resource.c 38.2 KB
Newer Older
1
/* Definitions for computing resource usage of specific insns.
2 3
   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
   2009 Free Software Foundation, Inc.
4

5
This file is part of GCC.
6

7 8
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
9
Software Foundation; either version 3, or (at your option) any later
10
version.
11

12 13 14 15
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
16 17

You should have received a copy of the GNU General Public License
18 19
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
20

21
#include "config.h"
22
#include "system.h"
23 24
#include "coretypes.h"
#include "tm.h"
25
#include "diagnostic-core.h"
26
#include "toplev.h"
27
#include "rtl.h"
28
#include "tm_p.h"
29
#include "hard-reg-set.h"
30
#include "function.h"
31 32 33 34
#include "regs.h"
#include "flags.h"
#include "output.h"
#include "resource.h"
35
#include "except.h"
36
#include "insn-attr.h"
37
#include "params.h"
38
#include "df.h"
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

/* This structure is used to record liveness information at the targets or
   fallthrough insns of branches.  We will most likely need the information
   at targets again, so save them in a hash table rather than recomputing them
   each time.  */

struct target_info
{
  int uid;			/* INSN_UID of target.  */
  struct target_info *next;	/* Next info for same hash bucket.  */
  HARD_REG_SET live_regs;	/* Registers live at target.  */
  int block;			/* Basic block number containing target.  */
  int bb_tick;			/* Generation count of basic block info.  */
};

#define TARGET_HASH_PRIME 257

/* Indicates what resources are required at the beginning of the epilogue.  */
static struct resources start_of_epilogue_needs;

/* Indicates what resources are required at function end.  */
static struct resources end_of_function_needs;

/* Define the hash table itself.  */
static struct target_info **target_hash_table = NULL;

/* For each basic block, we maintain a generation number of its basic
   block info, which is updated each time we move an insn from the
   target of a jump.  This is the generation number indexed by block
   number.  */

static int *bb_ticks;

/* Marks registers possibly live at the current place being scanned by
73
   mark_target_live_regs.  Also used by update_live_status.  */
74 75 76 77 78 79 80

static HARD_REG_SET current_live_regs;

/* Marks registers for which we have seen a REG_DEAD note but no assignment.
   Also only used by the next two functions.  */

static HARD_REG_SET pending_dead_regs;
81

82
static void update_live_status (rtx, const_rtx, void *);
83 84 85 86 87
static int find_basic_block (rtx, int);
static rtx next_insn_no_annul (rtx);
static rtx find_dead_or_set_registers (rtx, struct resources*,
				       rtx*, int, struct resources,
				       struct resources);
88

89 90 91 92
/* Utility function called from mark_target_live_regs via note_stores.
   It deadens any CLOBBERed registers and livens any SET registers.  */

static void
93
update_live_status (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
94 95 96 97
{
  int first_regno, last_regno;
  int i;

98 99
  if (!REG_P (dest)
      && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
100 101 102
    return;

  if (GET_CODE (dest) == SUBREG)
103 104 105
    {
      first_regno = subreg_regno (dest);
      last_regno = first_regno + subreg_nregs (dest);
106

107 108 109 110
    }
  else
    {
      first_regno = REGNO (dest);
111
      last_regno = END_HARD_REGNO (dest);
112
    }
113 114 115 116 117 118 119 120 121 122 123

  if (GET_CODE (x) == CLOBBER)
    for (i = first_regno; i < last_regno; i++)
      CLEAR_HARD_REG_BIT (current_live_regs, i);
  else
    for (i = first_regno; i < last_regno; i++)
      {
	SET_HARD_REG_BIT (current_live_regs, i);
	CLEAR_HARD_REG_BIT (pending_dead_regs, i);
      }
}
124 125 126 127 128 129 130 131 132 133 134

/* Find the number of the basic block with correct live register
   information that starts closest to INSN.  Return -1 if we couldn't
   find such a basic block or the beginning is more than
   SEARCH_LIMIT instructions before INSN.  Use SEARCH_LIMIT = -1 for
   an unlimited search.

