final.c 122 KB
Newer Older
1
/* Convert RTL to assembler code and output it, for GNU compiler.
2
   Copyright (C) 1987-2013 Free Software Foundation, Inc.
3

4
This file is part of GCC.
5

6 7
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
8
Software Foundation; either version 3, or (at your option) any later
9
version.
10

11 12 13 14
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
15 16

You should have received a copy of the GNU General Public License
17 18
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

/* This is the final pass of the compiler.
   It looks at the rtl code for a function and outputs assembler code.

   Call `final_start_function' to output the assembler code for function entry,
   `final' to output assembler code for some RTL code,
   `final_end_function' to output assembler code for function exit.
   If a function is compiled in several pieces, each piece is
   output separately with `final'.

   Some optimizations are also done at this level.
   Move instructions that were made unnecessary by good register allocation
   are detected and omitted from the output.  (Though most of these
   are removed by the last jump pass.)

   Instructions to set the condition codes are omitted when it can be
   seen that the condition codes already had the desired values.

   In some cases it is sufficient if the inherited condition codes
   have related values, but this may require the following insn
   (the one that tests the condition codes) to be modified.

   The code for the function prologue and epilogue are generated
42 43
   directly in assembler by the target functions function_prologue and
   function_epilogue.  Those instructions never exist as rtl.  */
44 45

#include "config.h"
46
#include "system.h"
47 48
#include "coretypes.h"
#include "tm.h"
49 50 51

#include "tree.h"
#include "rtl.h"
52
#include "tm_p.h"
53 54 55 56 57 58 59 60
#include "regs.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "recog.h"
#include "conditions.h"
#include "flags.h"
#include "hard-reg-set.h"
#include "output.h"
Mike Stump committed
61
#include "except.h"
62
#include "function.h"
63 64
#include "rtl-error.h"
#include "toplev.h" /* exact_log2, floor_log2 */
Kaveh R. Ghazi committed
65
#include "reload.h"
66
#include "intl.h"
67
#include "basic-block.h"
68
#include "target.h"
69
#include "targhooks.h"
70
#include "debug.h"
71
#include "expr.h"
72
#include "tree-pass.h"
73
#include "tree-flow.h"
74 75
#include "cgraph.h"
#include "coverage.h"
76
#include "df.h"
77
#include "ggc.h"
78 79
#include "cfgloop.h"
#include "params.h"
80
#include "tree-pretty-print.h" /* for dump_function_header */
81

82 83 84 85 86
#ifdef XCOFF_DEBUGGING_INFO
#include "xcoffout.h"		/* Needed for external data
				   declarations for e.g. AIX 4.x.  */
#endif

87 88
#include "dwarf2out.h"

89 90 91 92
#ifdef DBX_DEBUGGING_INFO
#include "dbxout.h"
#endif

93 94 95 96
#ifdef SDB_DEBUGGING_INFO
#include "sdbout.h"
#endif

97 98
/* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
   So define a null default for it to save conditionalization later.  */
99 100 101 102 103 104
#ifndef CC_STATUS_INIT
#define CC_STATUS_INIT
#endif

/* Is the given character a logical line separator for the assembler?  */
#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
105
#define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
106 107
#endif

108 109 110 111
#ifndef JUMP_TABLES_IN_TEXT_SECTION
#define JUMP_TABLES_IN_TEXT_SECTION 0
#endif

112 113 114 115 116
/* Bitflags used by final_scan_insn.  */
#define SEEN_BB		1
#define SEEN_NOTE	2
#define SEEN_EMITTED	4

117
/* Last insn processed by final_scan_insn.  */
118 119
static rtx debug_insn;
rtx current_output_insn;
120 121 122 123

/* Line number of last NOTE.  */
static int last_linenum;

124 125 126 127 128 129
/* Last discriminator written to assembly.  */
static int last_discriminator;

/* Discriminator of current block.  */
static int discriminator;

130 131 132 133 134 135
/* Highest line number in current block.  */
static int high_block_linenum;

/* Likewise for function.  */
static int high_function_linenum;

136
/* Filename of last NOTE.  */
137
static const char *last_filename;
138

139 140 141 142
/* Override filename and line number.  */
static const char *override_filename;
static int override_linenum;

143 144
/* Whether to force emission of a line note before the next insn.  */
static bool force_source_line = false;
145

146
extern const int length_unit_log; /* This is defined in insn-attrtab.c.  */
147

148
/* Nonzero while outputting an `asm' with operands.
149
   This means that inconsistencies are the user's fault, so don't die.
150
   The precise value is the insn being output, to pass to error_for_asm.  */
151
rtx this_is_asm_operands;
152 153

/* Number of operands of this insn, for an `asm' with operands.  */
154
static unsigned int insn_noperands;
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

/* Compare optimization flag.  */

static rtx last_ignored_compare = 0;

/* Assign a unique number to each insn that is output.
   This can be used to generate unique local labels.  */

static int insn_counter = 0;

#ifdef HAVE_cc0
/* This variable contains machine-dependent flags (defined in tm.h)
   set and examined by output routines
   that describe how to interpret the condition codes properly.  */

CC_STATUS cc_status;

/* During output of an insn, this contains a copy of cc_status
   from before the insn.  */

CC_STATUS cc_prev_status;
#endif

178
/* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen.  */
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

static int block_depth;

/* Nonzero if have enabled APP processing of our assembler output.  */

static int app_on;

/* If we are outputting an insn sequence, this contains the sequence rtx.
   Zero otherwise.  */

rtx final_sequence;

#ifdef ASSEMBLER_DIALECT

/* Number of the assembler dialect to use, starting at 0.  */
static int dialect_number;
#endif

197 198 199
/* Nonnull if the insn currently being emitted was a COND_EXEC pattern.  */
rtx current_insn_predicate;

200 201 202
/* True if printing into -fdump-final-insns= dump.  */   
bool final_insns_dump_p;

203 204 205
/* True if profile_function should be called, but hasn't been called yet.  */
static bool need_profile_function;

206 207 208
static int asm_insn_count (rtx);
static void profile_function (FILE *);
static void profile_after_prologue (FILE *);
209
static bool notice_source_line (rtx, bool *);
210
static rtx walk_alter_subreg (rtx *, bool *);
211 212 213 214
static void output_asm_name (void);
static void output_alternate_entry_point (FILE *, rtx);
static tree get_mem_expr_from_op (rtx, int *);
static void output_asm_operand_names (rtx *, int *, int);
215
#ifdef LEAF_REGISTERS
216
static void leaf_renumber_regs (rtx);
217 218
#endif
#ifdef HAVE_cc0
219
static int alter_cond (rtx);
220
#endif
221
#ifndef ADDR_VEC_ALIGN
222
static int final_addr_vec_align (rtx);
223
#endif
224
static int align_fuzz (rtx, rtx, int, unsigned);
225 226 227 228

/* Initialize data in final at the beginning of a compilation.  */

void
229
init_final (const char *filename ATTRIBUTE_UNUSED)
230 231 232 233 234 235 236 237 238
{
  app_on = 0;
  final_sequence = 0;

#ifdef ASSEMBLER_DIALECT
  dialect_number = ASSEMBLER_DIALECT;
#endif
}

239
/* Default target function prologue and epilogue assembler output.
240

241 242 243
   If not overridden for epilogue code, then the function body itself
   contains return instructions wherever needed.  */
void
244 245
default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
			       HOST_WIDE_INT size ATTRIBUTE_UNUSED)
246 247 248
{
}

249 250 251 252 253 254 255
void
default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
					 tree decl ATTRIBUTE_UNUSED,
					 bool new_is_cold ATTRIBUTE_UNUSED)
{
}

256 257
/* Default target hook that outputs nothing to a stream.  */
void
258
no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
259 260 261
{
}

262 263 264 265
/* Enable APP processing of subsequent output.
   Used before the output from an `asm' statement.  */

void
266
app_enable (void)
267 268 269
{
  if (! app_on)
    {
Kaveh R. Ghazi committed
270
      fputs (ASM_APP_ON, asm_out_file);
271 272 273 274 275 276 277 278
      app_on = 1;
    }
}

/* Disable APP processing of subsequent output.
   Called from varasm.c before most kinds of output.  */

void
279
app_disable (void)
280 281 282
{
  if (app_on)
    {
Kaveh R. Ghazi committed
283
      fputs (ASM_APP_OFF, asm_out_file);
284 285 286 287
      app_on = 0;
    }
}

Kazu Hirata committed
288
/* Return the number of slots filled in the current
289 290 291 292 293
   delayed branch sequence (we don't count the insn needing the
   delay slot).   Zero if not in a delayed branch sequence.  */

#ifdef DELAY_SLOTS
int
294
dbr_sequence_length (void)
295 296 297 298 299 300 301 302 303 304 305 306 307 308
{
  if (final_sequence != 0)
    return XVECLEN (final_sequence, 0) - 1;
  else
    return 0;
}
#endif

/* The next two pages contain routines used to compute the length of an insn
   and to shorten branches.  */

/* Arrays for insn lengths, and addresses.  The latter is referenced by
   `insn_current_length'.  */

309
static int *insn_lengths;
310

311
vec<int> insn_addresses_;
312

313 314 315
/* Max uid for which the above arrays are valid.  */
static int insn_lengths_max_uid;

316 317 318
/* Address of insn being processed.  Used by `insn_current_length'.  */
int insn_current_address;

319 320 321
/* Address of insn being processed in previous iteration.  */
int insn_last_address;

322
/* known invariant alignment of insn being processed.  */
323 324
int insn_current_align;

325 326 327 328 329 330 331 332 333
/* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
   gives the next following alignment insn that increases the known
   alignment, or NULL_RTX if there is no such insn.
   For any alignment obtained this way, we can again index uid_align with
   its uid to obtain the next following align that in turn increases the
   alignment, till we reach NULL_RTX; the sequence obtained this way
   for each insn we'll call the alignment chain of this insn in the following
   comments.  */

Kazu Hirata committed
334 335
struct label_alignment
{
336 337 338 339 340 341 342
  short alignment;
  short max_skip;
};

static rtx *uid_align;
static int *uid_shuid;
static struct label_alignment *label_align;
343

344 345 346
/* Indicate that branch shortening hasn't yet been done.  */

void
347
init_insn_lengths (void)
348
{
349 350 351 352 353 354 355 356 357
  if (uid_shuid)
    {
      free (uid_shuid);
      uid_shuid = 0;
    }
  if (insn_lengths)
    {
      free (insn_lengths);
      insn_lengths = 0;
358
      insn_lengths_max_uid = 0;
359
    }
360 361
  if (HAVE_ATTR_length)
    INSN_ADDRESSES_FREE ();
362 363 364 365 366
  if (uid_align)
    {
      free (uid_align);
      uid_align = 0;
    }
367 368 369
}

/* Obtain the current length of an insn.  If branch shortening has been done,
370
   get its actual length.  Otherwise, use FALLBACK_FN to calculate the
371 372
   length.  */
static inline int
373
get_attr_length_1 (rtx insn, int (*fallback_fn) (rtx))
374 375 376 377 378
{
  rtx body;
  int i;
  int length = 0;

379 380 381
  if (!HAVE_ATTR_length)
    return 0;

382
  if (insn_lengths_max_uid > INSN_UID (insn))
383 384 385 386 387 388 389
    return insn_lengths[INSN_UID (insn)];
  else
    switch (GET_CODE (insn))
      {
      case NOTE:
      case BARRIER:
      case CODE_LABEL:
390
      case DEBUG_INSN:
391 392 393 394
	return 0;

      case CALL_INSN:
      case JUMP_INSN:
395
	length = fallback_fn (insn);
396 397 398 399 400 401 402 403
	break;

      case INSN:
	body = PATTERN (insn);
	if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
	  return 0;

	else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
404
	  length = asm_insn_count (body) * fallback_fn (insn);
405 406
	else if (GET_CODE (body) == SEQUENCE)
	  for (i = 0; i < XVECLEN (body, 0); i++)
407
	    length += get_attr_length_1 (XVECEXP (body, 0, i), fallback_fn);
408
	else
409
	  length = fallback_fn (insn);
410 411 412 413
	break;

      default:
	break;
414 415 416 417 418 419 420
      }

#ifdef ADJUST_INSN_LENGTH
  ADJUST_INSN_LENGTH (insn, length);
#endif
  return length;
}
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

/* Obtain the current length of an insn.  If branch shortening has been done,
   get its actual length.  Otherwise, get its maximum length.  */
int
get_attr_length (rtx insn)
{
  return get_attr_length_1 (insn, insn_default_length);
}

/* Obtain the current length of an insn.  If branch shortening has been done,
   get its actual length.  Otherwise, get its minimum length.  */
int
get_attr_min_length (rtx insn)
{
  return get_attr_length_1 (insn, insn_min_length);
}
437

438 439 440 441 442 443 444
/* Code to handle alignment inside shorten_branches.  */

/* Here is an explanation how the algorithm in align_fuzz can give
   proper results:

   Call a sequence of instructions beginning with alignment point X
   and continuing until the next alignment point `block X'.  When `X'
Kazu Hirata committed
445
   is used in an expression, it means the alignment value of the
446
   alignment point.
Kazu Hirata committed
447

448 449 450
   Call the distance between the start of the first insn of block X, and
   the end of the last insn of block X `IX', for the `inner size of X'.
   This is clearly the sum of the instruction lengths.
Kazu Hirata committed
451

452 453
   Likewise with the next alignment-delimited block following X, which we
   shall call block Y.
Kazu Hirata committed
454

455 456
   Call the distance between the start of the first insn of block X, and
   the start of the first insn of block Y `OX', for the `outer size of X'.
Kazu Hirata committed
457

458
   The estimated padding is then OX - IX.
Kazu Hirata committed
459

460
   OX can be safely estimated as
Kazu Hirata committed
461

462 463 464 465
           if (X >= Y)
                   OX = round_up(IX, Y)
           else
                   OX = round_up(IX, X) + Y - X
Kazu Hirata committed
466

467 468
   Clearly est(IX) >= real(IX), because that only depends on the
   instruction lengths, and those being overestimated is a given.
Kazu Hirata committed
469

470 471
   Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
   we needn't worry about that when thinking about OX.
Kazu Hirata committed
472

473 474 475 476 477 478 479
   When X >= Y, the alignment provided by Y adds no uncertainty factor
   for branch ranges starting before X, so we can just round what we have.
   But when X < Y, we don't know anything about the, so to speak,
   `middle bits', so we have to assume the worst when aligning up from an
   address mod X to one mod Y, which is Y - X.  */

#ifndef LABEL_ALIGN
480
#define LABEL_ALIGN(LABEL) align_labels_log
481 482 483
#endif

#ifndef LOOP_ALIGN
484
#define LOOP_ALIGN(LABEL) align_loops_log
485 486 487
#endif

#ifndef LABEL_ALIGN_AFTER_BARRIER
488
#define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
489 490
#endif

491 492 493 494
#ifndef JUMP_ALIGN
#define JUMP_ALIGN(LABEL) align_jumps_log
#endif

495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
int
default_label_align_after_barrier_max_skip (rtx insn ATTRIBUTE_UNUSED)
{
  return 0;
}

int
default_loop_align_max_skip (rtx insn ATTRIBUTE_UNUSED)
{
  return align_loops_max_skip;
}

int
default_label_align_max_skip (rtx insn ATTRIBUTE_UNUSED)
{
  return align_labels_max_skip;
}

int
default_jump_align_max_skip (rtx insn ATTRIBUTE_UNUSED)
{
  return align_jumps_max_skip;
}
518

519
#ifndef ADDR_VEC_ALIGN
520
static int
521
final_addr_vec_align (rtx addr_vec)
522
{
523
  int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
524 525 526

  if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
    align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
527
  return exact_log2 (align);
528 529

}
Kazu Hirata committed
530

531 532 533 534 535 536 537 538 539
#define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
#endif

#ifndef INSN_LENGTH_ALIGNMENT
#define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
#endif

#define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])

540
static int min_labelno, max_labelno;
541 542

#define LABEL_TO_ALIGNMENT(LABEL) \
543 544 545 546
  (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)

#define LABEL_TO_MAX_SKIP(LABEL) \
  (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
547 548

/* For the benefit of port specific code do this also as a function.  */
Kazu Hirata committed
549

550
int
551
label_to_alignment (rtx label)
552
{
553 554 555 556 557 558 559 560 561 562 563
  if (CODE_LABEL_NUMBER (label) <= max_labelno)
    return LABEL_TO_ALIGNMENT (label);
  return 0;
}

int
label_to_max_skip (rtx label)
{
  if (CODE_LABEL_NUMBER (label) <= max_labelno)
    return LABEL_TO_MAX_SKIP (label);
  return 0;
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
}

/* The differences in addresses
   between a branch and its target might grow or shrink depending on
   the alignment the start insn of the range (the branch for a forward
   branch or the label for a backward branch) starts out on; if these
   differences are used naively, they can even oscillate infinitely.
   We therefore want to compute a 'worst case' address difference that
   is independent of the alignment the start insn of the range end
   up on, and that is at least as large as the actual difference.
   The function align_fuzz calculates the amount we have to add to the
   naively computed difference, by traversing the part of the alignment
   chain of the start insn of the range that is in front of the end insn
   of the range, and considering for each alignment the maximum amount
   that it might contribute to a size increase.

