vec.h 50.7 KB
Newer Older
1
/* Vector API for GNU compiler.
2 3
   Copyright (C) 2004, 2005, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
4 5 6 7 8 9
   Contributed by Nathan Sidwell <nathan@codesourcery.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11 12 13 14 15 16 17 18
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
19 20
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
21 22 23 24

#ifndef GCC_VEC_H
#define GCC_VEC_H

25 26
#include "statistics.h"		/* For MEM_STAT_DECL.  */

27 28 29 30 31 32 33
/* The macros here implement a set of templated vector types and
   associated interfaces.  These templates are implemented with
   macros, as we're not in C++ land.  The interface functions are
   typesafe and use static inline functions, sometimes backed by
   out-of-line generic functions.  The vectors are designed to
   interoperate with the GTY machinery.

34 35 36 37 38 39 40 41
   Because of the different behavior of structure objects, scalar
   objects and of pointers, there are three flavors, one for each of
   these variants.  Both the structure object and pointer variants
   pass pointers to objects around -- in the former case the pointers
   are stored into the vector and in the latter case the pointers are
   dereferenced and the objects copied into the vector.  The scalar
   object variant is suitable for int-like objects, and the vector
   elements are returned by value.
42

43 44 45 46 47
   There are both 'index' and 'iterate' accessors.  The iterator
   returns a boolean iteration condition and updates the iteration
   variable passed by reference.  Because the iterator will be
   inlined, the address-of can be optimized away.

48 49 50 51 52
   The vectors are implemented using the trailing array idiom, thus
   they are not resizeable without changing the address of the vector
   object itself.  This means you cannot have variables or fields of
   vector type -- always use a pointer to a vector.  The one exception
   is the final field of a structure, which could be a vector type.
53 54 55 56 57 58
   You will have to use the embedded_size & embedded_init calls to
   create such objects, and they will probably not be resizeable (so
   don't use the 'safe' allocation variants).  The trailing array
   idiom is used (rather than a pointer to an array of data), because,
   if we allow NULL to also represent an empty vector, empty vectors
   occupy minimal space in the structure containing them.
59 60 61 62

   Each operation that increases the number of active elements is
   available in 'quick' and 'safe' variants.  The former presumes that
   there is sufficient allocated space for the operation to succeed
63
   (it dies if there is not).  The latter will reallocate the
64 65 66
   vector, if needed.  Reallocation causes an exponential increase in
   vector size.  If you know you will be adding N elements, it would
   be more efficient to use the reserve operation before adding the
67 68 69 70
   elements with the 'quick' operation.  This will ensure there are at
   least as many elements as you ask for, it will exponentially
   increase if there are too few spare slots.  If you want reserve a
   specific number of slots, but do not want the exponential increase
71 72
   (for instance, you know this is the last allocation), use the
   reserve_exact operation.  You can also create a vector of a
73
   specific size from the get go.
74 75

   You should prefer the push and pop operations, as they append and
76 77
   remove from the end of the vector. If you need to remove several
   items in one go, use the truncate operation.  The insert and remove
78 79 80 81
   operations allow you to change elements in the middle of the
   vector.  There are two remove operations, one which preserves the
   element ordering 'ordered_remove', and one which does not
   'unordered_remove'.  The latter function copies the end element
82 83
   into the removed slot, rather than invoke a memmove operation.  The
   'lower_bound' function will determine where to place an item in the
84
   array using insert that will maintain sorted order.
85

86 87 88 89 90 91
   When a vector type is defined, first a non-memory managed version
   is created.  You can then define either or both garbage collected
   and heap allocated versions.  The allocation mechanism is specified
   when the type is defined, and is therefore part of the type.  If
   you need both gc'd and heap allocated versions, you still must have
   *exactly* one definition of the common non-memory managed base vector.
H.J. Lu committed
92

93 94 95 96
   If you need to directly manipulate a vector, then the 'address'
   accessor will return the address of the start of the vector.  Also
   the 'space' predicate will tell you whether there is spare capacity
   in the vector.  You will not normally need to use these two functions.
H.J. Lu committed
97

98
   Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro, to
99
   get the non-memory allocation version, and then a
100
   DEF_VEC_ALLOC_{O,P,I}(TYPEDEF,ALLOC) macro to get memory managed
101 102 103 104 105
   vectors.  Variables of vector type are declared using a
   VEC(TYPEDEF,ALLOC) macro.  The ALLOC argument specifies the
   allocation strategy, and can be either 'gc' or 'heap' for garbage
   collected and heap allocated respectively.  It can be 'none' to get
   a vector that must be explicitly allocated (for instance as a
106 107 108 109 110 111 112 113 114 115
   trailing array of another structure).  The characters O, P and I
   indicate whether TYPEDEF is a pointer (P), object (O) or integral
   (I) type.  Be careful to pick the correct one, as you'll get an
   awkward and inefficient API if you use the wrong one.  There is a
   check, which results in a compile-time warning, for the P and I
   versions, but there is no check for the O versions, as that is not
   possible in plain C.  Due to the way GTY works, you must annotate
   any structures you wish to insert or reference from a vector with a
   GTY(()) tag.  You need to do this even if you never declare the GC
   allocated variants.
116 117 118

   An example of their use would be,

119 120 121
   DEF_VEC_P(tree);   // non-managed tree vector.
   DEF_VEC_ALLOC_P(tree,gc);	// gc'd vector of tree pointers.  This must
   			        // appear at file scope.
122 123

   struct my_struct {
124
     VEC(tree,gc) *v;      // A (pointer to) a vector of tree pointers.
125 126 127 128
   };

   struct my_struct *s;

129
   if (VEC_length(tree,s->v)) { we have some contents }
130
   VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end
131 132
   for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++)
     { do something with elt }
133 134 135 136 137

*/

/* Macros to invoke API calls.  A single macro works for both pointer
   and object vectors, but the argument and return types might well be
138 139 140 141 142
   different.  In each macro, T is the typedef of the vector elements,
   and A is the allocation strategy.  The allocation strategy is only
   present when it is required.  Some of these macros pass the vector,
   V, by reference (by taking its address), this is noted in the
   descriptions.  */
143 144

/* Length of vector
145
   unsigned VEC_T_length(const VEC(T) *v);
146 147 148

   Return the number of active elements in V.  V can be NULL, in which
   case zero is returned.  */
149

150
#define VEC_length(T,V)	(VEC_OP(T,base,length)(VEC_BASE(V)))
151

152 153 154 155

/* Check if vector is empty
   int VEC_T_empty(const VEC(T) *v);

156
   Return nonzero if V is an empty vector (or V is NULL), zero otherwise.  */
157 158 159 160

#define VEC_empty(T,V)	(VEC_length (T,V) == 0)


