bitmap out;
439 440 441 442 443 444 445 446

  /* The following bitvector is indexed by the reg number.  It
     contains the set of regs that are live at the current instruction
     being processed.  While it contains info for all of the
     registers, only the pseudos are actually examined.  It is used to
     assure that shift sequences that are inserted do not accidently
     clobber live hard regs.  */
  bitmap regs_live;
447 448 449 450 451 452 453 454 455 456 457 458
};

typedef struct bb_info *bb_info_t;
static alloc_pool bb_info_pool;

/* Table to hold all bb_infos.  */
static bb_info_t *bb_table;

/* There is a group_info for each rtx base that is used to reference
   memory.  There are also not many of the rtx bases because they are
   very limited in scope.  */

H.J. Lu committed
459
struct group_info
460 461 462 463 464 465 466 467
{
  /* The actual base of the address.  */
  rtx rtx_base;

  /* The sequential id of the base.  This allows us to have a
     canonical ordering of these that is not based on addresses.  */
  int id;

468 469 470 471 472 473 474 475
  /* True if there are any positions that are to be processed
     globally.  */
  bool process_globally;

  /* True if the base of this group is either the frame_pointer or
     hard_frame_pointer.  */
  bool frame_related;

476 477 478
  /* A mem wrapped around the base pointer for the group in order to do
     read dependency.  It must be given BLKmode in order to encompass all
     the possible offsets from the base.  */
479
  rtx base_mem;
H.J. Lu committed
480

481 482
  /* Canonized version of base_mem's address.  */
  rtx canon_base_addr;
483 484

  /* These two sets of two bitmaps are used to keep track of how many
485
     stores are actually referencing that position from this base.  We
486
     only do this for rtx bases as this will be used to assign
487
     positions in the bitmaps for the global problem.  Bit N is set in
488 489 490 491 492 493 494 495 496 497 498 499 500 501
     store1 on the first store for offset N.  Bit N is set in store2
     for the second store to offset N.  This is all we need since we
     only care about offsets that have two or more stores for them.

     The "_n" suffix is for offsets less than 0 and the "_p" suffix is
     for 0 and greater offsets.

     There is one special case here, for stores into the stack frame,
     we will or store1 into store2 before deciding which stores look
     at globally.  This is because stores to the stack frame that have
     no other reads before the end of the function can also be
     deleted.  */
  bitmap store1_n, store1_p, store2_n, store2_p;

502
  /* The positions in this bitmap have the same assignments as the in,
503
     out, gen and kill bitmaps.  This bitmap is all zeros except for
504
     the positions that are occupied by stores for this group.  */
505 506 507
  bitmap group_kill;

  /* The offset_map is used to map the offsets from this base into
508
     positions in the global bitmaps.  It is only created after all of
509 510
     the all of stores have been scanned and we know which ones we
     care about.  */
H.J. Lu committed
511 512
  int *offset_map_n, *offset_map_p;
  int offset_map_size_n, offset_map_size_p;
513 514
};
typedef struct group_info *group_info_t;
515
typedef const struct group_info *const_group_info_t;
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
static alloc_pool rtx_group_info_pool;

/* Tables of group_info structures, hashed by base value.  */
static htab_t rtx_group_table;

/* Index into the rtx_group_vec.  */
static int rtx_group_next_id;

DEF_VEC_P(group_info_t);
DEF_VEC_ALLOC_P(group_info_t,heap);

static VEC(group_info_t,heap) *rtx_group_vec;


/* This structure holds the set of changes that are being deferred
   when removing read operation.  See replace_read.  */
H.J. Lu committed
532
struct deferred_change
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
{

  /* The mem that is being replaced.  */
  rtx *loc;

  /* The reg it is being replaced with.  */
  rtx reg;

  struct deferred_change *next;
};

typedef struct deferred_change *deferred_change_t;
static alloc_pool deferred_change_pool;

static deferred_change_t deferred_change_list = NULL;

/* This are used to hold the alias sets of spill variables.  Since
   these are never aliased and there may be a lot of them, it makes
   sense to treat them specially.  This bitvector is only allocated in
   calls from dse_record_singleton_alias_set which currently is only
   made during reload1.  So when dse is called before reload this
   mechanism does nothing.  */

static bitmap clear_alias_sets = NULL;

/* The set of clear_alias_sets that have been disqualified because
   there are loads or stores using a different mode than the alias set
H.J. Lu committed
560
   was registered with.  */
561 562 563 564 565 566 567 568 569 570 571
static bitmap disqualified_clear_alias_sets = NULL;

/* The group that holds all of the clear_alias_sets.  */
static group_info_t clear_alias_group;

/* The modes of the clear_alias_sets.  */
static htab_t clear_alias_mode_table;

/* Hash table element to look up the mode for an alias set.  */
struct clear_alias_mode_holder
{
572
  alias_set_type alias_set;
573 574 575 576 577
  enum machine_mode mode;
};

static alloc_pool clear_alias_mode_pool;

578
/* This is true except if cfun->stdarg -- i.e. we cannot do
579
   this for vararg functions because they play games with the frame.  */
580 581 582
static bool stores_off_frame_dead_at_return;

/* Counter for stats.  */
H.J. Lu committed
583 584 585 586
static int globally_deleted;
static int locally_deleted;
static int spill_deleted;

587 588 589 590 591 592 593
static bitmap all_blocks;

/* The number of bits used in the global bitmaps.  */
static unsigned int current_position;


static bool gate_dse (void);
594 595
static bool gate_dse1 (void);
static bool gate_dse2 (void);
596 597 598 599 600


/*----------------------------------------------------------------------------
   Zeroth step.

H.J. Lu committed
601
   Initialization.
602 603 604 605 606 607 608 609
----------------------------------------------------------------------------*/

/* Hashtable callbacks for maintaining the "bases" field of
   store_group_info, given that the addresses are function invariants.  */

static int
clear_alias_mode_eq (const void *p1, const void *p2)
{
H.J. Lu committed
610
  const struct clear_alias_mode_holder * h1
611
    = (const struct clear_alias_mode_holder *) p1;
H.J. Lu committed
612
  const struct clear_alias_mode_holder * h2
613 614 615 616 617 618 619 620
    = (const struct clear_alias_mode_holder *) p2;
  return h1->alias_set == h2->alias_set;
}


static hashval_t
clear_alias_mode_hash (const void *p)
{
H.J. Lu committed
621
  const struct clear_alias_mode_holder *holder
622 623 624 625 626 627 628 629
    = (const struct clear_alias_mode_holder *) p;
  return holder->alias_set;
}


/* Find the entry associated with ALIAS_SET.  */

static struct clear_alias_mode_holder *
630
clear_alias_set_lookup (alias_set_type alias_set)
631 632 633
{
  struct clear_alias_mode_holder tmp_holder;
  void **slot;
H.J. Lu committed
634

635 636 637
  tmp_holder.alias_set = alias_set;
  slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
  gcc_assert (*slot);
H.J. Lu committed
638

639
  return (struct clear_alias_mode_holder *) *slot;
640 641 642 643 644 645 646 647 648
}


/* Hashtable callbacks for maintaining the "bases" field of
   store_group_info, given that the addresses are function invariants.  */

static int
invariant_group_base_eq (const void *p1, const void *p2)
{
649 650
  const_group_info_t gi1 = (const_group_info_t) p1;
  const_group_info_t gi2 = (const_group_info_t) p2;
651 652 653 654 655 656 657
  return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
}


static hashval_t
invariant_group_base_hash (const void *p)
{
658
  const_group_info_t gi = (const_group_info_t) p;
659 660 661 662 663 664 665 666 667 668
  int do_not_record;
  return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
}


/* Get the GROUP for BASE.  Add a new group if it is not there.  */

static group_info_t
get_group_info (rtx base)
{
H.J. Lu committed
669 670
  struct group_info tmp_gi;
  group_info_t gi;
671 672 673 674 675 676 677 678 679 680 681 682 683 684
  void **slot;

  if (base)
    {
      /* Find the store_base_info structure for BASE, creating a new one
	 if necessary.  */
      tmp_gi.rtx_base = base;
      slot = htab_find_slot (rtx_group_table, &tmp_gi, INSERT);
      gi = (group_info_t) *slot;
    }
  else
    {
      if (!clear_alias_group)
	{
685 686
	  clear_alias_group = gi =
	    (group_info_t) pool_alloc (rtx_group_info_pool);
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
	  memset (gi, 0, sizeof (struct group_info));
	  gi->id = rtx_group_next_id++;
	  gi->store1_n = BITMAP_ALLOC (NULL);
	  gi->store1_p = BITMAP_ALLOC (NULL);
	  gi->store2_n = BITMAP_ALLOC (NULL);
	  gi->store2_p = BITMAP_ALLOC (NULL);
	  gi->group_kill = BITMAP_ALLOC (NULL);
	  gi->process_globally = false;
	  gi->offset_map_size_n = 0;
	  gi->offset_map_size_p = 0;
	  gi->offset_map_n = NULL;
	  gi->offset_map_p = NULL;
	  VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
	}
      return clear_alias_group;
    }

  if (gi == NULL)
    {
706
      *slot = gi = (group_info_t) pool_alloc (rtx_group_info_pool);
707 708
      gi->rtx_base = base;
      gi->id = rtx_group_next_id++;
709
      gi->base_mem = gen_rtx_MEM (BLKmode, base);
710
      gi->canon_base_addr = canon_rtx (base);
711 712 713 714 715 716
      gi->store1_n = BITMAP_ALLOC (NULL);
      gi->store1_p = BITMAP_ALLOC (NULL);
      gi->store2_n = BITMAP_ALLOC (NULL);
      gi->store2_p = BITMAP_ALLOC (NULL);
      gi->group_kill = BITMAP_ALLOC (NULL);
      gi->process_globally = false;
H.J. Lu committed
717
      gi->frame_related =
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
	(base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
      gi->offset_map_size_n = 0;
      gi->offset_map_size_p = 0;
      gi->offset_map_n = NULL;
      gi->offset_map_p = NULL;
      VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
    }

  return gi;
}


/* Initialization of data structures.  */

static void
dse_step0 (void)
{
  locally_deleted = 0;
  globally_deleted = 0;
  spill_deleted = 0;

  scratch = BITMAP_ALLOC (NULL);

  rtx_store_info_pool
H.J. Lu committed
742
    = create_alloc_pool ("rtx_store_info_pool",
743 744
			 sizeof (struct store_info), 100);
  read_info_pool
H.J. Lu committed
745
    = create_alloc_pool ("read_info_pool",
746 747
			 sizeof (struct read_info), 100);
  insn_info_pool
H.J. Lu committed
748
    = create_alloc_pool ("insn_info_pool",
749 750
			 sizeof (struct insn_info), 100);
  bb_info_pool
H.J. Lu committed
751
    = create_alloc_pool ("bb_info_pool",
752 753
			 sizeof (struct bb_info), 100);
  rtx_group_info_pool
H.J. Lu committed
754
    = create_alloc_pool ("rtx_group_info_pool",
755 756
			 sizeof (struct group_info), 100);
  deferred_change_pool
H.J. Lu committed
757
    = create_alloc_pool ("deferred_change_pool",
758 759 760 761 762 763 764 765
			 sizeof (struct deferred_change), 10);

  rtx_group_table = htab_create (11, invariant_group_base_hash,
				 invariant_group_base_eq, NULL);

  bb_table = XCNEWVEC (bb_info_t, last_basic_block);
  rtx_group_next_id = 0;

766
  stores_off_frame_dead_at_return = !cfun->stdarg;
767 768

  init_alias_analysis ();
H.J. Lu committed
769

770 771 772 773 774 775 776 777 778 779 780 781
  if (clear_alias_sets)
    clear_alias_group = get_group_info (NULL);
  else
    clear_alias_group = NULL;
}



/*----------------------------------------------------------------------------
   First step.