   For casesi tables, we also want to know worst case minimum amounts of
   address difference, in case a machine description wants to introduce
   some common offset that is added to all offsets in a table.
583
   For this purpose, align_fuzz with a growth argument of 0 computes the
584 585 586 587 588 589 590 591 592
   appropriate adjustment.  */

/* Compute the maximum delta by which the difference of the addresses of
   START and END might grow / shrink due to a different address for start
   which changes the size of alignment insns between START and END.
   KNOWN_ALIGN_LOG is the alignment known for START.
   GROWTH should be ~0 if the objective is to compute potential code size
   increase, and 0 if the objective is to compute potential shrink.
   The return value is undefined for any other value of GROWTH.  */
Kazu Hirata committed
593

594
static int
595
align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
596 597 598 599 600 601 602 603 604 605 606 607
{
  int uid = INSN_UID (start);
  rtx align_label;
  int known_align = 1 << known_align_log;
  int end_shuid = INSN_SHUID (end);
  int fuzz = 0;

  for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
    {
      int align_addr, new_align;

      uid = INSN_UID (align_label);
608
      align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
      if (uid_shuid[uid] > end_shuid)
	break;
      known_align_log = LABEL_TO_ALIGNMENT (align_label);
      new_align = 1 << known_align_log;
      if (new_align < known_align)
	continue;
      fuzz += (-align_addr ^ growth) & (new_align - known_align);
      known_align = new_align;
    }
  return fuzz;
}

/* Compute a worst-case reference address of a branch so that it
   can be safely used in the presence of aligned labels.  Since the
   size of the branch itself is unknown, the size of the branch is
   not included in the range.  I.e. for a forward branch, the reference
   address is the end address of the branch as known from the previous
   branch shortening pass, minus a value to account for possible size
   increase due to alignment.  For a backward branch, it is the start
   address of the branch as known from the current pass, plus a value
   to account for possible size increase due to alignment.
   NB.: Therefore, the maximum offset allowed for backward branches needs
   to exclude the branch size.  */
Kazu Hirata committed
632

633
int
634
insn_current_reference_address (rtx branch)
635
{
636 637 638 639 640 641 642 643
  rtx dest, seq;
  int seq_uid;

  if (! INSN_ADDRESSES_SET_P ())
    return 0;

  seq = NEXT_INSN (PREV_INSN (branch));
  seq_uid = INSN_UID (seq);
644
  if (!JUMP_P (branch))
645 646 647 648 649 650 651
    /* This can happen for example on the PA; the objective is to know the
       offset to address something in front of the start of the function.
       Thus, we can treat it like a backward branch.
       We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
       any alignment we'd encounter, so we skip the call to align_fuzz.  */
    return insn_current_address;
  dest = JUMP_LABEL (branch);
652

653
  /* BRANCH has no proper alignment chain set, so use SEQ.
654 655
     BRANCH also has no INSN_SHUID.  */
  if (INSN_SHUID (seq) < INSN_SHUID (dest))
656
    {
Kazu Hirata committed
657
      /* Forward branch.  */
658
      return (insn_last_address + insn_lengths[seq_uid]
659
	      - align_fuzz (seq, dest, length_unit_log, ~0));
660 661 662
    }
  else
    {
Kazu Hirata committed
663
      /* Backward branch.  */
664
      return (insn_current_address
Joern Rennecke committed
665
	      + align_fuzz (dest, seq, length_unit_log, ~0));
666 667 668
    }
}

669 670 671
/* Compute branch alignments based on frequency information in the
   CFG.  */

672
unsigned int
673
compute_alignments (void)
674 675
{
  int log, max_skip, max_log;
676
  basic_block bb;
677 678
  int freq_max = 0;
  int freq_threshold = 0;
679 680 681 682 683 684 685 686 687

  if (label_align)
    {
      free (label_align);
      label_align = 0;
    }

  max_labelno = max_label_num ();
  min_labelno = get_first_label_num ();
688
  label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
689 690

  /* If not optimizing or optimizing for size, don't assign any alignments.  */
691
  if (! optimize || optimize_function_for_size_p (cfun))
692
    return 0;
693

694 695
  if (dump_file)
    {
696
      dump_reg_info (dump_file);
697 698 699
      dump_flow_info (dump_file, TDF_DETAILS);
      flow_loops_dump (dump_file, NULL, 1);
    }
700
  loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
701 702 703 704 705 706 707
  FOR_EACH_BB (bb)
    if (bb->frequency > freq_max)
      freq_max = bb->frequency;
  freq_threshold = freq_max / PARAM_VALUE (PARAM_ALIGN_THRESHOLD);

  if (dump_file)
    fprintf(dump_file, "freq_max: %i\n",freq_max);
708
  FOR_EACH_BB (bb)
709
    {
710
      rtx label = BB_HEAD (bb);
711 712
      int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
      edge e;
713
      edge_iterator ei;
714

715
      if (!LABEL_P (label)
716
	  || optimize_bb_for_size_p (bb))
717 718 719
	{
	  if (dump_file)
	    fprintf(dump_file, "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
720 721
		    bb->index, bb->frequency, bb->loop_father->num,
		    bb_loop_depth (bb));
722 723
	  continue;
	}
724
      max_log = LABEL_ALIGN (label);
725
      max_skip = targetm.asm_out.label_align_max_skip (label);
726

727
      FOR_EACH_EDGE (e, ei, bb->preds)
728 729 730 731 732 733
	{
	  if (e->flags & EDGE_FALLTHRU)
	    has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
	  else
	    branch_frequency += EDGE_FREQUENCY (e);
	}
734 735 736 737
      if (dump_file)
	{
	  fprintf(dump_file, "BB %4i freq %4i loop %2i loop_depth %2i fall %4i branch %4i",
		  bb->index, bb->frequency, bb->loop_father->num,
738
		  bb_loop_depth (bb),
739 740 741 742 743 744 745
		  fallthru_frequency, branch_frequency);
	  if (!bb->loop_father->inner && bb->loop_father->num)
	    fprintf (dump_file, " inner_loop");
	  if (bb->loop_father->header == bb)
	    fprintf (dump_file, " loop_header");
	  fprintf (dump_file, "\n");
	}
746

747
      /* There are two purposes to align block with no fallthru incoming edge:
748
	 1) to avoid fetch stalls when branch destination is near cache boundary
749
	 2) to improve cache efficiency in case the previous block is not executed
750 751 752 753
	    (so it does not need to be in the cache).

	 We to catch first case, we align frequently executed blocks.
	 To catch the second, we align blocks that are executed more frequently
754
	 than the predecessor and the predecessor is likely to not be executed
755 756 757
	 when function is called.  */

      if (!has_fallthru
758
	  && (branch_frequency > freq_threshold
759 760
	      || (bb->frequency > bb->prev_bb->frequency * 10
		  && (bb->prev_bb->frequency
761 762 763
		      <= ENTRY_BLOCK_PTR->frequency / 2))))
	{
	  log = JUMP_ALIGN (label);
764 765
	  if (dump_file)
	    fprintf(dump_file, "  jump alignment added.\n");
766 767 768
	  if (max_log < log)
	    {
	      max_log = log;
769
	      max_skip = targetm.asm_out.jump_align_max_skip (label);
770 771 772
	    }
	}
      /* In case block is frequent and reached mostly by non-fallthru edge,
773
	 align it.  It is most likely a first block of loop.  */
774
      if (has_fallthru
775
	  && optimize_bb_for_speed_p (bb)
776 777 778
	  && branch_frequency + fallthru_frequency > freq_threshold
	  && (branch_frequency
	      > fallthru_frequency * PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS)))
779 780
	{
	  log = LOOP_ALIGN (label);
781 782
	  if (dump_file)
	    fprintf(dump_file, "  internal loop alignment added.\n");
783 784 785
	  if (max_log < log)
	    {
	      max_log = log;
786
	      max_skip = targetm.asm_out.loop_align_max_skip (label);
787 788 789 790 791
	    }
	}
      LABEL_TO_ALIGNMENT (label) = max_log;
      LABEL_TO_MAX_SKIP (label) = max_skip;
    }
792

793 794
  loop_optimizer_finalize ();
  free_dominance_info (CDI_DOMINATORS);
795
  return 0;
796
}
797

798
struct rtl_opt_pass pass_compute_alignments =
799
{
800 801
 {
  RTL_PASS,
802
  "alignments",                         /* name */
803
  OPTGROUP_NONE,                        /* optinfo_flags */
804 805 806 807 808
  NULL,                                 /* gate */
  compute_alignments,                   /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
809
  TV_NONE,                              /* tv_id */
810 811 812 813
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
814
  TODO_verify_rtl_sharing               /* todo_flags_finish */
815
 }
816 817
};

818

819 820 821
/* Make a pass over all insns and compute their actual lengths by shortening
   any branches of variable length if possible.  */

822 823 824 825
/* shorten_branches might be called multiple times:  for example, the SH
   port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
   In order to do this, it needs proper length information, which it obtains
   by calling shorten_branches.  This cannot be collapsed with
826
   shorten_branches itself into a single pass unless we also want to integrate
827 828 829
   reorg.c, since the branch splitting exposes new instructions with delay
   slots.  */

830
void
831
shorten_branches (rtx first)
832 833
{
  rtx insn;
834 835 836
  int max_uid;
  int i;
  int max_log;
837
  int max_skip;
838 839
#define MAX_CODE_ALIGN 16
  rtx seq;
840 841 842 843
  int something_changed = 1;
  char *varying_length;
  rtx body;
  int uid;
844
  rtx align_tab[MAX_CODE_ALIGN];
845

846 847
  /* Compute maximum UID and allocate label_align / uid_shuid.  */
  max_uid = get_max_uid ();
848

849
  /* Free uid_shuid before reallocating it.  */
850
  free (uid_shuid);
851

852
  uid_shuid = XNEWVEC (int, max_uid);
853

854 855 856 857 858 859 860 861 862 863 864
  if (max_labelno != max_label_num ())
    {
      int old = max_labelno;
      int n_labels;
      int n_old_labels;

      max_labelno = max_label_num ();

      n_labels = max_labelno - min_labelno + 1;
      n_old_labels = old - min_labelno + 1;

865
      label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
866

867
      /* Range of labels grows monotonically in the function.  Failing here
868
         means that the initialization of array got lost.  */
869
      gcc_assert (n_old_labels <= n_labels);
870 871 872 873 874

      memset (label_align + n_old_labels, 0,
	      (n_labels - n_old_labels) * sizeof (struct label_alignment));
    }

875 876
  /* Initialize label_align and set up uid_shuid to be strictly
     monotonically rising with insn order.  */
877 878 879
  /* We use max_log here to keep track of the maximum alignment we want to
     impose on the next CODE_LABEL (or the current one if we are processing
     the CODE_LABEL itself).  */
Kazu Hirata committed
880

881 882 883 884
  max_log = 0;
  max_skip = 0;

  for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
885 886 887 888
    {
      int log;

      INSN_SHUID (insn) = i++;
889
      if (INSN_P (insn))
890
	continue;
891

892
      if (LABEL_P (insn))
893 894
	{
	  rtx next;
895
	  bool next_is_jumptable;
896

897 898 899 900 901 902 903
	  /* Merge in alignments computed by compute_alignments.  */
	  log = LABEL_TO_ALIGNMENT (insn);
	  if (max_log < log)
	    {
	      max_log = log;
	      max_skip = LABEL_TO_MAX_SKIP (insn);
	    }
904

905 906 907
	  next = next_nonnote_insn (insn);
	  next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
	  if (!next_is_jumptable)
908
	    {
909 910 911 912
	      log = LABEL_ALIGN (insn);
	      if (max_log < log)
		{
		  max_log = log;
913
		  max_skip = targetm.asm_out.label_align_max_skip (insn);
914
		}
915
	    }
916 917
	  /* ADDR_VECs only take room if read-only data goes into the text
	     section.  */
918 919 920 921 922 923 924 925
	  if ((JUMP_TABLES_IN_TEXT_SECTION
	       || readonly_data_section == text_section)
	      && next_is_jumptable)
	    {
	      log = ADDR_VEC_ALIGN (next);
	      if (max_log < log)
		{
		  max_log = log;
926
		  max_skip = targetm.asm_out.label_align_max_skip (insn);
927 928
		}
	    }
929
	  LABEL_TO_ALIGNMENT (insn) = max_log;
930
	  LABEL_TO_MAX_SKIP (insn) = max_skip;
931
	  max_log = 0;
932
	  max_skip = 0;
933
	}
934
      else if (BARRIER_P (insn))
935 936 937
	{
	  rtx label;

938
	  for (label = insn; label && ! INSN_P (label);
939
	       label = NEXT_INSN (label))
940
	    if (LABEL_P (label))
941 942 943
	      {
		log = LABEL_ALIGN_AFTER_BARRIER (insn);
		if (max_log < log)
944 945
		  {
		    max_log = log;
946
		    max_skip = targetm.asm_out.label_align_after_barrier_max_skip (label);
947
		  }
948 949 950 951
		break;
	      }
	}
    }
952 953
  if (!HAVE_ATTR_length)
    return;
954 955

  /* Allocate the rest of the arrays.  */
956
  insn_lengths = XNEWVEC (int, max_uid);
957
  insn_lengths_max_uid = max_uid;
958 959
  /* Syntax errors can lead to labels being outside of the main insn stream.
     Initialize insn_addresses, so that we get reproducible results.  */
960
  INSN_ADDRESSES_ALLOC (max_uid);
961

962
  varying_length = XCNEWVEC (char, max_uid);
963 964 965 966 967 968

  /* Initialize uid_align.  We scan instructions
     from end to start, and keep in align_tab[n] the last seen insn
     that does an alignment of at least n+1, i.e. the successor
     in the alignment chain for an insn that does / has a known
     alignment of n.  */
969
  uid_align = XCNEWVEC (rtx, max_uid);
970

Kazu Hirata committed
971
  for (i = MAX_CODE_ALIGN; --i >= 0;)
972 973
    align_tab[i] = NULL_RTX;
  seq = get_last_insn ();
974
  for (; seq; seq = PREV_INSN (seq))
975 976 977
    {
      int uid = INSN_UID (seq);
      int log;
978
      log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
979 980 981 982 983 984 985 986
      uid_align[uid] = align_tab[0];
      if (log)
	{
	  /* Found an alignment label.  */
	  uid_align[uid] = align_tab[log];
	  for (i = log - 1; i >= 0; i--)
	    align_tab[i] = seq;
	}
987
    }
988 989 990 991 992 993 994

  /* When optimizing, we start assuming minimum length, and keep increasing
     lengths as we find the need for this, till nothing changes.
     When not optimizing, we start assuming maximum lengths, and
     do a single pass to update the lengths.  */
  bool increasing = optimize != 0;

995 996 997 998 999 1000 1001 1002 1003 1004 1005
#ifdef CASE_VECTOR_SHORTEN_MODE
  if (optimize)
    {
      /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
         label fields.  */

      int min_shuid = INSN_SHUID (get_insns ()) - 1;
      int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
      int rel;

      for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1006
	{
1007 1008 1009 1010 1011
	  rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
	  int len, i, min, max, insn_shuid;
	  int min_align;
	  addr_diff_vec_flags flags;

1012
	  if (! JUMP_TABLE_DATA_P (insn)
1013 1014 1015 1016
	      || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
	    continue;
	  pat = PATTERN (insn);
	  len = XVECLEN (pat, 1);
1017
	  gcc_assert (len > 0);
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	  min_align = MAX_CODE_ALIGN;
	  for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
	    {
	      rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
	      int shuid = INSN_SHUID (lab);
	      if (shuid < min)
		{
		  min = shuid;
		  min_lab = lab;
		}
	      if (shuid > max)
		{
		  max = shuid;
		  max_lab = lab;
		}
	      if (min_align > LABEL_TO_ALIGNMENT (lab))
		min_align = LABEL_TO_ALIGNMENT (lab);
	    }
1036 1037
	  XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
	  XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1038 1039
	  insn_shuid = INSN_SHUID (insn);
	  rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1040
	  memset (&flags, 0, sizeof (flags));
1041 1042 1043 1044 1045 1046 1047
	  flags.min_align = min_align;
	  flags.base_after_vec = rel > insn_shuid;
	  flags.min_after_vec  = min > insn_shuid;
	  flags.max_after_vec  = max > insn_shuid;
	  flags.min_after_base = min > rel;
	  flags.max_after_base = max > rel;
	  ADDR_DIFF_VEC_FLAGS (pat) = flags;
1048 1049 1050

	  if (increasing)
	    PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1051 1052
	}
    }
1053
#endif /* CASE_VECTOR_SHORTEN_MODE */
1054 1055

  /* Compute initial lengths, addresses, and varying flags for each insn.  */
1056 1057
  int (*length_fun) (rtx) = increasing ? insn_min_length : insn_default_length;

1058
  for (insn_current_address = 0, insn = first;
1059 1060 1061 1062
       insn != 0;
       insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
    {
      uid = INSN_UID (insn);
1063

1064
      insn_lengths[uid] = 0;
1065

1066
      if (LABEL_P (insn))
1067 1068 1069 1070 1071
	{
	  int log = LABEL_TO_ALIGNMENT (insn);
	  if (log)
	    {
	      int align = 1 << log;
Kaveh R. Ghazi committed
1072
	      int new_address = (insn_current_address + align - 1) & -align;
1073 1074 1075 1076
	      insn_lengths[uid] = new_address - insn_current_address;
	    }
	}

1077
      INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
Kazu Hirata committed
1078

1079
      if (NOTE_P (insn) || BARRIER_P (insn)
1080
	  || LABEL_P (insn) || DEBUG_INSN_P(insn))
1081
	continue;
1082 1083
      if (INSN_DELETED_P (insn))
	continue;
1084 1085

      body = PATTERN (insn);
1086
      if (JUMP_TABLE_DATA_P (insn))
1087 1088 1089
	{
	  /* This only takes room if read-only data goes into the text
	     section.  */
1090 1091
	  if (JUMP_TABLES_IN_TEXT_SECTION
	      || readonly_data_section == text_section)
1092 1093 1094
	    insn_lengths[uid] = (XVECLEN (body,
					  GET_CODE (body) == ADDR_DIFF_VEC)
				 * GET_MODE_SIZE (GET_MODE (body)));
1095 1096
	  /* Alignment is handled by ADDR_VEC_ALIGN.  */
	}
1097
      else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
      else if (GET_CODE (body) == SEQUENCE)
	{
	  int i;
	  int const_delay_slots;
#ifdef DELAY_SLOTS
	  const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
#else
	  const_delay_slots = 0;
#endif
1108 1109
	  int (*inner_length_fun) (rtx)
	    = const_delay_slots ? length_fun : insn_default_length;
1110 1111
	  /* Inside a delay slot sequence, we do not do any branch shortening
	     if the shortening could change the number of delay slots
Mike Stump committed
1112
	     of the branch.  */
1113 1114 1115 1116 1117 1118
	  for (i = 0; i < XVECLEN (body, 0); i++)
	    {
	      rtx inner_insn = XVECEXP (body, 0, i);
	      int inner_uid = INSN_UID (inner_insn);
	      int inner_length;