   The delay slot filling code destroys the control-flow graph so,
   instead of finding the basic block containing INSN, we search
   backwards toward a BARRIER where the live register information is
   correct.  */
135 136

static int
137
find_basic_block (rtx insn, int search_limit)
138 139 140 141
{
  /* Scan backwards to the previous BARRIER.  Then see if we can find a
     label that starts a basic block.  Return the basic block number.  */
  for (insn = prev_nonnote_insn (insn);
142
       insn && !BARRIER_P (insn) && search_limit != 0;
143
       insn = prev_nonnote_insn (insn), --search_limit)
144 145
    ;

146 147 148 149
  /* The closest BARRIER is too far away.  */
  if (search_limit == 0)
    return -1;

150
  /* The start of the function.  */
151
  else if (insn == 0)
152
    return ENTRY_BLOCK_PTR->next_bb->index;
153 154 155 156

  /* See if any of the upcoming CODE_LABELs start a basic block.  If we reach
     anything other than a CODE_LABEL or note, we can't find this code.  */
  for (insn = next_nonnote_insn (insn);
157
       insn && LABEL_P (insn);
158
       insn = next_nonnote_insn (insn))
159 160
    if (BLOCK_FOR_INSN (insn))
      return BLOCK_FOR_INSN (insn)->index;
161 162 163

  return -1;
}
164 165 166 167 168

/* Similar to next_insn, but ignores insns in the delay slots of
   an annulled branch.  */

static rtx
169
next_insn_no_annul (rtx insn)
170 171 172 173 174
{
  if (insn)
    {
      /* If INSN is an annulled branch, skip any insns from the target
	 of the branch.  */
175
      if (INSN_P (insn)
176
	  && INSN_ANNULLED_BRANCH_P (insn)
177
	  && NEXT_INSN (PREV_INSN (insn)) != insn)
178 179 180 181 182 183 184 185 186 187 188 189
	{
	  rtx next = NEXT_INSN (insn);
	  enum rtx_code code = GET_CODE (next);

	  while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
		 && INSN_FROM_TARGET_P (next))
	    {
	      insn = next;
	      next = NEXT_INSN (insn);
	      code = GET_CODE (next);
	    }
	}
190 191

      insn = NEXT_INSN (insn);
192
      if (insn && NONJUMP_INSN_P (insn)
193 194 195 196 197 198 199 200
	  && GET_CODE (PATTERN (insn)) == SEQUENCE)
	insn = XVECEXP (PATTERN (insn), 0, 0);
    }

  return insn;
}

/* Given X, some rtl, and RES, a pointer to a `struct resource', mark
201
   which resources are referenced by the insn.  If INCLUDE_DELAYED_EFFECTS
202 203 204 205
   is TRUE, resources used by the called routine will be included for
   CALL_INSNs.  */

void
206
mark_referenced_resources (rtx x, struct resources *res,
207
			   bool include_delayed_effects)
208
{
209 210 211
  enum rtx_code code = GET_CODE (x);
  int i, j;
  unsigned int r;
212
  const char *format_ptr;
213 214 215 216 217 218 219 220

  /* Handle leaf items for which we set resource flags.  Also, special-case
     CALL, SET and CLOBBER operators.  */
  switch (code)
    {
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
221
    case CONST_FIXED:
222
    case CONST_VECTOR:
223 224 225 226 227 228
    case PC:
    case SYMBOL_REF:
    case LABEL_REF:
      return;

    case SUBREG:
229
      if (!REG_P (SUBREG_REG (x)))
230
	mark_referenced_resources (SUBREG_REG (x), res, false);
231 232
      else
	{
233
	  unsigned int regno = subreg_regno (x);
234
	  unsigned int last_regno = regno + subreg_nregs (x);
235

236
	  gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
237 238
	  for (r = regno; r < last_regno; r++)
	    SET_HARD_REG_BIT (res->regs, r);
239 240 241 242
	}
      return;

    case REG:
243 244
      gcc_assert (HARD_REGISTER_P (x));
      add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
245 246 247 248 249
      return;

    case MEM:
      /* If this memory shouldn't change, it really isn't referencing
	 memory.  */
250
      if (MEM_READONLY_P (x))
251 252 253
	res->unch_memory = 1;
      else
	res->memory = 1;
254
      res->volatil |= MEM_VOLATILE_P (x);
255 256