161
/* Get the final element of the vector.
162
   T VEC_T_last(VEC(T) *v); // Integer
163 164 165
   T VEC_T_last(VEC(T) *v); // Pointer
   T *VEC_T_last(VEC(T) *v); // Object

166
   Return the final element.  V must not be empty.  */
167

168
#define VEC_last(T,V)	(VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO))
169 170

/* Index into vector
171
   T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
172 173
   T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
   T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
174

175
   Return the IX'th element.  If IX must be in the domain of V.  */
176

177
#define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO))
178 179

/* Iterate over vector
180
   int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
181 182
   int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
   int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
183

184 185 186
   Return iteration condition and update PTR to point to the IX'th
   element.  At the end of iteration, sets PTR to NULL.  Use this to
   iterate over the elements of a vector as follows,
187

188
     for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
189
       continue;  */
190

191
#define VEC_iterate(T,V,I,P)	(VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P)))
192

193 194 195 196 197
/* Convenience macro for forward iteration.  */

#define FOR_EACH_VEC_ELT(T, V, I, P)		\
  for (I = 0; VEC_iterate (T, (V), (I), (P)); ++(I))

198 199 200 201 202
/* Likewise, but start from FROM rather than 0.  */

#define FOR_EACH_VEC_ELT_FROM(T, V, I, P, FROM)		\
  for (I = (FROM); VEC_iterate (T, (V), (I), (P)); ++(I))

203 204 205 206 207 208 209
/* Convenience macro for reverse iteration.  */

#define FOR_EACH_VEC_ELT_REVERSE(T,V,I,P) \
  for (I = VEC_length (T, (V)) - 1;           \
       VEC_iterate (T, (V), (I), (P));	  \
       (I)--)

210
/* Allocate new vector.
211
   VEC(T,A) *VEC_T_A_alloc(int reserve);
212

213
   Allocate a new vector with space for RESERVE objects.  If RESERVE
214
   is zero, NO vector is created.  */
215

216
#define VEC_alloc(T,A,N)	(VEC_OP(T,A,alloc)(N MEM_STAT_INFO))
217

218
/* Free a vector.
219
   void VEC_T_A_free(VEC(T,A) *&);
220 221 222

   Free a vector and set it to NULL.  */

223
#define VEC_free(T,A,V)	(VEC_OP(T,A,free)(&V))
224

225 226
/* Use these to determine the required size and initialization of a
   vector embedded within another structure (as the final member).
H.J. Lu committed
227

228 229
   size_t VEC_T_embedded_size(int reserve);
   void VEC_T_embedded_init(VEC(T) *v, int reserve);
H.J. Lu committed
230

231
   These allow the caller to perform the memory allocation.  */
232

233 234
#define VEC_embedded_size(T,N)	 (VEC_OP(T,base,embedded_size)(N))
#define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N))
235

236 237 238 239
/* Copy a vector.
   VEC(T,A) *VEC_T_A_copy(VEC(T) *);

   Copy the live elements of a vector into a new vector.  The new and
240
   old vectors need not be allocated by the same mechanism.  */
241 242 243

#define VEC_copy(T,A,V) (VEC_OP(T,A,copy)(VEC_BASE(V) MEM_STAT_INFO))

244
/* Determine if a vector has additional capacity.
H.J. Lu committed
245

246 247
   int VEC_T_space (VEC(T) *v,int reserve)

248
   If V has space for RESERVE additional entries, return nonzero.  You
249 250
   usually only need to use this if you are doing your own vector
   reallocation, for instance on an embedded vector.  This returns
251
   nonzero in exactly the same circumstances that VEC_T_reserve
252 253
   will.  */

254 255
#define VEC_space(T,V,R) \
	(VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO))
256 257

/* Reserve space.
258
   int VEC_T_A_reserve(VEC(T,A) *&v, int reserve);
259

260 261 262 263
   Ensure that V has at least RESERVE slots available.  This will
   create additional headroom.  Note this can cause V to be
   reallocated.  Returns nonzero iff reallocation actually
   occurred.  */
264

265 266
#define VEC_reserve(T,A,V,R)	\
	(VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
267

268 269 270 271 272 273 274 275 276 277 278
/* Reserve space exactly.
   int VEC_T_A_reserve_exact(VEC(T,A) *&v, int reserve);

   Ensure that V has at least RESERVE slots available.  This will not
   create additional headroom.  Note this can cause V to be
   reallocated.  Returns nonzero iff reallocation actually
   occurred.  */

#define VEC_reserve_exact(T,A,V,R)	\
	(VEC_OP(T,A,reserve_exact)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
/* Copy elements with no reallocation
   void VEC_T_splice (VEC(T) *dst, VEC(T) *src); // Integer
   void VEC_T_splice (VEC(T) *dst, VEC(T) *src); // Pointer
   void VEC_T_splice (VEC(T) *dst, VEC(T) *src); // Object

   Copy the elements in SRC to the end of DST as if by memcpy.  DST and
   SRC need not be allocated with the same mechanism, although they most
   often will be.  DST is assumed to have sufficient headroom
   available.  */

#define VEC_splice(T,DST,SRC)			\
  (VEC_OP(T,base,splice)(VEC_BASE(DST), VEC_BASE(SRC) VEC_CHECK_INFO))

/* Copy elements with reallocation
   void VEC_T_safe_splice (VEC(T,A) *&dst, VEC(T) *src); // Integer
   void VEC_T_safe_splice (VEC(T,A) *&dst, VEC(T) *src); // Pointer
   void VEC_T_safe_splice (VEC(T,A) *&dst, VEC(T) *src); // Object

   Copy the elements in SRC to the end of DST as if by memcpy.  DST and
   SRC need not be allocated with the same mechanism, although they most
   often will be.  DST need not have sufficient headroom and will be
   reallocated if needed.  */

#define VEC_safe_splice(T,A,DST,SRC)					\
  (VEC_OP(T,A,safe_splice)(&(DST), VEC_BASE(SRC) VEC_CHECK_INFO MEM_STAT_INFO))
  
305
/* Push object with no reallocation
306
   T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
307 308
   T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
   T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
H.J. Lu committed
309

310 311
   Push a new element onto the end, returns a pointer to the slot
   filled in. For object vectors, the new value can be NULL, in which
312 313
   case NO initialization is performed.  There must
   be sufficient space in the vector.  */
314

315 316
#define VEC_quick_push(T,V,O)	\
	(VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO))
317 318

/* Push object with reallocation
319
   T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer
320 321
   T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer
   T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object
H.J. Lu committed
322

323 324 325
   Push a new element onto the end, returns a pointer to the slot
   filled in. For object vectors, the new value can be NULL, in which
   case NO initialization is performed.  Reallocates V, if needed.  */
326

327 328
#define VEC_safe_push(T,A,V,O)		\
	(VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO))
329 330

/* Pop element off end
331
   T VEC_T_pop (VEC(T) *v);		// Integer
332 333 334 335 336
   T VEC_T_pop (VEC(T) *v);		// Pointer
   void VEC_T_pop (VEC(T) *v);		// Object