   Scan all of the insns.  Any random ordering of the blocks is fine.
782
   Each block is scanned in forward order to accommodate cselib which
783 784 785 786 787
   is used to remove stores with non-constant bases.
----------------------------------------------------------------------------*/

/* Delete all of the store_info recs from INSN_INFO.  */

H.J. Lu committed
788
static void
789 790 791 792 793 794
free_store_info (insn_info_t insn_info)
{
  store_info_t store_info = insn_info->store_rec;
  while (store_info)
    {
      store_info_t next = store_info->next;
795
      if (store_info->is_large)
796
	BITMAP_FREE (store_info->positions_needed.large.bmap);
797 798 799 800 801 802 803 804 805 806 807 808
      if (store_info->cse_base)
	pool_free (cse_store_info_pool, store_info);
      else
	pool_free (rtx_store_info_pool, store_info);
      store_info = next;
    }

  insn_info->cannot_delete = true;
  insn_info->contains_cselib_groups = false;
  insn_info->store_rec = NULL;
}

809 810
/* Callback for for_each_inc_dec that emits an INSN that sets DEST to
   SRC + SRCOFF before insn ARG.  */
811 812

static int
813 814 815
emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
			  rtx op ATTRIBUTE_UNUSED,
			  rtx dest, rtx src, rtx srcoff, void *arg)
816
{
817
  rtx insn = (rtx)arg;
H.J. Lu committed
818

819 820
  if (srcoff)
    src = gen_rtx_PLUS (GET_MODE (src), src, srcoff);
H.J. Lu committed
821

822 823
  /* We can reuse all operands without copying, because we are about
     to delete the insn that contained it.  */
824

825
  emit_insn_before (gen_rtx_SET (VOIDmode, dest, src), insn);
826

827
  return -1;
828 829 830 831 832
}

/* Before we delete INSN, make sure that the auto inc/dec, if it is
   there, is split into a separate insn.  */

833
void
834 835 836 837
check_for_inc_dec (rtx insn)
{
  rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
  if (note)
838
    for_each_inc_dec (&insn, emit_inc_dec_insn_before, insn);
839 840 841
}


H.J. Lu committed
842
/* Delete the insn and free all of the fields inside INSN_INFO.  */
843 844 845 846 847 848 849 850 851 852 853 854

static void
delete_dead_store_insn (insn_info_t insn_info)
{
  read_info_t read_info;

  if (!dbg_cnt (dse))
    return;

  check_for_inc_dec (insn_info->insn);
  if (dump_file)
    {
H.J. Lu committed
855
      fprintf (dump_file, "Locally deleting insn %d ",
856 857
	       INSN_UID (insn_info->insn));
      if (insn_info->store_rec->alias_set)
H.J. Lu committed
858
	fprintf (dump_file, "alias set %d\n",
859
		 (int) insn_info->store_rec->alias_set);
860 861 862 863 864 865
      else
	fprintf (dump_file, "\n");
    }

  free_store_info (insn_info);
  read_info = insn_info->read_rec;
H.J. Lu committed
866

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
  while (read_info)
    {
      read_info_t next = read_info->next;
      pool_free (read_info_pool, read_info);
      read_info = next;
    }
  insn_info->read_rec = NULL;

  delete_insn (insn_info->insn);
  locally_deleted++;
  insn_info->insn = NULL;

  insn_info->wild_read = false;
}


/* Set the store* bitmaps offset_map_size* fields in GROUP based on
   OFFSET and WIDTH.  */

static void
set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width)
{
  HOST_WIDE_INT i;

891
  if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET)
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
    for (i=offset; i<offset+width; i++)
      {
	bitmap store1;
	bitmap store2;
	int ai;
	if (i < 0)
	  {
	    store1 = group->store1_n;
	    store2 = group->store2_n;
	    ai = -i;
	  }
	else
	  {
	    store1 = group->store1_p;
	    store2 = group->store2_p;
	    ai = i;
	  }
H.J. Lu committed
909

910
	if (!bitmap_set_bit (store1, ai))
911
	  bitmap_set_bit (store2, ai);
H.J. Lu committed
912
	else
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
	  {
	    if (i < 0)
	      {
		if (group->offset_map_size_n < ai)
		  group->offset_map_size_n = ai;
	      }
	    else
	      {
		if (group->offset_map_size_p < ai)
		  group->offset_map_size_p = ai;
	      }
	  }
      }
}


/* Set the BB_INFO so that the last insn is marked as a wild read.  */

static void
add_wild_read (bb_info_t bb_info)
{
  insn_info_t insn_info = bb_info->last_insn;
  read_info_t *ptr = &insn_info->read_rec;

  while (*ptr)
    {
      read_info_t next = (*ptr)->next;
940
      if ((*ptr)->alias_set == 0)
941 942 943 944
        {
          pool_free (read_info_pool, *ptr);
          *ptr = next;
	}
H.J. Lu committed
945
      else
946 947 948 949 950 951 952
	ptr = &(*ptr)->next;
    }
  insn_info->wild_read = true;
  active_local_stores = NULL;
}


953 954 955
/* Return true if X is a constant or one of the registers that behave
   as a constant over the life of a function.  This is equivalent to
   !rtx_varies_p for memory addresses.  */
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986

static bool
const_or_frame_p (rtx x)
{
  switch (GET_CODE (x))
    {
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case SYMBOL_REF:
    case LABEL_REF:
      return true;

    case REG:
      /* Note that we have to test for the actual rtx used for the frame
	 and arg pointers and not just the register number in case we have
	 eliminated the frame and/or arg pointer and are using it
	 for pseudos.  */
      if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
	  /* The arg pointer varies if it is not a fixed register.  */
	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
	  || x == pic_offset_table_rtx)
	return true;
      return false;

    default:
      return false;
    }
}

H.J. Lu committed
987 988
/* Take all reasonable action to put the address of MEM into the form
   that we can do analysis on.
989 990 991 992 993 994 995 996 997

   The gold standard is to get the address into the form: address +
   OFFSET where address is something that rtx_varies_p considers a
   constant.  When we can get the address in this form, we can do
   global analysis on it.  Note that for constant bases, address is
   not actually returned, only the group_id.  The address can be
   obtained from that.

   If that fails, we try cselib to get a value we can at least use
H.J. Lu committed
998 999
   locally.  If that fails we return false.

1000 1001 1002 1003 1004 1005 1006
   The GROUP_ID is set to -1 for cselib bases and the index of the
   group for non_varying bases.

   FOR_READ is true if this is a mem read and false if not.  */

static bool
canon_address (rtx mem,
1007
	       alias_set_type *alias_set_out,
1008
	       int *group_id,
H.J. Lu committed
1009
	       HOST_WIDE_INT *offset,
1010 1011
	       cselib_val **base)
{
1012 1013
  enum machine_mode address_mode
    = targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
1014 1015
  rtx mem_address = XEXP (mem, 0);
  rtx expanded_address, address;
1016 1017
  int expanded;

1018 1019 1020 1021 1022 1023
  /* Make sure that cselib is has initialized all of the operands of
     the address before asking it to do the subst.  */

  if (clear_alias_sets)
    {
      /* If this is a spill, do not do any further processing.  */
1024
      alias_set_type alias_set = MEM_ALIAS_SET (mem);
1025
      if (dump_file)
1026
	fprintf (dump_file, "found alias set %d\n", (int) alias_set);
1027 1028
      if (bitmap_bit_p (clear_alias_sets, alias_set))
	{
H.J. Lu committed
1029
	  struct clear_alias_mode_holder *entry
1030 1031 1032 1033 1034 1035
	    = clear_alias_set_lookup (alias_set);

	  /* If the modes do not match, we cannot process this set.  */
	  if (entry->mode != GET_MODE (mem))
	    {
	      if (dump_file)
H.J. Lu committed
1036 1037 1038
		fprintf (dump_file,
			 "disqualifying alias set %d, (%s) != (%s)\n",
			 (int) alias_set, GET_MODE_NAME (entry->mode),
1039
			 GET_MODE_NAME (GET_MODE (mem)));
H.J. Lu committed
1040

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	      bitmap_set_bit (disqualified_clear_alias_sets, alias_set);
	      return false;
	    }

	  *alias_set_out = alias_set;
	  *group_id = clear_alias_group->id;
	  return true;
	}
    }

  *alias_set_out = 0;

1053
  cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1054 1055 1056 1057 1058 1059 1060 1061

  if (dump_file)
    {
      fprintf (dump_file, "  mem: ");
      print_inline_rtx (dump_file, mem_address, 0);
      fprintf (dump_file, "\n");
    }

1062 1063 1064 1065 1066 1067 1068 1069
  /* First see if just canon_rtx (mem_address) is const or frame,
     if not, try cselib_expand_value_rtx and call canon_rtx on that.  */
  address = NULL_RTX;
  for (expanded = 0; expanded < 2; expanded++)
    {
      if (expanded)
	{
	  /* Use cselib to replace all of the reg references with the full
H.J. Lu committed
1070
	     expression.  This will take care of the case where we have
1071

1072 1073
	     r_x = base + offset;
	     val = *r_x;
H.J. Lu committed
1074 1075

	     by making it into
1076

1077
	     val = *(base + offset);  */
1078

1079 1080
	  expanded_address = cselib_expand_value_rtx (mem_address,
						      scratch, 5);
1081

1082 1083 1084 1085 1086 1087 1088
	  /* If this fails, just go with the address from first
	     iteration.  */
	  if (!expanded_address)
	    break;
	}
      else
	expanded_address = mem_address;
1089

1090 1091
      /* Split the address into canonical BASE + OFFSET terms.  */
      address = canon_rtx (expanded_address);
1092

1093
      *offset = 0;
1094

1095 1096 1097 1098 1099 1100 1101 1102
      if (dump_file)
	{
	  if (expanded)
	    {
	      fprintf (dump_file, "\n   after cselib_expand address: ");
	      print_inline_rtx (dump_file, expanded_address, 0);
	      fprintf (dump_file, "\n");
	    }
1103

1104 1105 1106 1107
	  fprintf (dump_file, "\n   after canon_rtx address: ");
	  print_inline_rtx (dump_file, address, 0);
	  fprintf (dump_file, "\n");
	}
1108

1109 1110
      if (GET_CODE (address) == CONST)
	address = XEXP (address, 0);
1111

1112 1113 1114 1115 1116 1117
      if (GET_CODE (address) == PLUS
	  && CONST_INT_P (XEXP (address, 1)))
	{
	  *offset = INTVAL (XEXP (address, 1));
	  address = XEXP (address, 0);
	}
1118

1119 1120
      if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
	  && const_or_frame_p (address))
1121
	{
1122 1123
	  group_info_t group = get_group_info (address);

1124
	  if (dump_file)
1125 1126 1127 1128 1129
	    fprintf (dump_file, "  gid=%d offset=%d \n",
		     group->id, (int)*offset);
	  *base = NULL;
	  *group_id = group->id;
	  return true;
1130
	}
1131 1132
    }

1133
  *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1134 1135 1136 1137
  *group_id = -1;

  if (*base == NULL)
    {
1138
      if (dump_file)
1139 1140
	fprintf (dump_file, " no cselib val - should be a wild read.\n");
      return false;
1141
    }
1142
  if (dump_file)
1143 1144
    fprintf (dump_file, "  varying cselib base=%u:%u offset = %d\n",
	     (*base)->uid, (*base)->hash, (int)*offset);
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
  return true;
}


/* Clear the rhs field from the active_local_stores array.  */

static void
clear_rhs_from_active_local_stores (void)
{
  insn_info_t ptr = active_local_stores;

  while (ptr)
    {
      store_info_t store_info = ptr->store_rec;
      /* Skip the clobbers.  */
      while (!store_info->is_set)
	store_info = store_info->next;

      store_info->rhs = NULL;
1164
      store_info->const_rhs = NULL;
1165 1166 1167 1168 1169 1170

      ptr = ptr->next_local_store;
    }
}


1171 1172 1173 1174 1175 1176 1177
/* Mark byte POS bytes from the beginning of store S_INFO as unneeded.  */

static inline void
set_position_unneeded (store_info_t s_info, int pos)
{
  if (__builtin_expect (s_info->is_large, false))
    {
1178 1179
      if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
	s_info->positions_needed.large.count++;
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
    }
  else
    s_info->positions_needed.small_bitmask
      &= ~(((unsigned HOST_WIDE_INT) 1) << pos);
}

/* Mark the whole store S_INFO as unneeded.  */

static inline void
set_all_positions_unneeded (store_info_t s_info)
{
  if (__builtin_expect (s_info->is_large, false))
    {
      int pos, end = s_info->end - s_info->begin;
      for (pos = 0; pos < end; pos++)
1195
	bitmap_set_bit (s_info->positions_needed.large.bmap, pos);
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
      s_info->positions_needed.large.count = end;
    }
  else
    s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0;
}

/* Return TRUE if any bytes from S_INFO store are needed.  */

static inline bool
any_positions_needed_p (store_info_t s_info)
{
  if (__builtin_expect (s_info->is_large, false))
    return (s_info->positions_needed.large.count
	    < s_info->end - s_info->begin);
  else
    return (s_info->positions_needed.small_bitmask
	    != (unsigned HOST_WIDE_INT) 0);
}

/* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
   store are needed.  */

static inline bool
all_positions_needed_p (store_info_t s_info, int start, int width)
{
  if (__builtin_expect (s_info->is_large, false))
    {
      int end = start + width;
      while (start < end)
1225
	if (bitmap_bit_p (s_info->positions_needed.large.bmap, start++))
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	  return false;
      return true;
    }
  else
    {
      unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start;
      return (s_info->positions_needed.small_bitmask & mask) == mask;
    }
}


static rtx get_stored_val (store_info_t, enum machine_mode, HOST_WIDE_INT,
			   HOST_WIDE_INT, basic_block, bool);


1241 1242 1243 1244 1245 1246 1247
/* BODY is an instruction pattern that belongs to INSN.  Return 1 if
   there is a candidate store, after adding it to the appropriate
   local store group if so.  */

static int
record_store (rtx body, bb_info_t bb_info)
{
1248
  rtx mem, rhs, const_rhs, mem_addr;
1249 1250
  HOST_WIDE_INT offset = 0;
  HOST_WIDE_INT width = 0;
1251
  alias_set_type spill_alias_set;
1252 1253 1254 1255
  insn_info_t insn_info = bb_info->last_insn;
  store_info_t store_info = NULL;
  int group_id;
  cselib_val *base = NULL;
1256
  insn_info_t ptr, last, redundant_reason;
1257 1258 1259 1260 1261
  bool store_is_unused;

  if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
    return 0;

1262 1263
  mem = SET_DEST (body);

1264 1265 1266 1267
  /* If this is not used, then this cannot be used to keep the insn
     from being deleted.  On the other hand, it does provide something
     that can be used to prove that another store is dead.  */
  store_is_unused
1268
    = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284

  /* Check whether that value is a suitable memory location.  */
  if (!MEM_P (mem))
    {
      /* If the set or clobber is unused, then it does not effect our
	 ability to get rid of the entire insn.  */
      if (!store_is_unused)
	insn_info->cannot_delete = true;
      return 0;
    }

  /* At this point we know mem is a mem. */
  if (GET_MODE (mem) == BLKmode)
    {
      if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
	{
H.J. Lu committed
1285
	  if (dump_file)
1286 1287 1288
	    fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
	  add_wild_read (bb_info);
	  insn_info->cannot_delete = true;
1289
	  return 0;
1290
	}
1291 1292 1293 1294 1295 1296 1297 1298
      /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
	 as memset (addr, 0, 36);  */
      else if (!MEM_SIZE (mem)
	       || !CONST_INT_P (MEM_SIZE (mem))
	       || GET_CODE (body) != SET
	       || INTVAL (MEM_SIZE (mem)) <= 0
	       || INTVAL (MEM_SIZE (mem)) > MAX_OFFSET
	       || !CONST_INT_P (SET_SRC (body)))
1299
	{
1300 1301 1302 1303 1304 1305 1306 1307
	  if (!store_is_unused)
	    {
	      /* If the set or clobber is unused, then it does not effect our
		 ability to get rid of the entire insn.  */
	      insn_info->cannot_delete = true;
	      clear_rhs_from_active_local_stores ();
	    }
	  return 0;
1308 1309 1310 1311 1312
	}
    }