      /* Mark registers used to access memory.  */
257
      mark_referenced_resources (XEXP (x, 0), res, false);
258 259 260 261 262 263 264
      return;

    case CC0:
      res->cc = 1;
      return;

    case UNSPEC_VOLATILE:
265
    case TRAP_IF:
266 267 268 269 270 271
    case ASM_INPUT:
      /* Traditional asm's are always volatile.  */
      res->volatil = 1;
      break;

    case ASM_OPERANDS:
272
      res->volatil |= MEM_VOLATILE_P (x);
273 274 275 276 277

      /* For all ASM_OPERANDS, we must traverse the vector of input operands.
	 We can not just fall through here since then we would be confused
	 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
	 traditional asms unlike their normal usage.  */
278

279
      for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
280
	mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, false);
281 282 283 284 285
      return;

    case CALL:
      /* The first operand will be a (MEM (xxx)) but doesn't really reference
	 memory.  The second operand may be referenced, though.  */
286 287
      mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, false);
      mark_referenced_resources (XEXP (x, 1), res, false);
288 289 290 291 292
      return;

    case SET:
      /* Usually, the first operand of SET is set, not referenced.  But
	 registers used to access memory are referenced.  SET_DEST is
293
	 also referenced if it is a ZERO_EXTRACT.  */
294

295
      mark_referenced_resources (SET_SRC (x), res, false);
296 297

      x = SET_DEST (x);
298
      if (GET_CODE (x) == ZERO_EXTRACT
299
	  || GET_CODE (x) == STRICT_LOW_PART)
300
	mark_referenced_resources (x, res, false);
301 302
      else if (GET_CODE (x) == SUBREG)
	x = SUBREG_REG (x);
303
      if (MEM_P (x))
304
	mark_referenced_resources (XEXP (x, 0), res, false);
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
      return;

    case CLOBBER:
      return;

    case CALL_INSN:
      if (include_delayed_effects)
	{
	  /* A CALL references memory, the frame pointer if it exists, the
	     stack pointer, any global registers and any registers given in
	     USE insns immediately in front of the CALL.

	     However, we may have moved some of the parameter loading insns
	     into the delay slot of this CALL.  If so, the USE's for them
	     don't count and should be skipped.  */
	  rtx insn = PREV_INSN (x);
	  rtx sequence = 0;
	  int seq_size = 0;
	  int i;

	  /* If we are part of a delay slot sequence, point at the SEQUENCE.  */
	  if (NEXT_INSN (insn) != x)
	    {
	      sequence = PATTERN (NEXT_INSN (insn));
	      seq_size = XVECLEN (sequence, 0);
330
	      gcc_assert (GET_CODE (sequence) == SEQUENCE);
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
	    }

	  res->memory = 1;
	  SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
	  if (frame_pointer_needed)
	    {
	      SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
	      SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
#endif
	    }

	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
	    if (global_regs[i])
	      SET_HARD_REG_BIT (res->regs, i);

347
	  /* Check for a REG_SETJMP.  If it exists, then we must
348 349 350 351 352 353
	     assume that this call can need any register.

	     This is done to be more conservative about how we handle setjmp.
	     We assume that they both use and set all registers.  Using all
	     registers ensures that a register will not be considered dead
	     just because it crosses a setjmp call.  A register should be
354
	     considered dead only if the setjmp call returns nonzero.  */
355
	  if (find_reg_note (x, REG_SETJMP, NULL))
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
	    SET_HARD_REG_SET (res->regs);

	  {
	    rtx link;

	    for (link = CALL_INSN_FUNCTION_USAGE (x);
		 link;
		 link = XEXP (link, 1))
	      if (GET_CODE (XEXP (link, 0)) == USE)
		{
		  for (i = 1; i < seq_size; i++)
		    {
		      rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
		      if (GET_CODE (slot_pat) == SET
			  && rtx_equal_p (SET_DEST (slot_pat),
371
					  XEXP (XEXP (link, 0), 0)))
372 373 374
			break;
		    }
		  if (i >= seq_size)
375
		    mark_referenced_resources (XEXP (XEXP (link, 0), 0),
376
					       res, false);
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
		}
	  }
	}

