ddg.c 28.8 KB
Newer Older
1
/* DDG - Data Dependence Graph implementation.
2
   Copyright (C) 2004, 2005, 2006, 2007
3 4 5 6 7 8 9
   Free Software Foundation, Inc.
   Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11 12 13 14 15 16 17 18
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
19 20
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46


#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "toplev.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "function.h"
#include "flags.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "except.h"
#include "recog.h"
#include "sched-int.h"
#include "target.h"
#include "cfglayout.h"
#include "cfgloop.h"
#include "sbitmap.h"
#include "expr.h"
#include "bitmap.h"
#include "ddg.h"

47 48
#ifdef INSN_SCHEDULING

49 50 51 52 53 54 55
/* A flag indicating that a ddg edge belongs to an SCC or not.  */
enum edge_flag {NOT_IN_SCC = 0, IN_SCC};

/* Forward declarations.  */
static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
56 57
static void create_ddg_dep_from_intra_loop_link (ddg_ptr, ddg_node_ptr,
                                                 ddg_node_ptr, dep_t);
58 59 60 61 62 63 64 65 66 67 68 69 70
static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
 				    dep_type, dep_data_type, int);
static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
				     dep_data_type, int, int);
static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);

/* Auxiliary variable for mem_read_insn_p/mem_write_insn_p.  */
static bool mem_ref_p;

/* Auxiliary function for mem_read_insn_p.  */
static int
mark_mem_use (rtx *x, void *data ATTRIBUTE_UNUSED)
{
71
  if (MEM_P (*x))
72 73 74 75 76 77 78 79 80 81 82
    mem_ref_p = true;
  return 0;
}

/* Auxiliary function for mem_read_insn_p.  */
static void
mark_mem_use_1 (rtx *x, void *data)
{
  for_each_rtx (x, mark_mem_use, data);
}

83
/* Returns nonzero if INSN reads from memory.  */
84 85 86 87 88 89 90 91 92
static bool
mem_read_insn_p (rtx insn)
{
  mem_ref_p = false;
  note_uses (&PATTERN (insn), mark_mem_use_1, NULL);
  return mem_ref_p;
}

static void
93
mark_mem_store (rtx loc, const_rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
94
{
95
  if (MEM_P (loc))
96 97 98
    mem_ref_p = true;
}

99
/* Returns nonzero if INSN writes to memory.  */
100 101 102 103 104 105 106 107
static bool
mem_write_insn_p (rtx insn)
{
  mem_ref_p = false;
  note_stores (PATTERN (insn), mark_mem_store, NULL);
  return mem_ref_p;
}

108
/* Returns nonzero if X has access to memory.  */
109 110 111 112 113 114 115 116 117 118
static bool
rtx_mem_access_p (rtx x)
{
  int i, j;
  const char *fmt;
  enum rtx_code code;

  if (x == 0)
    return false;

119
  if (MEM_P (x))
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    return true;

  code = GET_CODE (x);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  if (rtx_mem_access_p (XEXP (x, i)))
            return true;
        }
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  {
	    if (rtx_mem_access_p (XVECEXP (x, i, j)))
              return true;
          }
    }
  return false;
}

141
/* Returns nonzero if INSN reads to or writes from memory.  */
142 143 144 145 146 147 148 149 150
static bool
mem_access_insn_p (rtx insn)
{
  return rtx_mem_access_p (PATTERN (insn));
}

/* Computes the dependence parameters (latency, distance etc.), creates
   a ddg_edge and adds it to the given DDG.  */
static void
151 152
create_ddg_dep_from_intra_loop_link (ddg_ptr g, ddg_node_ptr src_node,
                                     ddg_node_ptr dest_node, dep_t link)
153 154 155 156 157 158 159
{
  ddg_edge_ptr e;
  int latency, distance = 0;
  dep_type t = TRUE_DEP;
  dep_data_type dt = (mem_access_insn_p (src_node->insn)
		      && mem_access_insn_p (dest_node->insn) ? MEM_DEP
							     : REG_DEP);
160
  gcc_assert (src_node->cuid < dest_node->cuid);
161
  gcc_assert (link);
162 163