1119 1120
	      if (GET_CODE (body) == ASM_INPUT
		  || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1121 1122 1123
		inner_length = (asm_insn_count (PATTERN (inner_insn))
				* insn_default_length (inner_insn));
	      else
1124
		inner_length = inner_length_fun (inner_insn);
Kazu Hirata committed
1125

1126 1127 1128 1129 1130 1131
	      insn_lengths[inner_uid] = inner_length;
	      if (const_delay_slots)
		{
		  if ((varying_length[inner_uid]
		       = insn_variable_length_p (inner_insn)) != 0)
		    varying_length[uid] = 1;
1132 1133
		  INSN_ADDRESSES (inner_uid) = (insn_current_address
						+ insn_lengths[uid]);
1134 1135 1136 1137 1138 1139 1140 1141
		}
	      else
		varying_length[inner_uid] = 0;
	      insn_lengths[uid] += inner_length;
	    }
	}
      else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
	{
1142
	  insn_lengths[uid] = length_fun (insn);
1143 1144 1145 1146 1147 1148
	  varying_length[uid] = insn_variable_length_p (insn);
	}

      /* If needed, do any adjustment.  */
#ifdef ADJUST_INSN_LENGTH
      ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1149
      if (insn_lengths[uid] < 0)
1150
	fatal_insn ("negative insn length", insn);
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
#endif
    }

  /* Now loop over all the insns finding varying length insns.  For each,
     get the current insn length.  If it has changed, reflect the change.
     When nothing changes for a full pass, we are done.  */

  while (something_changed)
    {
      something_changed = 0;
1161
      insn_current_align = MAX_CODE_ALIGN - 1;
1162
      for (insn_current_address = 0, insn = first;
1163 1164 1165 1166
	   insn != 0;
	   insn = NEXT_INSN (insn))
	{
	  int new_length;
1167
#ifdef ADJUST_INSN_LENGTH
1168
	  int tmp_length;
1169
#endif
1170
	  int length_align;
1171 1172

	  uid = INSN_UID (insn);
1173

1174
	  if (LABEL_P (insn))
1175 1176
	    {
	      int log = LABEL_TO_ALIGNMENT (insn);
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199

#ifdef CASE_VECTOR_SHORTEN_MODE
	      /* If the mode of a following jump table was changed, we
		 may need to update the alignment of this label.  */
	      rtx next;
	      bool next_is_jumptable;

	      next = next_nonnote_insn (insn);
	      next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
	      if ((JUMP_TABLES_IN_TEXT_SECTION
		   || readonly_data_section == text_section)
		  && next_is_jumptable)
		{
		  int newlog = ADDR_VEC_ALIGN (next);
		  if (newlog != log)
		    {
		      log = newlog;
		      LABEL_TO_ALIGNMENT (insn) = log;
		      something_changed = 1;
		    }
		}
#endif

1200 1201 1202
	      if (log > insn_current_align)
		{
		  int align = 1 << log;
Kaveh R. Ghazi committed
1203
		  int new_address= (insn_current_address + align - 1) & -align;
1204 1205 1206 1207 1208 1209
		  insn_lengths[uid] = new_address - insn_current_address;
		  insn_current_align = log;
		  insn_current_address = new_address;
		}
	      else
		insn_lengths[uid] = 0;
1210
	      INSN_ADDRESSES (uid) = insn_current_address;
1211 1212 1213 1214 1215 1216 1217
	      continue;
	    }

	  length_align = INSN_LENGTH_ALIGNMENT (insn);
	  if (length_align < insn_current_align)
	    insn_current_align = length_align;

1218 1219
	  insn_last_address = INSN_ADDRESSES (uid);
	  INSN_ADDRESSES (uid) = insn_current_address;
1220

1221
#ifdef CASE_VECTOR_SHORTEN_MODE
1222 1223
	  if (optimize
	      && JUMP_TABLE_DATA_P (insn)
1224 1225 1226 1227 1228 1229 1230
	      && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
	    {
	      rtx body = PATTERN (insn);
	      int old_length = insn_lengths[uid];
	      rtx rel_lab = XEXP (XEXP (body, 0), 0);
	      rtx min_lab = XEXP (XEXP (body, 2), 0);
	      rtx max_lab = XEXP (XEXP (body, 3), 0);
1231 1232 1233
	      int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
	      int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
	      int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1234 1235
	      rtx prev;
	      int rel_align = 0;
1236
	      addr_diff_vec_flags flags;
1237
	      enum machine_mode vec_mode;
1238 1239 1240

	      /* Avoid automatic aggregate initialization.  */
	      flags = ADDR_DIFF_VEC_FLAGS (body);
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315

	      /* Try to find a known alignment for rel_lab.  */
	      for (prev = rel_lab;
		   prev
		   && ! insn_lengths[INSN_UID (prev)]
		   && ! (varying_length[INSN_UID (prev)] & 1);
		   prev = PREV_INSN (prev))
		if (varying_length[INSN_UID (prev)] & 2)
		  {
		    rel_align = LABEL_TO_ALIGNMENT (prev);
		    break;
		  }

	      /* See the comment on addr_diff_vec_flags in rtl.h for the
		 meaning of the flags values.  base: REL_LAB   vec: INSN  */
	      /* Anything after INSN has still addresses from the last
		 pass; adjust these so that they reflect our current
		 estimate for this pass.  */
	      if (flags.base_after_vec)
		rel_addr += insn_current_address - insn_last_address;
	      if (flags.min_after_vec)
		min_addr += insn_current_address - insn_last_address;
	      if (flags.max_after_vec)
		max_addr += insn_current_address - insn_last_address;
	      /* We want to know the worst case, i.e. lowest possible value
		 for the offset of MIN_LAB.  If MIN_LAB is after REL_LAB,
		 its offset is positive, and we have to be wary of code shrink;
		 otherwise, it is negative, and we have to be vary of code
		 size increase.  */
	      if (flags.min_after_base)
		{
		  /* If INSN is between REL_LAB and MIN_LAB, the size
		     changes we are about to make can change the alignment
		     within the observed offset, therefore we have to break
		     it up into two parts that are independent.  */
		  if (! flags.base_after_vec && flags.min_after_vec)
		    {
		      min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
		      min_addr -= align_fuzz (insn, min_lab, 0, 0);
		    }
		  else
		    min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
		}
	      else
		{
		  if (flags.base_after_vec && ! flags.min_after_vec)
		    {
		      min_addr -= align_fuzz (min_lab, insn, 0, ~0);
		      min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
		    }
		  else
		    min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
		}
	      /* Likewise, determine the highest lowest possible value
		 for the offset of MAX_LAB.  */
	      if (flags.max_after_base)
		{
		  if (! flags.base_after_vec && flags.max_after_vec)
		    {
		      max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
		      max_addr += align_fuzz (insn, max_lab, 0, ~0);
		    }
		  else
		    max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
		}
	      else
		{
		  if (flags.base_after_vec && ! flags.max_after_vec)
		    {
		      max_addr += align_fuzz (max_lab, insn, 0, 0);
		      max_addr += align_fuzz (insn, rel_lab, 0, 0);
		    }
		  else
		    max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
		}
1316 1317 1318 1319 1320 1321
	      vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
						   max_addr - rel_addr, body);
	      if (!increasing
		  || (GET_MODE_SIZE (vec_mode)
		      >= GET_MODE_SIZE (GET_MODE (body))))
		PUT_MODE (body, vec_mode);
1322 1323
	      if (JUMP_TABLES_IN_TEXT_SECTION
		  || readonly_data_section == text_section)
1324 1325 1326 1327 1328 1329 1330 1331
		{
		  insn_lengths[uid]
		    = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
		  insn_current_address += insn_lengths[uid];
		  if (insn_lengths[uid] != old_length)
		    something_changed = 1;
		}

1332 1333
	      continue;
	    }
1334 1335 1336
#endif /* CASE_VECTOR_SHORTEN_MODE */

	  if (! (varying_length[uid]))
1337
	    {
1338
	      if (NONJUMP_INSN_P (insn)
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
		  && GET_CODE (PATTERN (insn)) == SEQUENCE)
		{
		  int i;

		  body = PATTERN (insn);
		  for (i = 0; i < XVECLEN (body, 0); i++)
		    {
		      rtx inner_insn = XVECEXP (body, 0, i);
		      int inner_uid = INSN_UID (inner_insn);

		      INSN_ADDRESSES (inner_uid) = insn_current_address;

		      insn_current_address += insn_lengths[inner_uid];
		    }
Kazu Hirata committed
1353
		}
1354 1355 1356
	      else
		insn_current_address += insn_lengths[uid];

1357 1358
	      continue;
	    }
1359

1360
	  if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1361 1362
	    {
	      int i;
Kazu Hirata committed
1363

1364 1365 1366 1367 1368 1369 1370 1371
	      body = PATTERN (insn);
	      new_length = 0;
	      for (i = 0; i < XVECLEN (body, 0); i++)
		{
		  rtx inner_insn = XVECEXP (body, 0, i);
		  int inner_uid = INSN_UID (inner_insn);
		  int inner_length;

1372
		  INSN_ADDRESSES (inner_uid) = insn_current_address;
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382

		  /* insn_current_length returns 0 for insns with a
		     non-varying length.  */
		  if (! varying_length[inner_uid])
		    inner_length = insn_lengths[inner_uid];
		  else
		    inner_length = insn_current_length (inner_insn);

		  if (inner_length != insn_lengths[inner_uid])
		    {
1383 1384 1385 1386 1387 1388 1389
		      if (!increasing || inner_length > insn_lengths[inner_uid])
			{
			  insn_lengths[inner_uid] = inner_length;
			  something_changed = 1;
			}
		      else
			inner_length = insn_lengths[inner_uid];
1390
		    }
1391
		  insn_current_address += inner_length;
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
		  new_length += inner_length;
		}
	    }
	  else
	    {
	      new_length = insn_current_length (insn);
	      insn_current_address += new_length;
	    }

#ifdef ADJUST_INSN_LENGTH
	  /* If needed, do any adjustment.  */
	  tmp_length = new_length;
	  ADJUST_INSN_LENGTH (insn, new_length);
	  insn_current_address += (new_length - tmp_length);
#endif

1408 1409
	  if (new_length != insn_lengths[uid]
	      && (!increasing || new_length > insn_lengths[uid]))
1410 1411 1412 1413
	    {
	      insn_lengths[uid] = new_length;
	      something_changed = 1;
	    }
1414 1415
	  else
	    insn_current_address += insn_lengths[uid] - new_length;
1416
	}
1417
      /* For a non-optimizing compile, do only a single pass.  */
1418
      if (!increasing)
1419
	break;
1420
    }
1421 1422

  free (varying_length);
1423 1424 1425 1426 1427 1428 1429
}

/* Given the body of an INSN known to be generated by an ASM statement, return
   the number of machine instructions likely to be generated for this insn.
   This is used to compute its length.  */

static int
1430
asm_insn_count (rtx body)
1431
{
1432
  const char *templ;
1433

1434
  if (GET_CODE (body) == ASM_INPUT)
1435
    templ = XSTR (body, 0);
1436
  else
1437
    templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1438

1439 1440 1441 1442 1443 1444 1445 1446 1447
  return asm_str_count (templ);
}

/* Return the number of machine instructions likely to be generated for the
   inline-asm template. */
int
asm_str_count (const char *templ)
{
  int count = 1;
H.J. Lu committed
1448

1449
  if (!*templ)
1450 1451
    return 0;

1452 1453 1454
  for (; *templ; templ++)
    if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
	|| *templ == '\n')
1455 1456 1457 1458 1459
      count++;

  return count;
}

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
/* ??? This is probably the wrong place for these.  */
/* Structure recording the mapping from source file and directory
   names at compile time to those to be embedded in debug
   information.  */
typedef struct debug_prefix_map
{
  const char *old_prefix;
  const char *new_prefix;
  size_t old_len;
  size_t new_len;
  struct debug_prefix_map *next;
} debug_prefix_map;

/* Linked list of such structures.  */
debug_prefix_map *debug_prefix_maps;


/* Record a debug file prefix mapping.  ARG is the argument to
   -fdebug-prefix-map and must be of the form OLD=NEW.  */

void
add_debug_prefix_map (const char *arg)
{
  debug_prefix_map *map;
  const char *p;

  p = strchr (arg, '=');
  if (!p)
    {
      error ("invalid argument %qs to -fdebug-prefix-map", arg);
      return;
    }
  map = XNEW (debug_prefix_map);
1493
  map->old_prefix = xstrndup (arg, p - arg);
1494 1495
  map->old_len = p - arg;
  p++;
1496
  map->new_prefix = xstrdup (p);
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
  map->new_len = strlen (p);
  map->next = debug_prefix_maps;
  debug_prefix_maps = map;
}

/* Perform user-specified mapping of debug filename prefixes.  Return
   the new name corresponding to FILENAME.  */

const char *
remap_debug_filename (const char *filename)
{
  debug_prefix_map *map;
  char *s;
  const char *name;
  size_t name_len;

  for (map = debug_prefix_maps; map; map = map->next)
1514
    if (filename_ncmp (filename, map->old_prefix, map->old_len) == 0)
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
      break;
  if (!map)
    return filename;
  name = filename + map->old_len;
  name_len = strlen (name) + 1;
  s = (char *) alloca (name_len + map->new_len);
  memcpy (s, map->new_prefix, map->new_len);
  memcpy (s + map->new_len, name, name_len);
  return ggc_strdup (s);
}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
/* Return true if DWARF2 debug info can be emitted for DECL.  */

static bool
dwarf2_debug_info_emitted_p (tree decl)
{
  if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
    return false;

  if (DECL_IGNORED_P (decl))
    return false;

  return true;
}

Steven Bosscher committed
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
/* Return scope resulting from combination of S1 and S2.  */
static tree
choose_inner_scope (tree s1, tree s2)
{
   if (!s1)
     return s2;
   if (!s2)
     return s1;
   if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
     return s1;
   return s2;
}

/* Emit lexical block notes needed to change scope from S1 to S2.  */

static void
change_scope (rtx orig_insn, tree s1, tree s2)
{
  rtx insn = orig_insn;
  tree com = NULL_TREE;
  tree ts1 = s1, ts2 = s2;
  tree s;

  while (ts1 != ts2)
    {
      gcc_assert (ts1 && ts2);
      if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
	ts1 = BLOCK_SUPERCONTEXT (ts1);
      else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
	ts2 = BLOCK_SUPERCONTEXT (ts2);
      else
	{
	  ts1 = BLOCK_SUPERCONTEXT (ts1);
	  ts2 = BLOCK_SUPERCONTEXT (ts2);
	}
    }
  com = ts1;

  /* Close scopes.  */
  s = s1;
  while (s != com)
    {
      rtx note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
      NOTE_BLOCK (note) = s;
      s = BLOCK_SUPERCONTEXT (s);
    }

  /* Open scopes.  */
  s = s2;
  while (s != com)
    {
      insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
      NOTE_BLOCK (insn) = s;
      s = BLOCK_SUPERCONTEXT (s);
    }
}

/* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
   on the scope tree and the newly reordered instructions.  */

static void
reemit_insn_block_notes (void)
{
  tree cur_block = DECL_INITIAL (cfun->decl);
  rtx insn, note;

  insn = get_insns ();
  if (!active_insn_p (insn))
    insn = next_active_insn (insn);
  for (; insn; insn = next_active_insn (insn))
    {
      tree this_block;

      /* Avoid putting scope notes between jump table and its label.  */
      if (JUMP_TABLE_DATA_P (insn))
	continue;

      this_block = insn_scope (insn);
      /* For sequences compute scope resulting from merging all scopes
	 of instructions nested inside.  */
      if (GET_CODE (PATTERN (insn)) == SEQUENCE)
	{
	  int i;
	  rtx body = PATTERN (insn);

	  this_block = NULL;
	  for (i = 0; i < XVECLEN (body, 0); i++)
	    this_block = choose_inner_scope (this_block,
					     insn_scope (XVECEXP (body, 0, i)));
	}
      if (! this_block)
1631 1632 1633 1634 1635 1636
	{
	  if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
	    continue;
	  else
	    this_block = DECL_INITIAL (cfun->decl);
	}
Steven Bosscher committed
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652

      if (this_block != cur_block)
	{
	  change_scope (insn, cur_block, this_block);
	  cur_block = this_block;
	}
    }

  /* change_scope emits before the insn, not after.  */
  note = emit_note (NOTE_INSN_DELETED);
  change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
  delete_insn (note);

  reorder_blocks ();
}

1653 1654 1655 1656 1657 1658 1659
/* Output assembler code for the start of a function,
   and initialize some of the variables in this file
   for the new function.  The label for the function and associated
   assembler pseudo-ops have already been output in `assemble_start_function'.