   Pop the last element off the end. Returns the element popped, for
   pointer vectors.  */
337

338
#define VEC_pop(T,V)	(VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO))
339

340
/* Truncate to specific length
341
   void VEC_T_truncate (VEC(T) *v, unsigned len);
H.J. Lu committed
342

343 344
   Set the length as specified.  The new length must be less than or
   equal to the current length.  This is an O(1) operation.  */
345

346 347 348 349 350 351 352 353 354 355 356
#define VEC_truncate(T,V,I)		\
	(VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO))

/* Grow to a specific length.
   void VEC_T_A_safe_grow (VEC(T,A) *&v, int len);

   Grow the vector to a specific length.  The LEN must be as
   long or longer than the current length.  The new elements are
   uninitialized.  */

#define VEC_safe_grow(T,A,V,I)		\
357
	(VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
358

359 360 361 362 363 364 365 366 367 368
/* Grow to a specific length.
   void VEC_T_A_safe_grow_cleared (VEC(T,A) *&v, int len);

   Grow the vector to a specific length.  The LEN must be as
   long or longer than the current length.  The new elements are
   initialized to zero.  */

#define VEC_safe_grow_cleared(T,A,V,I)		\
	(VEC_OP(T,A,safe_grow_cleared)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))

369
/* Replace element
370
   T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
371 372
   T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
   T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val);  // Object
H.J. Lu committed
373

374 375 376 377 378
   Replace the IXth element of V with a new value, VAL.  For pointer
   vectors returns the original value. For object vectors returns a
   pointer to the new value.  For object vectors the new value can be
   NULL, in which case no overwriting of the slot is actually
   performed.  */
379

380 381
#define VEC_replace(T,V,I,O)		\
	(VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO))
382 383

/* Insert object with no reallocation
384
   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
385 386
   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
H.J. Lu committed
387

388 389 390
   Insert an element, VAL, at the IXth position of V. Return a pointer
   to the slot created.  For vectors of object, the new value can be
   NULL, in which case no initialization of the inserted slot takes
391
   place. There must be sufficient space.  */
392

393 394
#define VEC_quick_insert(T,V,I,O)	\
	(VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO))
395 396

/* Insert object with reallocation
397
   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
398 399
   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
H.J. Lu committed
400

401 402 403 404
   Insert an element, VAL, at the IXth position of V. Return a pointer
   to the slot created.  For vectors of object, the new value can be
   NULL, in which case no initialization of the inserted slot takes
   place. Reallocate V, if necessary.  */
405

406 407
#define VEC_safe_insert(T,A,V,I,O)	\
	(VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO))
H.J. Lu committed
408

409
/* Remove element retaining order
410
   T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
411 412
   T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
   void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
H.J. Lu committed
413

414
   Remove an element from the IXth position of V. Ordering of
415
   remaining elements is preserved.  For pointer vectors returns the
416
   removed object.  This is an O(N) operation due to a memmove.  */
417

418 419
#define VEC_ordered_remove(T,V,I)	\
	(VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
420 421

/* Remove element destroying order
422
   T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
423 424
   T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
   void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
H.J. Lu committed
425

426 427 428
   Remove an element from the IXth position of V. Ordering of
   remaining elements is destroyed.  For pointer vectors returns the
   removed object.  This is an O(1) operation.  */
429

430 431
#define VEC_unordered_remove(T,V,I)	\
	(VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
432

433 434
/* Remove a block of elements
   void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
H.J. Lu committed
435

436
   Remove LEN elements starting at the IXth.  Ordering is retained.
437
   This is an O(N) operation due to memmove.  */
438 439 440 441

#define VEC_block_remove(T,V,I,L)	\
	(VEC_OP(T,base,block_remove)(VEC_BASE(V),I,L VEC_CHECK_INFO))

442 443 444 445 446
/* Get the address of the array of elements
   T *VEC_T_address (VEC(T) v)

   If you need to directly manipulate the array (for instance, you
   want to feed it to qsort), use this accessor.  */
447

448
#define VEC_address(T,V)		(VEC_OP(T,base,address)(VEC_BASE(V)))
449

450 451 452 453 454 455
/* Conveniently sort the contents of the vector with qsort.
   void VEC_qsort (VEC(T) *v, int (*cmp_func)(const void *, const void *))  */

#define VEC_qsort(T,V,CMP) qsort(VEC_address (T,V), VEC_length(T,V),	\
				 sizeof (T), CMP)

456
/* Find the first index in the vector not less than the object.
H.J. Lu committed
457
   unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
458
                               bool (*lessthan) (const T, const T)); // Integer
H.J. Lu committed
459
   unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
460 461 462
                               bool (*lessthan) (const T, const T)); // Pointer
   unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
                               bool (*lessthan) (const T*, const T*)); // Object
H.J. Lu committed
463

464 465
   Find the first position in which VAL could be inserted without
   changing the ordering of V.  LESSTHAN is a function that returns
466
   true if the first argument is strictly less than the second.  */
H.J. Lu committed
467

468 469
#define VEC_lower_bound(T,V,O,LT)    \
       (VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO))
470

471
/* Reallocate an array of elements with prefix.  */
472
extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL);
473
extern void *vec_gc_p_reserve_exact (void *, int MEM_STAT_DECL);
474
extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
475 476
extern void *vec_gc_o_reserve_exact (void *, int, size_t, size_t
				     MEM_STAT_DECL);
477 478
extern void ggc_free (void *);
#define vec_gc_free(V) ggc_free (V)
479
extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL);
480
extern void *vec_heap_p_reserve_exact (void *, int MEM_STAT_DECL);
481
extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
482 483
extern void *vec_heap_o_reserve_exact (void *, int, size_t, size_t
				       MEM_STAT_DECL);
484 485 486 487
extern void dump_vec_loc_statistics (void);
#ifdef GATHER_STATISTICS
void vec_heap_free (void *);
#else
488 489
/* Avoid problems with frontends that #define free(x).  */
#define vec_heap_free(V) (free) (V)
490
#endif
491 492

#if ENABLE_CHECKING
493 494 495
#define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__
#define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_
#define VEC_CHECK_PASS ,file_,line_,function_
H.J. Lu committed
496

497 498
#define VEC_ASSERT(EXPR,OP,T,A) \
  (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0))
499 500 501 502

extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL)
     ATTRIBUTE_NORETURN;
#define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS)
503
#else
504 505 506
#define VEC_CHECK_INFO
#define VEC_CHECK_DECL
#define VEC_CHECK_PASS
507
#define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR)
508 509
#endif

510 511 512 513
/* Note: gengtype has hardwired knowledge of the expansions of the
   VEC, DEF_VEC_*, and DEF_VEC_ALLOC_* macros.  If you change the
   expansions of these macros you may need to change gengtype too.  */

