FlatteningPathIterator.java 15.3 KB
Newer Older
Tom Tromey committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
/* FlatteningPathIterator.java -- Approximates curves by straight lines
   Copyright (C) 2003 Free Software Foundation

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.

Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from
or based on this library.  If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so.  If you do not wish to do so, delete this
exception statement from your version. */


package java.awt.geom;

import java.util.NoSuchElementException;


/**
 * A PathIterator for approximating curved path segments by sequences
 * of straight lines. Instances of this class will only return
 * segments of type {@link PathIterator#SEG_MOVETO}, {@link
 * PathIterator#SEG_LINETO}, and {@link PathIterator#SEG_CLOSE}.
 *
 * <p>The accuracy of the approximation is determined by two
 * parameters:
 *
 * <ul><li>The <i>flatness</i> is a threshold value for deciding when
 * a curved segment is consided flat enough for being approximated by
 * a single straight line. Flatness is defined as the maximal distance
 * of a curve control point to the straight line that connects the
 * curve start and end. A lower flatness threshold means a closer
 * approximation.  See {@link QuadCurve2D#getFlatness()} and {@link
 * CubicCurve2D#getFlatness()} for drawings which illustrate the
 * meaning of flatness.</li>
 *
 * <li>The <i>recursion limit</i> imposes an upper bound for how often
 * a curved segment gets subdivided. A limit of <i>n</i> means that
 * for each individual quadratic and cubic B&#xe9;zier spline
 * segment, at most 2<sup><small><i>n</i></small></sup> {@link
 * PathIterator#SEG_LINETO} segments will be created.</li></ul>
 *
 * <p><b>Memory Efficiency:</b> The memory consumption grows linearly
 * with the recursion limit. Neither the <i>flatness</i> parameter nor
 * the number of segments in the flattened path will affect the memory
 * consumption.
 *
 * <p><b>Thread Safety:</b> Multiple threads can safely work on
 * separate instances of this class. However, multiple threads should
 * not concurrently access the same instance, as no synchronization is
 * performed.
 *
 * @see <a href="doc-files/FlatteningPathIterator-1.html"
 * >Implementation Note</a>
 *
 * @author Sascha Brawer (brawer@dandelis.ch)
 *
 * @since 1.2
 */
public class FlatteningPathIterator
  implements PathIterator
{
  /**
   * The PathIterator whose curved segments are being approximated.
   */
  private final PathIterator srcIter;


  /**
   * The square of the flatness threshold value, which determines when
   * a curve segment is considered flat enough that no further
   * subdivision is needed.
   *
   * <p>Calculating flatness actually produces the squared flatness
   * value. To avoid the relatively expensive calculation of a square
   * root for each curve segment, we perform all flatness comparisons
   * on squared values.
   *
   * @see QuadCurve2D#getFlatnessSq()
   * @see CubicCurve2D#getFlatnessSq()
   */
  private final double flatnessSq;


  /**
   * The maximal number of subdivions that are performed to
   * approximate a quadratic or cubic curve segment.
   */
  private final int recursionLimit;


  /**
   * A stack for holding the coordinates of subdivided segments.
   *
   * @see <a href="doc-files/FlatteningPathIterator-1.html"
   * >Implementation Note</a>
   */
  private double[] stack;


  /**
   * The current stack size.
   *
   * @see <a href="doc-files/FlatteningPathIterator-1.html"
   * >Implementation Note</a>
   */
  private int stackSize;


  /**
   * The number of recursions that were performed to arrive at
   * a segment on the stack.
   *
   * @see <a href="doc-files/FlatteningPathIterator-1.html"
   * >Implementation Note</a>
   */
  private int[] recLevel;

  
  
  private final double[] scratch = new double[6];


  /**
   * The segment type of the last segment that was returned by
   * the source iterator.
   */
  private int srcSegType;


  /**
   * The current <i>x</i> position of the source iterator.
   */
  private double srcPosX;


  /**
   * The current <i>y</i> position of the source iterator.
   */
  private double srcPosY;


  /**
   * A flag that indicates when this path iterator has finished its
   * iteration over path segments.
   */
  private boolean done;


  /**
   * Constructs a new PathIterator for approximating an input
   * PathIterator with straight lines. The approximation works by
   * recursive subdivisons, until the specified flatness threshold is
   * not exceeded.
   *
   * <p>There will not be more than 10 nested recursion steps, which
   * means that a single <code>SEG_QUADTO</code> or
   * <code>SEG_CUBICTO</code> segment is approximated by at most
   * 2<sup><small>10</small></sup> = 1024 straight lines.
   */
  public FlatteningPathIterator(PathIterator src, double flatness)
  {
    this(src, flatness, 10);
  }


  /**
   * Constructs a new PathIterator for approximating an input
   * PathIterator with straight lines. The approximation works by
   * recursive subdivisons, until the specified flatness threshold is
   * not exceeded.  Additionally, the number of recursions is also
   * bound by the specified recursion limit.
   */
  public FlatteningPathIterator(PathIterator src, double flatness,
                                int limit)
  {
    if (flatness < 0 || limit < 0)
      throw new IllegalArgumentException();

    srcIter = src;
    flatnessSq = flatness * flatness;
    recursionLimit = limit;
    fetchSegment();
  }