   FIRST is the first insn of the rtl for the function being compiled.
   FILE is the file to write assembler code to.
1660
   OPTIMIZE_P is nonzero if we should eliminate redundant
1661 1662 1663
     test and compare insns.  */

void
1664
final_start_function (rtx first, FILE *file,
1665
		      int optimize_p ATTRIBUTE_UNUSED)
1666 1667 1668 1669 1670
{
  block_depth = 0;

  this_is_asm_operands = 0;

1671 1672
  need_profile_function = false;

1673 1674
  last_filename = LOCATION_FILE (prologue_location);
  last_linenum = LOCATION_LINE (prologue_location);
1675
  last_discriminator = discriminator = 0;
1676

1677
  high_block_linenum = high_function_linenum = last_linenum;
1678

1679 1680
  if (!DECL_IGNORED_P (current_function_decl))
    debug_hooks->begin_prologue (last_linenum, last_filename);
Jason Merrill committed
1681

1682
  if (!dwarf2_debug_info_emitted_p (current_function_decl))
1683
    dwarf2out_begin_prologue (0, NULL);
1684 1685

#ifdef LEAF_REG_REMAP
1686
  if (crtl->uses_only_leaf_regs)
1687 1688 1689 1690 1691
    leaf_renumber_regs (first);
#endif

  /* The Sun386i and perhaps other machines don't work right
     if the profiling code comes after the prologue.  */
1692
  if (targetm.profile_before_prologue () && crtl->profile)
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
    {
      if (targetm.asm_out.function_prologue
	  == default_function_pro_epilogue
#ifdef HAVE_prologue
	  && HAVE_prologue
#endif
	 )
	{
	  rtx insn;
	  for (insn = first; insn; insn = NEXT_INSN (insn))
	    if (!NOTE_P (insn))
	      {
		insn = NULL_RTX;
		break;
	      }
	    else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
		     || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
	      break;
	    else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
		     || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
	      continue;
	    else
	      {
		insn = NULL_RTX;
		break;
	      }

	  if (insn)
	    need_profile_function = true;
	  else
	    profile_function (file);
	}
      else
	profile_function (file);
    }
1728

1729 1730 1731 1732
  /* If debugging, assign block numbers to all of the blocks in this
     function.  */
  if (write_symbols)
    {
1733
      reemit_insn_block_notes ();
1734
      number_blocks (current_function_decl);
1735 1736 1737 1738 1739 1740
      /* We never actually put out begin/end notes for the top-level
	 block in the function.  But, conceptually, that block is
	 always needed.  */
      TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
    }

1741 1742 1743 1744 1745 1746 1747 1748 1749
  if (warn_frame_larger_than
    && get_frame_size () > frame_larger_than_size)
  {
      /* Issue a warning */
      warning (OPT_Wframe_larger_than_,
               "the frame size of %wd bytes is larger than %wd bytes",
               get_frame_size (), frame_larger_than_size);
  }

1750
  /* First output the function prologue: code to set up the stack frame.  */
1751
  targetm.asm_out.function_prologue (file, get_frame_size ());
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761

  /* If the machine represents the prologue as RTL, the profiling code must
     be emitted when NOTE_INSN_PROLOGUE_END is scanned.  */
#ifdef HAVE_prologue
  if (! HAVE_prologue)
#endif
    profile_after_prologue (file);
}

static void
1762
profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1763
{
1764
  if (!targetm.profile_before_prologue () && crtl->profile)
1765 1766 1767 1768
    profile_function (file);
}

static void
1769
profile_function (FILE *file ATTRIBUTE_UNUSED)
1770
{
1771
#ifndef NO_PROFILE_COUNTERS
1772
# define NO_PROFILE_COUNTERS	0
1773
#endif
1774 1775 1776 1777 1778 1779 1780 1781
#ifdef ASM_OUTPUT_REG_PUSH
  rtx sval = NULL, chain = NULL;

  if (cfun->returns_struct)
    sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
					   true);
  if (cfun->static_chain_decl)
    chain = targetm.calls.static_chain (current_function_decl, true);
1782
#endif /* ASM_OUTPUT_REG_PUSH */
1783

1784 1785 1786
  if (! NO_PROFILE_COUNTERS)
    {
      int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1787
      switch_to_section (data_section);
1788
      ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1789
      targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1790 1791
      assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
    }
1792

1793
  switch_to_section (current_function_section ());
1794

1795 1796 1797 1798 1799
#ifdef ASM_OUTPUT_REG_PUSH
  if (sval && REG_P (sval))
    ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
  if (chain && REG_P (chain))
    ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1800 1801
#endif

1802
  FUNCTION_PROFILER (file, current_function_funcdef_no);
1803

1804 1805 1806 1807 1808
#ifdef ASM_OUTPUT_REG_PUSH
  if (chain && REG_P (chain))
    ASM_OUTPUT_REG_POP (file, REGNO (chain));
  if (sval && REG_P (sval))
    ASM_OUTPUT_REG_POP (file, REGNO (sval));
1809 1810 1811 1812 1813 1814 1815 1816
#endif
}

/* Output assembler code for the end of a function.
   For clarity, args are same as those of `final_start_function'
   even though not all of them are needed.  */

void
1817
final_end_function (void)
1818
{
1819
  app_disable ();
1820

1821 1822
  if (!DECL_IGNORED_P (current_function_decl))
    debug_hooks->end_function (high_function_linenum);
1823 1824 1825

  /* Finally, output the function epilogue:
     code to restore the stack frame and return to the caller.  */
1826
  targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1827

1828
  /* And debug output.  */
1829 1830
  if (!DECL_IGNORED_P (current_function_decl))
    debug_hooks->end_epilogue (last_linenum, last_filename);
1831

1832
  if (!dwarf2_debug_info_emitted_p (current_function_decl)
1833
      && dwarf2out_do_frame ())
1834
    dwarf2out_end_epilogue (last_linenum, last_filename);
1835 1836
}

Xinliang David Li committed
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

/* Dumper helper for basic block information. FILE is the assembly
   output file, and INSN is the instruction being emitted.  */

static void
dump_basic_block_info (FILE *file, rtx insn, basic_block *start_to_bb,
                       basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
{
  basic_block bb;

  if (!flag_debug_asm)
    return;

  if (INSN_UID (insn) < bb_map_size
      && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
    {
      edge e;
      edge_iterator ei;

1856
      fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
Xinliang David Li committed
1857 1858 1859 1860 1861 1862
      if (bb->frequency)
        fprintf (file, " freq:%d", bb->frequency);
      if (bb->count)
        fprintf (file, " count:" HOST_WIDEST_INT_PRINT_DEC,
                 bb->count);
      fprintf (file, " seq:%d", (*bb_seqn)++);
1863
      fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
Xinliang David Li committed
1864 1865
      FOR_EACH_EDGE (e, ei, bb->preds)
        {
1866
          dump_edge_info (file, e, TDF_DETAILS, 0);
Xinliang David Li committed
1867 1868 1869 1870 1871 1872 1873 1874 1875
        }
      fprintf (file, "\n");
    }
  if (INSN_UID (insn) < bb_map_size
      && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
    {
      edge e;
      edge_iterator ei;

1876
      fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
Xinliang David Li committed
1877 1878
      FOR_EACH_EDGE (e, ei, bb->succs)
       {
1879
         dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
Xinliang David Li committed
1880 1881 1882 1883 1884
       }
      fprintf (file, "\n");
    }
}

1885
/* Output assembler code for some insns: all or part of a function.
1886
   For description of args, see `final_start_function', above.  */
1887 1888

void
1889
final (rtx first, FILE *file, int optimize_p)
1890
{
1891
  rtx insn, next;
1892
  int seen = 0;
1893

Xinliang David Li committed
1894 1895 1896 1897 1898 1899
  /* Used for -dA dump.  */
  basic_block *start_to_bb = NULL;
  basic_block *end_to_bb = NULL;
  int bb_map_size = 0;
  int bb_seqn = 0;

1900 1901
  last_ignored_compare = 0;

1902
#ifdef HAVE_cc0
1903
  for (insn = first; insn; insn = NEXT_INSN (insn))
1904
    {
1905 1906
      /* If CC tracking across branches is enabled, record the insn which
	 jumps to each branch only reached from one place.  */
1907
      if (optimize_p && JUMP_P (insn))
1908 1909
	{
	  rtx lab = JUMP_LABEL (insn);
1910
	  if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
1911 1912 1913 1914
	    {
	      LABEL_REFS (lab) = insn;
	    }
	}
1915
    }
1916
#endif
1917

1918 1919 1920 1921
  init_recog ();

  CC_STATUS_INIT;

Xinliang David Li committed
1922 1923 1924 1925 1926 1927 1928 1929
  if (flag_debug_asm)
    {
      basic_block bb;

      bb_map_size = get_max_uid () + 1;
      start_to_bb = XCNEWVEC (basic_block, bb_map_size);
      end_to_bb = XCNEWVEC (basic_block, bb_map_size);

1930 1931 1932 1933 1934 1935 1936
      /* There is no cfg for a thunk.  */
      if (!cfun->is_thunk)
	FOR_EACH_BB_REVERSE (bb)
	  {
	    start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
	    end_to_bb[INSN_UID (BB_END (bb))] = bb;
	  }
Xinliang David Li committed
1937 1938
    }

1939
  /* Output the insns.  */
1940
  for (insn = first; insn;)
1941
    {
1942
      if (HAVE_ATTR_length)
1943
	{
1944 1945 1946 1947 1948 1949 1950 1951 1952
	  if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
	    {
	      /* This can be triggered by bugs elsewhere in the compiler if
		 new insns are created after init_insn_lengths is called.  */
	      gcc_assert (NOTE_P (insn));
	      insn_current_address = -1;
	    }
	  else
	    insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1953 1954
	}

Xinliang David Li committed
1955 1956
      dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
                             bb_map_size, &bb_seqn);
1957
      insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
1958
    }
Xinliang David Li committed
1959 1960 1961 1962 1963 1964

  if (flag_debug_asm)
    {
      free (start_to_bb);
      free (end_to_bb);
    }
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974

  /* Remove CFI notes, to avoid compare-debug failures.  */
  for (insn = first; insn; insn = next)
    {
      next = NEXT_INSN (insn);
      if (NOTE_P (insn)
	  && (NOTE_KIND (insn) == NOTE_INSN_CFI
	      || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
	delete_insn (insn);
    }
1975 1976
}

1977
const char *
1978
get_insn_template (int code, rtx insn)
1979 1980 1981 1982
{
  switch (insn_data[code].output_format)
    {
    case INSN_OUTPUT_FORMAT_SINGLE:
1983
      return insn_data[code].output.single;
1984
    case INSN_OUTPUT_FORMAT_MULTI:
1985
      return insn_data[code].output.multi[which_alternative];
1986
    case INSN_OUTPUT_FORMAT_FUNCTION:
1987
      gcc_assert (insn);
1988
      return (*insn_data[code].output.function) (recog_data.operand, insn);
1989 1990

    default:
1991
      gcc_unreachable ();
1992 1993
    }
}
Kazu Hirata committed
1994

1995 1996 1997 1998 1999 2000
/* Emit the appropriate declaration for an alternate-entry-point
   symbol represented by INSN, to FILE.  INSN is a CODE_LABEL with
   LABEL_KIND != LABEL_NORMAL.

   The case fall-through in this function is intentional.  */
static void
2001
output_alternate_entry_point (FILE *file, rtx insn)
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
{
  const char *name = LABEL_NAME (insn);

  switch (LABEL_KIND (insn))
    {
    case LABEL_WEAK_ENTRY:
#ifdef ASM_WEAKEN_LABEL
      ASM_WEAKEN_LABEL (file, name);
#endif
    case LABEL_GLOBAL_ENTRY:
2012
      targetm.asm_out.globalize_label (file, name);
2013
    case LABEL_STATIC_ENTRY:
2014 2015 2016
#ifdef ASM_OUTPUT_TYPE_DIRECTIVE
      ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
#endif
2017 2018 2019 2020 2021
      ASM_OUTPUT_LABEL (file, name);
      break;

    case LABEL_NORMAL:
    default:
2022
      gcc_unreachable ();
2023 2024 2025
    }
}

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
/* Given a CALL_INSN, find and return the nested CALL. */
static rtx
call_from_call_insn (rtx insn)
{
  rtx x;
  gcc_assert (CALL_P (insn));
  x = PATTERN (insn);

  while (GET_CODE (x) != CALL)
    {
      switch (GET_CODE (x))
	{
	default:
	  gcc_unreachable ();
2040 2041 2042
	case COND_EXEC:
	  x = COND_EXEC_CODE (x);
	  break;
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	case PARALLEL:
	  x = XVECEXP (x, 0, 0);
	  break;
	case SET:
	  x = XEXP (x, 1);
	  break;
	}
    }
  return x;
}

2054 2055 2056 2057 2058
/* The final scan for one insn, INSN.
   Args are same as in `final', except that INSN
   is the insn being scanned.
   Value returned is the next insn to be scanned.

2059 2060
   NOPEEPHOLES is the flag to disallow peephole processing (currently
   used for within delayed branch sequence output).
2061

2062 2063 2064 2065 2066 2067
   SEEN is used to track the end of the prologue, for emitting
   debug information.  We force the emission of a line note after
   both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
   at the beginning of the second basic block, whichever comes
   first.  */

2068
rtx
2069
final_scan_insn (rtx insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2070
		 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2071
{
2072 2073 2074
#ifdef HAVE_cc0
  rtx set;
#endif
2075
  rtx next;
2076

2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
  insn_counter++;

  /* Ignore deleted insns.  These can occur when we split insns (due to a
     template of "#") while not optimizing.  */
  if (INSN_DELETED_P (insn))
    return NEXT_INSN (insn);

  switch (GET_CODE (insn))
    {
    case NOTE:
2087
      switch (NOTE_KIND (insn))
2088 2089 2090
	{
	case NOTE_INSN_DELETED:
	  break;
2091

2092
	case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2093
	  in_cold_section_p = !in_cold_section_p;
2094

2095 2096
	  if (dwarf2out_do_frame ())
	    dwarf2out_switch_text_section ();
2097
	  else if (!DECL_IGNORED_P (current_function_decl))
2098
	    debug_hooks->switch_text_section ();
2099

2100
	  switch_to_section (current_function_section ());
2101 2102 2103
	  targetm.asm_out.function_switched_text_sections (asm_out_file,
							   current_function_decl,
							   in_cold_section_p);
2104
	  break;
2105

2106
	case NOTE_INSN_BASIC_BLOCK:
2107 2108 2109 2110 2111 2112
	  if (need_profile_function)
	    {
	      profile_function (asm_out_file);
	      need_profile_function = false;
	    }

2113 2114
	  if (targetm.asm_out.unwind_emit)
	    targetm.asm_out.unwind_emit (asm_out_file, insn);
2115

2116 2117 2118
	  if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
	    {
	      *seen |= SEEN_EMITTED;
2119
	      force_source_line = true;
2120 2121 2122 2123
	    }
	  else
	    *seen |= SEEN_BB;

2124 2125
          discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;

2126
	  break;
2127

2128
	case NOTE_INSN_EH_REGION_BEG:
2129 2130
	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
				  NOTE_EH_HANDLER (insn));
Mike Stump committed
2131 2132
	  break;

2133
	case NOTE_INSN_EH_REGION_END:
2134 2135
	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
				  NOTE_EH_HANDLER (insn));
Mike Stump committed
2136 2137
	  break;

2138
	case NOTE_INSN_PROLOGUE_END:
2139
	  targetm.asm_out.function_end_prologue (file);
2140
	  profile_after_prologue (file);
2141 2142 2143 2144

	  if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
	    {
	      *seen |= SEEN_EMITTED;
2145
	      force_source_line = true;
2146 2147 2148 2149
	    }
	  else
	    *seen |= SEEN_NOTE;

2150 2151
	  break;

2152
	case NOTE_INSN_EPILOGUE_BEG:
2153 2154
          if (!DECL_IGNORED_P (current_function_decl))
            (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2155
	  targetm.asm_out.function_begin_epilogue (file);
2156
	  break;
2157

2158 2159 2160 2161 2162 2163 2164
	case NOTE_INSN_CFI:
	  dwarf2out_emit_cfi (NOTE_CFI (insn));
	  break;

	case NOTE_INSN_CFI_LABEL:
	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
				  NOTE_LABEL_NUMBER (insn));
2165 2166
	  break;

2167
	case NOTE_INSN_FUNCTION_BEG:
2168 2169 2170 2171 2172 2173
	  if (need_profile_function)
	    {
	      profile_function (asm_out_file);
	      need_profile_function = false;
	    }

2174
	  app_disable ();
2175 2176
	  if (!DECL_IGNORED_P (current_function_decl))
	    debug_hooks->end_prologue (last_linenum, last_filename);
2177 2178 2179 2180

	  if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
	    {
	      *seen |= SEEN_EMITTED;
2181
	      force_source_line = true;
2182 2183 2184 2185
	    }
	  else
	    *seen |= SEEN_NOTE;

2186
	  break;
2187 2188 2189

	case NOTE_INSN_BLOCK_BEG:
	  if (debug_info_level == DINFO_LEVEL_NORMAL
2190
	      || debug_info_level == DINFO_LEVEL_VERBOSE
2191 2192 2193
	      || write_symbols == DWARF2_DEBUG
	      || write_symbols == VMS_AND_DWARF2_DEBUG
	      || write_symbols == VMS_DEBUG)
2194 2195
	    {
	      int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2196

2197 2198 2199
	      app_disable ();
	      ++block_depth;
	      high_block_linenum = last_linenum;
2200

2201
	      /* Output debugging info about the symbol-block beginning.  */
2202 2203
	      if (!DECL_IGNORED_P (current_function_decl))
		debug_hooks->begin_block (last_linenum, n);
2204

2205 2206 2207
	      /* Mark this block as output.  */
	      TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
	    }
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
	  if (write_symbols == DBX_DEBUG
	      || write_symbols == SDB_DEBUG)
	    {
	      location_t *locus_ptr
		= block_nonartificial_location (NOTE_BLOCK (insn));

	      if (locus_ptr != NULL)
		{
		  override_filename = LOCATION_FILE (*locus_ptr);
		  override_linenum = LOCATION_LINE (*locus_ptr);
		}
	    }
2220
	  break;
2221

2222 2223 2224
	case NOTE_INSN_BLOCK_END:
	  if (debug_info_level == DINFO_LEVEL_NORMAL
	      || debug_info_level == DINFO_LEVEL_VERBOSE
2225 2226 2227
	      || write_symbols == DWARF2_DEBUG
	      || write_symbols == VMS_AND_DWARF2_DEBUG
	      || write_symbols == VMS_DEBUG)
2228 2229
	    {
	      int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2230

2231 2232 2233 2234
	      app_disable ();

	      /* End of a symbol-block.  */
	      --block_depth;
2235
	      gcc_assert (block_depth >= 0);
2236

2237 2238
	      if (!DECL_IGNORED_P (current_function_decl))
		debug_hooks->end_block (high_block_linenum, n);
2239
	    }
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
	  if (write_symbols == DBX_DEBUG
	      || write_symbols == SDB_DEBUG)
	    {
	      tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
	      location_t *locus_ptr
		= block_nonartificial_location (outer_block);

	      if (locus_ptr != NULL)
		{
		  override_filename = LOCATION_FILE (*locus_ptr);
		  override_linenum = LOCATION_LINE (*locus_ptr);
		}
	      else
		{
		  override_filename = NULL;
		  override_linenum = 0;
		}
	    }
2258 2259 2260 2261 2262 2263
	  break;

	case NOTE_INSN_DELETED_LABEL:
	  /* Emit the label.  We may have deleted the CODE_LABEL because
	     the label could be proved to be unreachable, though still
	     referenced (in the form of having its address taken.  */
2264
	  ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2265
	  break;
2266