  /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!!  */
164
  if (DEP_TYPE (link) == REG_DEP_ANTI)
165
    t = ANTI_DEP;
166
  else if (DEP_TYPE (link) == REG_DEP_OUTPUT)
167 168
    t = OUTPUT_DEP;

169 170 171 172 173 174 175 176
  /* We currently choose not to create certain anti-deps edges and
     compensate for that by generating reg-moves based on the life-range
     analysis.  The anti-deps that will be deleted are the ones which
     have true-deps edges in the opposite direction (in other words
     the kernel has only one def of the relevant register).  TODO:
     support the removal of all anti-deps edges, i.e. including those
     whose register has multiple defs in the loop.  */
  if (flag_modulo_sched_allow_regmoves && (t == ANTI_DEP && dt == REG_DEP))
177
    {
178 179 180
      rtx set;

      set = single_set (dest_node->insn);
181 182 183
      /* TODO: Handle registers that REG_P is not true for them, i.e.
         subregs and special registers.  */
      if (set && REG_P (SET_DEST (set)))
184 185
        {
          int regno = REGNO (SET_DEST (set));
186
          struct df_ref *first_def;
187
          struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
188

189 190 191
          first_def = df_bb_regno_first_def_find (g->bb, regno);
          gcc_assert (first_def);

192
          if (bitmap_bit_p (bb_info->gen, first_def->id))
193 194
            return;
        }
195
    }
196 197 198 199

   latency = dep_cost (link);
   e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
   add_edge_to_ddg (g, e);
200 201 202 203 204 205 206 207 208
}

/* The same as the above function, but it doesn't require a link parameter.  */
static void
create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
			dep_type d_t, dep_data_type d_dt, int distance)
{
  ddg_edge_ptr e;
  int l;
209 210
  enum reg_note dep_kind;
  struct _dep _dep, *dep = &_dep;
211 212

  if (d_t == ANTI_DEP)
213
    dep_kind = REG_DEP_ANTI;
214
  else if (d_t == OUTPUT_DEP)
215 216 217 218 219 220 221 222 223
    dep_kind = REG_DEP_OUTPUT;
  else
    {
      gcc_assert (d_t == TRUE_DEP);

      dep_kind = REG_DEP_TRUE;
    }

  init_dep (dep, from->insn, to->insn, dep_kind);
224

225
  l = dep_cost (dep);
226 227 228 229 230 231 232 233

  e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
  if (distance > 0)
    add_backarc_to_ddg (g, e);
  else
    add_edge_to_ddg (g, e);
}

234 235 236 237 238 239 240

/* Given a downwards exposed register def LAST_DEF (which is the last
   definition of that register in the bb), add inter-loop true dependences
   to all its uses in the next iteration, an output dependence to the
   first def of the same register (possibly itself) in the next iteration
   and anti-dependences from its uses in the current iteration to the
   first definition in the next iteration.  */
241
static void
242
add_cross_iteration_register_deps (ddg_ptr g, struct df_ref *last_def)
243
{
244
  int regno = DF_REF_REGNO (last_def);
245
  struct df_link *r_use;
246 247 248 249
  int has_use_in_bb_p = false;
  rtx def_insn = DF_REF_INSN (last_def);
  ddg_node_ptr last_def_node = get_node_of_insn (g, def_insn);
  ddg_node_ptr use_node;
250
#ifdef ENABLE_CHECKING
251
  struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
252
#endif
253
  struct df_ref *first_def = df_bb_regno_first_def_find (g->bb, regno);
254

255 256 257
  gcc_assert (last_def_node);
  gcc_assert (first_def);

258 259 260 261 262
#ifdef ENABLE_CHECKING
  if (last_def->id != first_def->id)
    gcc_assert (!bitmap_bit_p (bb_info->gen, first_def->id));
#endif

263 264
  /* Create inter-loop true dependences and anti dependences.  */
  for (r_use = DF_REF_CHAIN (last_def); r_use != NULL; r_use = r_use->next)
265
    {
266
      rtx use_insn = DF_REF_INSN (r_use->ref);
267