  /* We can still process a volatile mem, we just cannot delete it.  */
  if (MEM_VOLATILE_P (mem))
1313
    insn_info->cannot_delete = true;
1314 1315 1316 1317 1318 1319 1320

  if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
    {
      clear_rhs_from_active_local_stores ();
      return 0;
    }

1321 1322 1323 1324 1325 1326 1327
  if (GET_MODE (mem) == BLKmode)
    width = INTVAL (MEM_SIZE (mem));
  else
    {
      width = GET_MODE_SIZE (GET_MODE (mem));
      gcc_assert ((unsigned) width <= HOST_BITS_PER_WIDE_INT);
    }
1328 1329 1330 1331 1332

  if (spill_alias_set)
    {
      bitmap store1 = clear_alias_group->store1_p;
      bitmap store2 = clear_alias_group->store2_p;
1333 1334

      gcc_assert (GET_MODE (mem) != BLKmode);
H.J. Lu committed
1335

1336
      if (!bitmap_set_bit (store1, spill_alias_set))
1337
	bitmap_set_bit (store2, spill_alias_set);
H.J. Lu committed
1338

1339 1340
      if (clear_alias_group->offset_map_size_p < spill_alias_set)
	clear_alias_group->offset_map_size_p = spill_alias_set;
H.J. Lu committed
1341

1342
      store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1343 1344 1345

      if (dump_file)
	fprintf (dump_file, " processing spill store %d(%s)\n",
1346
		 (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
1347 1348 1349 1350 1351
    }
  else if (group_id >= 0)
    {
      /* In the restrictive case where the base is a constant or the
	 frame pointer we can do global analysis.  */
H.J. Lu committed
1352 1353

      group_info_t group
1354
	= VEC_index (group_info_t, rtx_group_vec, group_id);
H.J. Lu committed
1355

1356
      store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1357 1358 1359 1360 1361 1362 1363 1364
      set_usage_bits (group, offset, width);

      if (dump_file)
	fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
		 group_id, (int)offset, (int)(offset+width));
    }
  else
    {
1365 1366 1367 1368 1369 1370
      rtx base_term = find_base_term (XEXP (mem, 0));
      if (!base_term
	  || (GET_CODE (base_term) == ADDRESS
	      && GET_MODE (base_term) == Pmode
	      && XEXP (base_term, 0) == stack_pointer_rtx))
	insn_info->stack_pointer_based = true;
1371
      insn_info->contains_cselib_groups = true;
1372

1373
      store_info = (store_info_t) pool_alloc (cse_store_info_pool);
1374 1375 1376 1377 1378 1379 1380
      group_id = -1;

      if (dump_file)
	fprintf (dump_file, " processing cselib store [%d..%d)\n",
		 (int)offset, (int)(offset+width));
    }

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
  const_rhs = rhs = NULL_RTX;
  if (GET_CODE (body) == SET
      /* No place to keep the value after ra.  */
      && !reload_completed
      && (REG_P (SET_SRC (body))
	  || GET_CODE (SET_SRC (body)) == SUBREG
	  || CONSTANT_P (SET_SRC (body)))
      && !MEM_VOLATILE_P (mem)
      /* Sometimes the store and reload is used for truncation and
	 rounding.  */
      && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
    {
      rhs = SET_SRC (body);
      if (CONSTANT_P (rhs))
	const_rhs = rhs;
      else if (body == PATTERN (insn_info->insn))
	{
	  rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
	  if (tem && CONSTANT_P (XEXP (tem, 0)))
	    const_rhs = XEXP (tem, 0);
	}
      if (const_rhs == NULL_RTX && REG_P (rhs))
	{
	  rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);

	  if (tem && CONSTANT_P (tem))
	    const_rhs = tem;
	}
    }

1411 1412 1413 1414
  /* Check to see if this stores causes some other stores to be
     dead.  */
  ptr = active_local_stores;
  last = NULL;
1415
  redundant_reason = NULL;
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
  mem = canon_rtx (mem);
  /* For alias_set != 0 canon_true_dependence should be never called.  */
  if (spill_alias_set)
    mem_addr = NULL_RTX;
  else
    {
      if (group_id < 0)
	mem_addr = base->val_rtx;
      else
	{
	  group_info_t group
	    = VEC_index (group_info_t, rtx_group_vec, group_id);
	  mem_addr = group->canon_base_addr;
	}
      if (offset)
	mem_addr = plus_constant (mem_addr, offset);
    }
1433 1434 1435 1436 1437

  while (ptr)
    {
      insn_info_t next = ptr->next_local_store;
      store_info_t s_info = ptr->store_rec;
1438
      bool del = true;
1439 1440

      /* Skip the clobbers. We delete the active insn if this insn
1441
	 shadows the set.  To have been put on the active list, it
1442 1443 1444 1445 1446
	 has exactly on set. */
      while (!s_info->is_set)
	s_info = s_info->next;

      if (s_info->alias_set != spill_alias_set)
1447
	del = false;
1448 1449
      else if (s_info->alias_set)
	{
H.J. Lu committed
1450
	  struct clear_alias_mode_holder *entry
1451 1452 1453 1454 1455 1456 1457 1458 1459
	    = clear_alias_set_lookup (s_info->alias_set);
	  /* Generally, spills cannot be processed if and of the
	     references to the slot have a different mode.  But if
	     we are in the same block and mode is exactly the same
	     between this store and one before in the same block,
	     we can still delete it.  */
	  if ((GET_MODE (mem) == GET_MODE (s_info->mem))
	      && (GET_MODE (mem) == entry->mode))
	    {
1460
	      del = true;
1461
	      set_all_positions_unneeded (s_info);
1462 1463 1464
	    }
	  if (dump_file)
	    fprintf (dump_file, "    trying spill store in insn=%d alias_set=%d\n",
1465
		     INSN_UID (ptr->insn), (int) s_info->alias_set);
1466
	}
H.J. Lu committed
1467
      else if ((s_info->group_id == group_id)
1468 1469 1470 1471 1472
	       && (s_info->cse_base == base))
	{
	  HOST_WIDE_INT i;
	  if (dump_file)
	    fprintf (dump_file, "    trying store in insn=%d gid=%d[%d..%d)\n",
H.J. Lu committed
1473
		     INSN_UID (ptr->insn), s_info->group_id,
1474
		     (int)s_info->begin, (int)s_info->end);
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

	  /* Even if PTR won't be eliminated as unneeded, if both
	     PTR and this insn store the same constant value, we might
	     eliminate this insn instead.  */
	  if (s_info->const_rhs
	      && const_rhs
	      && offset >= s_info->begin
	      && offset + width <= s_info->end
	      && all_positions_needed_p (s_info, offset - s_info->begin,
					 width))
	    {
	      if (GET_MODE (mem) == BLKmode)
		{
		  if (GET_MODE (s_info->mem) == BLKmode
		      && s_info->const_rhs == const_rhs)
		    redundant_reason = ptr;
		}
	      else if (s_info->const_rhs == const0_rtx
		       && const_rhs == const0_rtx)
		redundant_reason = ptr;
	      else
		{
		  rtx val;
		  start_sequence ();
		  val = get_stored_val (s_info, GET_MODE (mem),
					offset, offset + width,
					BLOCK_FOR_INSN (insn_info->insn),
					true);
		  if (get_insns () != NULL)
		    val = NULL_RTX;
		  end_sequence ();
		  if (val && rtx_equal_p (val, const_rhs))
		    redundant_reason = ptr;
		}
	    }

	  for (i = MAX (offset, s_info->begin);
	       i < offset + width && i < s_info->end;
	       i++)
	    set_position_unneeded (s_info, i - s_info->begin);
1515 1516 1517 1518 1519 1520
	}
      else if (s_info->rhs)
	/* Need to see if it is possible for this store to overwrite
	   the value of store_info.  If it is, set the rhs to NULL to
	   keep it from being used to remove a load.  */
	{
H.J. Lu committed
1521
	  if (canon_true_dependence (s_info->mem,
1522 1523
				     GET_MODE (s_info->mem),
				     s_info->mem_addr,
1524
				     mem, mem_addr, rtx_varies_p))
1525 1526 1527 1528
	    {
	      s_info->rhs = NULL;
	      s_info->const_rhs = NULL;
	    }
1529
	}
1530

1531 1532
      /* An insn can be deleted if every position of every one of
	 its s_infos is zero.  */
1533 1534
      if (any_positions_needed_p (s_info)
	  || ptr->cannot_delete)
1535
	del = false;
1536

1537
      if (del)
1538 1539
	{
	  insn_info_t insn_to_delete = ptr;
H.J. Lu committed
1540

1541 1542 1543 1544
	  if (last)
	    last->next_local_store = ptr->next_local_store;
	  else
	    active_local_stores = ptr->next_local_store;
H.J. Lu committed
1545

1546 1547 1548 1549
	  delete_dead_store_insn (insn_to_delete);
	}
      else
	last = ptr;
H.J. Lu committed
1550

1551 1552
      ptr = next;
    }
H.J. Lu committed
1553

1554 1555 1556
  /* Finish filling in the store_info.  */
  store_info->next = insn_info->store_rec;
  insn_info->store_rec = store_info;
1557
  store_info->mem = mem;
1558
  store_info->alias_set = spill_alias_set;
1559
  store_info->mem_addr = mem_addr;
1560
  store_info->cse_base = base;
1561 1562 1563 1564
  if (width > HOST_BITS_PER_WIDE_INT)
    {
      store_info->is_large = true;
      store_info->positions_needed.large.count = 0;
1565
      store_info->positions_needed.large.bmap = BITMAP_ALLOC (NULL);
1566 1567 1568 1569 1570 1571
    }
  else
    {
      store_info->is_large = false;
      store_info->positions_needed.small_bitmask = lowpart_bitmask (width);
    }
1572 1573 1574 1575
  store_info->group_id = group_id;
  store_info->begin = offset;
  store_info->end = offset + width;
  store_info->is_set = GET_CODE (body) == SET;
1576 1577 1578
  store_info->rhs = rhs;
  store_info->const_rhs = const_rhs;
  store_info->redundant_reason = redundant_reason;
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589

  /* If this is a clobber, we return 0.  We will only be able to
     delete this insn if there is only one store USED store, but we
     can use the clobber to delete other stores earlier.  */
  return store_info->is_set ? 1 : 0;
}


static void
dump_insn_info (const char * start, insn_info_t insn_info)
{
H.J. Lu committed
1590
  fprintf (dump_file, "%s insn=%d %s\n", start,
1591 1592 1593 1594 1595
	   INSN_UID (insn_info->insn),
	   insn_info->store_rec ? "has store" : "naked");
}


1596 1597 1598 1599 1600 1601 1602 1603 1604
/* If the modes are different and the value's source and target do not
   line up, we need to extract the value from lower part of the rhs of
   the store, shift it, and then put it into a form that can be shoved
   into the read_insn.  This function generates a right SHIFT of a
   value that is at least ACCESS_SIZE bytes wide of READ_MODE.  The
   shift sequence is returned or NULL if we failed to find a
   shift.  */

static rtx
1605
find_shift_sequence (int access_size,
1606
		     store_info_t store_info,
1607 1608
		     enum machine_mode read_mode,
		     int shift, bool speed, bool require_cst)
1609 1610
{
  enum machine_mode store_mode = GET_MODE (store_info->mem);
1611 1612
  enum machine_mode new_mode;
  rtx read_reg = NULL;
1613 1614 1615 1616 1617 1618 1619 1620

  /* Some machines like the x86 have shift insns for each size of
     operand.  Other machines like the ppc or the ia-64 may only have
     shift insns that shift values within 32 or 64 bit registers.
     This loop tries to find the smallest shift insn that will right
     justify the value we want to read but is available in one insn on
     the machine.  */

1621 1622 1623 1624
  for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
					  MODE_INT);
       GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
       new_mode = GET_MODE_WIDER_MODE (new_mode))
1625
    {
1626
      rtx target, new_reg, shift_seq, insn, new_lhs;
1627
      int cost;
1628

1629 1630 1631
      /* If a constant was stored into memory, try to simplify it here,
	 otherwise the cost of the shift might preclude this optimization
	 e.g. at -Os, even when no actual shift will be needed.  */
1632
      if (store_info->const_rhs)
1633 1634
	{
	  unsigned int byte = subreg_lowpart_offset (new_mode, store_mode);
1635 1636
	  rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
				     store_mode, byte);
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	  if (ret && CONSTANT_P (ret))
	    {
	      ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
						     ret, GEN_INT (shift));
	      if (ret && CONSTANT_P (ret))
		{
		  byte = subreg_lowpart_offset (read_mode, new_mode);
		  ret = simplify_subreg (read_mode, ret, new_mode, byte);
		  if (ret && CONSTANT_P (ret)
		      && rtx_cost (ret, SET, speed) <= COSTS_N_INSNS (1))
		    return ret;
		}
	    }
	}

1652 1653 1654
      if (require_cst)
	return NULL_RTX;

1655 1656 1657 1658
      /* Try a wider mode if truncating the store mode to NEW_MODE
	 requires a real instruction.  */
      if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
	  && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (new_mode),
1659 1660 1661
				     GET_MODE_BITSIZE (store_mode)))
	continue;