  /**
   * Returns the maximally acceptable flatness.
   *
   * @see QuadCurve2D#getFlatness()
   * @see CubicCurve2D#getFlatness()
   */
  public double getFlatness()
  {
    return Math.sqrt(flatnessSq);
  }


  /**
   * Returns the maximum number of recursive curve subdivisions.
   */
  public int getRecursionLimit()
  {
    return recursionLimit;
  }


  // Documentation will be copied from PathIterator.
  public int getWindingRule()
  {
    return srcIter.getWindingRule();
  }


  // Documentation will be copied from PathIterator.
  public boolean isDone()
  {
    return done;
  }


  // Documentation will be copied from PathIterator.
  public void next()
  {
    if (stackSize > 0)
    {
      --stackSize;
      if (stackSize > 0)
      {
        switch (srcSegType)
        {
        case PathIterator.SEG_QUADTO:
          subdivideQuadratic();
          return;

        case PathIterator.SEG_CUBICTO:
          subdivideCubic();
          return;

        default:
          throw new IllegalStateException();
        }
      }
    }

    srcIter.next();
    fetchSegment();
  }


  // Documentation will be copied from PathIterator.
  public int currentSegment(double[] coords)
  {
    if (done)
      throw new NoSuchElementException();

    switch (srcSegType)
    {
    case PathIterator.SEG_CLOSE:
      return srcSegType;

    case PathIterator.SEG_MOVETO:
    case PathIterator.SEG_LINETO:
      coords[0] = srcPosX;
      coords[1] = srcPosY;
      return srcSegType;

    case PathIterator.SEG_QUADTO:
      if (stackSize == 0)
      {
        coords[0] = srcPosX;
        coords[1] = srcPosY;
      }
      else
      {
        int sp = stack.length - 4 * stackSize;
        coords[0] = stack[sp + 2];
        coords[1] = stack[sp + 3];
      }
      return PathIterator.SEG_LINETO;

    case PathIterator.SEG_CUBICTO:
      if (stackSize == 0)
      {
        coords[0] = srcPosX;
        coords[1] = srcPosY;
      }
      else
      {
        int sp = stack.length - 6 * stackSize;
        coords[0] = stack[sp + 4];
        coords[1] = stack[sp + 5];
      }
      return PathIterator.SEG_LINETO;
    }

    throw new IllegalStateException();
  }


  // Documentation will be copied from PathIterator.
  public int currentSegment(float[] coords)
  {
    if (done)
      throw new NoSuchElementException();

    switch (srcSegType)
    {
    case PathIterator.SEG_CLOSE:
      return srcSegType;

    case PathIterator.SEG_MOVETO:
    case PathIterator.SEG_LINETO:
      coords[0] = (float) srcPosX;
      coords[1] = (float) srcPosY;
      return srcSegType;

    case PathIterator.SEG_QUADTO:
      if (stackSize == 0)
      {
        coords[0] = (float) srcPosX;
        coords[1] = (float) srcPosY;
      }
      else
      {
        int sp = stack.length - 4 * stackSize;
        coords[0] = (float) stack[sp + 2];
        coords[1] = (float) stack[sp + 3];
      }
      return PathIterator.SEG_LINETO;

    case PathIterator.SEG_CUBICTO:
      if (stackSize == 0)
      {
        coords[0] = (float) srcPosX;
        coords[1] = (float) srcPosY;
      }
      else
      {
        int sp = stack.length - 6 * stackSize;
        coords[0] = (float) stack[sp + 4];
        coords[1] = (float) stack[sp + 5];
      }
      return PathIterator.SEG_LINETO;
    }

    throw new IllegalStateException();
  }


  /**
   * Fetches the next segment from the source iterator.
   */
  private void fetchSegment()
  {
    int sp;

    if (srcIter.isDone())
    {
      done = true;
      return;
    }

    srcSegType = srcIter.currentSegment(scratch);
    
    switch (srcSegType)
    {
    case PathIterator.SEG_CLOSE:
      return;

    case PathIterator.SEG_MOVETO:
    case PathIterator.SEG_LINETO:
      srcPosX = scratch[0];
      srcPosY = scratch[1];
      return;

    case PathIterator.SEG_QUADTO:
      if (recursionLimit == 0)
      {
        srcPosX = scratch[2];
        srcPosY = scratch[3];
        stackSize = 0;
        return;
      }
      sp = 4 * recursionLimit;
      stackSize = 1;
      if (stack == null)
      {
        stack = new double[sp + /* 4 + 2 */ 6];
        recLevel = new int[recursionLimit + 1];
      }
      recLevel[0] = 0;
      stack[sp] = srcPosX;                  // P1.x
      stack[sp + 1] = srcPosY;              // P1.y
      stack[sp + 2] = scratch[0];           // C.x
      stack[sp + 3] = scratch[1];           // C.y
      srcPosX = stack[sp + 4] = scratch[2]; // P2.x
      srcPosY = stack[sp + 5] = scratch[3]; // P2.y
      subdivideQuadratic();
      break;