268 269
      if (BLOCK_FOR_INSN (use_insn) != g->bb)
	continue;
270

271 272 273 274 275 276 277 278 279 280
      /* ??? Do not handle uses with DF_REF_IN_NOTE notes.  */
      use_node = get_node_of_insn (g, use_insn);
      gcc_assert (use_node);
      has_use_in_bb_p = true;
      if (use_node->cuid <= last_def_node->cuid)
	{
	  /* Add true deps from last_def to it's uses in the next
	     iteration.  Any such upwards exposed use appears before
	     the last_def def.  */
	  create_ddg_dep_no_link (g, last_def_node, use_node, TRUE_DEP,
281 282
				  REG_DEP, 1);
	}
283 284 285 286 287 288 289 290 291 292 293 294 295
      else
	{
	  /* Add anti deps from last_def's uses in the current iteration
	     to the first def in the next iteration.  We do not add ANTI
	     dep when there is an intra-loop TRUE dep in the opposite
	     direction, but use regmoves to fix such disregarded ANTI
	     deps when broken.	If the first_def reaches the USE then
	     there is such a dep.  */
	  ddg_node_ptr first_def_node = get_node_of_insn (g,
							  first_def->insn);

	  gcc_assert (first_def_node);

296 297 298 299 300
          if (last_def->id != first_def->id
              || !flag_modulo_sched_allow_regmoves)
            create_ddg_dep_no_link (g, use_node, first_def_node, ANTI_DEP,
                                    REG_DEP, 1);

301
	}
302
    }
303 304 305 306 307 308 309 310
  /* Create an inter-loop output dependence between LAST_DEF (which is the
     last def in its block, being downwards exposed) and the first def in
     its block.  Avoid creating a self output dependence.  Avoid creating
     an output dependence if there is a dependence path between the two
     defs starting with a true dependence to a use which can be in the
     next iteration; followed by an anti dependence of that use to the
     first def (i.e. if there is a use between the two defs.)  */
  if (!has_use_in_bb_p)
311 312 313
    {
      ddg_node_ptr dest_node;

314
      if (last_def->id == first_def->id)
315 316
	return;

317 318 319 320
      dest_node = get_node_of_insn (g, first_def->insn);
      gcc_assert (dest_node);
      create_ddg_dep_no_link (g, last_def_node, dest_node,
			      OUTPUT_DEP, REG_DEP, 1);
321 322 323 324
    }
}
/* Build inter-loop dependencies, by looking at DF analysis backwards.  */
static void
325
build_inter_loop_deps (ddg_ptr g)
326
{
327
  unsigned rd_num;
328
  struct df_rd_bb_info *rd_bb_info;
329
  bitmap_iterator bi;
330

331
  rd_bb_info = DF_RD_BB_INFO (g->bb);
332

333
  /* Find inter-loop register output, true and anti deps.  */
334
  EXECUTE_IF_SET_IN_BITMAP (rd_bb_info->gen, 0, rd_num, bi)
335 336
  {
    struct df_ref *rd = DF_DEFS_GET (rd_num);
337

338 339
    add_cross_iteration_register_deps (g, rd);
  }
340 341
}

342

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
/* Given two nodes, analyze their RTL insns and add inter-loop mem deps
   to ddg G.  */
static void
add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
{
  if (mem_write_insn_p (from->insn))
    {
      if (mem_read_insn_p (to->insn))
  	create_ddg_dep_no_link (g, from, to, TRUE_DEP, MEM_DEP, 1);
      else if (from->cuid != to->cuid)
  	create_ddg_dep_no_link (g, from, to, OUTPUT_DEP, MEM_DEP, 1);
    }
  else
    {
      if (mem_read_insn_p (to->insn))
	return;
      else if (from->cuid != to->cuid)
	{
  	  create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
  	  create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
	}
    }

}

/* Perform intra-block Data Dependency analysis and connect the nodes in
369
   the DDG.  We assume the loop has a single basic block.  */
370 371 372 373 374 375
static void
build_intra_loop_deps (ddg_ptr g)
{
  int i;
  /* Hold the dependency analysis state during dependency calculations.  */
  struct deps tmp_deps;
376
  rtx head, tail;
377 378 379 380 381 382

  /* Build the dependence information, using the sched_analyze function.  */
  init_deps_global ();
  init_deps (&tmp_deps);

  /* Do the intra-block data dependence analysis for the given block.  */
383
  get_ebb_head_tail (g->bb, g->bb, &head, &tail);
384 385
  sched_analyze (&tmp_deps, head, tail);