      /* ... fall through to other INSN processing ...  */

    case INSN:
    case JUMP_INSN:

#ifdef INSN_REFERENCES_ARE_DELAYED
      if (! include_delayed_effects
	  && INSN_REFERENCES_ARE_DELAYED (x))
	return;
#endif

      /* No special processing, just speed up.  */
      mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
      return;

    default:
      break;
    }

  /* Process each sub-expression and flag what it needs.  */
  format_ptr = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++)
    switch (*format_ptr++)
      {
      case 'e':
	mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
	break;

      case 'E':
	for (j = 0; j < XVECLEN (x, i); j++)
	  mark_referenced_resources (XVECEXP (x, i, j), res,
				     include_delayed_effects);
	break;
      }
}

/* A subroutine of mark_target_live_regs.  Search forward from TARGET
418
   looking for registers that are set before they are used.  These are dead.
419 420 421 422
   Stop after passing a few conditional jumps, and/or a small
   number of unconditional branches.  */

static rtx
423 424 425
find_dead_or_set_registers (rtx target, struct resources *res,
			    rtx *jump_target, int jump_count,
			    struct resources set, struct resources needed)
426 427 428 429 430 431 432 433 434 435 436
{
  HARD_REG_SET scratch;
  rtx insn, next;
  rtx jump_insn = 0;
  int i;

  for (insn = target; insn; insn = next)
    {
      rtx this_jump_insn = insn;

      next = NEXT_INSN (insn);
437 438 439 440 441

      /* If this instruction can throw an exception, then we don't
	 know where we might end up next.  That means that we have to
	 assume that whatever we have already marked as live really is
	 live.  */
442
      if (can_throw_internal (insn))
443 444
	break;

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
      switch (GET_CODE (insn))
	{
	case CODE_LABEL:
	  /* After a label, any pending dead registers that weren't yet
	     used can be made dead.  */
	  AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
	  AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
	  CLEAR_HARD_REG_SET (pending_dead_regs);

	  continue;

	case BARRIER:
	case NOTE:
	  continue;

	case INSN:
	  if (GET_CODE (PATTERN (insn)) == USE)
	    {
	      /* If INSN is a USE made by update_block, we care about the
		 underlying insn.  Any registers set by the underlying insn
		 are live since the insn is being done somewhere else.  */
466
	      if (INSN_P (XEXP (PATTERN (insn), 0)))
467 468
		mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
				    MARK_SRC_DEST_CALL);
469 470 471 472 473 474 475 476 477 478 479 480 481

	      /* All other USE insns are to be ignored.  */
	      continue;
	    }
	  else if (GET_CODE (PATTERN (insn)) == CLOBBER)
	    continue;
	  else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
	    {
	      /* An unconditional jump can be used to fill the delay slot
		 of a call, so search for a JUMP_INSN in any position.  */
	      for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
		{
		  this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
482
		  if (JUMP_P (this_jump_insn))
483 484 485 486 487 488 489 490
		    break;
		}
	    }

	default:
	  break;
	}

491
      if (JUMP_P (this_jump_insn))
492 493 494
	{
	  if (jump_count++ < 10)
	    {
495
	      if (any_uncondjump_p (this_jump_insn)
496 497 498 499 500 501 502 503 504 505
		  || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
		{
		  next = JUMP_LABEL (this_jump_insn);
		  if (jump_insn == 0)
		    {
		      jump_insn = insn;
		      if (jump_target)
			*jump_target = JUMP_LABEL (this_jump_insn);
		    }
		}
506
	      else if (any_condjump_p (this_jump_insn))
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
		{
		  struct resources target_set, target_res;
		  struct resources fallthrough_res;