2267 2268 2269 2270 2271 2272
	case NOTE_INSN_DELETED_DEBUG_LABEL:
	  /* Similarly, but need to use different namespace for it.  */
	  if (CODE_LABEL_NUMBER (insn) != -1)
	    ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
	  break;

2273
	case NOTE_INSN_VAR_LOCATION:
2274
	case NOTE_INSN_CALL_ARG_LOCATION:
2275 2276
	  if (!DECL_IGNORED_P (current_function_decl))
	    debug_hooks->var_location (insn);
2277 2278
	  break;

2279
	default:
2280
	  gcc_unreachable ();
Kazu Hirata committed
2281
	  break;
2282 2283 2284 2285 2286 2287 2288
	}
      break;

    case BARRIER:
      break;

    case CODE_LABEL:
2289 2290
      /* The target port might emit labels in the output function for
	 some insn, e.g. sh.c output_branchy_insn.  */
2291 2292 2293
      if (CODE_LABEL_NUMBER (insn) <= max_labelno)
	{
	  int align = LABEL_TO_ALIGNMENT (insn);
Kaveh R. Ghazi committed
2294
#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2295
	  int max_skip = LABEL_TO_MAX_SKIP (insn);
Kaveh R. Ghazi committed
2296
#endif
2297

2298
	  if (align && NEXT_INSN (insn))
2299
	    {
2300
#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2301
	      ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2302
#else
2303 2304 2305
#ifdef ASM_OUTPUT_ALIGN_WITH_NOP
              ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
#else
2306
	      ASM_OUTPUT_ALIGN (file, align);
2307
#endif
2308
#endif
2309
	    }
2310
	}
2311
      CC_STATUS_INIT;
2312

2313 2314
      if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
	debug_hooks->label (insn);
2315

2316
      app_disable ();
2317 2318

      next = next_nonnote_insn (insn);
2319 2320 2321 2322
      /* If this label is followed by a jump-table, make sure we put
	 the label in the read-only section.  Also possibly write the
	 label and jump table together.  */
      if (next != 0 && JUMP_TABLE_DATA_P (next))
2323
	{
2324
#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2325 2326 2327
	  /* In this case, the case vector is being moved by the
	     target, so don't output the label at all.  Leave that
	     to the back end macros.  */
2328
#else
2329 2330 2331
	  if (! JUMP_TABLES_IN_TEXT_SECTION)
	    {
	      int log_align;
2332

2333 2334
	      switch_to_section (targetm.asm_out.function_rodata_section
				 (current_function_decl));
2335 2336

#ifdef ADDR_VEC_ALIGN
2337
	      log_align = ADDR_VEC_ALIGN (next);
2338
#else
2339
	      log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2340
#endif
2341 2342 2343 2344
	      ASM_OUTPUT_ALIGN (file, log_align);
	    }
	  else
	    switch_to_section (current_function_section ());
2345

2346
#ifdef ASM_OUTPUT_CASE_LABEL
2347 2348
	  ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
				 next);
2349
#else
2350
	  targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2351
#endif
2352
#endif
2353
	  break;
2354
	}
2355 2356
      if (LABEL_ALT_ENTRY_P (insn))
	output_alternate_entry_point (file, insn);
2357
      else
2358
	targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2359 2360 2361 2362
      break;

    default:
      {
2363
	rtx body = PATTERN (insn);
2364
	int insn_code_number;
2365
	const char *templ;
2366
	bool is_stmt;
2367

2368 2369
	/* Reset this early so it is correct for ASM statements.  */
	current_insn_predicate = NULL_RTX;
2370

2371 2372 2373
	/* An INSN, JUMP_INSN or CALL_INSN.
	   First check for special kinds that recog doesn't recognize.  */

2374
	if (GET_CODE (body) == USE /* These are just declarations.  */
2375 2376 2377 2378
	    || GET_CODE (body) == CLOBBER)
	  break;

#ifdef HAVE_cc0
2379 2380 2381 2382 2383
	{
	  /* If there is a REG_CC_SETTER note on this insn, it means that
	     the setting of the condition code was done in the delay slot
	     of the insn that branched here.  So recover the cc status
	     from the insn that set it.  */
2384

2385 2386 2387 2388 2389 2390 2391
	  rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
	  if (note)
	    {
	      NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
	      cc_prev_status = cc_status;
	    }
	}
2392 2393 2394 2395 2396
#endif

	/* Detect insns that are really jump-tables
	   and output them as such.  */

2397
        if (JUMP_TABLE_DATA_P (insn))
2398
	  {
Kaveh R. Ghazi committed
2399
#if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2400
	    int vlen, idx;
Kaveh R. Ghazi committed
2401
#endif
2402

2403
	    if (! JUMP_TABLES_IN_TEXT_SECTION)
2404 2405
	      switch_to_section (targetm.asm_out.function_rodata_section
				 (current_function_decl));
2406
	    else
2407
	      switch_to_section (current_function_section ());
2408

2409
	    app_disable ();
2410

2411 2412 2413 2414 2415 2416
#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
	    if (GET_CODE (body) == ADDR_VEC)
	      {
#ifdef ASM_OUTPUT_ADDR_VEC
		ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
#else
2417
		gcc_unreachable ();
2418 2419 2420 2421 2422 2423 2424
#endif
	      }
	    else
	      {
#ifdef ASM_OUTPUT_ADDR_DIFF_VEC
		ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
#else
2425
		gcc_unreachable ();
2426 2427 2428
#endif
	      }
#else
2429 2430 2431 2432 2433 2434 2435 2436 2437
	    vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
	    for (idx = 0; idx < vlen; idx++)
	      {
		if (GET_CODE (body) == ADDR_VEC)
		  {
#ifdef ASM_OUTPUT_ADDR_VEC_ELT
		    ASM_OUTPUT_ADDR_VEC_ELT
		      (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
#else
2438
		    gcc_unreachable ();
2439 2440 2441 2442 2443 2444 2445
#endif
		  }
		else
		  {
#ifdef ASM_OUTPUT_ADDR_DIFF_ELT
		    ASM_OUTPUT_ADDR_DIFF_ELT
		      (file,
2446
		       body,
2447 2448 2449
		       CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
		       CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
#else
2450
		    gcc_unreachable ();
2451 2452 2453 2454 2455 2456 2457 2458
#endif
		  }
	      }
#ifdef ASM_OUTPUT_CASE_END
	    ASM_OUTPUT_CASE_END (file,
				 CODE_LABEL_NUMBER (PREV_INSN (insn)),
				 insn);
#endif
2459
#endif
2460

2461
	    switch_to_section (current_function_section ());
2462 2463 2464

	    break;
	  }
2465 2466
	/* Output this line note if it is the first or the last line
	   note in a row.  */
2467 2468 2469 2470
	if (!DECL_IGNORED_P (current_function_decl)
	    && notice_source_line (insn, &is_stmt))
	  (*debug_hooks->source_line) (last_linenum, last_filename,
				       last_discriminator, is_stmt);
2471 2472 2473

	if (GET_CODE (body) == ASM_INPUT)
	  {
2474 2475
	    const char *string = XSTR (body, 0);

2476 2477
	    /* There's no telling what that did to the condition codes.  */
	    CC_STATUS_INIT;
2478 2479

	    if (string[0])
2480
	      {
2481
		expanded_location loc;
2482

Anatoly Sokolov committed
2483
		app_enable ();
2484
		loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2485
		if (*loc.file && loc.line)
2486 2487
		  fprintf (asm_out_file, "%s %i \"%s\" 1\n",
			   ASM_COMMENT_START, loc.line, loc.file);
2488
		fprintf (asm_out_file, "\t%s\n", string);
2489 2490
#if HAVE_AS_LINE_ZERO
		if (*loc.file && loc.line)
2491
		  fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2492
#endif
2493 2494 2495 2496 2497 2498 2499
	      }
	    break;
	  }

	/* Detect `asm' construct with operands.  */
	if (asm_noperands (body) >= 0)
	  {
2500
	    unsigned int noperands = asm_noperands (body);
2501
	    rtx *ops = XALLOCAVEC (rtx, noperands);
2502
	    const char *string;
2503
	    location_t loc;
2504
	    expanded_location expanded;
2505 2506 2507 2508 2509

	    /* There's no telling what that did to the condition codes.  */
	    CC_STATUS_INIT;

	    /* Get out the operand values.  */
2510
	    string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2511
	    /* Inhibit dying on what would otherwise be compiler bugs.  */
2512 2513
	    insn_noperands = noperands;
	    this_is_asm_operands = insn;
2514
	    expanded = expand_location (loc);
2515

2516 2517 2518 2519
#ifdef FINAL_PRESCAN_INSN
	    FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
#endif

2520
	    /* Output the insn using them.  */
2521 2522
	    if (string[0])
	      {
Anatoly Sokolov committed
2523
		app_enable ();
2524
		if (expanded.file && expanded.line)
2525
		  fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2526
			   ASM_COMMENT_START, expanded.line, expanded.file);
2527
	        output_asm_insn (string, ops);
2528
#if HAVE_AS_LINE_ZERO
2529
		if (expanded.file && expanded.line)
2530
		  fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2531
#endif
2532 2533
	      }

2534 2535 2536 2537
	    if (targetm.asm_out.final_postscan_insn)
	      targetm.asm_out.final_postscan_insn (file, insn, ops,
						   insn_noperands);

2538 2539 2540 2541
	    this_is_asm_operands = 0;
	    break;
	  }

2542
	app_disable ();
2543 2544 2545 2546

	if (GET_CODE (body) == SEQUENCE)
	  {
	    /* A delayed-branch sequence */
2547
	    int i;
2548 2549 2550 2551 2552 2553 2554 2555

	    final_sequence = body;

	    /* The first insn in this SEQUENCE might be a JUMP_INSN that will
	       force the restoration of a comparison that was previously
	       thought unnecessary.  If that happens, cancel this sequence
	       and cause that insn to be restored.  */

2556
	    next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2557 2558 2559 2560 2561 2562 2563
	    if (next != XVECEXP (body, 0, 1))
	      {
		final_sequence = 0;
		return next;
	      }

	    for (i = 1; i < XVECLEN (body, 0); i++)
2564 2565 2566 2567 2568 2569
	      {
		rtx insn = XVECEXP (body, 0, i);
		rtx next = NEXT_INSN (insn);
		/* We loop in case any instruction in a delay slot gets
		   split.  */
		do
2570
		  insn = final_scan_insn (insn, file, 0, 1, seen);
2571 2572
		while (insn != next);
	      }
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
#ifdef DBR_OUTPUT_SEQEND
	    DBR_OUTPUT_SEQEND (file);
#endif
	    final_sequence = 0;

	    /* If the insn requiring the delay slot was a CALL_INSN, the
	       insns in the delay slot are actually executed before the
	       called function.  Hence we don't preserve any CC-setting
	       actions in these insns and the CC must be marked as being
	       clobbered by the function.  */
2583
	    if (CALL_P (XVECEXP (body, 0, 0)))
2584 2585 2586
	      {
		CC_STATUS_INIT;
	      }
2587 2588 2589 2590 2591 2592 2593 2594
	    break;
	  }

	/* We have a real machine instruction as rtl.  */

	body = PATTERN (insn);

#ifdef HAVE_cc0
Kazu Hirata committed
2595
	set = single_set (insn);
2596

2597 2598 2599 2600 2601 2602 2603 2604
	/* Check for redundant test and compare instructions
	   (when the condition codes are already set up as desired).
	   This is done only when optimizing; if not optimizing,
	   it should be possible for the user to alter a variable
	   with the debugger in between statements
	   and the next statement should reexamine the variable
	   to compute the condition codes.  */

2605
	if (optimize_p)
2606
	  {
2607 2608 2609
	    if (set
		&& GET_CODE (SET_DEST (set)) == CC0
		&& insn != last_ignored_compare)
2610
	      {
Paolo Bonzini committed
2611
		rtx src1, src2;
2612
		if (GET_CODE (SET_SRC (set)) == SUBREG)
2613
		  SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
Paolo Bonzini committed
2614 2615 2616 2617

		src1 = SET_SRC (set);
		src2 = NULL_RTX;
		if (GET_CODE (SET_SRC (set)) == COMPARE)
2618 2619 2620
		  {
		    if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
		      XEXP (SET_SRC (set), 0)
2621
			= alter_subreg (&XEXP (SET_SRC (set), 0), true);
2622 2623
		    if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
		      XEXP (SET_SRC (set), 1)
2624
			= alter_subreg (&XEXP (SET_SRC (set), 1), true);
Paolo Bonzini committed
2625 2626 2627
		    if (XEXP (SET_SRC (set), 1)
			== CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
		      src2 = XEXP (SET_SRC (set), 0);
2628 2629
		  }
		if ((cc_status.value1 != 0
Paolo Bonzini committed
2630
		     && rtx_equal_p (src1, cc_status.value1))
2631
		    || (cc_status.value2 != 0
Paolo Bonzini committed
2632 2633 2634 2635 2636
			&& rtx_equal_p (src1, cc_status.value2))
		    || (src2 != 0 && cc_status.value1 != 0
		        && rtx_equal_p (src2, cc_status.value1))
		    || (src2 != 0 && cc_status.value2 != 0
			&& rtx_equal_p (src2, cc_status.value2)))
2637
		  {
2638
		    /* Don't delete insn if it has an addressing side-effect.  */
2639
		    if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2640 2641 2642 2643 2644 2645 2646
			/* or if anything in it is volatile.  */
			&& ! volatile_refs_p (PATTERN (insn)))
		      {
			/* We don't really delete the insn; just ignore it.  */
			last_ignored_compare = insn;
			break;
		      }
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
		  }
	      }
	  }

	/* If this is a conditional branch, maybe modify it
	   if the cc's are in a nonstandard state
	   so that it accomplishes the same thing that it would
	   do straightforwardly if the cc's were set up normally.  */

	if (cc_status.flags != 0
2657
	    && JUMP_P (insn)
2658 2659 2660
	    && GET_CODE (body) == SET
	    && SET_DEST (body) == pc_rtx
	    && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2661
	    && COMPARISON_P (XEXP (SET_SRC (body), 0))
2662
	    && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2663 2664 2665 2666 2667 2668
	  {
	    /* This function may alter the contents of its argument
	       and clear some of the cc_status.flags bits.
	       It may also return 1 meaning condition now always true
	       or -1 meaning condition now always false
	       or 2 meaning condition nontrivial but altered.  */
2669
	    int result = alter_cond (XEXP (SET_SRC (body), 0));
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
	    /* If condition now has fixed value, replace the IF_THEN_ELSE
	       with its then-operand or its else-operand.  */
	    if (result == 1)
	      SET_SRC (body) = XEXP (SET_SRC (body), 1);
	    if (result == -1)
	      SET_SRC (body) = XEXP (SET_SRC (body), 2);

	    /* The jump is now either unconditional or a no-op.
	       If it has become a no-op, don't try to output it.
	       (It would not be recognized.)  */
	    if (SET_SRC (body) == pc_rtx)
	      {
2682
	        delete_insn (insn);
2683 2684
		break;
	      }
2685
	    else if (ANY_RETURN_P (SET_SRC (body)))
2686 2687 2688 2689 2690 2691 2692 2693
	      /* Replace (set (pc) (return)) with (return).  */
	      PATTERN (insn) = body = SET_SRC (body);

	    /* Rerecognize the instruction if it has changed.  */
	    if (result != 0)
	      INSN_CODE (insn) = -1;
	  }

2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
	/* If this is a conditional trap, maybe modify it if the cc's
	   are in a nonstandard state so that it accomplishes the same
	   thing that it would do straightforwardly if the cc's were
	   set up normally.  */
	if (cc_status.flags != 0
	    && NONJUMP_INSN_P (insn)
	    && GET_CODE (body) == TRAP_IF
	    && COMPARISON_P (TRAP_CONDITION (body))
	    && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
	  {
	    /* This function may alter the contents of its argument
	       and clear some of the cc_status.flags bits.
	       It may also return 1 meaning condition now always true
	       or -1 meaning condition now always false
	       or 2 meaning condition nontrivial but altered.  */
	    int result = alter_cond (TRAP_CONDITION (body));

	    /* If TRAP_CONDITION has become always false, delete the
	       instruction.  */
	    if (result == -1)
	      {
		delete_insn (insn);
		break;
	      }

	    /* If TRAP_CONDITION has become always true, replace
	       TRAP_CONDITION with const_true_rtx.  */
	    if (result == 1)
	      TRAP_CONDITION (body) = const_true_rtx;

	    /* Rerecognize the instruction if it has changed.  */
	    if (result != 0)
	      INSN_CODE (insn) = -1;
	  }

2729
	/* Make same adjustments to instructions that examine the
2730 2731
	   condition codes without jumping and instructions that
	   handle conditional moves (if this machine has either one).  */
2732 2733

	if (cc_status.flags != 0
2734
	    && set != 0)
2735
	  {
2736
	    rtx cond_rtx, then_rtx, else_rtx;
Kazu Hirata committed
2737

2738
	    if (!JUMP_P (insn)
2739
		&& GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2740
	      {
2741 2742 2743
		cond_rtx = XEXP (SET_SRC (set), 0);
		then_rtx = XEXP (SET_SRC (set), 1);
		else_rtx = XEXP (SET_SRC (set), 2);
2744 2745 2746
	      }
	    else
	      {
2747
		cond_rtx = SET_SRC (set);
2748 2749 2750
		then_rtx = const_true_rtx;
		else_rtx = const0_rtx;
	      }
Kazu Hirata committed
2751

2752 2753
	    if (COMPARISON_P (cond_rtx)
		&& XEXP (cond_rtx, 0) == cc0_rtx)
2754
	      {
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
		int result;
		result = alter_cond (cond_rtx);
		if (result == 1)
		  validate_change (insn, &SET_SRC (set), then_rtx, 0);
		else if (result == -1)
		  validate_change (insn, &SET_SRC (set), else_rtx, 0);
		else if (result == 2)
		  INSN_CODE (insn) = -1;
		if (SET_DEST (set) == SET_SRC (set))
		  delete_insn (insn);
2765 2766
	      }
	  }
2767