514 515 516 517 518 519
typedef struct GTY(()) vec_prefix
{
  unsigned num;
  unsigned alloc;
} vec_prefix;

520 521
#define VEC(T,A) VEC_##T##_##A
#define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP
522

H.J. Lu committed
523
/* Base of vector type, not user visible.  */
524
#define VEC_T(T,B)							  \
525 526
typedef struct VEC(T,B) 				 		  \
{									  \
527
  struct vec_prefix prefix;						  \
528 529 530 531
  T vec[1];								  \
} VEC(T,B)

#define VEC_T_GTY(T,B)							  \
532
typedef struct GTY(()) VEC(T,B)				 		  \
533
{									  \
534 535
  struct vec_prefix prefix;						  \
  T GTY ((length ("%h.prefix.num"))) vec[1];				  \
536 537 538
} VEC(T,B)

/* Derived vector type, user visible.  */
539
#define VEC_TA_GTY(T,B,A,GTY)						  \
540
typedef struct GTY VEC(T,A)						  \
541 542 543 544
{									  \
  VEC(T,B) base;							  \
} VEC(T,A)

545 546 547 548 549 550
#define VEC_TA(T,B,A)							  \
typedef struct VEC(T,A)							  \
{									  \
  VEC(T,B) base;							  \
} VEC(T,A)

551
/* Convert to base type.  */
552 553 554 555
#if GCC_VERSION >= 4000
#define VEC_BASE(P) \
  ((offsetof (__typeof (*P), base) == 0 || (P)) ? &(P)->base : 0)
#else
556
#define VEC_BASE(P)  ((P) ? &(P)->base : 0)
557
#endif
558

559 560 561 562 563 564 565 566
/* Vector of integer-like object.  */
#define DEF_VEC_I(T)							  \
static inline void VEC_OP (T,must_be,integral_type) (void) 		  \
{									  \
  (void)~(T)0;								  \
}									  \
									  \
VEC_T(T,base);								  \
567
VEC_TA(T,base,none);							  \
568 569 570
DEF_VEC_FUNC_P(T)							  \
struct vec_swallow_trailing_semi
#define DEF_VEC_ALLOC_I(T,A)						  \
571
VEC_TA(T,base,A);							  \
572
DEF_VEC_ALLOC_FUNC_I(T,A)						  \
573
DEF_VEC_NONALLOC_FUNCS_I(T,A)						  \
574 575
struct vec_swallow_trailing_semi

576
/* Vector of pointer to object.  */
577
#define DEF_VEC_P(T) 							  \
578
static inline void VEC_OP (T,must_be,pointer_type) (void) 		  \
579
{									  \
580
  (void)((T)1 == (void *)1);						  \
581 582
}									  \
									  \
583
VEC_T_GTY(T,base);							  \
584
VEC_TA(T,base,none);							  \
585 586 587
DEF_VEC_FUNC_P(T)							  \
struct vec_swallow_trailing_semi
#define DEF_VEC_ALLOC_P(T,A)						  \
588
VEC_TA(T,base,A);							  \
589
DEF_VEC_ALLOC_FUNC_P(T,A)						  \
590
DEF_VEC_NONALLOC_FUNCS_P(T,A)						  \
591 592 593
struct vec_swallow_trailing_semi