386
  /* Build intra-loop data dependencies using the scheduler dependency
387 388 389 390
     analysis.  */
  for (i = 0; i < g->num_nodes; i++)
    {
      ddg_node_ptr dest_node = &g->nodes[i];
391 392
      sd_iterator_def sd_it;
      dep_t dep;
393 394 395 396

      if (! INSN_P (dest_node->insn))
	continue;

397
      FOR_EACH_DEP (dest_node->insn, SD_LIST_BACK, sd_it, dep)
398
	{
399
	  ddg_node_ptr src_node = get_node_of_insn (g, DEP_PRO (dep));
400 401 402 403

	  if (!src_node)
	    continue;

404
	  create_ddg_dep_from_intra_loop_link (g, src_node, dest_node, dep);
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	}

      /* If this insn modifies memory, add an edge to all insns that access
	 memory.  */
      if (mem_access_insn_p (dest_node->insn))
	{
	  int j;

	  for (j = 0; j <= i; j++)
	    {
	      ddg_node_ptr j_node = &g->nodes[j];
	      if (mem_access_insn_p (j_node->insn))
 		/* Don't bother calculating inter-loop dep if an intra-loop dep
		   already exists.  */
	      	  if (! TEST_BIT (dest_node->successors, j))
		    add_inter_loop_mem_dep (g, dest_node, j_node);
            }
        }
    }

  /* Free the INSN_LISTs.  */
  finish_deps_global ();
  free_deps (&tmp_deps);
428 429 430

  /* Free dependencies.  */
  sched_free_deps (head, tail, false);
431 432 433 434 435 436 437
}


/* Given a basic block, create its DDG and return a pointer to a variable
   of ddg type that represents it.
   Initialize the ddg structure fields to the appropriate values.  */
ddg_ptr
438
create_ddg (basic_block bb, int closing_branch_deps)
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
{
  ddg_ptr g;
  rtx insn, first_note;
  int i;
  int num_nodes = 0;

  g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));

  g->bb = bb;
  g->closing_branch_deps = closing_branch_deps;

  /* Count the number of insns in the BB.  */
  for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
       insn = NEXT_INSN (insn))
    {
      if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
	continue;

      if (mem_read_insn_p (insn))
	g->num_loads++;
      if (mem_write_insn_p (insn))
	g->num_stores++;
      num_nodes++;
    }

  /* There is nothing to do for this BB.  */
  if (num_nodes <= 1)
    {
      free (g);
      return NULL;
    }

  /* Allocate the nodes array, and initialize the nodes.  */
  g->num_nodes = num_nodes;
  g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
  g->closing_branch = NULL;
  i = 0;
  first_note = NULL_RTX;
  for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
       insn = NEXT_INSN (insn))
    {
      if (! INSN_P (insn))
	{
482
	  if (! first_note && NOTE_P (insn)
483
	      && NOTE_KIND (insn) !=  NOTE_INSN_BASIC_BLOCK)
484 485 486
	    first_note = insn;
	  continue;
	}
487
      if (JUMP_P (insn))
488
	{
489 490
	  gcc_assert (!g->closing_branch);
	  g->closing_branch = &g->nodes[i];
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	}
      else if (GET_CODE (PATTERN (insn)) == USE)
	{
	  if (! first_note)
	    first_note = insn;
	  continue;
	}

      g->nodes[i].cuid = i;
      g->nodes[i].successors = sbitmap_alloc (num_nodes);
      sbitmap_zero (g->nodes[i].successors);
      g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
      sbitmap_zero (g->nodes[i].predecessors);
      g->nodes[i].first_note = (first_note ? first_note : insn);
      g->nodes[i++].insn = insn;
      first_note = NULL_RTX;
    }
508 509 510 511
  
  /* We must have found a branch in DDG.  */
  gcc_assert (g->closing_branch);
  
512

513
  /* Build the data dependency graph.  */
514
  build_intra_loop_deps (g);
515
  build_inter_loop_deps (g);
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
  return g;
}