2768 2769
#endif

2770
#ifdef HAVE_peephole
2771 2772
	/* Do machine-specific peephole optimizations if desired.  */

2773
	if (optimize_p && !flag_no_peephole && !nopeepholes)
2774 2775 2776 2777 2778 2779
	  {
	    rtx next = peephole (insn);
	    /* When peepholing, if there were notes within the peephole,
	       emit them before the peephole.  */
	    if (next != 0 && next != NEXT_INSN (insn))
	      {
2780
		rtx note, prev = PREV_INSN (insn);
2781 2782 2783

		for (note = NEXT_INSN (insn); note != next;
		     note = NEXT_INSN (note))
2784
		  final_scan_insn (note, file, optimize_p, nopeepholes, seen);
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796

		/* Put the notes in the proper position for a later
		   rescan.  For example, the SH target can do this
		   when generating a far jump in a delayed branch
		   sequence.  */
		note = NEXT_INSN (insn);
		PREV_INSN (note) = prev;
		NEXT_INSN (prev) = note;
		NEXT_INSN (PREV_INSN (next)) = insn;
		PREV_INSN (insn) = PREV_INSN (next);
		NEXT_INSN (insn) = next;
		PREV_INSN (next) = insn;
2797 2798 2799 2800 2801
	      }

	    /* PEEPHOLE might have changed this.  */
	    body = PATTERN (insn);
	  }
2802
#endif
2803 2804 2805 2806 2807 2808 2809

	/* Try to recognize the instruction.
	   If successful, verify that the operands satisfy the
	   constraints for the instruction.  Crash if they don't,
	   since `reload' should have changed them so that they do.  */

	insn_code_number = recog_memoized (insn);
2810
	cleanup_subreg_operands (insn);
2811

2812 2813 2814
	/* Dump the insn in the assembly for debugging (-dAP).
	   If the final dump is requested as slim RTL, dump slim
	   RTL to the assembly file also.  */
Kazu Hirata committed
2815 2816 2817
	if (flag_dump_rtl_in_asm)
	  {
	    print_rtx_head = ASM_COMMENT_START;
2818 2819 2820 2821
	    if (! (dump_flags & TDF_SLIM))
	      print_rtl_single (asm_out_file, insn);
	    else
	      dump_insn_slim (asm_out_file, insn);
Kazu Hirata committed
2822 2823
	    print_rtx_head = "";
	  }
2824

2825
	if (! constrain_operands_cached (1))
2826 2827 2828 2829 2830 2831
	  fatal_insn_not_found (insn);

	/* Some target machines need to prescan each insn before
	   it is output.  */

#ifdef FINAL_PRESCAN_INSN
2832
	FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2833 2834
#endif

2835 2836
	if (targetm.have_conditional_execution ()
	    && GET_CODE (PATTERN (insn)) == COND_EXEC)
2837 2838
	  current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
#ifdef HAVE_cc0
	cc_prev_status = cc_status;

	/* Update `cc_status' for this instruction.
	   The instruction's output routine may change it further.
	   If the output routine for a jump insn needs to depend
	   on the cc status, it should look at cc_prev_status.  */

	NOTICE_UPDATE_CC (body, insn);
#endif

2850
	current_output_insn = debug_insn = insn;
2851

2852
	/* Find the proper template for this insn.  */
2853
	templ = get_insn_template (insn_code_number, insn);
2854

2855 2856 2857
	/* If the C code returns 0, it means that it is a jump insn
	   which follows a deleted test insn, and that test insn
	   needs to be reinserted.  */
2858
	if (templ == 0)
2859
	  {
2860 2861
	    rtx prev;

2862
	    gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2863 2864 2865 2866 2867 2868 2869 2870 2871

	    /* We have already processed the notes between the setter and
	       the user.  Make sure we don't process them again, this is
	       particularly important if one of the notes is a block
	       scope note or an EH note.  */
	    for (prev = insn;
		 prev != last_ignored_compare;
		 prev = PREV_INSN (prev))
	      {
2872
		if (NOTE_P (prev))
2873
		  delete_insn (prev);	/* Use delete_note.  */
2874 2875 2876
	      }

	    return prev;
2877 2878 2879 2880
	  }

	/* If the template is the string "#", it means that this insn must
	   be split.  */
2881
	if (templ[0] == '#' && templ[1] == '\0')
2882
	  {
2883
	    rtx new_rtx = try_split (body, insn, 0);
2884 2885

	    /* If we didn't split the insn, go away.  */
2886
	    if (new_rtx == insn && PATTERN (new_rtx) == body)
2887
	      fatal_insn ("could not split insn", insn);
Kazu Hirata committed
2888

2889 2890 2891 2892
	    /* If we have a length attribute, this instruction should have
	       been split in shorten_branches, to ensure that we would have
	       valid length info for the splitees.  */
	    gcc_assert (!HAVE_ATTR_length);
2893

2894
	    return new_rtx;
2895
	  }
Kazu Hirata committed
2896

2897 2898 2899
	/* ??? This will put the directives in the wrong place if
	   get_insn_template outputs assembly directly.  However calling it
	   before get_insn_template breaks if the insns is split.  */
2900 2901
	if (targetm.asm_out.unwind_emit_before_insn
	    && targetm.asm_out.unwind_emit)
2902
	  targetm.asm_out.unwind_emit (asm_out_file, insn);
2903

2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
	if (CALL_P (insn))
	  {
	    rtx x = call_from_call_insn (insn);
	    x = XEXP (x, 0);
	    if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
	      {
		tree t;
		x = XEXP (x, 0);
		t = SYMBOL_REF_DECL (x);
		if (t)
		  assemble_external (t);
	      }
2916 2917
	    if (!DECL_IGNORED_P (current_function_decl))
	      debug_hooks->var_location (insn);
2918 2919
	  }

2920
	/* Output assembler code from the template.  */
2921
	output_asm_insn (templ, recog_data.operand);
2922

2923 2924 2925 2926 2927 2928
	/* Some target machines need to postscan each insn after
	   it is output.  */
	if (targetm.asm_out.final_postscan_insn)
	  targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
					       recog_data.n_operands);

2929 2930 2931 2932
	if (!targetm.asm_out.unwind_emit_before_insn
	    && targetm.asm_out.unwind_emit)
	  targetm.asm_out.unwind_emit (asm_out_file, insn);

2933
	current_output_insn = debug_insn = 0;
2934 2935 2936 2937 2938
      }
    }
  return NEXT_INSN (insn);
}

2939 2940 2941
/* Return whether a source line note needs to be emitted before INSN.
   Sets IS_STMT to TRUE if the line should be marked as a possible
   breakpoint location.  */
2942

2943
static bool
2944
notice_source_line (rtx insn, bool *is_stmt)
2945
{
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
  const char *filename;
  int linenum;

  if (override_filename)
    {
      filename = override_filename;
      linenum = override_linenum;
    }
  else
    {
      filename = insn_file (insn);
      linenum = insn_line (insn);
    }
2959

2960 2961 2962 2963 2964 2965
  if (filename == NULL)
    return false;

  if (force_source_line
      || filename != last_filename
      || last_linenum != linenum)
2966
    {
2967
      force_source_line = false;
2968 2969
      last_filename = filename;
      last_linenum = linenum;
2970
      last_discriminator = discriminator;
2971
      *is_stmt = true;
2972 2973 2974 2975
      high_block_linenum = MAX (last_linenum, high_block_linenum);
      high_function_linenum = MAX (last_linenum, high_function_linenum);
      return true;
    }
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986

  if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
    {
      /* If the discriminator changed, but the line number did not,
         output the line table entry with is_stmt false so the
         debugger does not treat this as a breakpoint location.  */
      last_discriminator = discriminator;
      *is_stmt = false;
      return true;
    }

2987
  return false;
2988 2989
}

2990 2991
/* For each operand in INSN, simplify (subreg (reg)) so that it refers
   directly to the desired hard register.  */
Kazu Hirata committed
2992

2993
void
2994
cleanup_subreg_operands (rtx insn)
2995
{
2996
  int i;
2997
  bool changed = false;
2998
  extract_insn_cached (insn);
2999
  for (i = 0; i < recog_data.n_operands; i++)
3000
    {
3001
      /* The following test cannot use recog_data.operand when testing
3002 3003 3004 3005 3006
	 for a SUBREG: the underlying object might have been changed
	 already if we are inside a match_operator expression that
	 matches the else clause.  Instead we test the underlying
	 expression directly.  */
      if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3007
	{
3008
	  recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3009 3010
	  changed = true;
	}
3011
      else if (GET_CODE (recog_data.operand[i]) == PLUS
3012
	       || GET_CODE (recog_data.operand[i]) == MULT
3013
	       || MEM_P (recog_data.operand[i]))
3014
	recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3015 3016
    }

3017
  for (i = 0; i < recog_data.n_dups; i++)
3018
    {
3019
      if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3020
	{
3021
	  *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3022 3023
	  changed = true;
	}
3024
      else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3025
	       || GET_CODE (*recog_data.dup_loc[i]) == MULT
3026
	       || MEM_P (*recog_data.dup_loc[i]))
3027
	*recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3028
    }
3029 3030
  if (changed)
    df_insn_rescan (insn);
3031 3032
}

3033 3034
/* If X is a SUBREG, try to replace it with a REG or a MEM, based on
   the thing it is a subreg of.  Do it anyway if FINAL_P.  */
3035 3036

rtx
3037
alter_subreg (rtx *xp, bool final_p)
3038
{
3039
  rtx x = *xp;
3040
  rtx y = SUBREG_REG (x);
3041

3042 3043
  /* simplify_subreg does not remove subreg from volatile references.
     We are required to.  */
3044
  if (MEM_P (y))
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
    {
      int offset = SUBREG_BYTE (x);

      /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
	 contains 0 instead of the proper offset.  See simplify_subreg.  */
      if (offset == 0
	  && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
        {
          int difference = GET_MODE_SIZE (GET_MODE (y))
			   - GET_MODE_SIZE (GET_MODE (x));
          if (WORDS_BIG_ENDIAN)
            offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
          if (BYTES_BIG_ENDIAN)
            offset += difference % UNITS_PER_WORD;
        }

3061 3062 3063 3064
      if (final_p)
	*xp = adjust_address (y, GET_MODE (x), offset);
      else
	*xp = adjust_address_nv (y, GET_MODE (x), offset);
3065
    }
3066
  else
3067
    {
3068
      rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3069
				     SUBREG_BYTE (x));
3070

3071 3072
      if (new_rtx != 0)
	*xp = new_rtx;
3073
      else if (final_p && REG_P (y))
3074
	{
3075
	  /* Simplify_subreg can't handle some REG cases, but we have to.  */
3076 3077 3078 3079 3080 3081 3082 3083 3084
	  unsigned int regno;
	  HOST_WIDE_INT offset;

	  regno = subreg_regno (x);
	  if (subreg_lowpart_p (x))
	    offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
	  else
	    offset = SUBREG_BYTE (x);
	  *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3085 3086 3087
	}
    }

3088
  return *xp;
3089 3090 3091 3092 3093
}

/* Do alter_subreg on all the SUBREGs contained in X.  */

static rtx
3094
walk_alter_subreg (rtx *xp, bool *changed)
3095
{
3096
  rtx x = *xp;
3097 3098 3099 3100
  switch (GET_CODE (x))
    {
    case PLUS:
    case MULT:
3101
    case AND:
3102 3103
      XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
      XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3104 3105 3106
      break;

    case MEM:
3107
    case ZERO_EXTEND:
3108
      XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3109 3110 3111
      break;

    case SUBREG:
3112
      *changed = true;
3113
      return alter_subreg (xp, true);
Kazu Hirata committed
3114

3115 3116
    default:
      break;
3117 3118
    }

3119
  return *xp;
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
}

#ifdef HAVE_cc0

/* Given BODY, the body of a jump instruction, alter the jump condition
   as required by the bits that are set in cc_status.flags.
   Not all of the bits there can be handled at this level in all cases.

   The value is normally 0.
   1 means that the condition has become always true.
   -1 means that the condition has become always false.
   2 means that COND has been altered.  */

static int
3134
alter_cond (rtx cond)
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
{
  int value = 0;

  if (cc_status.flags & CC_REVERSED)
    {
      value = 2;
      PUT_CODE (cond, swap_condition (GET_CODE (cond)));
    }

  if (cc_status.flags & CC_INVERTED)
    {
      value = 2;
      PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
    }

  if (cc_status.flags & CC_NOT_POSITIVE)
    switch (GET_CODE (cond))
      {
      case LE:
      case LEU:
      case GEU:
	/* Jump becomes unconditional.  */
	return 1;

      case GT:
      case GTU:
      case LTU:
	/* Jump becomes no-op.  */
	return -1;

      case GE:
	PUT_CODE (cond, EQ);
	value = 2;
	break;

      case LT:
	PUT_CODE (cond, NE);
	value = 2;
	break;
Kazu Hirata committed
3174

3175 3176
      default:
	break;
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
      }

  if (cc_status.flags & CC_NOT_NEGATIVE)
    switch (GET_CODE (cond))
      {
      case GE:
      case GEU:
	/* Jump becomes unconditional.  */
	return 1;

      case LT:
      case LTU:
	/* Jump becomes no-op.  */
	return -1;

      case LE:
      case LEU:
	PUT_CODE (cond, EQ);
	value = 2;
	break;

      case GT:
      case GTU:
	PUT_CODE (cond, NE);
	value = 2;
	break;
Kazu Hirata committed
3203

3204 3205
      default:
	break;
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
      }

  if (cc_status.flags & CC_NO_OVERFLOW)
    switch (GET_CODE (cond))
      {
      case GEU:
	/* Jump becomes unconditional.  */
	return 1;

      case LEU:
	PUT_CODE (cond, EQ);
	value = 2;
	break;

      case GTU:
	PUT_CODE (cond, NE);
	value = 2;
	break;

      case LTU:
	/* Jump becomes no-op.  */
	return -1;
Kazu Hirata committed
3228

3229 3230
      default:
	break;
3231 3232 3233 3234 3235
      }

  if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
    switch (GET_CODE (cond))
      {
3236
      default:
3237
	gcc_unreachable ();
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273

      case NE:
	PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
	value = 2;
	break;

      case EQ:
	PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
	value = 2;
	break;
      }

  if (cc_status.flags & CC_NOT_SIGNED)
    /* The flags are valid if signed condition operators are converted
       to unsigned.  */
    switch (GET_CODE (cond))
      {
      case LE:
	PUT_CODE (cond, LEU);
	value = 2;
	break;

      case LT:
	PUT_CODE (cond, LTU);
	value = 2;
	break;

      case GT:
	PUT_CODE (cond, GTU);
	value = 2;
	break;

      case GE:
	PUT_CODE (cond, GEU);
	value = 2;
	break;
3274 3275 3276

      default:
	break;
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
      }

  return value;
}
#endif

/* Report inconsistency between the assembler template and the operands.
   In an `asm', it's the user's fault; otherwise, the compiler's fault.  */

void
3287
output_operand_lossage (const char *cmsgid, ...)
3288
{
3289 3290
  char *fmt_string;
  char *new_message;
3291
  const char *pfx_str;
3292
  va_list ap;
3293

3294
  va_start (ap, cmsgid);
3295

3296
  pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3297
  asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
3298
  vasprintf (&new_message, fmt_string, ap);
Kazu Hirata committed
3299

3300
  if (this_is_asm_operands)
3301
    error_for_asm (this_is_asm_operands, "%s", new_message);
3302
  else
3303 3304 3305 3306
    internal_error ("%s", new_message);

  free (fmt_string);
  free (new_message);
3307
  va_end (ap);
3308 3309 3310 3311
}

/* Output of assembler code from a template, and its subroutines.  */

3312 3313 3314 3315
/* Annotate the assembly with a comment describing the pattern and
   alternative used.  */

static void
3316
output_asm_name (void)
3317 3318 3319 3320 3321 3322 3323 3324 3325
{
  if (debug_insn)
    {
      int num = INSN_CODE (debug_insn);
      fprintf (asm_out_file, "\t%s %d\t%s",
	       ASM_COMMENT_START, INSN_UID (debug_insn),
	       insn_data[num].name);
      if (insn_data[num].n_alternatives > 1)
	fprintf (asm_out_file, "/%d", which_alternative + 1);
3326 3327 3328 3329 3330

      if (HAVE_ATTR_length)
	fprintf (asm_out_file, "\t[length = %d]",
		 get_attr_length (debug_insn));

3331 3332 3333 3334 3335 3336
      /* Clear this so only the first assembler insn
	 of any rtl insn will get the special comment for -dp.  */
      debug_insn = 0;
    }
}

3337 3338
/* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
   or its address, return that expr .  Set *PADDRESSP to 1 if the expr
3339 3340 3341
   corresponds to the address of the object and 0 if to the object.  */

static tree
3342
get_mem_expr_from_op (rtx op, int *paddressp)
3343
{
3344
  tree expr;
3345 3346 3347 3348
  int inner_addressp;

  *paddressp = 0;

3349
  if (REG_P (op))
3350
    return REG_EXPR (op);
3351
  else if (!MEM_P (op))
3352 3353
    return 0;

3354 3355
  if (MEM_EXPR (op) != 0)
    return MEM_EXPR (op);
3356 3357 3358 3359 3360 3361 3362 3363

  /* Otherwise we have an address, so indicate it and look at the address.  */
  *paddressp = 1;
  op = XEXP (op, 0);

  /* First check if we have a decl for the address, then look at the right side
     if it is a PLUS.  Otherwise, strip off arithmetic and keep looking.
     But don't allow the address to itself be indirect.  */
3364 3365
  if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
    return expr;
3366
  else if (GET_CODE (op) == PLUS
3367 3368
	   && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
    return expr;
3369

Shujing Zhao committed
3370
  while (UNARY_P (op)
3371
	 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3372 3373
    op = XEXP (op, 0);

3374 3375
  expr = get_mem_expr_from_op (op, &inner_addressp);
  return inner_addressp ? 0 : expr;
3376
}
3377