#define DEF_VEC_FUNC_P(T)						  \
594
static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_)   \
595
{									  \
596
  return vec_ ? vec_->prefix.num : 0;						  \
597 598
}									  \
									  \
599 600
static inline T VEC_OP (T,base,last)					  \
     (const VEC(T,base) *vec_ VEC_CHECK_DECL)				  \
601
{									  \
602
  VEC_ASSERT (vec_ && vec_->prefix.num, "last", T, base);			  \
603
  									  \
604
  return vec_->vec[vec_->prefix.num - 1];					  \
605 606
}									  \
									  \
607 608
static inline T VEC_OP (T,base,index)					  \
     (const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)		  \
609
{									  \
610
  VEC_ASSERT (vec_ && ix_ < vec_->prefix.num, "index", T, base);		  \
611 612 613 614
  									  \
  return vec_->vec[ix_];						  \
}									  \
									  \
615 616
static inline int VEC_OP (T,base,iterate)			  	  \
     (const VEC(T,base) *vec_, unsigned ix_, T *ptr)			  \
617
{									  \
618
  if (vec_ && ix_ < vec_->prefix.num)						  \
619 620 621 622 623 624
    {									  \
      *ptr = vec_->vec[ix_];						  \
      return 1;								  \
    }									  \
  else									  \
    {									  \
625
      *ptr = (T) 0;							  \
626 627
      return 0;								  \
    }									  \
628 629
}									  \
									  \
630
static inline size_t VEC_OP (T,base,embedded_size)			  \
631
     (int alloc_)							  \
632
{									  \
633
  return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T);		  \
634 635
}									  \
									  \
636 637
static inline void VEC_OP (T,base,embedded_init)			  \
     (VEC(T,base) *vec_, int alloc_)					  \
638
{									  \
639 640
  vec_->prefix.num = 0;							  \
  vec_->prefix.alloc = alloc_;							  \
641 642
}									  \
									  \
643 644
static inline int VEC_OP (T,base,space)	       				  \
     (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL)			  \
645
{									  \
646
  VEC_ASSERT (alloc_ >= 0, "space", T, base);				  \
647
  return vec_ ? vec_->prefix.alloc - vec_->prefix.num >= (unsigned)alloc_ : !alloc_;	  \
648 649
}									  \
									  \
650 651 652 653 654
static inline void VEC_OP(T,base,splice)				  \
     (VEC(T,base) *dst_, VEC(T,base) *src_ VEC_CHECK_DECL)		  \
{									  \
  if (src_)								  \
    {									  \
655 656
      unsigned len_ = src_->prefix.num;					  \
      VEC_ASSERT (dst_->prefix.num + len_ <= dst_->prefix.alloc, "splice", T, base);	  \
657
									  \
658 659
      memcpy (&dst_->vec[dst_->prefix.num], &src_->vec[0], len_ * sizeof (T));	  \
      dst_->prefix.num += len_;						  \
660 661 662
    }									  \
}									  \
									  \
663 664
static inline T *VEC_OP (T,base,quick_push)				  \
     (VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL)				  \
665
{									  \
666
  T *slot_;								  \
667
  									  \
668 669
  VEC_ASSERT (vec_->prefix.num < vec_->prefix.alloc, "push", T, base);		  \
  slot_ = &vec_->vec[vec_->prefix.num++];					  \
670 671 672 673 674
  *slot_ = obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
675
static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL)	  \
676
{									  \
677
  T obj_;								  \
678
									  \
679 680
  VEC_ASSERT (vec_->prefix.num, "pop", T, base);				  \
  obj_ = vec_->vec[--vec_->prefix.num];					  \
681 682 683 684
									  \
  return obj_;								  \
}									  \
									  \
685 686
static inline void VEC_OP (T,base,truncate)				  \
     (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL)			  \
687
{									  \
688
  VEC_ASSERT (vec_ ? vec_->prefix.num >= size_ : !size_, "truncate", T, base);	  \
689
  if (vec_)								  \
690
    vec_->prefix.num = size_;							  \
691 692
}									  \
									  \
693 694
static inline T VEC_OP (T,base,replace)		  	     		  \
     (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL)		  \
695
{									  \
696
  T old_obj_;								  \
697
									  \
698
  VEC_ASSERT (ix_ < vec_->prefix.num, "replace", T, base);			  \
699 700 701 702 703 704
  old_obj_ = vec_->vec[ix_];						  \
  vec_->vec[ix_] = obj_;						  \
									  \
  return old_obj_;							  \
}									  \
									  \
705 706 707 708 709
static inline T *VEC_OP (T,base,quick_insert)				  \
     (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL)		  \
{									  \
  T *slot_;								  \
									  \
710 711
  VEC_ASSERT (vec_->prefix.num < vec_->prefix.alloc, "insert", T, base);		  \
  VEC_ASSERT (ix_ <= vec_->prefix.num, "insert", T, base);			  \
712
  slot_ = &vec_->vec[ix_];						  \
713
  memmove (slot_ + 1, slot_, (vec_->prefix.num++ - ix_) * sizeof (T));		  \
714 715 716 717 718
  *slot_ = obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
719 720
static inline T VEC_OP (T,base,ordered_remove)				  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
721
{									  \
722 723
  T *slot_;								  \
  T obj_;								  \
724
									  \
725
  VEC_ASSERT (ix_ < vec_->prefix.num, "remove", T, base);			  \
726 727
  slot_ = &vec_->vec[ix_];						  \
  obj_ = *slot_;							  \
728
  memmove (slot_, slot_ + 1, (--vec_->prefix.num - ix_) * sizeof (T));     	  \
729 730 731 732
									  \
  return obj_;								  \
}									  \
									  \
733 734
static inline T VEC_OP (T,base,unordered_remove)			  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
735
{									  \
736 737
  T *slot_;								  \
  T obj_;								  \
738
									  \
739
  VEC_ASSERT (ix_ < vec_->prefix.num, "remove", T, base);			  \
740 741
  slot_ = &vec_->vec[ix_];						  \
  obj_ = *slot_;							  \
742
  *slot_ = vec_->vec[--vec_->prefix.num];					  \
743 744 745 746
									  \
  return obj_;								  \
}									  \
									  \
747 748 749 750 751
static inline void VEC_OP (T,base,block_remove)				  \
     (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL)	  \
{									  \
  T *slot_;								  \
									  \
752
  VEC_ASSERT (ix_ + len_ <= vec_->prefix.num, "block_remove", T, base);	  \
753
  slot_ = &vec_->vec[ix_];						  \
754 755
  vec_->prefix.num -= len_;							  \
  memmove (slot_, slot_ + len_, (vec_->prefix.num - ix_) * sizeof (T));	  \
756 757
}									  \
									  \
758 759
static inline T *VEC_OP (T,base,address)				  \
     (VEC(T,base) *vec_)						  \
760 761 762 763
{									  \
  return vec_ ? vec_->vec : 0;						  \
}									  \
									  \
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
static inline unsigned VEC_OP (T,base,lower_bound)			  \
     (VEC(T,base) *vec_, const T obj_,					  \
      bool (*lessthan_)(const T, const T) VEC_CHECK_DECL)		  \
{									  \
   unsigned int len_ = VEC_OP (T,base, length) (vec_);			  \
   unsigned int half_, middle_;						  \
   unsigned int first_ = 0;						  \
   while (len_ > 0)							  \
     {									  \
        T middle_elem_;							  \
        half_ = len_ >> 1;						  \
        middle_ = first_;						  \
        middle_ += half_;						  \
        middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
        if (lessthan_ (middle_elem_, obj_))				  \
          {								  \
             first_ = middle_;						  \
             ++first_;							  \
             len_ = len_ - half_ - 1;					  \
          }								  \
        else								  \
          len_ = half_;							  \
     }									  \
   return first_;							  \
788 789 790
}

#define DEF_VEC_ALLOC_FUNC_P(T,A)					  \
791 792 793
static inline VEC(T,A) *VEC_OP (T,A,alloc)				  \
     (int alloc_ MEM_STAT_DECL)						  \
{									  \
794 795
  return (VEC(T,A) *) vec_##A##_p_reserve_exact (NULL, alloc_		  \
						 PASS_MEM_STAT);	  \
796 797 798 799
}


#define DEF_VEC_NONALLOC_FUNCS_P(T,A)					  \
800 801 802 803 804 805 806 807
static inline void VEC_OP (T,A,free)					  \
     (VEC(T,A) **vec_)							  \
{									  \
  if (*vec_)								  \
    vec_##A##_free (*vec_);						  \
  *vec_ = NULL;								  \
}									  \
									  \
808 809
static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
{									  \
810
  size_t len_ = vec_ ? vec_->prefix.num : 0;					  \
811 812 813 814
  VEC (T,A) *new_vec_ = NULL;						  \
									  \
  if (len_)								  \
    {									  \
815 816
      new_vec_ = (VEC (T,A) *)(vec_##A##_p_reserve_exact		  \
			       (NULL, len_ PASS_MEM_STAT));		  \
817
									  \
818
      new_vec_->base.prefix.num = len_;					  \
819 820 821 822 823
      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
    }									  \
  return new_vec_;							  \
}									  \
									  \
824 825 826
static inline int VEC_OP (T,A,reserve)	       				  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
827
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
828 829 830 831 832 833 834 835
				       VEC_CHECK_PASS);			  \
		  							  \
  if (extend)	  							  \
    *vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \
		  							  \
  return extend;							  \
}									  \
									  \
836 837 838 839 840 841 842 843 844 845 846 847 848
static inline int VEC_OP (T,A,reserve_exact)  				  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
				       VEC_CHECK_PASS);			  \
		  							  \
  if (extend)	  							  \
    *vec_ = (VEC(T,A) *) vec_##A##_p_reserve_exact (*vec_, alloc_	  \
						    PASS_MEM_STAT);	  \
		  							  \
  return extend;							  \
}									  \
									  \
849 850 851 852 853 854
static inline void VEC_OP (T,A,safe_grow)				  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  VEC_ASSERT (size_ >= 0						  \
	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
						 "grow", T, A);		  \
855
  VEC_OP (T,A,reserve_exact) (vec_,					  \
856
			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->prefix.num : 0) \
857
			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
858
  VEC_BASE (*vec_)->prefix.num = size_;					  \
859 860
}									  \
									  \
861 862 863 864 865 866 867 868 869
static inline void VEC_OP (T,A,safe_grow_cleared)			  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_);			  \
  VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT);	  \
  memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0,	  \
	  sizeof (T) * (size_ - oldsize));				  \
}									  \
									  \
870 871 872 873 874
static inline void VEC_OP(T,A,safe_splice)				  \
     (VEC(T,A) **dst_, VEC(T,base) *src_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
{									  \
  if (src_)								  \
    {									  \
875
      VEC_OP (T,A,reserve_exact) (dst_, src_->prefix.num			  \
876 877 878 879 880 881 882
				  VEC_CHECK_PASS MEM_STAT_INFO);	  \
									  \
      VEC_OP (T,base,splice) (VEC_BASE (*dst_), src_			  \
			      VEC_CHECK_PASS);				  \
    }									  \
}									  \
									  \
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
static inline T *VEC_OP (T,A,safe_push)					  \
     (VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL)       	  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
     (VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL)  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
 				       VEC_CHECK_PASS);			  \
898
}
899 900