/* Free all the memory allocated for the DDG.  */
void
free_ddg (ddg_ptr g)
{
  int i;

  if (!g)
    return;

  for (i = 0; i < g->num_nodes; i++)
    {
      ddg_edge_ptr e = g->nodes[i].out;

      while (e)
	{
	  ddg_edge_ptr next = e->next_out;

	  free (e);
	  e = next;
	}
      sbitmap_free (g->nodes[i].successors);
      sbitmap_free (g->nodes[i].predecessors);
    }
  if (g->num_backarcs > 0)
    free (g->backarcs);
  free (g->nodes);
  free (g);
}

void
549
print_ddg_edge (FILE *file, ddg_edge_ptr e)
550 551 552
{
  char dep_c;

553 554
  switch (e->type)
    {
555 556 557 558 559 560 561 562
    case OUTPUT_DEP :
      dep_c = 'O';
      break;
    case ANTI_DEP :
      dep_c = 'A';
      break;
    default:
      dep_c = 'T';
563
    }
564

565
  fprintf (file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
566 567 568 569 570
	   dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
}

/* Print the DDG nodes with there in/out edges to the dump file.  */
void
571
print_ddg (FILE *file, ddg_ptr g)
572 573 574 575 576 577 578
{
  int i;

  for (i = 0; i < g->num_nodes; i++)
    {
      ddg_edge_ptr e;

579
      fprintf (file, "Node num: %d\n", g->nodes[i].cuid);
580 581
      print_rtl_single (file, g->nodes[i].insn);
      fprintf (file, "OUT ARCS: ");
582
      for (e = g->nodes[i].out; e; e = e->next_out)
583
	print_ddg_edge (file, e);
584

585
      fprintf (file, "\nIN ARCS: ");
586
      for (e = g->nodes[i].in; e; e = e->next_in)
587
	print_ddg_edge (file, e);
588

589
      fprintf (file, "\n");
590 591 592 593 594
    }
}

/* Print the given DDG in VCG format.  */
void
595
vcg_print_ddg (FILE *file, ddg_ptr g)
596 597 598
{
  int src_cuid;

599
  fprintf (file, "graph: {\n");
600 601 602 603 604
  for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
    {
      ddg_edge_ptr e;
      int src_uid = INSN_UID (g->nodes[src_cuid].insn);

605 606 607
      fprintf (file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
      print_rtl_single (file, g->nodes[src_cuid].insn);
      fprintf (file, "\"}\n");
608 609 610 611 612 613 614
      for (e = g->nodes[src_cuid].out; e; e = e->next_out)
	{
	  int dst_uid = INSN_UID (e->dest->insn);
	  int dst_cuid = e->dest->cuid;

	  /* Give the backarcs a different color.  */
	  if (e->distance > 0)
615
	    fprintf (file, "backedge: {color: red ");
616
	  else
617
	    fprintf (file, "edge: { ");
618

619 620 621
	  fprintf (file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
	  fprintf (file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
	  fprintf (file, "label: \"%d_%d\"}\n", e->latency, e->distance);
622 623
	}
    }
624
  fprintf (file, "}\n");
625 626
}

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
/* Dump the sccs in SCCS.  */
void
print_sccs (FILE *file, ddg_all_sccs_ptr sccs, ddg_ptr g)
{
  unsigned int u = 0;
  sbitmap_iterator sbi;
  int i;

  if (!file)
    return;

  fprintf (file, "\n;; Number of SCC nodes - %d\n", sccs->num_sccs);
  for (i = 0; i < sccs->num_sccs; i++)
    {
      fprintf (file, "SCC number: %d\n", i);
      EXECUTE_IF_SET_IN_SBITMAP (sccs->sccs[i]->nodes, 0, u, sbi)
      {
        fprintf (file, "insn num %d\n", u);
        print_rtl_single (file, g->nodes[u].insn);
      }
    }
  fprintf (file, "\n");
}

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
/* Create an edge and initialize it with given values.  */
static ddg_edge_ptr
create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
		 dep_type t, dep_data_type dt, int l, int d)
{
  ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));

  e->src = src;
  e->dest = dest;
  e->type = t;
  e->data_type = dt;
  e->latency = l;
  e->distance = d;
  e->next_in = e->next_out = NULL;
  e->aux.info = 0;
  return e;
}