		  /* We can handle conditional branches here by following
		     both paths, and then IOR the results of the two paths
		     together, which will give us registers that are dead
		     on both paths.  Since this is expensive, we give it
		     a much higher cost than unconditional branches.  The
		     cost was chosen so that we will follow at most 1
		     conditional branch.  */

		  jump_count += 4;
		  if (jump_count >= 10)
		    break;

523
		  mark_referenced_resources (insn, &needed, true);
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

		  /* For an annulled branch, mark_set_resources ignores slots
		     filled by instructions from the target.  This is correct
		     if the branch is not taken.  Since we are following both
		     paths from the branch, we must also compute correct info
		     if the branch is taken.  We do this by inverting all of
		     the INSN_FROM_TARGET_P bits, calling mark_set_resources,
		     and then inverting the INSN_FROM_TARGET_P bits again.  */

		  if (GET_CODE (PATTERN (insn)) == SEQUENCE
		      && INSN_ANNULLED_BRANCH_P (this_jump_insn))
		    {
		      for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
			INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
			  = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));

		      target_set = set;
541 542
		      mark_set_resources (insn, &target_set, 0,
					  MARK_SRC_DEST_CALL);
543 544 545 546 547

		      for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
			INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
			  = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));

548
		      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
549 550 551
		    }
		  else
		    {
552
		      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
		      target_set = set;
		    }

		  target_res = *res;
		  COPY_HARD_REG_SET (scratch, target_set.regs);
		  AND_COMPL_HARD_REG_SET (scratch, needed.regs);
		  AND_COMPL_HARD_REG_SET (target_res.regs, scratch);

		  fallthrough_res = *res;
		  COPY_HARD_REG_SET (scratch, set.regs);
		  AND_COMPL_HARD_REG_SET (scratch, needed.regs);
		  AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);

		  find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
					      &target_res, 0, jump_count,
					      target_set, needed);
		  find_dead_or_set_registers (next,
					      &fallthrough_res, 0, jump_count,
					      set, needed);
		  IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
		  AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
		  break;
		}
	      else
		break;
	    }
	  else
	    {
	      /* Don't try this optimization if we expired our jump count
		 above, since that would mean there may be an infinite loop
		 in the function being compiled.  */
	      jump_insn = 0;
	      break;
	    }
	}

589
      mark_referenced_resources (insn, &needed, true);
590
      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
591 592 593 594 595 596 597 598 599 600 601

      COPY_HARD_REG_SET (scratch, set.regs);
      AND_COMPL_HARD_REG_SET (scratch, needed.regs);
      AND_COMPL_HARD_REG_SET (res->regs, scratch);
    }

  return jump_insn;
}

/* Given X, a part of an insn, and a pointer to a `struct resource',
   RES, indicate which resources are modified by the insn. If
602
   MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
603
   set by the called routine.
604 605 606 607 608 609 610 611

   If IN_DEST is nonzero, it means we are inside a SET.  Otherwise,
   objects are being referenced instead of set.

   We never mark the insn as modifying the condition code unless it explicitly
   SETs CC0 even though this is not totally correct.  The reason for this is
   that we require a SET of CC0 to immediately precede the reference to CC0.
   So if some other insn sets CC0 as a side-effect, we know it cannot affect
Kazu Hirata committed
612
   our computation and thus may be placed in a delay slot.  */
613 614

void
615 616
mark_set_resources (rtx x, struct resources *res, int in_dest,
		    enum mark_resource_type mark_type)
617
{
618 619 620 621
  enum rtx_code code;
  int i, j;
  unsigned int r;
  const char *format_ptr;
622 623 624 625 626 627 628 629 630 631 632 633 634

 restart:

  code = GET_CODE (x);

  switch (code)
    {
    case NOTE:
    case BARRIER:
    case CODE_LABEL:
    case USE:
    case CONST_INT:
    case CONST_DOUBLE:
635
    case CONST_FIXED:
636
    case CONST_VECTOR:
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST:
    case PC:
      /* These don't set any resources.  */
      return;

    case CC0:
      if (in_dest)
	res->cc = 1;
      return;

    case CALL_INSN:
      /* Called routine modifies the condition code, memory, any registers
	 that aren't saved across calls, global registers and anything
	 explicitly CLOBBERed immediately after the CALL_INSN.  */