1662 1663 1664 1665 1666 1667
      /* Also try a wider mode if the necessary punning is either not
	 desirable or not possible.  */
      if (!CONSTANT_P (store_info->rhs)
	  && !MODES_TIEABLE_P (new_mode, store_mode))
	continue;

1668
      new_reg = gen_reg_rtx (new_mode);
1669 1670 1671 1672 1673 1674 1675 1676 1677

      start_sequence ();

      /* In theory we could also check for an ashr.  Ian Taylor knows
	 of one dsp where the cost of these two was not the same.  But
	 this really is a rare case anyway.  */
      target = expand_binop (new_mode, lshr_optab, new_reg,
			     GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);

1678 1679
      shift_seq = get_insns ();
      end_sequence ();
1680

1681 1682 1683 1684 1685 1686
      if (target != new_reg || shift_seq == NULL)
	continue;

      cost = 0;
      for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
	if (INSN_P (insn))
1687
	  cost += insn_rtx_cost (PATTERN (insn), speed);
1688 1689 1690 1691 1692

      /* The computation up to here is essentially independent
	 of the arguments and could be precomputed.  It may
	 not be worth doing so.  We could precompute if
	 worthwhile or at least cache the results.  The result
1693 1694
	 technically depends on both SHIFT and ACCESS_SIZE,
	 but in practice the answer will depend only on ACCESS_SIZE.  */
1695 1696 1697 1698

      if (cost > COSTS_N_INSNS (1))
	continue;

1699 1700 1701 1702 1703
      new_lhs = extract_low_bits (new_mode, store_mode,
				  copy_rtx (store_info->rhs));
      if (new_lhs == NULL_RTX)
	continue;

1704 1705 1706 1707
      /* We found an acceptable shift.  Generate a move to
	 take the value from the store and put it into the
	 shift pseudo, then shift it, then generate another
	 move to put in into the target of the read.  */
1708
      emit_move_insn (new_reg, new_lhs);
1709
      emit_insn (shift_seq);
1710
      read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1711
      break;
1712 1713
    }

1714
  return read_reg;
1715 1716 1717
}


1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
/* Call back for note_stores to find the hard regs set or clobbered by
   insn.  Data is a bitmap of the hardregs set so far.  */

static void
look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
{
  bitmap regs_set = (bitmap) data;

  if (REG_P (x)
      && REGNO (x) < FIRST_PSEUDO_REGISTER)
    {
      int regno = REGNO (x);
      int n = hard_regno_nregs[regno][GET_MODE (x)];
      while (--n >= 0)
	bitmap_set_bit (regs_set, regno + n);
    }
}

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
/* Helper function for replace_read and record_store.
   Attempt to return a value stored in STORE_INFO, from READ_BEGIN
   to one before READ_END bytes read in READ_MODE.  Return NULL
   if not successful.  If REQUIRE_CST is true, return always constant.  */

static rtx
get_stored_val (store_info_t store_info, enum machine_mode read_mode,
		HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end,
		basic_block bb, bool require_cst)
{
  enum machine_mode store_mode = GET_MODE (store_info->mem);
  int shift;
  int access_size; /* In bytes.  */
  rtx read_reg;

  /* To get here the read is within the boundaries of the write so
     shift will never be negative.  Start out with the shift being in
     bytes.  */
  if (store_mode == BLKmode)
    shift = 0;
  else if (BYTES_BIG_ENDIAN)
    shift = store_info->end - read_end;
  else
    shift = read_begin - store_info->begin;

  access_size = shift + GET_MODE_SIZE (read_mode);

  /* From now on it is bits.  */
  shift *= BITS_PER_UNIT;

  if (shift)
    read_reg = find_shift_sequence (access_size, store_info, read_mode, shift,
    				    optimize_bb_for_speed_p (bb),
				    require_cst);
  else if (store_mode == BLKmode)
    {
      /* The store is a memset (addr, const_val, const_size).  */
      gcc_assert (CONST_INT_P (store_info->rhs));
      store_mode = int_mode_for_mode (read_mode);
      if (store_mode == BLKmode)
	read_reg = NULL_RTX;
      else if (store_info->rhs == const0_rtx)
	read_reg = extract_low_bits (read_mode, store_mode, const0_rtx);
      else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT
	       || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
	read_reg = NULL_RTX;
      else
	{
	  unsigned HOST_WIDE_INT c
	    = INTVAL (store_info->rhs)
	      & (((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1);
	  int shift = BITS_PER_UNIT;
	  while (shift < HOST_BITS_PER_WIDE_INT)
	    {
	      c |= (c << shift);
	      shift <<= 1;
	    }
	  read_reg = GEN_INT (trunc_int_for_mode (c, store_mode));
	  read_reg = extract_low_bits (read_mode, store_mode, read_reg);
	}
    }
  else if (store_info->const_rhs
	   && (require_cst
	       || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
    read_reg = extract_low_bits (read_mode, store_mode,
				 copy_rtx (store_info->const_rhs));
  else
    read_reg = extract_low_bits (read_mode, store_mode,
				 copy_rtx (store_info->rhs));
  if (require_cst && read_reg && !CONSTANT_P (read_reg))
    read_reg = NULL_RTX;
  return read_reg;
}
1809

1810 1811 1812 1813 1814
/* Take a sequence of:
     A <- r1
     ...
     ... <- A

H.J. Lu committed
1815
   and change it into
1816 1817 1818 1819 1820
   r2 <- r1
   A <- r1
   ...
   ... <- r2

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
   or

   r3 <- extract (r1)
   r3 <- r3 >> shift
   r2 <- extract (r3)
   ... <- r2

   or

   r2 <- extract (r1)
   ... <- r2

   Depending on the alignment and the mode of the store and
   subsequent load.


   The STORE_INFO and STORE_INSN are for the store and READ_INFO
1838 1839 1840 1841
   and READ_INSN are for the read.  Return true if the replacement
   went ok.  */

static bool
H.J. Lu committed
1842
replace_read (store_info_t store_info, insn_info_t store_insn,
1843 1844
	      read_info_t read_info, insn_info_t read_insn, rtx *loc,
	      bitmap regs_live)
1845
{
1846 1847
  enum machine_mode store_mode = GET_MODE (store_info->mem);
  enum machine_mode read_mode = GET_MODE (read_info->mem);
1848
  rtx insns, this_insn, read_reg;
1849
  basic_block bb;
1850

1851 1852 1853
  if (!dbg_cnt (dse))
    return false;

1854 1855 1856 1857 1858
  /* Create a sequence of instructions to set up the read register.
     This sequence goes immediately before the store and its result
     is read by the load.

     We need to keep this in perspective.  We are replacing a read
1859 1860 1861 1862
     with a sequence of insns, but the read will almost certainly be
     in cache, so it is not going to be an expensive one.  Thus, we
     are not willing to do a multi insn shift or worse a subroutine
     call to get rid of the read.  */
1863 1864 1865 1866 1867 1868
  if (dump_file)
    fprintf (dump_file, "trying to replace %smode load in insn %d"
	     " from %smode store in insn %d\n",
	     GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
	     GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
  start_sequence ();
1869 1870 1871 1872
  bb = BLOCK_FOR_INSN (read_insn->insn);
  read_reg = get_stored_val (store_info,
			     read_mode, read_info->begin, read_info->end,
			     bb, false);
1873
  if (read_reg == NULL_RTX)
1874
    {
1875 1876 1877 1878
      end_sequence ();
      if (dump_file)
	fprintf (dump_file, " -- could not extract bits of stored value\n");
      return false;
1879
    }
1880 1881 1882 1883 1884
  /* Force the value into a new register so that it won't be clobbered
     between the store and the load.  */
  read_reg = copy_to_mode_reg (read_mode, read_reg);
  insns = get_insns ();
  end_sequence ();
1885

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
  if (insns != NULL_RTX)
    {
      /* Now we have to scan the set of new instructions to see if the
	 sequence contains and sets of hardregs that happened to be
	 live at this point.  For instance, this can happen if one of
	 the insns sets the CC and the CC happened to be live at that
	 point.  This does occasionally happen, see PR 37922.  */
      bitmap regs_set = BITMAP_ALLOC (NULL);

      for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
	note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
H.J. Lu committed
1897

1898 1899 1900 1901 1902
      bitmap_and_into (regs_set, regs_live);
      if (!bitmap_empty_p (regs_set))
	{
	  if (dump_file)
	    {
H.J. Lu committed
1903
	      fprintf (dump_file,
1904 1905 1906
		       "abandoning replacement because sequence clobbers live hardregs:");
	      df_print_regset (dump_file, regs_set);
	    }
H.J. Lu committed
1907

1908 1909 1910 1911 1912 1913
	  BITMAP_FREE (regs_set);
	  return false;
	}
      BITMAP_FREE (regs_set);
    }

1914
  if (validate_change (read_insn->insn, loc, read_reg, 0))
1915
    {
1916 1917
      deferred_change_t deferred_change =
	(deferred_change_t) pool_alloc (deferred_change_pool);
H.J. Lu committed
1918

1919 1920 1921
      /* Insert this right before the store insn where it will be safe
	 from later insns that might change it before the read.  */
      emit_insn_before (insns, store_insn->insn);
H.J. Lu committed
1922

1923 1924
      /* And now for the kludge part: cselib croaks if you just
	 return at this point.  There are two reasons for this:
H.J. Lu committed
1925

1926 1927
	 1) Cselib has an idea of how many pseudos there are and
	 that does not include the new ones we just added.
H.J. Lu committed
1928

1929 1930 1931
	 2) Cselib does not know about the move insn we added
	 above the store_info, and there is no way to tell it
	 about it, because it has "moved on".
H.J. Lu committed
1932

1933 1934 1935
	 Problem (1) is fixable with a certain amount of engineering.
	 Problem (2) is requires starting the bb from scratch.  This
	 could be expensive.
H.J. Lu committed
1936

1937 1938 1939 1940 1941 1942 1943 1944
	 So we are just going to have to lie.  The move/extraction
	 insns are not really an issue, cselib did not see them.  But
	 the use of the new pseudo read_insn is a real problem because
	 cselib has not scanned this insn.  The way that we solve this
	 problem is that we are just going to put the mem back for now
	 and when we are finished with the block, we undo this.  We
	 keep a table of mems to get rid of.  At the end of the basic
	 block we can put them back.  */
H.J. Lu committed
1945

1946 1947 1948 1949 1950
      *loc = read_info->mem;
      deferred_change->next = deferred_change_list;
      deferred_change_list = deferred_change;
      deferred_change->loc = loc;
      deferred_change->reg = read_reg;
H.J. Lu committed
1951

1952 1953 1954 1955
      /* Get rid of the read_info, from the point of view of the
	 rest of dse, play like this read never happened.  */
      read_insn->read_rec = read_info->next;
      pool_free (read_info_pool, read_info);
1956 1957 1958 1959 1960 1961
      if (dump_file)
	{
	  fprintf (dump_file, " -- replaced the loaded MEM with ");
	  print_simple_rtl (dump_file, read_reg);
	  fprintf (dump_file, "\n");
	}
1962
      return true;
1963
    }
H.J. Lu committed
1964
  else
1965 1966
    {
      if (dump_file)
1967 1968 1969 1970 1971
	{
	  fprintf (dump_file, " -- replacing the loaded MEM with ");
	  print_simple_rtl (dump_file, read_reg);
	  fprintf (dump_file, " led to an invalid instruction\n");
	}
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
      return false;
    }
}

/* A for_each_rtx callback in which DATA is the bb_info.  Check to see
   if LOC is a mem and if it is look at the address and kill any
   appropriate stores that may be active.  */

static int
check_mem_read_rtx (rtx *loc, void *data)
{
1983
  rtx mem = *loc, mem_addr;
1984 1985 1986 1987
  bb_info_t bb_info;
  insn_info_t insn_info;
  HOST_WIDE_INT offset = 0;
  HOST_WIDE_INT width = 0;
1988
  alias_set_type spill_alias_set = 0;
H.J. Lu committed
1989
  cselib_val *base = NULL;
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
  int group_id;
  read_info_t read_info;

  if (!mem || !MEM_P (mem))
    return 0;

  bb_info = (bb_info_t) data;
  insn_info = bb_info->last_insn;

  if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
      || (MEM_VOLATILE_P (mem)))
    {
      if (dump_file)
	fprintf (dump_file, " adding wild read, volatile or barrier.\n");
      add_wild_read (bb_info);
      insn_info->cannot_delete = true;
      return 0;
    }

  /* If it is reading readonly mem, then there can be no conflict with
     another write. */
  if (MEM_READONLY_P (mem))
    return 0;

  if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
    {
      if (dump_file)
	fprintf (dump_file, " adding wild read, canon_address failure.\n");
      add_wild_read (bb_info);
      return 0;
    }

  if (GET_MODE (mem) == BLKmode)
    width = -1;
  else
    width = GET_MODE_SIZE (GET_MODE (mem));

2027
  read_info = (read_info_t) pool_alloc (read_info_pool);
2028 2029 2030 2031 2032 2033 2034
  read_info->group_id = group_id;
  read_info->mem = mem;
  read_info->alias_set = spill_alias_set;
  read_info->begin = offset;
  read_info->end = offset + width;
  read_info->next = insn_info->read_rec;
  insn_info->read_rec = read_info;
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
  /* For alias_set != 0 canon_true_dependence should be never called.  */
  if (spill_alias_set)
    mem_addr = NULL_RTX;
  else
    {
      if (group_id < 0)
	mem_addr = base->val_rtx;
      else
	{
	  group_info_t group
	    = VEC_index (group_info_t, rtx_group_vec, group_id);
	  mem_addr = group->canon_base_addr;
	}
      if (offset)
	mem_addr = plus_constant (mem_addr, offset);
    }
2051