/* Add the given edge to the in/out linked lists of the DDG nodes.  */
static void
add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
{
  ddg_node_ptr src = e->src;
  ddg_node_ptr dest = e->dest;

676 677
  /* Should have allocated the sbitmaps.  */
  gcc_assert (src->successors && dest->predecessors);
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723

  SET_BIT (src->successors, dest->cuid);
  SET_BIT (dest->predecessors, src->cuid);
  e->next_in = dest->in;
  dest->in = e;
  e->next_out = src->out;
  src->out = e;
}



/* Algorithm for computing the recurrence_length of an scc.  We assume at
   for now that cycles in the data dependence graph contain a single backarc.
   This simplifies the algorithm, and can be generalized later.  */
static void
set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
{
  int j;
  int result = -1;

  for (j = 0; j < scc->num_backarcs; j++)
    {
      ddg_edge_ptr backarc = scc->backarcs[j];
      int length;
      int distance = backarc->distance;
      ddg_node_ptr src = backarc->dest;
      ddg_node_ptr dest = backarc->src;

      length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
      if (length < 0 )
	{
	  /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
	  continue;
	}
      length += backarc->latency;
      result = MAX (result, (length / distance));
    }
  scc->recurrence_length = result;
}

/* Create a new SCC given the set of its nodes.  Compute its recurrence_length
   and mark edges that belong to this scc as IN_SCC.  */
static ddg_scc_ptr
create_scc (ddg_ptr g, sbitmap nodes)
{
  ddg_scc_ptr scc;
724
  unsigned int u = 0;
725
  sbitmap_iterator sbi;
726 727 728 729 730 731 732 733

  scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
  scc->backarcs = NULL;
  scc->num_backarcs = 0;
  scc->nodes = sbitmap_alloc (g->num_nodes);
  sbitmap_copy (scc->nodes, nodes);

  /* Mark the backarcs that belong to this SCC.  */
734
  EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
735 736 737 738 739 740 741 742 743 744 745
    {
      ddg_edge_ptr e;
      ddg_node_ptr n = &g->nodes[u];

      for (e = n->out; e; e = e->next_out)
	if (TEST_BIT (nodes, e->dest->cuid))
	  {
	    e->aux.count = IN_SCC;
	    if (e->distance > 0)
	      add_backarc_to_scc (scc, e);
	  }
746
    }
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814

  set_recurrence_length (scc, g);
  return scc;
}

/* Cleans the memory allocation of a given SCC.  */
static void
free_scc (ddg_scc_ptr scc)
{
  if (!scc)
    return;

  sbitmap_free (scc->nodes);
  if (scc->num_backarcs > 0)
    free (scc->backarcs);
  free (scc);
}


/* Add a given edge known to be a backarc to the given DDG.  */
static void
add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
{
  int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);

  add_edge_to_ddg (g, e);
  g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
  g->backarcs[g->num_backarcs++] = e;
}

/* Add backarc to an SCC.  */
static void
add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
{
  int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);

  scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
  scc->backarcs[scc->num_backarcs++] = e;
}

/* Add the given SCC to the DDG.  */
static void
add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
{
  int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);

  g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
  g->sccs[g->num_sccs++] = scc;
}

/* Given the instruction INSN return the node that represents it.  */
ddg_node_ptr
get_node_of_insn (ddg_ptr g, rtx insn)
{
  int i;

  for (i = 0; i < g->num_nodes; i++)
    if (insn == g->nodes[i].insn)
      return &g->nodes[i];
  return NULL;
}

/* Given a set OPS of nodes in the DDG, find the set of their successors
   which are not in OPS, and set their bits in SUCC.  Bits corresponding to
   OPS are cleared from SUCC.  Leaves the other bits in SUCC unchanged.  */
void
find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
{
815
  unsigned int i = 0;
816
  sbitmap_iterator sbi;
817

818
  EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
819 820 821
    {
      const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
      sbitmap_a_or_b (succ, succ, node_succ);
822
    };
823 824 825 826 827 828 829 830 831 832 833

  /* We want those that are not in ops.  */
  sbitmap_difference (succ, succ, ops);
}

/* Given a set OPS of nodes in the DDG, find the set of their predecessors
   which are not in OPS, and set their bits in PREDS.  Bits corresponding to
   OPS are cleared from PREDS.  Leaves the other bits in PREDS unchanged.  */
void
find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
{
834
  unsigned int i = 0;
835
  sbitmap_iterator sbi;
836