    case PathIterator.SEG_CUBICTO:
      if (recursionLimit == 0)
      {
        srcPosX = scratch[4];
        srcPosY = scratch[5];
        stackSize = 0;
        return;
      }
      sp = 6 * recursionLimit;
      stackSize = 1;
      if ((stack == null) || (stack.length < sp + 8))
      {
        stack = new double[sp + /* 6 + 2 */ 8];
        recLevel = new int[recursionLimit + 1];
      }
      recLevel[0] = 0;
      stack[sp] = srcPosX;                  // P1.x
      stack[sp + 1] = srcPosY;              // P1.y
      stack[sp + 2] = scratch[0];           // C1.x
      stack[sp + 3] = scratch[1];           // C1.y
      stack[sp + 4] = scratch[2];           // C2.x
      stack[sp + 5] = scratch[3];           // C2.y
      srcPosX = stack[sp + 6] = scratch[4]; // P2.x
      srcPosY = stack[sp + 7] = scratch[5]; // P2.y
      subdivideCubic();
      return;
    }
  }


  /**
   * Repeatedly subdivides the quadratic curve segment that is on top
   * of the stack. The iteration terminates when the recursion limit
   * has been reached, or when the resulting segment is flat enough.
   */
  private void subdivideQuadratic()
  {
    int sp;
    int level;

    sp = stack.length - 4 * stackSize - 2;
    level = recLevel[stackSize - 1];
    while ((level < recursionLimit)
           && (QuadCurve2D.getFlatnessSq(stack, sp) >= flatnessSq))
    {
      recLevel[stackSize] = recLevel[stackSize - 1] = ++level;
      QuadCurve2D.subdivide(stack, sp, stack, sp - 4, stack, sp);
      ++stackSize;
      sp -= 4;
    }
  }


  /**
   * Repeatedly subdivides the cubic curve segment that is on top
   * of the stack. The iteration terminates when the recursion limit
   * has been reached, or when the resulting segment is flat enough.
   */
  private void subdivideCubic()
  {
    int sp;
    int level;

    sp = stack.length - 6 * stackSize - 2;
    level = recLevel[stackSize - 1];
    while ((level < recursionLimit)
           && (CubicCurve2D.getFlatnessSq(stack, sp) >= flatnessSq))
    {
      recLevel[stackSize] = recLevel[stackSize - 1] = ++level;
      
      CubicCurve2D.subdivide(stack, sp, stack, sp - 6, stack, sp);
      ++stackSize;
      sp -= 6;
    }
  }


  /* These routines were useful for debugging. Since they would
   * just bloat the implementation, they are commented out.
   *
   *

  private static String segToString(int segType, double[] d, int offset)
  {
    String s;

    switch (segType)
    {
    case PathIterator.SEG_CLOSE:
      return "SEG_CLOSE";

    case PathIterator.SEG_MOVETO:
      return "SEG_MOVETO (" + d[offset] + ", " + d[offset + 1] + ")";

    case PathIterator.SEG_LINETO:
      return "SEG_LINETO (" + d[offset] + ", " + d[offset + 1] + ")";

    case PathIterator.SEG_QUADTO:
      return "SEG_QUADTO (" + d[offset] + ", " + d[offset + 1]
        + ") (" + d[offset + 2] + ", " + d[offset + 3] + ")";

    case PathIterator.SEG_CUBICTO:
      return "SEG_CUBICTO (" + d[offset] + ", " + d[offset + 1]
        + ") (" + d[offset + 2] + ", " + d[offset + 3]
        + ") (" + d[offset + 4] + ", " + d[offset + 5] + ")";
    }

    throw new IllegalStateException();
  }


  private void dumpQuadraticStack(String msg)
  {
    int sp = stack.length - 4 * stackSize - 2;
    int i = 0;
    System.err.print("    " + msg + ":");
    while (sp < stack.length)
    {
      System.err.print(" (" + stack[sp] + ", " + stack[sp+1] + ")");
      if (i < recLevel.length)
        System.out.print("/" + recLevel[i++]);
      if (sp + 3 < stack.length)
        System.err.print(" [" + stack[sp+2] + ", " + stack[sp+3] + "]");
      sp += 4;
    }
    System.err.println();
  }


  private void dumpCubicStack(String msg)
  {
    int sp = stack.length - 6 * stackSize - 2;
    int i = 0;
    System.err.print("    " + msg + ":");
    while (sp < stack.length)
    {
      System.err.print(" (" + stack[sp] + ", " + stack[sp+1] + ")");
      if (i < recLevel.length)
        System.out.print("/" + recLevel[i++]);
      if (sp + 3 < stack.length)
      {
        System.err.print(" [" + stack[sp+2] + ", " + stack[sp+3] + "]");
        System.err.print(" [" + stack[sp+4] + ", " + stack[sp+5] + "]");
      }
      sp += 6;
    }
    System.err.println();
  }

  *
  *
  */
}