2052
  /* We ignore the clobbers in store_info.  The is mildly aggressive,
2053 2054 2055 2056 2057 2058 2059 2060 2061
     but there really should not be a clobber followed by a read.  */

  if (spill_alias_set)
    {
      insn_info_t i_ptr = active_local_stores;
      insn_info_t last = NULL;

      if (dump_file)
	fprintf (dump_file, " processing spill load %d\n",
2062
		 (int) spill_alias_set);
2063 2064 2065 2066 2067 2068 2069 2070

      while (i_ptr)
	{
	  store_info_t store_info = i_ptr->store_rec;

	  /* Skip the clobbers.  */
	  while (!store_info->is_set)
	    store_info = store_info->next;
H.J. Lu committed
2071

2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
	  if (store_info->alias_set == spill_alias_set)
	    {
	      if (dump_file)
		dump_insn_info ("removing from active", i_ptr);

	      if (last)
		last->next_local_store = i_ptr->next_local_store;
	      else
		active_local_stores = i_ptr->next_local_store;
	    }
	  else
	    last = i_ptr;
	  i_ptr = i_ptr->next_local_store;
	}
    }
  else if (group_id >= 0)
    {
      /* This is the restricted case where the base is a constant or
	 the frame pointer and offset is a constant.  */
      insn_info_t i_ptr = active_local_stores;
      insn_info_t last = NULL;
H.J. Lu committed
2093

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
      if (dump_file)
	{
	  if (width == -1)
	    fprintf (dump_file, " processing const load gid=%d[BLK]\n",
		     group_id);
	  else
	    fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
		     group_id, (int)offset, (int)(offset+width));
	}

      while (i_ptr)
	{
	  bool remove = false;
	  store_info_t store_info = i_ptr->store_rec;
H.J. Lu committed
2108

2109 2110 2111
	  /* Skip the clobbers.  */
	  while (!store_info->is_set)
	    store_info = store_info->next;
H.J. Lu committed
2112

2113 2114 2115 2116
	  /* There are three cases here.  */
	  if (store_info->group_id < 0)
	    /* We have a cselib store followed by a read from a
	       const base. */
H.J. Lu committed
2117 2118
	    remove
	      = canon_true_dependence (store_info->mem,
2119 2120
				       GET_MODE (store_info->mem),
				       store_info->mem_addr,
2121
				       mem, mem_addr, rtx_varies_p);
H.J. Lu committed
2122

2123 2124 2125 2126 2127
	  else if (group_id == store_info->group_id)
	    {
	      /* This is a block mode load.  We may get lucky and
		 canon_true_dependence may save the day.  */
	      if (width == -1)
H.J. Lu committed
2128 2129
		remove
		  = canon_true_dependence (store_info->mem,
2130 2131
					   GET_MODE (store_info->mem),
					   store_info->mem_addr,
2132
					   mem, mem_addr, rtx_varies_p);
H.J. Lu committed
2133

2134 2135
	      /* If this read is just reading back something that we just
		 stored, rewrite the read.  */
H.J. Lu committed
2136
	      else
2137 2138
		{
		  if (store_info->rhs
2139 2140 2141 2142 2143 2144 2145 2146 2147
		      && offset >= store_info->begin
		      && offset + width <= store_info->end
		      && all_positions_needed_p (store_info,
						 offset - store_info->begin,
						 width)
		      && replace_read (store_info, i_ptr, read_info,
				       insn_info, loc, bb_info->regs_live))
		    return 0;

2148 2149
		  /* The bases are the same, just see if the offsets
		     overlap.  */
H.J. Lu committed
2150
		  if ((offset < store_info->end)
2151 2152 2153 2154
		      && (offset + width > store_info->begin))
		    remove = true;
		}
	    }
H.J. Lu committed
2155 2156

	  /* else
2157 2158 2159
	     The else case that is missing here is that the
	     bases are constant but different.  There is nothing
	     to do here because there is no overlap.  */
H.J. Lu committed
2160

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
	  if (remove)
	    {
	      if (dump_file)
		dump_insn_info ("removing from active", i_ptr);

	      if (last)
		last->next_local_store = i_ptr->next_local_store;
	      else
		active_local_stores = i_ptr->next_local_store;
	    }
	  else
	    last = i_ptr;
	  i_ptr = i_ptr->next_local_store;
	}
    }
H.J. Lu committed
2176
  else
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
    {
      insn_info_t i_ptr = active_local_stores;
      insn_info_t last = NULL;
      if (dump_file)
	{
	  fprintf (dump_file, " processing cselib load mem:");
	  print_inline_rtx (dump_file, mem, 0);
	  fprintf (dump_file, "\n");
	}

      while (i_ptr)
	{
	  bool remove = false;
	  store_info_t store_info = i_ptr->store_rec;
H.J. Lu committed
2191

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	  if (dump_file)
	    fprintf (dump_file, " processing cselib load against insn %d\n",
		     INSN_UID (i_ptr->insn));

	  /* Skip the clobbers.  */
	  while (!store_info->is_set)
	    store_info = store_info->next;

	  /* If this read is just reading back something that we just
	     stored, rewrite the read.  */
	  if (store_info->rhs
	      && store_info->group_id == -1
	      && store_info->cse_base == base
2205
	      && width != -1
2206 2207 2208 2209 2210 2211 2212
	      && offset >= store_info->begin
	      && offset + width <= store_info->end
	      && all_positions_needed_p (store_info,
					 offset - store_info->begin, width)
	      && replace_read (store_info, i_ptr,  read_info, insn_info, loc,
			       bb_info->regs_live))
	    return 0;
2213 2214

	  if (!store_info->alias_set)
H.J. Lu committed
2215
	    remove = canon_true_dependence (store_info->mem,
2216 2217
					    GET_MODE (store_info->mem),
					    store_info->mem_addr,
2218
					    mem, mem_addr, rtx_varies_p);
H.J. Lu committed
2219

2220 2221 2222 2223
	  if (remove)
	    {
	      if (dump_file)
		dump_insn_info ("removing from active", i_ptr);
H.J. Lu committed
2224

2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
	      if (last)
		last->next_local_store = i_ptr->next_local_store;
	      else
		active_local_stores = i_ptr->next_local_store;
	    }
	  else
	    last = i_ptr;
	  i_ptr = i_ptr->next_local_store;
	}
    }
  return 0;
}

H.J. Lu committed
2238
/* A for_each_rtx callback in which DATA points the INSN_INFO for
2239 2240 2241 2242 2243 2244 2245 2246 2247
   as check_mem_read_rtx.  Nullify the pointer if i_m_r_m_r returns
   true for any part of *LOC.  */

static void
check_mem_read_use (rtx *loc, void *data)
{
  for_each_rtx (loc, check_mem_read_rtx, data);
}

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266

/* Get arguments passed to CALL_INSN.  Return TRUE if successful.
   So far it only handles arguments passed in registers.  */

static bool
get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
{
  CUMULATIVE_ARGS args_so_far;
  tree arg;
  int idx;

  INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);

  arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
  for (idx = 0;
       arg != void_list_node && idx < nargs;
       arg = TREE_CHAIN (arg), idx++)
    {
      enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2267 2268
      rtx reg, link, tmp;
      reg = targetm.calls.function_arg (&args_so_far, mode, NULL_TREE, true);
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
      if (!reg || !REG_P (reg) || GET_MODE (reg) != mode
	  || GET_MODE_CLASS (mode) != MODE_INT)
	return false;

      for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
	   link;
	   link = XEXP (link, 1))
	if (GET_CODE (XEXP (link, 0)) == USE)
	  {
	    args[idx] = XEXP (XEXP (link, 0), 0);
	    if (REG_P (args[idx])
		&& REGNO (args[idx]) == REGNO (reg)
		&& (GET_MODE (args[idx]) == mode
		    || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT
			&& (GET_MODE_SIZE (GET_MODE (args[idx]))
			    <= UNITS_PER_WORD)
			&& (GET_MODE_SIZE (GET_MODE (args[idx]))
			    > GET_MODE_SIZE (mode)))))
	      break;
	  }
      if (!link)
	return false;

      tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
      if (GET_MODE (args[idx]) != mode)
	{
	  if (!tmp || !CONST_INT_P (tmp))
	    return false;
	  tmp = GEN_INT (trunc_int_for_mode (INTVAL (tmp), mode));
	}
      if (tmp)
	args[idx] = tmp;

2302
      targetm.calls.function_arg_advance (&args_so_far, mode, NULL_TREE, true);
2303 2304 2305 2306 2307 2308 2309
    }
  if (arg != void_list_node || idx != nargs)
    return false;
  return true;
}


2310 2311 2312 2313 2314 2315 2316 2317
/* Apply record_store to all candidate stores in INSN.  Mark INSN
   if some part of it is not a candidate store and assigns to a
   non-register target.  */

static void
scan_insn (bb_info_t bb_info, rtx insn)
{
  rtx body;
2318
  insn_info_t insn_info = (insn_info_t) pool_alloc (insn_info_pool);
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
  int mems_found = 0;
  memset (insn_info, 0, sizeof (struct insn_info));

  if (dump_file)
    fprintf (dump_file, "\n**scanning insn=%d\n",
	     INSN_UID (insn));

  insn_info->prev_insn = bb_info->last_insn;
  insn_info->insn = insn;
  bb_info->last_insn = insn_info;
H.J. Lu committed
2329

2330 2331 2332 2333 2334
  if (DEBUG_INSN_P (insn))
    {
      insn_info->cannot_delete = true;
      return;
    }
2335

2336
  /* Cselib clears the table for this case, so we have to essentially
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
     do the same.  */
  if (NONJUMP_INSN_P (insn)
      && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
      && MEM_VOLATILE_P (PATTERN (insn)))
    {
      add_wild_read (bb_info);
      insn_info->cannot_delete = true;
      return;
    }

  /* Look at all of the uses in the insn.  */
  note_uses (&PATTERN (insn), check_mem_read_use, bb_info);

  if (CALL_P (insn))
    {
2352 2353 2354
      bool const_call;
      tree memset_call = NULL_TREE;

2355
      insn_info->cannot_delete = true;
2356

2357
      /* Const functions cannot do anything bad i.e. read memory,
2358
	 however, they can read their parameters which may have
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
	 been pushed onto the stack.
	 memset and bzero don't read memory either.  */
      const_call = RTL_CONST_CALL_P (insn);
      if (!const_call)
	{
	  rtx call = PATTERN (insn);
	  if (GET_CODE (call) == PARALLEL)
	    call = XVECEXP (call, 0, 0);
	  if (GET_CODE (call) == SET)
	    call = SET_SRC (call);
	  if (GET_CODE (call) == CALL
	      && MEM_P (XEXP (call, 0))
	      && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
	    {
	      rtx symbol = XEXP (XEXP (call, 0), 0);
	      if (SYMBOL_REF_DECL (symbol)
		  && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
		{
		  if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
		       == BUILT_IN_NORMAL
		       && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
			   == BUILT_IN_MEMSET))
		      || SYMBOL_REF_DECL (symbol) == block_clear_fn)
		    memset_call = SYMBOL_REF_DECL (symbol);
		}
	    }
	}
      if (const_call || memset_call)
2387 2388 2389 2390 2391
	{
	  insn_info_t i_ptr = active_local_stores;
	  insn_info_t last = NULL;

	  if (dump_file)
2392 2393
	    fprintf (dump_file, "%s call %d\n",
		     const_call ? "const" : "memset", INSN_UID (insn));
2394

2395 2396 2397 2398 2399 2400
	  /* See the head comment of the frame_read field.  */
	  if (reload_completed)
	    insn_info->frame_read = true;

	  /* Loop over the active stores and remove those which are
	     killed by the const function call.  */
2401 2402
	  while (i_ptr)
	    {
2403 2404 2405
	      bool remove_store = false;

	      /* The stack pointer based stores are always killed.  */
2406
	      if (i_ptr->stack_pointer_based)
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
	        remove_store = true;

	      /* If the frame is read, the frame related stores are killed.  */
	      else if (insn_info->frame_read)
		{
		  store_info_t store_info = i_ptr->store_rec;

		  /* Skip the clobbers.  */
		  while (!store_info->is_set)
		    store_info = store_info->next;

		  if (store_info->group_id >= 0
		      && VEC_index (group_info_t, rtx_group_vec,
				    store_info->group_id)->frame_related)
		    remove_store = true;
		}

	      if (remove_store)
2425 2426 2427
		{
		  if (dump_file)
		    dump_insn_info ("removing from active", i_ptr);
H.J. Lu committed
2428

2429 2430 2431 2432 2433 2434 2435
		  if (last)
		    last->next_local_store = i_ptr->next_local_store;
		  else
		    active_local_stores = i_ptr->next_local_store;
		}
	      else
		last = i_ptr;
2436

2437 2438
	      i_ptr = i_ptr->next_local_store;
	    }
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460

	  if (memset_call)
	    {
	      rtx args[3];
	      if (get_call_args (insn, memset_call, args, 3)
		  && CONST_INT_P (args[1])
		  && CONST_INT_P (args[2])
		  && INTVAL (args[2]) > 0)
		{
		  rtx mem = gen_rtx_MEM (BLKmode, args[0]);
		  set_mem_size (mem, args[2]);
		  body = gen_rtx_SET (VOIDmode, mem, args[1]);
		  mems_found += record_store (body, bb_info);
		  if (dump_file)
		    fprintf (dump_file, "handling memset as BLKmode store\n");
		  if (mems_found == 1)
		    {
		      insn_info->next_local_store = active_local_stores;
		      active_local_stores = insn_info;
		    }
		}
	    }
2461 2462
	}

2463 2464 2465 2466
      else
	/* Every other call, including pure functions, may read memory.  */
	add_wild_read (bb_info);