/* Vector of object.  */
901
#define DEF_VEC_O(T)							  \
902
VEC_T_GTY(T,base);							  \
903
VEC_TA(T,base,none);						  \
904 905 906
DEF_VEC_FUNC_O(T)							  \
struct vec_swallow_trailing_semi
#define DEF_VEC_ALLOC_O(T,A)						  \
907
VEC_TA(T,base,A);							  \
908
DEF_VEC_ALLOC_FUNC_O(T,A)						  \
909
DEF_VEC_NONALLOC_FUNCS_O(T,A)						  \
910 911 912
struct vec_swallow_trailing_semi

#define DEF_VEC_FUNC_O(T)						  \
913
static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_)	  \
914
{									  \
915
  return vec_ ? vec_->prefix.num : 0;						  \
916 917
}									  \
									  \
918
static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL)  \
919
{									  \
920
  VEC_ASSERT (vec_ && vec_->prefix.num, "last", T, base);			  \
921
  									  \
922
  return &vec_->vec[vec_->prefix.num - 1];					  \
923 924
}									  \
									  \
925 926
static inline T *VEC_OP (T,base,index)					  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
927
{									  \
928
  VEC_ASSERT (vec_ && ix_ < vec_->prefix.num, "index", T, base);		  \
929 930 931 932
  									  \
  return &vec_->vec[ix_];						  \
}									  \
									  \
933 934
static inline int VEC_OP (T,base,iterate)			     	  \
     (VEC(T,base) *vec_, unsigned ix_, T **ptr)				  \
935
{									  \
936
  if (vec_ && ix_ < vec_->prefix.num)						  \
937 938 939 940 941 942 943 944 945
    {									  \
      *ptr = &vec_->vec[ix_];						  \
      return 1;								  \
    }									  \
  else									  \
    {									  \
      *ptr = 0;								  \
      return 0;								  \
    }									  \
946 947
}									  \
									  \
948
static inline size_t VEC_OP (T,base,embedded_size)			  \
949
     (int alloc_)							  \
950
{									  \
951
  return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T);		  \
952 953
}									  \
									  \
954 955
static inline void VEC_OP (T,base,embedded_init)			  \
     (VEC(T,base) *vec_, int alloc_)					  \
956
{									  \
957 958
  vec_->prefix.num = 0;							  \
  vec_->prefix.alloc = alloc_;							  \
959 960
}									  \
									  \
961 962
static inline int VEC_OP (T,base,space)	       				  \
     (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL)			  \
963
{									  \
964
  VEC_ASSERT (alloc_ >= 0, "space", T, base);				  \
965
  return vec_ ? vec_->prefix.alloc - vec_->prefix.num >= (unsigned)alloc_ : !alloc_;	  \
966 967
}									  \
									  \
968 969 970 971 972
static inline void VEC_OP(T,base,splice)				  \
     (VEC(T,base) *dst_, VEC(T,base) *src_ VEC_CHECK_DECL)		  \
{									  \
  if (src_)								  \
    {									  \
973 974
      unsigned len_ = src_->prefix.num;					  \
      VEC_ASSERT (dst_->prefix.num + len_ <= dst_->prefix.alloc, "splice", T, base);	  \
975
									  \
976 977
      memcpy (&dst_->vec[dst_->prefix.num], &src_->vec[0], len_ * sizeof (T));	  \
      dst_->prefix.num += len_;						  \
978 979 980
    }									  \
}									  \
									  \
981 982
static inline T *VEC_OP (T,base,quick_push)				  \
     (VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL)			  \
983
{									  \
984
  T *slot_;								  \
985
  									  \
986 987
  VEC_ASSERT (vec_->prefix.num < vec_->prefix.alloc, "push", T, base);		  \
  slot_ = &vec_->vec[vec_->prefix.num++];					  \
988 989 990 991 992 993
  if (obj_)								  \
    *slot_ = *obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
994
static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
995
{									  \
996 997
  VEC_ASSERT (vec_->prefix.num, "pop", T, base);				  \
  --vec_->prefix.num;								  \
998 999
}									  \
									  \
1000 1001
static inline void VEC_OP (T,base,truncate)				  \
     (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL)			  \
1002
{									  \
1003
  VEC_ASSERT (vec_ ? vec_->prefix.num >= size_ : !size_, "truncate", T, base);	  \
1004
  if (vec_)								  \
1005
    vec_->prefix.num = size_;							  \
1006 1007
}									  \
									  \
1008 1009
static inline T *VEC_OP (T,base,replace)				  \
     (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL)	  \
1010
{									  \
1011
  T *slot_;								  \
1012
									  \
1013
  VEC_ASSERT (ix_ < vec_->prefix.num, "replace", T, base);			  \
1014 1015 1016 1017 1018 1019 1020
  slot_ = &vec_->vec[ix_];						  \
  if (obj_)								  \
    *slot_ = *obj_;							  \
									  \
  return slot_;								  \
}									  \
									  \
1021 1022 1023 1024 1025
static inline T *VEC_OP (T,base,quick_insert)				  \
     (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL)	  \
{									  \
  T *slot_;								  \
									  \
1026 1027
  VEC_ASSERT (vec_->prefix.num < vec_->prefix.alloc, "insert", T, base);		  \
  VEC_ASSERT (ix_ <= vec_->prefix.num, "insert", T, base);			  \
1028
  slot_ = &vec_->vec[ix_];						  \
1029
  memmove (slot_ + 1, slot_, (vec_->prefix.num++ - ix_) * sizeof (T));		  \
1030 1031 1032 1033 1034 1035
  if (obj_)								  \
    *slot_ = *obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
1036 1037
static inline void VEC_OP (T,base,ordered_remove)			  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
1038
{									  \
1039
  T *slot_;								  \
1040
									  \
1041
  VEC_ASSERT (ix_ < vec_->prefix.num, "remove", T, base);			  \
1042
  slot_ = &vec_->vec[ix_];						  \
1043
  memmove (slot_, slot_ + 1, (--vec_->prefix.num - ix_) * sizeof (T));		  \
1044 1045
}									  \
									  \
1046 1047
static inline void VEC_OP (T,base,unordered_remove)			  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
1048
{									  \
1049 1050
  VEC_ASSERT (ix_ < vec_->prefix.num, "remove", T, base);			  \
  vec_->vec[ix_] = vec_->vec[--vec_->prefix.num];				  \
1051
}									  \
1052
									  \
1053 1054 1055 1056 1057
static inline void VEC_OP (T,base,block_remove)				  \
     (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL)	  \
{									  \
  T *slot_;								  \
									  \
1058
  VEC_ASSERT (ix_ + len_ <= vec_->prefix.num, "block_remove", T, base);	  \
1059
  slot_ = &vec_->vec[ix_];						  \
1060 1061
  vec_->prefix.num -= len_;							  \
  memmove (slot_, slot_ + len_, (vec_->prefix.num - ix_) * sizeof (T));	  \
1062 1063
}									  \
									  \
1064 1065 1066 1067
static inline T *VEC_OP (T,base,address)				  \
     (VEC(T,base) *vec_)						  \
{									  \
  return vec_ ? vec_->vec : 0;						  \
1068 1069
}									  \
									  \
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
static inline unsigned VEC_OP (T,base,lower_bound)			  \
     (VEC(T,base) *vec_, const T *obj_,					  \
      bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL)		  \
{									  \
   unsigned int len_ = VEC_OP (T, base, length) (vec_);			  \
   unsigned int half_, middle_;						  \
   unsigned int first_ = 0;						  \
   while (len_ > 0)							  \
     {									  \
        T *middle_elem_;						  \
        half_ = len_ >> 1;						  \
        middle_ = first_;						  \
        middle_ += half_;						  \
        middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
        if (lessthan_ (middle_elem_, obj_))				  \
          {								  \
             first_ = middle_;						  \
             ++first_;							  \
             len_ = len_ - half_ - 1;					  \
          }								  \
        else								  \
          len_ = half_;							  \
     }									  \
   return first_;							  \
1094
}
1095