837
  EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
838 839 840
    {
      const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
      sbitmap_a_or_b (preds, preds, node_preds);
841
    };
842 843 844 845 846 847 848 849 850 851 852

  /* We want those that are not in ops.  */
  sbitmap_difference (preds, preds, ops);
}


/* Compare function to be passed to qsort to order the backarcs in descending
   recMII order.  */
static int
compare_sccs (const void *s1, const void *s2)
{
853 854
  const int rec_l1 = (*(const ddg_scc_ptr *)s1)->recurrence_length;
  const int rec_l2 = (*(const ddg_scc_ptr *)s2)->recurrence_length; 
855 856 857 858 859 860 861 862 863 864 865 866
  return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
	  
}

/* Order the backarcs in descending recMII order using compare_sccs.  */
static void
order_sccs (ddg_all_sccs_ptr g)
{
  qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
	 (int (*) (const void *, const void *)) compare_sccs);
}

867
#ifdef ENABLE_CHECKING
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
/* Check that every node in SCCS belongs to exactly one strongly connected
   component and that no element of SCCS is empty.  */
static void
check_sccs (ddg_all_sccs_ptr sccs, int num_nodes)
{
  int i = 0;
  sbitmap tmp = sbitmap_alloc (num_nodes);

  sbitmap_zero (tmp);
  for (i = 0; i < sccs->num_sccs; i++)
    {
      gcc_assert (!sbitmap_empty_p (sccs->sccs[i]->nodes));
      /* Verify that every node in sccs is in exactly one strongly
         connected component.  */
      gcc_assert (!sbitmap_any_common_bits (tmp, sccs->sccs[i]->nodes));
      sbitmap_a_or_b (tmp, tmp, sccs->sccs[i]->nodes);
    }
  sbitmap_free (tmp);
}
887
#endif
888

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
/* Perform the Strongly Connected Components decomposing algorithm on the
   DDG and return DDG_ALL_SCCS structure that contains them.  */
ddg_all_sccs_ptr
create_ddg_all_sccs (ddg_ptr g)
{
  int i;
  int num_nodes = g->num_nodes;
  sbitmap from = sbitmap_alloc (num_nodes);
  sbitmap to = sbitmap_alloc (num_nodes);
  sbitmap scc_nodes = sbitmap_alloc (num_nodes);
  ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
			  xmalloc (sizeof (struct ddg_all_sccs));

  sccs->ddg = g;
  sccs->sccs = NULL;
  sccs->num_sccs = 0;

  for (i = 0; i < g->num_backarcs; i++)
    {
      ddg_scc_ptr  scc;
      ddg_edge_ptr backarc = g->backarcs[i];
      ddg_node_ptr src = backarc->src;
      ddg_node_ptr dest = backarc->dest;

      /* If the backarc already belongs to an SCC, continue.  */
      if (backarc->aux.count == IN_SCC)
	continue;

917
      sbitmap_zero (scc_nodes);
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
      sbitmap_zero (from);
      sbitmap_zero (to);
      SET_BIT (from, dest->cuid);
      SET_BIT (to, src->cuid);

      if (find_nodes_on_paths (scc_nodes, g, from, to))
	{
	  scc = create_scc (g, scc_nodes);
	  add_scc_to_ddg (sccs, scc);
	}
    }
  order_sccs (sccs);
  sbitmap_free (from);
  sbitmap_free (to);
  sbitmap_free (scc_nodes);
933 934 935
#ifdef ENABLE_CHECKING
  check_sccs (sccs, num_nodes);
#endif
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
  return sccs;
}

/* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG.  */
void
free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
{
  int i;

  if (!all_sccs)
    return;

  for (i = 0; i < all_sccs->num_sccs; i++)
    free_scc (all_sccs->sccs[i]);

  free (all_sccs);
}


/* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
   nodes - find all nodes that lie on paths from FROM to TO (not excluding
957
   nodes from FROM and TO).  Return nonzero if nodes exist.  */
958 959 960 961
int
find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
{
  int answer;
962
  int change;
963
  unsigned int u = 0;
964
  int num_nodes = g->num_nodes;
965 966
  sbitmap_iterator sbi;