2467 2468 2469 2470 2471 2472
      return;
    }

  /* Assuming that there are sets in these insns, we cannot delete
     them.  */
  if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2473
      || volatile_refs_p (PATTERN (insn))
2474
      || insn_could_throw_p (insn)
2475 2476 2477
      || (RTX_FRAME_RELATED_P (insn))
      || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
    insn_info->cannot_delete = true;
H.J. Lu committed
2478

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
  body = PATTERN (insn);
  if (GET_CODE (body) == PARALLEL)
    {
      int i;
      for (i = 0; i < XVECLEN (body, 0); i++)
	mems_found += record_store (XVECEXP (body, 0, i), bb_info);
    }
  else
    mems_found += record_store (body, bb_info);

  if (dump_file)
H.J. Lu committed
2490
    fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2491 2492
	     mems_found, insn_info->cannot_delete ? "true" : "false");

2493 2494 2495 2496 2497
  /* If we found some sets of mems, add it into the active_local_stores so
     that it can be locally deleted if found dead or used for
     replace_read and redundant constant store elimination.  Otherwise mark
     it as cannot delete.  This simplifies the processing later.  */
  if (mems_found == 1)
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
    {
      insn_info->next_local_store = active_local_stores;
      active_local_stores = insn_info;
    }
  else
    insn_info->cannot_delete = true;
}


/* Remove BASE from the set of active_local_stores.  This is a
   callback from cselib that is used to get rid of the stores in
   active_local_stores.  */

static void
remove_useless_values (cselib_val *base)
{
  insn_info_t insn_info = active_local_stores;
  insn_info_t last = NULL;

  while (insn_info)
    {
      store_info_t store_info = insn_info->store_rec;
2520
      bool del = false;
2521 2522 2523 2524 2525

      /* If ANY of the store_infos match the cselib group that is
	 being deleted, then the insn can not be deleted.  */
      while (store_info)
	{
H.J. Lu committed
2526
	  if ((store_info->group_id == -1)
2527 2528
	      && (store_info->cse_base == base))
	    {
2529
	      del = true;
2530 2531 2532 2533 2534
	      break;
	    }
	  store_info = store_info->next;
	}

2535
      if (del)
2536 2537 2538 2539 2540 2541 2542 2543 2544
	{
	  if (last)
	    last->next_local_store = insn_info->next_local_store;
	  else
	    active_local_stores = insn_info->next_local_store;
	  free_store_info (insn_info);
	}
      else
	last = insn_info;
H.J. Lu committed
2545

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
      insn_info = insn_info->next_local_store;
    }
}


/* Do all of step 1.  */

static void
dse_step1 (void)
{
  basic_block bb;
2557
  bitmap regs_live = BITMAP_ALLOC (NULL);
H.J. Lu committed
2558

2559
  cselib_init (0);
2560 2561 2562 2563 2564 2565 2566
  all_blocks = BITMAP_ALLOC (NULL);
  bitmap_set_bit (all_blocks, ENTRY_BLOCK);
  bitmap_set_bit (all_blocks, EXIT_BLOCK);

  FOR_ALL_BB (bb)
    {
      insn_info_t ptr;
2567
      bb_info_t bb_info = (bb_info_t) pool_alloc (bb_info_pool);
2568 2569 2570

      memset (bb_info, 0, sizeof (struct bb_info));
      bitmap_set_bit (all_blocks, bb->index);
2571 2572 2573 2574
      bb_info->regs_live = regs_live;

      bitmap_copy (regs_live, DF_LR_IN (bb));
      df_simulate_initialize_forwards (bb, regs_live);
2575 2576 2577 2578 2579 2580 2581 2582 2583

      bb_table[bb->index] = bb_info;
      cselib_discard_hook = remove_useless_values;

      if (bb->index >= NUM_FIXED_BLOCKS)
	{
	  rtx insn;

	  cse_store_info_pool
H.J. Lu committed
2584
	    = create_alloc_pool ("cse_store_info_pool",
2585 2586 2587
				 sizeof (struct store_info), 100);
	  active_local_stores = NULL;
	  cselib_clear_table ();
H.J. Lu committed
2588

2589 2590 2591 2592 2593 2594
	  /* Scan the insns.  */
	  FOR_BB_INSNS (bb, insn)
	    {
	      if (INSN_P (insn))
		scan_insn (bb_info, insn);
	      cselib_process_insn (insn);
2595 2596
	      if (INSN_P (insn))
		df_simulate_one_insn_forwards (bb, insn, regs_live);
2597
	    }
H.J. Lu committed
2598

2599 2600 2601 2602 2603 2604
	  /* This is something of a hack, because the global algorithm
	     is supposed to take care of the case where stores go dead
	     at the end of the function.  However, the global
	     algorithm must take a more conservative view of block
	     mode reads than the local alg does.  So to get the case
	     where you have a store to the frame followed by a non
2605
	     overlapping block more read, we look at the active local
2606 2607 2608 2609 2610 2611
	     stores at the end of the function and delete all of the
	     frame and spill based ones.  */
	  if (stores_off_frame_dead_at_return
	      && (EDGE_COUNT (bb->succs) == 0
		  || (single_succ_p (bb)
		      && single_succ (bb) == EXIT_BLOCK_PTR
2612
		      && ! crtl->calls_eh_return)))
2613 2614 2615 2616 2617 2618 2619 2620 2621
	    {
	      insn_info_t i_ptr = active_local_stores;
	      while (i_ptr)
		{
		  store_info_t store_info = i_ptr->store_rec;

		  /* Skip the clobbers.  */
		  while (!store_info->is_set)
		    store_info = store_info->next;
2622
		  if (store_info->alias_set && !i_ptr->cannot_delete)
2623
		    delete_dead_store_insn (i_ptr);
H.J. Lu committed
2624
		  else
2625 2626
		    if (store_info->group_id >= 0)
		      {
H.J. Lu committed
2627
			group_info_t group
2628
			  = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
2629
			if (group->frame_related && !i_ptr->cannot_delete)
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
			  delete_dead_store_insn (i_ptr);
		      }

		  i_ptr = i_ptr->next_local_store;
		}
	    }

	  /* Get rid of the loads that were discovered in
	     replace_read.  Cselib is finished with this block.  */
	  while (deferred_change_list)
	    {
	      deferred_change_t next = deferred_change_list->next;

	      /* There is no reason to validate this change.  That was
		 done earlier.  */
	      *deferred_change_list->loc = deferred_change_list->reg;
	      pool_free (deferred_change_pool, deferred_change_list);
	      deferred_change_list = next;
	    }

	  /* Get rid of all of the cselib based store_infos in this
	     block and mark the containing insns as not being
	     deletable.  */
	  ptr = bb_info->last_insn;
	  while (ptr)
	    {
	      if (ptr->contains_cselib_groups)
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
		{
		  store_info_t s_info = ptr->store_rec;
		  while (s_info && !s_info->is_set)
		    s_info = s_info->next;
		  if (s_info
		      && s_info->redundant_reason
		      && s_info->redundant_reason->insn
		      && !ptr->cannot_delete)
		    {
		      if (dump_file)
			fprintf (dump_file, "Locally deleting insn %d "
					    "because insn %d stores the "
					    "same value and couldn't be "
					    "eliminated\n",
				 INSN_UID (ptr->insn),
				 INSN_UID (s_info->redundant_reason->insn));
		      delete_dead_store_insn (ptr);
		    }
		  if (s_info)
		    s_info->redundant_reason = NULL;
		  free_store_info (ptr);
		}
	      else
		{
		  store_info_t s_info;

		  /* Free at least positions_needed bitmaps.  */
		  for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
		    if (s_info->is_large)
		      {
2687
			BITMAP_FREE (s_info->positions_needed.large.bmap);
2688 2689 2690
			s_info->is_large = false;
		      }
		}
2691 2692 2693 2694 2695
	      ptr = ptr->prev_insn;
	    }

	  free_alloc_pool (cse_store_info_pool);
	}
2696
      bb_info->regs_live = NULL;
2697 2698
    }

2699
  BITMAP_FREE (regs_live);
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
  cselib_finish ();
  htab_empty (rtx_group_table);
}


/*----------------------------------------------------------------------------
   Second step.

   Assign each byte position in the stores that we are going to
   analyze globally to a position in the bitmaps.  Returns true if
2710
   there are any bit positions assigned.
2711 2712 2713 2714 2715 2716 2717 2718
----------------------------------------------------------------------------*/

static void
dse_step2_init (void)
{
  unsigned int i;
  group_info_t group;

2719
  FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
2720 2721 2722 2723 2724 2725 2726 2727 2728
    {
      /* For all non stack related bases, we only consider a store to
	 be deletable if there are two or more stores for that
	 position.  This is because it takes one store to make the
	 other store redundant.  However, for the stores that are
	 stack related, we consider them if there is only one store
	 for the position.  We do this because the stack related
	 stores can be deleted if their is no read between them and
	 the end of the function.
H.J. Lu committed
2729

2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
	 To make this work in the current framework, we take the stack
	 related bases add all of the bits from store1 into store2.
	 This has the effect of making the eligible even if there is
	 only one store.   */

      if (stores_off_frame_dead_at_return && group->frame_related)
	{
	  bitmap_ior_into (group->store2_n, group->store1_n);
	  bitmap_ior_into (group->store2_p, group->store1_p);
	  if (dump_file)
H.J. Lu committed
2740
	    fprintf (dump_file, "group %d is frame related ", i);
2741 2742 2743 2744 2745 2746 2747 2748 2749
	}

      group->offset_map_size_n++;
      group->offset_map_n = XNEWVEC (int, group->offset_map_size_n);
      group->offset_map_size_p++;
      group->offset_map_p = XNEWVEC (int, group->offset_map_size_p);
      group->process_globally = false;
      if (dump_file)
	{
H.J. Lu committed
2750
	  fprintf (dump_file, "group %d(%d+%d): ", i,
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
		   (int)bitmap_count_bits (group->store2_n),
		   (int)bitmap_count_bits (group->store2_p));
	  bitmap_print (dump_file, group->store2_n, "n ", " ");
	  bitmap_print (dump_file, group->store2_p, "p ", "\n");
	}
    }
}


/* Init the offset tables for the normal case.  */

static bool
dse_step2_nospill (void)
{
  unsigned int i;
  group_info_t group;
  /* Position 0 is unused because 0 is used in the maps to mean
     unused.  */
  current_position = 1;

2771
  FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
    {
      bitmap_iterator bi;
      unsigned int j;

      if (group == clear_alias_group)
	continue;

      memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
      memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
      bitmap_clear (group->group_kill);

      EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
	{
	  bitmap_set_bit (group->group_kill, current_position);
	  group->offset_map_n[j] = current_position++;
	  group->process_globally = true;
	}
      EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
	{
H.J. Lu committed
2791
	  bitmap_set_bit (group->group_kill, current_position);
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
	  group->offset_map_p[j] = current_position++;
	  group->process_globally = true;
	}
    }
  return current_position != 1;
}


/* Init the offset tables for the spill case.  */

static bool
dse_step2_spill (void)
{
  unsigned int j;
  group_info_t group = clear_alias_group;
  bitmap_iterator bi;

  /* Position 0 is unused because 0 is used in the maps to mean
     unused.  */
  current_position = 1;

  if (dump_file)
    {
H.J. Lu committed
2815
      bitmap_print (dump_file, clear_alias_sets,
2816
		    "clear alias sets              ", "\n");
H.J. Lu committed
2817
      bitmap_print (dump_file, disqualified_clear_alias_sets,
2818 2819 2820 2821 2822 2823
		    "disqualified clear alias sets ", "\n");
    }

  memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
  memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
  bitmap_clear (group->group_kill);
H.J. Lu committed
2824

2825 2826
  /* Remove the disqualified positions from the store2_p set.  */
  bitmap_and_compl_into (group->store2_p, disqualified_clear_alias_sets);
H.J. Lu committed
2827

2828 2829 2830 2831
  /* We do not need to process the store2_n set because
     alias_sets are always positive.  */
  EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
    {
H.J. Lu committed
2832
      bitmap_set_bit (group->group_kill, current_position);
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
      group->offset_map_p[j] = current_position++;
      group->process_globally = true;
    }

  return current_position != 1;
}



/*----------------------------------------------------------------------------
  Third step.
H.J. Lu committed
2844

2845 2846 2847 2848 2849 2850
  Build the bit vectors for the transfer functions.
----------------------------------------------------------------------------*/


/* Note that this is NOT a general purpose function.  Any mem that has
   an alias set registered here expected to be COMPLETELY unaliased:
H.J. Lu committed
2851
   i.e it's addresses are not and need not be examined.
2852 2853 2854

   It is known that all references to this address will have this
   alias set and there are NO other references to this address in the
H.J. Lu committed
2855
   function.
2856 2857

   Currently the only place that is known to be clean enough to use
H.J. Lu committed
2858
   this interface is the code that assigns the spill locations.
2859 2860 2861

   All of the mems that have alias_sets registered are subjected to a
   very powerful form of dse where function calls, volatile reads and
H.J. Lu committed
2862
   writes, and reads from random location are not taken into account.
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878

   It is also assumed that these locations go dead when the function
   returns.  This assumption could be relaxed if there were found to
   be places that this assumption was not correct.