1096
#define DEF_VEC_ALLOC_FUNC_O(T,A)					  \
1097 1098
static inline VEC(T,A) *VEC_OP (T,A,alloc)      			  \
     (int alloc_ MEM_STAT_DECL)						  \
1099
{									  \
1100 1101 1102 1103
  return (VEC(T,A) *) vec_##A##_o_reserve_exact (NULL, alloc_,		  \
						 offsetof (VEC(T,A),base.vec), \
						 sizeof (T)		  \
						 PASS_MEM_STAT);	  \
1104 1105 1106
}

#define DEF_VEC_NONALLOC_FUNCS_O(T,A)					  \
1107 1108
static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
{									  \
1109
  size_t len_ = vec_ ? vec_->prefix.num : 0;					  \
1110 1111 1112 1113
  VEC (T,A) *new_vec_ = NULL;						  \
									  \
  if (len_)								  \
    {									  \
1114 1115
      new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact		  \
			       (NULL, len_,				  \
1116 1117 1118
				offsetof (VEC(T,A),base.vec), sizeof (T)  \
				PASS_MEM_STAT));			  \
									  \
1119
      new_vec_->base.prefix.num = len_;					  \
1120 1121 1122 1123 1124
      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
    }									  \
  return new_vec_;							  \
}									  \
									  \
1125 1126
static inline void VEC_OP (T,A,free)					  \
     (VEC(T,A) **vec_)							  \
1127
{									  \
1128 1129 1130 1131 1132 1133 1134 1135
  if (*vec_)								  \
    vec_##A##_free (*vec_);						  \
  *vec_ = NULL;								  \
}									  \
									  \
static inline int VEC_OP (T,A,reserve)	   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
1136
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_,		  \
			   		      offsetof (VEC(T,A),base.vec),\
 					      sizeof (T)		  \
			   		      PASS_MEM_STAT);		  \
									  \
  return extend;							  \
}									  \
									  \
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
static inline int VEC_OP (T,A,reserve_exact)   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact			  \
			 (*vec_, alloc_,				  \
			  offsetof (VEC(T,A),base.vec),			  \
			  sizeof (T) PASS_MEM_STAT);			  \
									  \
  return extend;							  \
}									  \
									  \
1163 1164 1165 1166 1167 1168
static inline void VEC_OP (T,A,safe_grow)				  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  VEC_ASSERT (size_ >= 0						  \
	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
						 "grow", T, A);		  \
1169
  VEC_OP (T,A,reserve_exact) (vec_,					  \
1170
			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->prefix.num : 0) \
1171
			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
1172
  VEC_BASE (*vec_)->prefix.num = size_;					  \
1173 1174
}									  \
									  \
1175 1176 1177 1178 1179 1180 1181 1182 1183
static inline void VEC_OP (T,A,safe_grow_cleared)			  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_);			  \
  VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT);	  \
  memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0,	  \
	  sizeof (T) * (size_ - oldsize));				  \
}									  \
									  \
1184 1185 1186 1187 1188
static inline void VEC_OP(T,A,safe_splice)				  \
     (VEC(T,A) **dst_, VEC(T,base) *src_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
{									  \
  if (src_)								  \
    {									  \
1189
      VEC_OP (T,A,reserve_exact) (dst_, src_->prefix.num			  \
1190 1191 1192 1193 1194 1195 1196
				  VEC_CHECK_PASS MEM_STAT_INFO);	  \
									  \
      VEC_OP (T,base,splice) (VEC_BASE (*dst_), src_			  \
			      VEC_CHECK_PASS);				  \
    }									  \
}									  \
									  \
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
static inline T *VEC_OP (T,A,safe_push)					  \
     (VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS);  \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
     (VEC(T,A) **vec_, unsigned ix_, const T *obj_			  \
 		VEC_CHECK_DECL MEM_STAT_DECL)				  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
				       VEC_CHECK_PASS);			  \
1213
}
1214 1215 1216 1217 1218

#define DEF_VEC_ALLOC_FUNC_I(T,A)					  \
static inline VEC(T,A) *VEC_OP (T,A,alloc)      			  \
     (int alloc_ MEM_STAT_DECL)						  \
{									  \
1219 1220 1221
  return (VEC(T,A) *) vec_##A##_o_reserve_exact				  \
		      (NULL, alloc_, offsetof (VEC(T,A),base.vec),	  \
		       sizeof (T) PASS_MEM_STAT);			  \
1222 1223 1224
}