3378 3379 3380 3381 3382
/* Output operand names for assembler instructions.  OPERANDS is the
   operand vector, OPORDER is the order to write the operands, and NOPS
   is the number of operands to write.  */

static void
3383
output_asm_operand_names (rtx *operands, int *oporder, int nops)
3384 3385 3386 3387 3388 3389 3390
{
  int wrote = 0;
  int i;

  for (i = 0; i < nops; i++)
    {
      int addressp;
3391 3392
      rtx op = operands[oporder[i]];
      tree expr = get_mem_expr_from_op (op, &addressp);
3393

3394 3395 3396
      fprintf (asm_out_file, "%c%s",
	       wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
      wrote = 1;
3397
      if (expr)
3398
	{
3399
	  fprintf (asm_out_file, "%s",
3400 3401
		   addressp ? "*" : "");
	  print_mem_expr (asm_out_file, expr);
3402 3403
	  wrote = 1;
	}
3404 3405 3406
      else if (REG_P (op) && ORIGINAL_REGNO (op)
	       && ORIGINAL_REGNO (op) != REGNO (op))
	fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3407 3408 3409
    }
}

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
#ifdef ASSEMBLER_DIALECT
/* Helper function to parse assembler dialects in the asm string.
   This is called from output_asm_insn and asm_fprintf.  */
static const char *
do_assembler_dialects (const char *p, int *dialect)
{
  char c = *(p - 1);

  switch (c)
    {
    case '{':
      {
        int i;

        if (*dialect)
          output_operand_lossage ("nested assembly dialect alternatives");
        else
          *dialect = 1;

        /* If we want the first dialect, do nothing.  Otherwise, skip
           DIALECT_NUMBER of strings ending with '|'.  */
        for (i = 0; i < dialect_number; i++)
          {
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
            while (*p && *p != '}')
	      {
		if (*p == '|')
		  {
		    p++;
		    break;
		  }

		/* Skip over any character after a percent sign.  */
		if (*p == '%')
		  p++;
		if (*p)
		  p++;
	      }

3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
            if (*p == '}')
	      break;
          }

        if (*p == '\0')
          output_operand_lossage ("unterminated assembly dialect alternative");
      }
      break;

    case '|':
      if (*dialect)
        {
          /* Skip to close brace.  */
          do
            {
	      if (*p == '\0')
		{
		  output_operand_lossage ("unterminated assembly dialect alternative");
		  break;
		}
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477

	      /* Skip over any character after a percent sign.  */
	      if (*p == '%' && p[1])
		{
		  p += 2;
		  continue;
		}

	      if (*p++ == '}')
		break;
3478
            }
3479 3480
          while (1);

3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
          *dialect = 0;
        }
      else
        putc (c, asm_out_file);
      break;

    case '}':
      if (! *dialect)
        putc (c, asm_out_file);
      *dialect = 0;
      break;
    default:
      gcc_unreachable ();
    }

  return p;
}
#endif

3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
/* Output text from TEMPLATE to the assembler output file,
   obeying %-directions to substitute operands taken from
   the vector OPERANDS.

   %N (for N a digit) means print operand N in usual manner.
   %lN means require operand N to be a CODE_LABEL or LABEL_REF
      and print the label name with no punctuation.
   %cN means require operand N to be a constant
      and print the constant expression with no punctuation.
   %aN means expect operand N to be a memory address
      (not a memory reference!) and print a reference
      to that address.
   %nN means expect operand N to be a constant
      and print a constant expression for minus the value
      of the operand, with no other punctuation.  */

void
3517
output_asm_insn (const char *templ, rtx *operands)
3518
{
3519 3520
  const char *p;
  int c;
3521 3522 3523
#ifdef ASSEMBLER_DIALECT
  int dialect = 0;
#endif
3524
  int oporder[MAX_RECOG_OPERANDS];
3525
  char opoutput[MAX_RECOG_OPERANDS];
3526
  int ops = 0;
3527 3528 3529

  /* An insn may return a null string template
     in a case where no assembler code is needed.  */
3530
  if (*templ == 0)
3531 3532
    return;

3533
  memset (opoutput, 0, sizeof opoutput);
3534
  p = templ;
3535 3536 3537 3538 3539 3540
  putc ('\t', asm_out_file);

#ifdef ASM_OUTPUT_OPCODE
  ASM_OUTPUT_OPCODE (asm_out_file, p);
#endif

3541
  while ((c = *p++))
3542 3543 3544
    switch (c)
      {
      case '\n':
3545 3546
	if (flag_verbose_asm)
	  output_asm_operand_names (operands, oporder, ops);
3547 3548 3549
	if (flag_print_asm_name)
	  output_asm_name ();

3550 3551 3552
	ops = 0;
	memset (opoutput, 0, sizeof opoutput);

3553
	putc (c, asm_out_file);
3554
#ifdef ASM_OUTPUT_OPCODE
3555 3556 3557 3558 3559 3560 3561
	while ((c = *p) == '\t')
	  {
	    putc (c, asm_out_file);
	    p++;
	  }
	ASM_OUTPUT_OPCODE (asm_out_file, p);
#endif
3562
	break;
3563 3564 3565 3566

#ifdef ASSEMBLER_DIALECT
      case '{':
      case '}':
3567 3568
      case '|':
	p = do_assembler_dialects (p, &dialect);
3569 3570 3571 3572
	break;
#endif

      case '%':
3573 3574 3575 3576 3577 3578 3579 3580
	/* %% outputs a single %.  %{, %} and %| print {, } and | respectively
	   if ASSEMBLER_DIALECT defined and these characters have a special
	   meaning as dialect delimiters.*/
	if (*p == '%'
#ifdef ASSEMBLER_DIALECT
	    || *p == '{' || *p == '}' || *p == '|'
#endif
	    )
3581
	  {
3582
	    putc (*p, asm_out_file);
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
	    p++;
	  }
	/* %= outputs a number which is unique to each insn in the entire
	   compilation.  This is useful for making local labels that are
	   referred to more than once in a given insn.  */
	else if (*p == '=')
	  {
	    p++;
	    fprintf (asm_out_file, "%d", insn_counter);
	  }
	/* % followed by a letter and some digits
	   outputs an operand in a special way depending on the letter.
	   Letters `acln' are implemented directly.
	   Other letters are passed to `output_operand' so that
3597
	   the TARGET_PRINT_OPERAND hook can define them.  */
3598
	else if (ISALPHA (*p))
3599 3600
	  {
	    int letter = *p++;
3601 3602
	    unsigned long opnum;
	    char *endptr;
3603

3604 3605 3606 3607 3608 3609
	    opnum = strtoul (p, &endptr, 10);

	    if (endptr == p)
	      output_operand_lossage ("operand number missing "
				      "after %%-letter");
	    else if (this_is_asm_operands && opnum >= insn_noperands)
3610 3611
	      output_operand_lossage ("operand number out of range");
	    else if (letter == 'l')
3612
	      output_asm_label (operands[opnum]);
3613
	    else if (letter == 'a')
3614
	      output_address (operands[opnum]);
3615 3616
	    else if (letter == 'c')
	      {
3617 3618
		if (CONSTANT_ADDRESS_P (operands[opnum]))
		  output_addr_const (asm_out_file, operands[opnum]);
3619
		else
3620
		  output_operand (operands[opnum], 'c');
3621 3622 3623
	      }
	    else if (letter == 'n')
	      {
Shujing Zhao committed
3624
		if (CONST_INT_P (operands[opnum]))
3625
		  fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3626
			   - INTVAL (operands[opnum]));
3627 3628 3629
		else
		  {
		    putc ('-', asm_out_file);
3630
		    output_addr_const (asm_out_file, operands[opnum]);
3631 3632 3633
		  }
	      }
	    else
3634
	      output_operand (operands[opnum], letter);
Kazu Hirata committed
3635

3636
	    if (!opoutput[opnum])
3637
	      oporder[ops++] = opnum;
3638
	    opoutput[opnum] = 1;
3639

3640 3641
	    p = endptr;
	    c = *p;
3642 3643
	  }
	/* % followed by a digit outputs an operand the default way.  */
3644
	else if (ISDIGIT (*p))
3645
	  {
3646 3647
	    unsigned long opnum;
	    char *endptr;
3648

3649 3650
	    opnum = strtoul (p, &endptr, 10);
	    if (this_is_asm_operands && opnum >= insn_noperands)
3651 3652
	      output_operand_lossage ("operand number out of range");
	    else
3653
	      output_operand (operands[opnum], 0);
3654

3655
	    if (!opoutput[opnum])
3656
	      oporder[ops++] = opnum;
3657
	    opoutput[opnum] = 1;
3658

3659 3660
	    p = endptr;
	    c = *p;
3661 3662
	  }
	/* % followed by punctuation: output something for that
3663 3664 3665
	   punctuation character alone, with no operand.  The
	   TARGET_PRINT_OPERAND hook decides what is actually done.  */
	else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3666 3667 3668 3669 3670 3671 3672 3673 3674
	  output_operand (NULL_RTX, *p++);
	else
	  output_operand_lossage ("invalid %%-code");
	break;

      default:
	putc (c, asm_out_file);
      }

3675 3676
  /* Write out the variable names for operands, if we know them.  */
  if (flag_verbose_asm)
3677
    output_asm_operand_names (operands, oporder, ops);
3678 3679
  if (flag_print_asm_name)
    output_asm_name ();
3680 3681 3682 3683 3684 3685 3686

  putc ('\n', asm_out_file);
}

/* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol.  */

void
3687
output_asm_label (rtx x)
3688 3689 3690 3691
{
  char buf[256];

  if (GET_CODE (x) == LABEL_REF)
3692
    x = XEXP (x, 0);
3693 3694
  if (LABEL_P (x)
      || (NOTE_P (x)
3695
	  && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3696 3697
    ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
  else
3698
    output_operand_lossage ("'%%l' operand isn't a label");
3699 3700 3701 3702

  assemble_name (asm_out_file, buf);
}

3703 3704 3705
/* Helper rtx-iteration-function for mark_symbol_refs_as_used and
   output_operand.  Marks SYMBOL_REFs as referenced through use of
   assemble_external.  */
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728

static int
mark_symbol_ref_as_used (rtx *xp, void *dummy ATTRIBUTE_UNUSED)
{
  rtx x = *xp;

  /* If we have a used symbol, we may have to emit assembly
     annotations corresponding to whether the symbol is external, weak
     or has non-default visibility.  */
  if (GET_CODE (x) == SYMBOL_REF)
    {
      tree t;

      t = SYMBOL_REF_DECL (x);
      if (t)
	assemble_external (t);

      return -1;
    }

  return 0;
}

3729 3730 3731 3732 3733 3734 3735 3736
/* Marks SYMBOL_REFs in x as referenced through use of assemble_external.  */

void
mark_symbol_refs_as_used (rtx x)
{
  for_each_rtx (&x, mark_symbol_ref_as_used, NULL);
}

3737 3738 3739 3740 3741 3742 3743
/* Print operand X using machine-dependent assembler syntax.
   CODE is a non-digit that preceded the operand-number in the % spec,
   such as 'z' if the spec was `%z3'.  CODE is 0 if there was no char
   between the % and the digits.
   When CODE is a non-letter, X is 0.

   The meanings of the letters are machine-dependent and controlled
3744
   by TARGET_PRINT_OPERAND.  */
3745

3746
void
3747
output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3748 3749
{
  if (x && GET_CODE (x) == SUBREG)
3750
    x = alter_subreg (&x, true);
3751

3752
  /* X must not be a pseudo reg.  */
3753
  gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3754

3755
  targetm.asm_out.print_operand (asm_out_file, x, code);
3756 3757 3758 3759 3760

  if (x == NULL_RTX)
    return;

  for_each_rtx (&x, mark_symbol_ref_as_used, NULL);
3761 3762
}

3763 3764
/* Print a memory reference operand for address X using
   machine-dependent assembler syntax.  */
3765 3766

void
3767
output_address (rtx x)
3768
{
3769 3770
  bool changed = false;
  walk_alter_subreg (&x, &changed);
3771
  targetm.asm_out.print_operand_address (asm_out_file, x);
3772 3773 3774 3775 3776 3777 3778
}

/* Print an integer constant expression in assembler syntax.
   Addition and subtraction are the only arithmetic
   that may appear in these expressions.  */

void
3779
output_addr_const (FILE *file, rtx x)
3780 3781 3782 3783 3784 3785 3786
{
  char buf[256];

 restart:
  switch (GET_CODE (x))
    {
    case PC:
3787
      putc ('.', file);
3788 3789 3790
      break;

    case SYMBOL_REF:
3791
      if (SYMBOL_REF_DECL (x))
3792
	assemble_external (SYMBOL_REF_DECL (x));
3793 3794 3795
#ifdef ASM_OUTPUT_SYMBOL_REF
      ASM_OUTPUT_SYMBOL_REF (file, x);
#else
3796
      assemble_name (file, XSTR (x, 0));
3797
#endif
3798 3799 3800
      break;

    case LABEL_REF:
3801 3802
      x = XEXP (x, 0);
      /* Fall through.  */
3803 3804
    case CODE_LABEL:
      ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3805 3806 3807
#ifdef ASM_OUTPUT_LABEL_REF
      ASM_OUTPUT_LABEL_REF (file, buf);
#else
3808
      assemble_name (file, buf);
3809
#endif
3810 3811 3812
      break;

    case CONST_INT:
3813
      fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
      break;

    case CONST:
      /* This used to output parentheses around the expression,
	 but that does not work on the 386 (either ATT or BSD assembler).  */
      output_addr_const (file, XEXP (x, 0));
      break;

    case CONST_DOUBLE:
      if (GET_MODE (x) == VOIDmode)
	{
	  /* We can use %d if the number is one word and positive.  */
	  if (CONST_DOUBLE_HIGH (x))
3827
	    fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3828 3829
		     (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
		     (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
Kazu Hirata committed
3830
	  else if (CONST_DOUBLE_LOW (x) < 0)
3831 3832
	    fprintf (file, HOST_WIDE_INT_PRINT_HEX,
		     (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3833
	  else
3834
	    fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3835 3836 3837 3838 3839 3840 3841
	}
      else
	/* We can't handle floating point constants;
	   PRINT_OPERAND must handle them.  */
	output_operand_lossage ("floating constant misused");
      break;

3842
    case CONST_FIXED:
3843
      fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
3844 3845
      break;

3846 3847
    case PLUS:
      /* Some assemblers need integer constants to appear last (eg masm).  */
Shujing Zhao committed
3848
      if (CONST_INT_P (XEXP (x, 0)))
3849 3850 3851 3852 3853 3854 3855 3856 3857
	{
	  output_addr_const (file, XEXP (x, 1));
	  if (INTVAL (XEXP (x, 0)) >= 0)
	    fprintf (file, "+");
	  output_addr_const (file, XEXP (x, 0));
	}
      else
	{
	  output_addr_const (file, XEXP (x, 0));
Shujing Zhao committed
3858
	  if (!CONST_INT_P (XEXP (x, 1))
3859
	      || INTVAL (XEXP (x, 1)) >= 0)
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
	    fprintf (file, "+");
	  output_addr_const (file, XEXP (x, 1));
	}
      break;

    case MINUS:
      /* Avoid outputting things like x-x or x+5-x,
	 since some assemblers can't handle that.  */
      x = simplify_subtraction (x);
      if (GET_CODE (x) != MINUS)
	goto restart;

      output_addr_const (file, XEXP (x, 0));
      fprintf (file, "-");
Shujing Zhao committed
3874
      if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
3875 3876 3877 3878
	  || GET_CODE (XEXP (x, 1)) == PC
	  || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
	output_addr_const (file, XEXP (x, 1));
      else
3879
	{
3880
	  fputs (targetm.asm_out.open_paren, file);
3881
	  output_addr_const (file, XEXP (x, 1));
3882
	  fputs (targetm.asm_out.close_paren, file);
3883 3884 3885 3886 3887
	}
      break;

    case ZERO_EXTEND:
    case SIGN_EXTEND:
3888
    case SUBREG:
3889
    case TRUNCATE:
3890 3891 3892 3893
      output_addr_const (file, XEXP (x, 0));
      break;

    default:
3894 3895
      if (targetm.asm_out.output_addr_const_extra (file, x))
	break;
3896

3897 3898 3899 3900
      output_operand_lossage ("invalid expression as operand");
    }
}

3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
/* Output a quoted string.  */

void
output_quoted_string (FILE *asm_file, const char *string)
{
#ifdef OUTPUT_QUOTED_STRING
  OUTPUT_QUOTED_STRING (asm_file, string);
#else
  char c;

  putc ('\"', asm_file);
  while ((c = *string++) != 0)
    {
      if (ISPRINT (c))
	{
	  if (c == '\"' || c == '\\')
	    putc ('\\', asm_file);
	  putc (c, asm_file);
	}
      else
	fprintf (asm_file, "\\%03o", (unsigned char) c);
    }
  putc ('\"', asm_file);
#endif
}

3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
/* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */

void
fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
{
  char buf[2 + CHAR_BIT * sizeof (value) / 4];
  if (value == 0)
    putc ('0', f);
  else
    {
      char *p = buf + sizeof (buf);
      do
        *--p = "0123456789abcdef"[value % 16];
      while ((value /= 16) != 0);
      *--p = 'x';
      *--p = '0';
      fwrite (p, 1, buf + sizeof (buf) - p, f);
    }
}

/* Internal function that prints an unsigned long in decimal in reverse.
   The output string IS NOT null-terminated. */

static int
sprint_ul_rev (char *s, unsigned long value)
{
  int i = 0;
  do
    {
      s[i] = "0123456789"[value % 10];
      value /= 10;
      i++;
      /* alternate version, without modulo */
      /* oldval = value; */
      /* value /= 10; */
      /* s[i] = "0123456789" [oldval - 10*value]; */
      /* i++ */
    }
  while (value != 0);
  return i;
}

/* Write an unsigned long as decimal to a file, fast. */

void
fprint_ul (FILE *f, unsigned long value)
{
  /* python says: len(str(2**64)) == 20 */
  char s[20];
  int i;

  i = sprint_ul_rev (s, value);

  /* It's probably too small to bother with string reversal and fputs. */
  do
    {
      i--;
      putc (s[i], f);
    }
  while (i != 0);
}

/* Write an unsigned long as decimal to a string, fast.
   s must be wide enough to not overflow, at least 21 chars.
   Returns the length of the string (without terminating '\0'). */

int
sprint_ul (char *s, unsigned long value)
{
  int len;
  char tmp_c;
  int i;
  int j;

  len = sprint_ul_rev (s, value);
  s[len] = '\0';