   The MODE is passed in and saved.  The mode of each load or store to
   a mem with ALIAS_SET is checked against MEM.  If the size of that
   load or store is different from MODE, processing is halted on this
   alias set.  For the vast majority of aliases sets, all of the loads
   and stores will use the same mode.  But vectors are treated
   differently: the alias set is established for the entire vector,
   but reload will insert loads and stores for individual elements and
   we do not necessarily have the information to track those separate
   elements.  So when we see a mode mismatch, we just bail.  */


H.J. Lu committed
2879 2880
void
dse_record_singleton_alias_set (alias_set_type alias_set,
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
				enum machine_mode mode)
{
  struct clear_alias_mode_holder tmp_holder;
  struct clear_alias_mode_holder *entry;
  void **slot;

  /* If we are not going to run dse, we need to return now or there
     will be problems with allocating the bitmaps.  */
  if ((!gate_dse()) || !alias_set)
    return;

  if (!clear_alias_sets)
    {
      clear_alias_sets = BITMAP_ALLOC (NULL);
      disqualified_clear_alias_sets = BITMAP_ALLOC (NULL);
      clear_alias_mode_table = htab_create (11, clear_alias_mode_hash,
					    clear_alias_mode_eq, NULL);
H.J. Lu committed
2898
      clear_alias_mode_pool = create_alloc_pool ("clear_alias_mode_pool",
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
						 sizeof (struct clear_alias_mode_holder), 100);
    }

  bitmap_set_bit (clear_alias_sets, alias_set);

  tmp_holder.alias_set = alias_set;

  slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, INSERT);
  gcc_assert (*slot == NULL);

2909 2910
  *slot = entry =
    (struct clear_alias_mode_holder *) pool_alloc (clear_alias_mode_pool);
2911 2912 2913 2914 2915 2916 2917
  entry->alias_set = alias_set;
  entry->mode = mode;
}


/* Remove ALIAS_SET from the sets of stack slots being considered.  */

H.J. Lu committed
2918
void
2919
dse_invalidate_singleton_alias_set (alias_set_type alias_set)
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
{
  if ((!gate_dse()) || !alias_set)
    return;

  bitmap_clear_bit (clear_alias_sets, alias_set);
}


/* Look up the bitmap index for OFFSET in GROUP_INFO.  If it is not
   there, return 0.  */

static int
get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
{
  if (offset < 0)
    {
      HOST_WIDE_INT offset_p = -offset;
      if (offset_p >= group_info->offset_map_size_n)
	return 0;
      return group_info->offset_map_n[offset_p];
    }
  else
    {
      if (offset >= group_info->offset_map_size_p)
	return 0;
      return group_info->offset_map_p[offset];
    }
}


/* Process the STORE_INFOs into the bitmaps into GEN and KILL.  KILL
   may be NULL. */

H.J. Lu committed
2953
static void
2954 2955 2956 2957 2958
scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
{
  while (store_info)
    {
      HOST_WIDE_INT i;
H.J. Lu committed
2959
      group_info_t group_info
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
	= VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
      if (group_info->process_globally)
	for (i = store_info->begin; i < store_info->end; i++)
	  {
	    int index = get_bitmap_index (group_info, i);
	    if (index != 0)
	      {
		bitmap_set_bit (gen, index);
		if (kill)
		  bitmap_clear_bit (kill, index);
	      }
	  }
      store_info = store_info->next;
    }
}


/* Process the STORE_INFOs into the bitmaps into GEN and KILL.  KILL
   may be NULL. */

H.J. Lu committed
2980
static void
2981 2982 2983 2984 2985 2986
scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
{
  while (store_info)
    {
      if (store_info->alias_set)
	{
H.J. Lu committed
2987
	  int index = get_bitmap_index (clear_alias_group,
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
					store_info->alias_set);
	  if (index != 0)
	    {
	      bitmap_set_bit (gen, index);
	      if (kill)
		bitmap_clear_bit (kill, index);
	    }
	}
      store_info = store_info->next;
    }
}


/* Process the READ_INFOs into the bitmaps into GEN and KILL.  KILL
   may be NULL.  */

static void
scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
{
  read_info_t read_info = insn_info->read_rec;
  int i;
  group_info_t group;

3011 3012 3013
  /* If this insn reads the frame, kill all the frame related stores.  */
  if (insn_info->frame_read)
    {
3014
      FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3015 3016 3017 3018
	if (group->process_globally && group->frame_related)
	  {
	    if (kill)
	      bitmap_ior_into (kill, group->group_kill);
H.J. Lu committed
3019
	    bitmap_and_compl_into (gen, group->group_kill);
3020 3021 3022
	  }
    }

3023 3024
  while (read_info)
    {
3025
      FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
	{
	  if (group->process_globally)
	    {
	      if (i == read_info->group_id)
		{
		  if (read_info->begin > read_info->end)
		    {
		      /* Begin > end for block mode reads.  */
		      if (kill)
			bitmap_ior_into (kill, group->group_kill);
		      bitmap_and_compl_into (gen, group->group_kill);
		    }
		  else
		    {
		      /* The groups are the same, just process the
			 offsets.  */
		      HOST_WIDE_INT j;
		      for (j = read_info->begin; j < read_info->end; j++)
			{
			  int index = get_bitmap_index (group, j);
			  if (index != 0)
			    {
			      if (kill)
				bitmap_set_bit (kill, index);
			      bitmap_clear_bit (gen, index);
			    }
			}
		    }
		}
	      else
		{
		  /* The groups are different, if the alias sets
		     conflict, clear the entire group.  We only need
		     to apply this test if the read_info is a cselib
		     read.  Anything with a constant base cannot alias
		     something else with a different constant
		     base.  */
		  if ((read_info->group_id < 0)
H.J. Lu committed
3064
		      && canon_true_dependence (group->base_mem,
3065
						GET_MODE (group->base_mem),
3066 3067 3068
						group->canon_base_addr,
						read_info->mem, NULL_RTX,
						rtx_varies_p))
3069 3070 3071 3072 3073 3074 3075 3076
		    {
		      if (kill)
			bitmap_ior_into (kill, group->group_kill);
		      bitmap_and_compl_into (gen, group->group_kill);
		    }
		}
	    }
	}
H.J. Lu committed
3077

3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
      read_info = read_info->next;
    }
}

/* Process the READ_INFOs into the bitmaps into GEN and KILL.  KILL
   may be NULL.  */

static void
scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
{
  while (read_info)
    {
      if (read_info->alias_set)
	{
H.J. Lu committed
3092
	  int index = get_bitmap_index (clear_alias_group,
3093 3094 3095 3096 3097 3098 3099 3100
					read_info->alias_set);
	  if (index != 0)
	    {
	      if (kill)
		bitmap_set_bit (kill, index);
	      bitmap_clear_bit (gen, index);
	    }
	}
H.J. Lu committed
3101

3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
      read_info = read_info->next;
    }
}


/* Return the insn in BB_INFO before the first wild read or if there
   are no wild reads in the block, return the last insn.  */

static insn_info_t
find_insn_before_first_wild_read (bb_info_t bb_info)
{
  insn_info_t insn_info = bb_info->last_insn;
  insn_info_t last_wild_read = NULL;

  while (insn_info)
    {
      if (insn_info->wild_read)
	{
	  last_wild_read = insn_info->prev_insn;
	  /* Block starts with wild read.  */
	  if (!last_wild_read)
	    return NULL;
	}

      insn_info = insn_info->prev_insn;
    }

  if (last_wild_read)
    return last_wild_read;
  else
    return bb_info->last_insn;
}


/* Scan the insns in BB_INFO starting at PTR and going to the top of
   the block in order to build the gen and kill sets for the block.
   We start at ptr which may be the last insn in the block or may be
   the first insn with a wild read.  In the latter case we are able to
   skip the rest of the block because it just does not matter:
   anything that happens is hidden by the wild read.  */

static void
dse_step3_scan (bool for_spills, basic_block bb)
{
  bb_info_t bb_info = bb_table[bb->index];
  insn_info_t insn_info;

  if (for_spills)
    /* There are no wild reads in the spill case.  */
    insn_info = bb_info->last_insn;
  else
    insn_info = find_insn_before_first_wild_read (bb_info);
H.J. Lu committed
3154

3155 3156 3157 3158 3159 3160 3161 3162 3163
  /* In the spill case or in the no_spill case if there is no wild
     read in the block, we will need a kill set.  */
  if (insn_info == bb_info->last_insn)
    {
      if (bb_info->kill)
	bitmap_clear (bb_info->kill);
      else
	bb_info->kill = BITMAP_ALLOC (NULL);
    }
H.J. Lu committed
3164
  else
3165 3166 3167 3168 3169 3170 3171 3172 3173
    if (bb_info->kill)
      BITMAP_FREE (bb_info->kill);

  while (insn_info)
    {
      /* There may have been code deleted by the dce pass run before
	 this phase.  */
      if (insn_info->insn && INSN_P (insn_info->insn))
	{
H.J. Lu committed
3174
	  /* Process the read(s) last.  */
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
	  if (for_spills)
	    {
	      scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
	      scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
	    }
	  else
	    {
	      scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
	      scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
	    }
H.J. Lu committed
3185
	}
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

      insn_info = insn_info->prev_insn;
    }
}


/* Set the gen set of the exit block, and also any block with no
   successors that does not have a wild read.  */

static void
dse_step3_exit_block_scan (bb_info_t bb_info)
{
  /* The gen set is all 0's for the exit block except for the
     frame_pointer_group.  */
H.J. Lu committed
3200

3201 3202 3203 3204
  if (stores_off_frame_dead_at_return)
    {
      unsigned int i;
      group_info_t group;
H.J. Lu committed
3205

3206
      FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
	{
	  if (group->process_globally && group->frame_related)
	    bitmap_ior_into (bb_info->gen, group->group_kill);
	}
    }
}


/* Find all of the blocks that are not backwards reachable from the
   exit block or any block with no successors (BB).  These are the
   infinite loops or infinite self loops.  These blocks will still
   have their bits set in UNREACHABLE_BLOCKS.  */

static void
mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
{
  edge e;
  edge_iterator ei;

  if (TEST_BIT (unreachable_blocks, bb->index))
    {
      RESET_BIT (unreachable_blocks, bb->index);
      FOR_EACH_EDGE (e, ei, bb->preds)
H.J. Lu committed
3230
	{
3231
	  mark_reachable_blocks (unreachable_blocks, e->src);
H.J. Lu committed
3232
	}
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
    }
}

/* Build the transfer functions for the function.  */

static void
dse_step3 (bool for_spills)
{
  basic_block bb;
  sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block);
  sbitmap_iterator sbi;
  bitmap all_ones = NULL;
  unsigned int i;
H.J. Lu committed
3246

3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
  sbitmap_ones (unreachable_blocks);

  FOR_ALL_BB (bb)
    {
      bb_info_t bb_info = bb_table[bb->index];
      if (bb_info->gen)
	bitmap_clear (bb_info->gen);
      else
	bb_info->gen = BITMAP_ALLOC (NULL);

      if (bb->index == ENTRY_BLOCK)
	;
      else if (bb->index == EXIT_BLOCK)
	dse_step3_exit_block_scan (bb_info);
      else
	dse_step3_scan (for_spills, bb);
      if (EDGE_COUNT (bb->succs) == 0)
	mark_reachable_blocks (unreachable_blocks, bb);

      /* If this is the second time dataflow is run, delete the old
	 sets.  */
      if (bb_info->in)
	BITMAP_FREE (bb_info->in);
      if (bb_info->out)
	BITMAP_FREE (bb_info->out);
    }

  /* For any block in an infinite loop, we must initialize the out set
     to all ones.  This could be expensive, but almost never occurs in
     practice. However, it is common in regression tests.  */
  EXECUTE_IF_SET_IN_SBITMAP (unreachable_blocks, 0, i, sbi)
    {
      if (bitmap_bit_p (all_blocks, i))
	{
	  bb_info_t bb_info = bb_table[i];
	  if (!all_ones)
	    {
	      unsigned int j;
	      group_info_t group;

	      all_ones = BITMAP_ALLOC (NULL);
3288
	      FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, j, group)
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
		bitmap_ior_into (all_ones, group->group_kill);
	    }
	  if (!bb_info->out)
	    {
	      bb_info->out = BITMAP_ALLOC (NULL);
	      bitmap_copy (bb_info->out, all_ones);
	    }
	}
    }

  if (all_ones)
    BITMAP_FREE (all_ones);
  sbitmap_free (unreachable_blocks);
}



/*----------------------------------------------------------------------------
   Fourth step.

   Solve the bitvector equations.
----------------------------------------------------------------------------*/


/* Confluence function for blocks with no successors.  Create an out
   set from the gen set of the exit block.  This block logically has
   the exit block as a successor.  */



static void
dse_confluence_0 (basic_block bb)
{
  bb_info_t bb_info = bb_table[bb->index];

  if (bb->index == EXIT_BLOCK)
    return;

  if (!bb_info->out)
    {
      bb_info->out = BITMAP_ALLOC (NULL);
      bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
    }
}

/* Propagate the information from the in set of the dest of E to the
   out set of the src of E.  If the various in or out sets are not
   there, that means they are all ones.  */

3338
static bool
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
dse_confluence_n (edge e)
{
  bb_info_t src_info = bb_table[e->src->index];
  bb_info_t dest_info = bb_table[e->dest->index];

  if (dest_info->in)
    {
      if (src_info->out)
	bitmap_and_into (src_info->out, dest_info->in);
      else
	{
	  src_info->out = BITMAP_ALLOC (NULL);
	  bitmap_copy (src_info->out, dest_info->in);
	}
    }
3354
  return true;
3355 3356 3357 3358
}


/* Propagate the info from the out to the in set of BB_INDEX's basic
H.J. Lu committed
3359
   block.  There are three cases:
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384

   1) The block has no kill set.  In this case the kill set is all
   ones.  It does not matter what the out set of the block is, none of
   the info can reach the top.  The only thing that reaches the top is
   the gen set and we just copy the set.

   2) There is a kill set but no out set and bb has successors.  In
   this case we just return. Eventually an out set will be created and
   it is better to wait than to create a set of ones.