#define DEF_VEC_NONALLOC_FUNCS_I(T,A)					  \
1225 1226
static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
{									  \
1227
  size_t len_ = vec_ ? vec_->prefix.num : 0;					  \
1228 1229 1230 1231
  VEC (T,A) *new_vec_ = NULL;						  \
									  \
  if (len_)								  \
    {									  \
1232 1233
      new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact		  \
			       (NULL, len_,				  \
1234 1235 1236
				offsetof (VEC(T,A),base.vec), sizeof (T)  \
				PASS_MEM_STAT));			  \
									  \
1237
      new_vec_->base.prefix.num = len_;					  \
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
    }									  \
  return new_vec_;							  \
}									  \
									  \
static inline void VEC_OP (T,A,free)					  \
     (VEC(T,A) **vec_)							  \
{									  \
  if (*vec_)								  \
    vec_##A##_free (*vec_);						  \
  *vec_ = NULL;								  \
}									  \
									  \
static inline int VEC_OP (T,A,reserve)	   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
1254
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_,		  \
			   		      offsetof (VEC(T,A),base.vec),\
 					      sizeof (T)		  \
			   		      PASS_MEM_STAT);		  \
									  \
  return extend;							  \
}									  \
									  \
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
static inline int VEC_OP (T,A,reserve_exact)   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact			  \
			 (*vec_, alloc_, offsetof (VEC(T,A),base.vec),	  \
			  sizeof (T) PASS_MEM_STAT);			  \
									  \
  return extend;							  \
}									  \
									  \
1280 1281 1282 1283 1284 1285
static inline void VEC_OP (T,A,safe_grow)				  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  VEC_ASSERT (size_ >= 0						  \
	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
						 "grow", T, A);		  \
1286
  VEC_OP (T,A,reserve_exact) (vec_,					  \
1287
			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->prefix.num : 0) \
1288
			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
1289
  VEC_BASE (*vec_)->prefix.num = size_;					  \
1290 1291
}									  \
									  \
1292 1293 1294 1295 1296 1297 1298 1299 1300
static inline void VEC_OP (T,A,safe_grow_cleared)			  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_);			  \
  VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT);	  \
  memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0,	  \
	  sizeof (T) * (size_ - oldsize));				  \
}									  \
									  \
1301 1302 1303 1304 1305
static inline void VEC_OP(T,A,safe_splice)				  \
     (VEC(T,A) **dst_, VEC(T,base) *src_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
{									  \
  if (src_)								  \
    {									  \
1306
      VEC_OP (T,A,reserve_exact) (dst_, src_->prefix.num			  \
1307 1308 1309 1310 1311 1312 1313
				  VEC_CHECK_PASS MEM_STAT_INFO);	  \
									  \
      VEC_OP (T,base,splice) (VEC_BASE (*dst_), src_			  \
			      VEC_CHECK_PASS);				  \
    }									  \
}									  \
									  \
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
static inline T *VEC_OP (T,A,safe_push)					  \
     (VEC(T,A) **vec_, const T obj_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS);  \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
     (VEC(T,A) **vec_, unsigned ix_, const T obj_			  \
 		VEC_CHECK_DECL MEM_STAT_DECL)				  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
				       VEC_CHECK_PASS);			  \
}

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
/* We support a vector which starts out with space on the stack and
   switches to heap space when forced to reallocate.  This works a
   little differently.  Instead of DEF_VEC_ALLOC_P(TYPE, heap|gc), use
   DEF_VEC_ALLOC_P_STACK(TYPE).  This uses alloca to get the initial
   space; because alloca can not be usefully called in an inline
   function, and because a macro can not define a macro, you must then
   write a #define for each type:

   #define VEC_{TYPE}_stack_alloc(alloc)                          \
     VEC_stack_alloc({TYPE}, alloc)

   This is really a hack and perhaps can be made better.  Note that
   this macro will wind up evaluating the ALLOC parameter twice.

   Only the initial allocation will be made using alloca, so pass a
   reasonable estimate that doesn't use too much stack space; don't
   pass zero.  Don't return a VEC(TYPE,stack) vector from the function
   which allocated it.  */

extern void *vec_stack_p_reserve (void *, int MEM_STAT_DECL);
extern void *vec_stack_p_reserve_exact (void *, int MEM_STAT_DECL);
extern void *vec_stack_p_reserve_exact_1 (int, void *);
extern void *vec_stack_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
extern void *vec_stack_o_reserve_exact (void *, int, size_t, size_t
					 MEM_STAT_DECL);
extern void vec_stack_free (void *);

1359 1360 1361 1362 1363
#ifdef GATHER_STATISTICS
#define VEC_stack_alloc(T,alloc,name,line,function)			  \
  (VEC_OP (T,stack,alloc1)						  \
   (alloc, XALLOCAVAR (VEC(T,stack), VEC_embedded_size (T, alloc))))
#else
1364 1365 1366
#define VEC_stack_alloc(T,alloc)					  \
  (VEC_OP (T,stack,alloc1)						  \
   (alloc, XALLOCAVAR (VEC(T,stack), VEC_embedded_size (T, alloc))))
1367
#endif
1368 1369 1370 1371 1372 1373 1374 1375 1376

#define DEF_VEC_ALLOC_P_STACK(T)					  \
VEC_TA(T,base,stack);							  \
DEF_VEC_ALLOC_FUNC_P_STACK(T)						  \
DEF_VEC_NONALLOC_FUNCS_P(T,stack)					  \
struct vec_swallow_trailing_semi

#define DEF_VEC_ALLOC_FUNC_P_STACK(T)					  \
static inline VEC(T,stack) *VEC_OP (T,stack,alloc1)			  \
1377
     (int alloc_, VEC(T,stack)* space)					  \
1378
{									  \
1379
  return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space);	  \
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
}

#define DEF_VEC_ALLOC_O_STACK(T)					  \
VEC_TA(T,base,stack);							  \
DEF_VEC_ALLOC_FUNC_O_STACK(T)						  \
DEF_VEC_NONALLOC_FUNCS_O(T,stack)					  \
struct vec_swallow_trailing_semi

#define DEF_VEC_ALLOC_FUNC_O_STACK(T)					  \
static inline VEC(T,stack) *VEC_OP (T,stack,alloc1)			  \
1390
     (int alloc_, VEC(T,stack)* space)					  \
1391
{									  \
1392
  return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space);	  \
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
}

#define DEF_VEC_ALLOC_I_STACK(T)					  \
VEC_TA(T,base,stack);							  \
DEF_VEC_ALLOC_FUNC_I_STACK(T)						  \
DEF_VEC_NONALLOC_FUNCS_I(T,stack)					  \
struct vec_swallow_trailing_semi

#define DEF_VEC_ALLOC_FUNC_I_STACK(T)					  \
static inline VEC(T,stack) *VEC_OP (T,stack,alloc1)			  \
1403
     (int alloc_, VEC(T,stack)* space)					  \
1404
{									  \
1405
  return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space);   \
1406 1407
}

1408
#endif /* GCC_VEC_H */