  /* Reverse the string. */
  i = 0;
  j = len - 1;
  while (i < j)
    {
      tmp_c = s[i];
      s[i] = s[j];
      s[j] = tmp_c;
      i++; j--;
    }

  return len;
}

4018 4019 4020 4021 4022 4023
/* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
   %R prints the value of REGISTER_PREFIX.
   %L prints the value of LOCAL_LABEL_PREFIX.
   %U prints the value of USER_LABEL_PREFIX.
   %I prints the value of IMMEDIATE_PREFIX.
   %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4024
   Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4025 4026 4027 4028

   We handle alternate assembler dialects here, just like output_asm_insn.  */

void
4029
asm_fprintf (FILE *file, const char *p, ...)
4030 4031 4032
{
  char buf[10];
  char *q, c;
4033 4034 4035
#ifdef ASSEMBLER_DIALECT
  int dialect = 0;
#endif
4036
  va_list argptr;
4037

4038
  va_start (argptr, p);
4039 4040 4041

  buf[0] = '%';

4042
  while ((c = *p++))
4043 4044 4045 4046 4047
    switch (c)
      {
#ifdef ASSEMBLER_DIALECT
      case '{':
      case '}':
4048 4049
      case '|':
	p = do_assembler_dialects (p, &dialect);
4050 4051 4052 4053 4054 4055
	break;
#endif

      case '%':
	c = *p++;
	q = &buf[1];
4056 4057 4058 4059 4060
	while (strchr ("-+ #0", c))
	  {
	    *q++ = c;
	    c = *p++;
	  }
4061
	while (ISDIGIT (c) || c == '.')
4062 4063 4064 4065 4066 4067 4068
	  {
	    *q++ = c;
	    c = *p++;
	  }
	switch (c)
	  {
	  case '%':
4069
	    putc ('%', file);
4070 4071 4072
	    break;

	  case 'd':  case 'i':  case 'u':
4073 4074
	  case 'x':  case 'X':  case 'o':
	  case 'c':
4075 4076 4077 4078 4079 4080
	    *q++ = c;
	    *q = 0;
	    fprintf (file, buf, va_arg (argptr, int));
	    break;

	  case 'w':
4081 4082 4083 4084
	    /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
	       'o' cases, but we do not check for those cases.  It
	       means that the value is a HOST_WIDE_INT, which may be
	       either `long' or `long long'.  */
4085 4086
	    memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
	    q += strlen (HOST_WIDE_INT_PRINT);
4087 4088 4089 4090 4091 4092 4093
	    *q++ = *p++;
	    *q = 0;
	    fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
	    break;

	  case 'l':
	    *q++ = c;
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
#ifdef HAVE_LONG_LONG
	    if (*p == 'l')
	      {
		*q++ = *p++;
		*q++ = *p++;
		*q = 0;
		fprintf (file, buf, va_arg (argptr, long long));
	      }
	    else
#endif
	      {
		*q++ = *p++;
		*q = 0;
		fprintf (file, buf, va_arg (argptr, long));
	      }
4109

4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
	    break;

	  case 's':
	    *q++ = c;
	    *q = 0;
	    fprintf (file, buf, va_arg (argptr, char *));
	    break;

	  case 'O':
#ifdef ASM_OUTPUT_OPCODE
	    ASM_OUTPUT_OPCODE (asm_out_file, p);
#endif
	    break;

	  case 'R':
#ifdef REGISTER_PREFIX
	    fprintf (file, "%s", REGISTER_PREFIX);
#endif
	    break;

	  case 'I':
#ifdef IMMEDIATE_PREFIX
	    fprintf (file, "%s", IMMEDIATE_PREFIX);
#endif
	    break;

	  case 'L':
#ifdef LOCAL_LABEL_PREFIX
	    fprintf (file, "%s", LOCAL_LABEL_PREFIX);
#endif
	    break;

	  case 'U':
4143
	    fputs (user_label_prefix, file);
4144 4145
	    break;

4146
#ifdef ASM_FPRINTF_EXTENSIONS
4147
	    /* Uppercase letters are reserved for general use by asm_fprintf
4148 4149 4150 4151 4152 4153 4154 4155 4156
	       and so are not available to target specific code.  In order to
	       prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
	       they are defined here.  As they get turned into real extensions
	       to asm_fprintf they should be removed from this list.  */
	  case 'A': case 'B': case 'C': case 'D': case 'E':
	  case 'F': case 'G': case 'H': case 'J': case 'K':
	  case 'M': case 'N': case 'P': case 'Q': case 'S':
	  case 'T': case 'V': case 'W': case 'Y': case 'Z':
	    break;
Kazu Hirata committed
4157

4158 4159
	  ASM_FPRINTF_EXTENSIONS (file, argptr, p)
#endif
4160
	  default:
4161
	    gcc_unreachable ();
4162 4163 4164 4165
	  }
	break;

      default:
4166
	putc (c, file);
4167
      }
4168
  va_end (argptr);
4169 4170 4171 4172 4173
}

/* Return nonzero if this function has no function calls.  */

int
4174
leaf_function_p (void)
4175 4176 4177
{
  rtx insn;

4178
  if (crtl->profile || profile_arc_flag)
4179 4180 4181 4182
    return 0;

  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
4183
      if (CALL_P (insn)
4184
	  && ! SIBLING_CALL_P (insn))
4185
	return 0;
4186
      if (NONJUMP_INSN_P (insn)
4187
	  && GET_CODE (PATTERN (insn)) == SEQUENCE
4188
	  && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4189
	  && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4190 4191 4192 4193 4194 4195
	return 0;
    }

  return 1;
}

4196
/* Return 1 if branch is a forward branch.
4197 4198 4199 4200
   Uses insn_shuid array, so it works only in the final pass.  May be used by
   output templates to customary add branch prediction hints.
 */
int
4201
final_forward_branch_p (rtx insn)
4202 4203
{
  int insn_id, label_id;
4204

4205
  gcc_assert (uid_shuid);
4206 4207 4208
  insn_id = INSN_SHUID (insn);
  label_id = INSN_SHUID (JUMP_LABEL (insn));
  /* We've hit some insns that does not have id information available.  */
4209
  gcc_assert (insn_id && label_id);
4210 4211 4212
  return insn_id < label_id;
}

4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
/* On some machines, a function with no call insns
   can run faster if it doesn't create its own register window.
   When output, the leaf function should use only the "output"
   registers.  Ordinarily, the function would be compiled to use
   the "input" registers to find its arguments; it is a candidate
   for leaf treatment if it uses only the "input" registers.
   Leaf function treatment means renumbering so the function
   uses the "output" registers instead.  */

#ifdef LEAF_REGISTERS

/* Return 1 if this function uses only the registers that can be
   safely renumbered.  */

int
4228
only_leaf_regs_used (void)
4229 4230
{
  int i;
4231
  const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4232 4233

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4234
    if ((df_regs_ever_live_p (i) || global_regs[i])
4235 4236 4237
	&& ! permitted_reg_in_leaf_functions[i])
      return 0;

4238
  if (crtl->uses_pic_offset_table
4239
      && pic_offset_table_rtx != 0
4240
      && REG_P (pic_offset_table_rtx)
4241 4242 4243
      && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
    return 0;

4244 4245 4246 4247 4248 4249 4250
  return 1;
}

/* Scan all instructions and renumber all registers into those
   available in leaf functions.  */

static void
4251
leaf_renumber_regs (rtx first)
4252 4253 4254 4255 4256 4257 4258
{
  rtx insn;

  /* Renumber only the actual patterns.
     The reg-notes can contain frame pointer refs,
     and renumbering them could crash, and should not be needed.  */
  for (insn = first; insn; insn = NEXT_INSN (insn))
4259
    if (INSN_P (insn))
4260 4261 4262 4263 4264 4265 4266
      leaf_renumber_regs_insn (PATTERN (insn));
}

/* Scan IN_RTX and its subexpressions, and renumber all regs into those
   available in leaf functions.  */

void
4267
leaf_renumber_regs_insn (rtx in_rtx)
4268
{
4269 4270
  int i, j;
  const char *format_ptr;
4271 4272 4273 4274 4275 4276 4277 4278

  if (in_rtx == 0)
    return;

  /* Renumber all input-registers into output-registers.
     renumbered_regs would be 1 for an output-register;
     they  */

4279
  if (REG_P (in_rtx))
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
    {
      int newreg;

      /* Don't renumber the same reg twice.  */
      if (in_rtx->used)
	return;

      newreg = REGNO (in_rtx);
      /* Don't try to renumber pseudo regs.  It is possible for a pseudo reg
	 to reach here as part of a REG_NOTE.  */
      if (newreg >= FIRST_PSEUDO_REGISTER)
	{
	  in_rtx->used = 1;
	  return;
	}
      newreg = LEAF_REG_REMAP (newreg);
4296
      gcc_assert (newreg >= 0);
4297 4298 4299
      df_set_regs_ever_live (REGNO (in_rtx), false);
      df_set_regs_ever_live (newreg, true);
      SET_REGNO (in_rtx, newreg);
4300 4301 4302
      in_rtx->used = 1;
    }

4303
  if (INSN_P (in_rtx))
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
    {
      /* Inside a SEQUENCE, we find insns.
	 Renumber just the patterns of these insns,
	 just as we do for the top-level insns.  */
      leaf_renumber_regs_insn (PATTERN (in_rtx));
      return;
    }

  format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));

  for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
    switch (*format_ptr++)
      {
      case 'e':
	leaf_renumber_regs_insn (XEXP (in_rtx, i));
	break;

      case 'E':
	if (NULL != XVEC (in_rtx, i))
	  {
	    for (j = 0; j < XVECLEN (in_rtx, i); j++)
	      leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
	  }
	break;

      case 'S':
      case 's':
      case '0':
      case 'i':
      case 'w':
      case 'n':
      case 'u':
	break;

      default:
4339
	gcc_unreachable ();
4340 4341 4342
      }
}
#endif
4343 4344

/* Turn the RTL into assembly.  */
4345
static unsigned int
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
rest_of_handle_final (void)
{
  rtx x;
  const char *fnname;

  /* Get the function's name, as described by its RTL.  This may be
     different from the DECL_NAME name used in the source file.  */

  x = DECL_RTL (current_function_decl);
  gcc_assert (MEM_P (x));
  x = XEXP (x, 0);
  gcc_assert (GET_CODE (x) == SYMBOL_REF);
  fnname = XSTR (x, 0);

  assemble_start_function (current_function_decl, fnname);
  final_start_function (get_insns (), asm_out_file, optimize);
  final (get_insns (), asm_out_file, optimize);
  final_end_function ();

4365 4366 4367
  /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
     directive that closes the procedure descriptor.  Similarly, for x64 SEH.
     Otherwise it's not strictly necessary, but it doesn't hurt either.  */
4368
  output_function_exception_table (fnname);
4369 4370 4371 4372 4373

  assemble_end_function (current_function_decl, fnname);

  user_defined_section_attribute = false;

4374 4375 4376
  /* Free up reg info memory.  */
  free_reg_info ();

4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
  if (! quiet_flag)
    fflush (asm_out_file);

  /* Write DBX symbols if requested.  */

  /* Note that for those inline functions where we don't initially
     know for certain that we will be generating an out-of-line copy,
     the first invocation of this routine (rest_of_compilation) will
     skip over this code by doing a `goto exit_rest_of_compilation;'.
     Later on, wrapup_global_declarations will (indirectly) call
     rest_of_compilation again for those inline functions that need
     to have out-of-line copies generated.  During that call, we
     *will* be routed past here.  */

  timevar_push (TV_SYMOUT);
4392 4393
  if (!DECL_IGNORED_P (current_function_decl))
    debug_hooks->function_decl (current_function_decl);
4394
  timevar_pop (TV_SYMOUT);
4395 4396 4397 4398

  /* Release the blocks that are linked to DECL_INITIAL() to free the memory.  */
  DECL_INITIAL (current_function_decl) = error_mark_node;

4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
  if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
      && targetm.have_ctors_dtors)
    targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
				 decl_init_priority_lookup
				   (current_function_decl));
  if (DECL_STATIC_DESTRUCTOR (current_function_decl)
      && targetm.have_ctors_dtors)
    targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
				decl_fini_priority_lookup
				  (current_function_decl));
4409
  return 0;
4410 4411
}

4412
struct rtl_opt_pass pass_final =
4413
{
4414 4415
 {
  RTL_PASS,
4416
  "final",                              /* name */
4417
  OPTGROUP_NONE,                        /* optinfo_flags */
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
  NULL,                                 /* gate */
  rest_of_handle_final,                 /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  TV_FINAL,                             /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
4428
  0                                     /* todo_flags_finish */
4429
 }
4430 4431 4432
};


4433
static unsigned int
4434 4435 4436 4437
rest_of_handle_shorten_branches (void)
{
  /* Shorten branches.  */
  shorten_branches (get_insns ());
4438
  return 0;
4439
}
4440

4441
struct rtl_opt_pass pass_shorten_branches =
4442
{
4443 4444
 {
  RTL_PASS,
4445
  "shorten",                            /* name */
4446
  OPTGROUP_NONE,                        /* optinfo_flags */
4447 4448 4449 4450 4451
  NULL,                                 /* gate */
  rest_of_handle_shorten_branches,      /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
4452
  TV_SHORTEN_BRANCH,                    /* tv_id */
4453 4454 4455 4456
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
4457
  0                                     /* todo_flags_finish */
4458
 }
4459 4460 4461
};


4462
static unsigned int
4463 4464 4465
rest_of_clean_state (void)
{
  rtx insn, next;
4466 4467 4468 4469 4470 4471 4472 4473 4474
  FILE *final_output = NULL;
  int save_unnumbered = flag_dump_unnumbered;
  int save_noaddr = flag_dump_noaddr;

  if (flag_dump_final_insns)
    {
      final_output = fopen (flag_dump_final_insns, "a");
      if (!final_output)
	{
4475 4476
	  error ("could not open final insn dump file %qs: %m",
		 flag_dump_final_insns);
4477 4478 4479 4480 4481
	  flag_dump_final_insns = NULL;
	}
      else
	{
	  flag_dump_noaddr = flag_dump_unnumbered = 1;
4482 4483
	  if (flag_compare_debug_opt || flag_compare_debug)
	    dump_flags |= TDF_NOUID;
4484 4485
	  dump_function_header (final_output, current_function_decl,
				dump_flags);
4486
	  final_insns_dump_p = true;
4487 4488 4489 4490 4491

	  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
	    if (LABEL_P (insn))
	      INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
	    else
4492 4493 4494 4495 4496
	      {
		if (NOTE_P (insn))
		  set_block_for_insn (insn, NULL);
		INSN_UID (insn) = 0;
	      }
4497 4498
	}
    }
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508

  /* It is very important to decompose the RTL instruction chain here:
     debug information keeps pointing into CODE_LABEL insns inside the function
     body.  If these remain pointing to the other insns, we end up preserving
     whole RTL chain and attached detailed debug info in memory.  */
  for (insn = get_insns (); insn; insn = next)
    {
      next = NEXT_INSN (insn);
      NEXT_INSN (insn) = NULL;
      PREV_INSN (insn) = NULL;
4509 4510 4511 4512

      if (final_output
	  && (!NOTE_P (insn) ||
	      (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4513
	       && NOTE_KIND (insn) != NOTE_INSN_CALL_ARG_LOCATION
4514
	       && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4515 4516
	       && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
	       && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4517 4518 4519 4520 4521 4522 4523
	print_rtl_single (final_output, insn);
    }

  if (final_output)
    {
      flag_dump_noaddr = save_noaddr;
      flag_dump_unnumbered = save_unnumbered;
4524
      final_insns_dump_p = false;
4525 4526 4527

      if (fclose (final_output))
	{
4528 4529
	  error ("could not close final insn dump file %qs: %m",
		 flag_dump_final_insns);
4530 4531
	  flag_dump_final_insns = NULL;
	}
4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
    }

  /* In case the function was not output,
     don't leave any temporary anonymous types
     queued up for sdb output.  */
#ifdef SDB_DEBUGGING_INFO
  if (write_symbols == SDB_DEBUG)
    sdbout_types (NULL_TREE);
#endif

4542
  flag_rerun_cse_after_global_opts = 0;
4543 4544
  reload_completed = 0;
  epilogue_completed = 0;
4545 4546 4547
#ifdef STACK_REGS
  regstack_completed = 0;
#endif
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557

  /* Clear out the insn_length contents now that they are no
     longer valid.  */
  init_insn_lengths ();

  /* Show no temporary slots allocated.  */
  init_temp_slots ();

  free_bb_for_insn ();

4558 4559
  delete_tree_ssa ();

4560 4561 4562 4563
  /* We can reduce stack alignment on call site only when we are sure that
     the function body just produced will be actually used in the final
     executable.  */
  if (decl_binds_to_current_def_p (current_function_decl))
4564
    {
4565
      unsigned int pref = crtl->preferred_stack_boundary;
4566 4567
      if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
        pref = crtl->stack_alignment_needed;
4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
      cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
        = pref;
    }

  /* Make sure volatile mem refs aren't considered valid operands for
     arithmetic insns.  We must call this here if this is a nested inline
     function, since the above code leaves us in the init_recog state,
     and the function context push/pop code does not save/restore volatile_ok.

     ??? Maybe it isn't necessary for expand_start_function to call this
     anymore if we do it here?  */

  init_recog_no_volatile ();

  /* We're done with this function.  Free up memory if we can.  */
  free_after_parsing (cfun);
  free_after_compilation (cfun);
4585
  return 0;
4586 4587
}

4588
struct rtl_opt_pass pass_clean_state =
4589
{
4590 4591
 {
  RTL_PASS,
4592
  "*clean_state",                       /* name */
4593
  OPTGROUP_NONE,                        /* optinfo_flags */
4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
  NULL,                                 /* gate */
  rest_of_clean_state,                  /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  TV_FINAL,                             /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  PROP_rtl,                             /* properties_destroyed */
  0,                                    /* todo_flags_start */
4604 4605
  0                                     /* todo_flags_finish */
 }
4606
};