967 968 969 970 971 972 973 974 975 976 977 978 979 980
  sbitmap workset = sbitmap_alloc (num_nodes);
  sbitmap reachable_from = sbitmap_alloc (num_nodes);
  sbitmap reach_to = sbitmap_alloc (num_nodes);
  sbitmap tmp = sbitmap_alloc (num_nodes);

  sbitmap_copy (reachable_from, from);
  sbitmap_copy (tmp, from);

  change = 1;
  while (change)
    {
      change = 0;
      sbitmap_copy (workset, tmp);
      sbitmap_zero (tmp);
981
      EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
	{
	  ddg_edge_ptr e;
	  ddg_node_ptr u_node = &g->nodes[u];

	  for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
	    {
	      ddg_node_ptr v_node = e->dest;
	      int v = v_node->cuid;

	      if (!TEST_BIT (reachable_from, v))
		{
		  SET_BIT (reachable_from, v);
		  SET_BIT (tmp, v);
		  change = 1;
		}
	    }
998
	}
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    }

  sbitmap_copy (reach_to, to);
  sbitmap_copy (tmp, to);

  change = 1;
  while (change)
    {
      change = 0;
      sbitmap_copy (workset, tmp);
      sbitmap_zero (tmp);
1010
      EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	{
	  ddg_edge_ptr e;
	  ddg_node_ptr u_node = &g->nodes[u];

	  for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
	    {
	      ddg_node_ptr v_node = e->src;
	      int v = v_node->cuid;

	      if (!TEST_BIT (reach_to, v))
		{
		  SET_BIT (reach_to, v);
		  SET_BIT (tmp, v);
		  change = 1;
		}
	    }
1027
	}
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
    }

  answer = sbitmap_a_and_b_cg (result, reachable_from, reach_to);
  sbitmap_free (workset);
  sbitmap_free (reachable_from);
  sbitmap_free (reach_to);
  sbitmap_free (tmp);
  return answer;
}


/* Updates the counts of U_NODE's successors (that belong to NODES) to be
   at-least as large as the count of U_NODE plus the latency between them.
   Sets a bit in TMP for each successor whose count was changed (increased).
1042
   Returns nonzero if any count was changed.  */
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
static int
update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
{
  ddg_edge_ptr e;
  int result = 0;

  for (e = u_node->out; e; e = e->next_out)
    {
      ddg_node_ptr v_node = e->dest;
      int v = v_node->cuid;

      if (TEST_BIT (nodes, v)
	  && (e->distance == 0)
	  && (v_node->aux.count < u_node->aux.count + e->latency))
	{
	  v_node->aux.count = u_node->aux.count + e->latency;
	  SET_BIT (tmp, v);
	  result = 1;
	}
    }
  return result;
}


/* Find the length of a longest path from SRC to DEST in G,
   going only through NODES, and disregarding backarcs.  */
int
longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
{
1072
  int i;
1073
  unsigned int u = 0;
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
  int change = 1;
  int result;
  int num_nodes = g->num_nodes;
  sbitmap workset = sbitmap_alloc (num_nodes);
  sbitmap tmp = sbitmap_alloc (num_nodes);


  /* Data will hold the distance of the longest path found so far from
     src to each node.  Initialize to -1 = less than minimum.  */
  for (i = 0; i < g->num_nodes; i++)
    g->nodes[i].aux.count = -1;
  g->nodes[src].aux.count = 0;

  sbitmap_zero (tmp);
  SET_BIT (tmp, src);

  while (change)
    {
1092 1093
      sbitmap_iterator sbi;

1094 1095 1096
      change = 0;
      sbitmap_copy (workset, tmp);
      sbitmap_zero (tmp);
1097
      EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
1098 1099 1100 1101
	{
	  ddg_node_ptr u_node = &g->nodes[u];

	  change |= update_dist_to_successors (u_node, nodes, tmp);
1102
	}
1103 1104 1105 1106 1107 1108
    }
  result = g->nodes[dest].aux.count;
  sbitmap_free (workset);
  sbitmap_free (tmp);
  return result;
}
1109 1110

#endif /* INSN_SCHEDULING */