   3) There is both a kill and out set.  We apply the obvious transfer
   function.
*/

static bool
dse_transfer_function (int bb_index)
{
  bb_info_t bb_info = bb_table[bb_index];

  if (bb_info->kill)
    {
      if (bb_info->out)
	{
	  /* Case 3 above.  */
	  if (bb_info->in)
H.J. Lu committed
3385
	    return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3386 3387 3388 3389
					 bb_info->out, bb_info->kill);
	  else
	    {
	      bb_info->in = BITMAP_ALLOC (NULL);
H.J. Lu committed
3390
	      bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
				    bb_info->out, bb_info->kill);
	      return true;
	    }
	}
      else
	/* Case 2 above.  */
	return false;
    }
  else
    {
      /* Case 1 above.  If there is already an in set, nothing
	 happens.  */
      if (bb_info->in)
	return false;
      else
	{
	  bb_info->in = BITMAP_ALLOC (NULL);
	  bitmap_copy (bb_info->in, bb_info->gen);
	  return true;
	}
    }
}

/* Solve the dataflow equations.  */

static void
dse_step4 (void)
{
H.J. Lu committed
3419 3420 3421
  df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
		      dse_confluence_n, dse_transfer_function,
	   	      all_blocks, df_get_postorder (DF_BACKWARD),
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
		      df_get_n_blocks (DF_BACKWARD));
  if (dump_file)
    {
      basic_block bb;

      fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
      FOR_ALL_BB (bb)
	{
	  bb_info_t bb_info = bb_table[bb->index];

	  df_print_bb_index (bb, dump_file);
	  if (bb_info->in)
	    bitmap_print (dump_file, bb_info->in, "  in:   ", "\n");
	  else
	    fprintf (dump_file, "  in:   *MISSING*\n");
	  if (bb_info->gen)
	    bitmap_print (dump_file, bb_info->gen, "  gen:  ", "\n");
	  else
	    fprintf (dump_file, "  gen:  *MISSING*\n");
	  if (bb_info->kill)
	    bitmap_print (dump_file, bb_info->kill, "  kill: ", "\n");
	  else
	    fprintf (dump_file, "  kill: *MISSING*\n");
	  if (bb_info->out)
	    bitmap_print (dump_file, bb_info->out, "  out:  ", "\n");
	  else
	    fprintf (dump_file, "  out:  *MISSING*\n\n");
	}
    }
}



/*----------------------------------------------------------------------------
   Fifth step.

3458
   Delete the stores that can only be deleted using the global information.
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
----------------------------------------------------------------------------*/


static void
dse_step5_nospill (void)
{
  basic_block bb;
  FOR_EACH_BB (bb)
    {
      bb_info_t bb_info = bb_table[bb->index];
      insn_info_t insn_info = bb_info->last_insn;
      bitmap v = bb_info->out;

      while (insn_info)
	{
	  bool deleted = false;
	  if (dump_file && insn_info->insn)
	    {
	      fprintf (dump_file, "starting to process insn %d\n",
		       INSN_UID (insn_info->insn));
	      bitmap_print (dump_file, v, "  v:  ", "\n");
	    }

	  /* There may have been code deleted by the dce pass run before
	     this phase.  */
H.J. Lu committed
3484
	  if (insn_info->insn
3485 3486 3487 3488 3489 3490 3491 3492
	      && INSN_P (insn_info->insn)
	      && (!insn_info->cannot_delete)
	      && (!bitmap_empty_p (v)))
	    {
	      store_info_t store_info = insn_info->store_rec;

	      /* Try to delete the current insn.  */
	      deleted = true;
H.J. Lu committed
3493

3494 3495 3496 3497 3498 3499 3500 3501 3502
	      /* Skip the clobbers.  */
	      while (!store_info->is_set)
		store_info = store_info->next;

	      if (store_info->alias_set)
		deleted = false;
	      else
		{
		  HOST_WIDE_INT i;
H.J. Lu committed
3503
		  group_info_t group_info
3504
		    = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
H.J. Lu committed
3505

3506 3507 3508
		  for (i = store_info->begin; i < store_info->end; i++)
		    {
		      int index = get_bitmap_index (group_info, i);
H.J. Lu committed
3509

3510
		      if (dump_file)
H.J. Lu committed
3511
			fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
3512 3513 3514
		      if (index == 0 || !bitmap_bit_p (v, index))
			{
			  if (dump_file)
H.J. Lu committed
3515
			    fprintf (dump_file, "failing at i = %d\n", (int)i);
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
			  deleted = false;
			  break;
			}
		    }
		}
	      if (deleted)
		{
		  if (dbg_cnt (dse))
		    {
		      check_for_inc_dec (insn_info->insn);
		      delete_insn (insn_info->insn);
		      insn_info->insn = NULL;
		      globally_deleted++;
		    }
		}
	    }
	  /* We do want to process the local info if the insn was
3533
	     deleted.  For instance, if the insn did a wild read, we
3534
	     no longer need to trash the info.  */
H.J. Lu committed
3535
	  if (insn_info->insn
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
	      && INSN_P (insn_info->insn)
	      && (!deleted))
	    {
	      scan_stores_nospill (insn_info->store_rec, v, NULL);
	      if (insn_info->wild_read)
		{
		  if (dump_file)
		    fprintf (dump_file, "wild read\n");
		  bitmap_clear (v);
		}
	      else if (insn_info->read_rec)
		{
		  if (dump_file)
		    fprintf (dump_file, "regular read\n");
		  scan_reads_nospill (insn_info, v, NULL);
		}
	    }
H.J. Lu committed
3553

3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
	  insn_info = insn_info->prev_insn;
	}
    }
}


static void
dse_step5_spill (void)
{
  basic_block bb;
  FOR_EACH_BB (bb)
    {
      bb_info_t bb_info = bb_table[bb->index];
      insn_info_t insn_info = bb_info->last_insn;
      bitmap v = bb_info->out;

      while (insn_info)
	{
	  bool deleted = false;
	  /* There may have been code deleted by the dce pass run before
	     this phase.  */
H.J. Lu committed
3575
	  if (insn_info->insn
3576 3577 3578 3579 3580 3581 3582
	      && INSN_P (insn_info->insn)
	      && (!insn_info->cannot_delete)
	      && (!bitmap_empty_p (v)))
	    {
	      /* Try to delete the current insn.  */
	      store_info_t store_info = insn_info->store_rec;
	      deleted = true;
H.J. Lu committed
3583

3584 3585 3586 3587
	      while (store_info)
		{
		  if (store_info->alias_set)
		    {
H.J. Lu committed
3588
		      int index = get_bitmap_index (clear_alias_group,
3589 3590 3591 3592 3593 3594 3595
						    store_info->alias_set);
		      if (index == 0 || !bitmap_bit_p (v, index))
			{
			  deleted = false;
			  break;
			}
		    }
H.J. Lu committed
3596
		  else
3597 3598 3599 3600 3601 3602
		    deleted = false;
		  store_info = store_info->next;
		}
	      if (deleted && dbg_cnt (dse))
		{
		  if (dump_file)
H.J. Lu committed
3603
		    fprintf (dump_file, "Spill deleting insn %d\n",
3604 3605 3606 3607 3608 3609 3610
			     INSN_UID (insn_info->insn));
		  check_for_inc_dec (insn_info->insn);
		  delete_insn (insn_info->insn);
		  spill_deleted++;
		  insn_info->insn = NULL;
		}
	    }
H.J. Lu committed
3611 3612

	  if (insn_info->insn
3613 3614 3615 3616 3617 3618
	      && INSN_P (insn_info->insn)
	      && (!deleted))
	    {
	      scan_stores_spill (insn_info->store_rec, v, NULL);
	      scan_reads_spill (insn_info->read_rec, v, NULL);
	    }
H.J. Lu committed
3619

3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
	  insn_info = insn_info->prev_insn;
	}
    }
}



/*----------------------------------------------------------------------------
   Sixth step.

3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
   Delete stores made redundant by earlier stores (which store the same
   value) that couldn't be eliminated.
----------------------------------------------------------------------------*/

static void
dse_step6 (void)
{
  basic_block bb;

  FOR_ALL_BB (bb)
    {
      bb_info_t bb_info = bb_table[bb->index];
      insn_info_t insn_info = bb_info->last_insn;

      while (insn_info)
	{
	  /* There may have been code deleted by the dce pass run before
	     this phase.  */
	  if (insn_info->insn
	      && INSN_P (insn_info->insn)
	      && !insn_info->cannot_delete)
	    {
	      store_info_t s_info = insn_info->store_rec;

	      while (s_info && !s_info->is_set)
		s_info = s_info->next;
	      if (s_info
		  && s_info->redundant_reason
		  && s_info->redundant_reason->insn
		  && INSN_P (s_info->redundant_reason->insn))
		{
		  rtx rinsn = s_info->redundant_reason->insn;
		  if (dump_file)
		    fprintf (dump_file, "Locally deleting insn %d "
					"because insn %d stores the "
					"same value and couldn't be "
					"eliminated\n",
					INSN_UID (insn_info->insn),
					INSN_UID (rinsn));
		  delete_dead_store_insn (insn_info);
		}
	    }
	  insn_info = insn_info->prev_insn;
	}
    }
}

/*----------------------------------------------------------------------------
   Seventh step.

H.J. Lu committed
3680
   Destroy everything left standing.
3681 3682
----------------------------------------------------------------------------*/

H.J. Lu committed
3683
static void
3684
dse_step7 (bool global_done)
3685 3686 3687 3688
{
  unsigned int i;
  group_info_t group;
  basic_block bb;
H.J. Lu committed
3689

3690
  FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3691
    {
3692 3693 3694 3695 3696 3697 3698
      free (group->offset_map_n);
      free (group->offset_map_p);
      BITMAP_FREE (group->store1_n);
      BITMAP_FREE (group->store1_p);
      BITMAP_FREE (group->store2_n);
      BITMAP_FREE (group->store2_p);
      BITMAP_FREE (group->group_kill);
3699 3700
    }

3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
  if (global_done)
    FOR_ALL_BB (bb)
      {
	bb_info_t bb_info = bb_table[bb->index];
	BITMAP_FREE (bb_info->gen);
	if (bb_info->kill)
	  BITMAP_FREE (bb_info->kill);
	if (bb_info->in)
	  BITMAP_FREE (bb_info->in);
	if (bb_info->out)
	  BITMAP_FREE (bb_info->out);
      }

3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
  if (clear_alias_sets)
    {
      BITMAP_FREE (clear_alias_sets);
      BITMAP_FREE (disqualified_clear_alias_sets);
      free_alloc_pool (clear_alias_mode_pool);
      htab_delete (clear_alias_mode_table);
    }

  end_alias_analysis ();
  free (bb_table);
  htab_delete (rtx_group_table);
  VEC_free (group_info_t, heap, rtx_group_vec);
  BITMAP_FREE (all_blocks);
  BITMAP_FREE (scratch);

  free_alloc_pool (rtx_store_info_pool);
  free_alloc_pool (read_info_pool);
  free_alloc_pool (insn_info_pool);
  free_alloc_pool (bb_info_pool);
  free_alloc_pool (rtx_group_info_pool);
  free_alloc_pool (deferred_change_pool);
}


/* -------------------------------------------------------------------------
   DSE
   ------------------------------------------------------------------------- */

/* Callback for running pass_rtl_dse.  */

static unsigned int
rest_of_handle_dse (void)
{
  bool did_global = false;

  df_set_flags (DF_DEFER_INSN_RESCAN);

3751 3752 3753 3754 3755
  /* Need the notes since we must track live hardregs in the forwards
     direction.  */
  df_note_add_problem ();
  df_analyze ();

3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
  dse_step0 ();
  dse_step1 ();
  dse_step2_init ();
  if (dse_step2_nospill ())
    {
      df_set_flags (DF_LR_RUN_DCE);
      df_analyze ();
      did_global = true;
      if (dump_file)
	fprintf (dump_file, "doing global processing\n");
      dse_step3 (false);
      dse_step4 ();
      dse_step5_nospill ();
    }

  /* For the instance of dse that runs after reload, we make a special
     pass to process the spills.  These are special in that they are
     totally transparent, i.e, there is no aliasing issues that need
     to be considered.  This means that the wild reads that kill
H.J. Lu committed
3775
     everything else do not apply here.  */
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
  if (clear_alias_sets && dse_step2_spill ())
    {
      if (!did_global)
	{
	  df_set_flags (DF_LR_RUN_DCE);
	  df_analyze ();
	}
      did_global = true;
      if (dump_file)
	fprintf (dump_file, "doing global spill processing\n");
      dse_step3 (true);
      dse_step4 ();
      dse_step5_spill ();
    }
3790 3791 3792

  dse_step6 ();
  dse_step7 (did_global);
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802

  if (dump_file)
    fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
	     locally_deleted, globally_deleted, spill_deleted);
  return 0;
}

static bool
gate_dse (void)
{
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
  return gate_dse1 () || gate_dse2 ();
}

static bool
gate_dse1 (void)
{
  return optimize > 0 && flag_dse
    && dbg_cnt (dse1);
}

static bool
gate_dse2 (void)
{
  return optimize > 0 && flag_dse
    && dbg_cnt (dse2);
3818 3819
}

3820
struct rtl_opt_pass pass_rtl_dse1 =
3821
{
3822 3823
 {
  RTL_PASS,
3824
  "dse1",                               /* name */
3825
  gate_dse1,                            /* gate */
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
  rest_of_handle_dse,                   /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  TV_DSE1,                              /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  TODO_dump_func |
3836
  TODO_df_finish | TODO_verify_rtl_sharing |
3837 3838
  TODO_ggc_collect                      /* todo_flags_finish */
 }
3839 3840
};

3841
struct rtl_opt_pass pass_rtl_dse2 =
3842
{
3843 3844
 {
  RTL_PASS,
3845
  "dse2",                               /* name */
3846
  gate_dse2,                            /* gate */
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
  rest_of_handle_dse,                   /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  TV_DSE2,                              /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  TODO_dump_func |
3857
  TODO_df_finish | TODO_verify_rtl_sharing |
3858 3859
  TODO_ggc_collect                      /* todo_flags_finish */
 }
3860
};