654
      if (mark_type == MARK_SRC_DEST_CALL)
655 656 657 658
	{
	  rtx link;

	  res->cc = res->memory = 1;
659 660

	  IOR_HARD_REG_SET (res->regs, regs_invalidated_by_call);
661 662 663 664

	  for (link = CALL_INSN_FUNCTION_USAGE (x);
	       link; link = XEXP (link, 1))
	    if (GET_CODE (XEXP (link, 0)) == CLOBBER)
665 666
	      mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
				  MARK_SRC_DEST);
667

668
	  /* Check for a REG_SETJMP.  If it exists, then we must
669
	     assume that this call can clobber any register.  */
670
	  if (find_reg_note (x, REG_SETJMP, NULL))
671 672 673 674 675 676 677 678 679 680 681 682
	    SET_HARD_REG_SET (res->regs);
	}

      /* ... and also what its RTL says it modifies, if anything.  */

    case JUMP_INSN:
    case INSN:

	/* An insn consisting of just a CLOBBER (or USE) is just for flow
	   and doesn't actually do anything, so we ignore it.  */

#ifdef INSN_SETS_ARE_DELAYED
683
      if (mark_type != MARK_SRC_DEST_CALL
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
	  && INSN_SETS_ARE_DELAYED (x))
	return;
#endif

      x = PATTERN (x);
      if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
	goto restart;
      return;

    case SET:
      /* If the source of a SET is a CALL, this is actually done by
	 the called routine.  So only include it if we are to include the
	 effects of the calling routine.  */

      mark_set_resources (SET_DEST (x), res,
699
			  (mark_type == MARK_SRC_DEST_CALL
700
			   || GET_CODE (SET_SRC (x)) != CALL),
701
			  mark_type);
702

703
      mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
704 705 706
      return;

    case CLOBBER:
707
      mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
708
      return;
709

710 711 712 713
    case SEQUENCE:
      for (i = 0; i < XVECLEN (x, 0); i++)
	if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
	       && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
714
	  mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type);
715 716 717 718 719 720
      return;

    case POST_INC:
    case PRE_INC:
    case POST_DEC:
    case PRE_DEC:
721
      mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
722 723
      return;

724 725
    case PRE_MODIFY:
    case POST_MODIFY:
726 727 728
      mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
      mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
      mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
729 730
      return;

731
    case SIGN_EXTRACT:
732
    case ZERO_EXTRACT:
733 734 735
      mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
      mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
      mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
736 737 738 739 740 741
      return;

    case MEM:
      if (in_dest)
	{
	  res->memory = 1;
742
	  res->unch_memory |= MEM_READONLY_P (x);
743
	  res->volatil |= MEM_VOLATILE_P (x);
744 745
	}

746
      mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
747 748 749 750 751
      return;

    case SUBREG:
      if (in_dest)
	{
752
	  if (!REG_P (SUBREG_REG (x)))
753
	    mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
754 755
	  else
	    {
756
	      unsigned int regno = subreg_regno (x);
757
	      unsigned int last_regno = regno + subreg_nregs (x);
758

759
	      gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
760 761
	      for (r = regno; r < last_regno; r++)
		SET_HARD_REG_BIT (res->regs, r);
762 763 764 765 766 767
	    }
	}
      return;

    case REG:
      if (in_dest)
768
	{
769 770
	  gcc_assert (HARD_REGISTER_P (x));
	  add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
771
	}
772 773
      return;

774 775 776 777 778 779 780 781 782 783 784
    case UNSPEC_VOLATILE:
    case ASM_INPUT:
      /* Traditional asm's are always volatile.  */
      res->volatil = 1;
      return;

    case TRAP_IF:
      res->volatil = 1;
      break;

    case ASM_OPERANDS:
785
      res->volatil |= MEM_VOLATILE_P (x);
786 787 788 789 790

      /* For all ASM_OPERANDS, we must traverse the vector of input operands.
	 We can not just fall through here since then we would be confused
	 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
	 traditional asms unlike their normal usage.  */
791

792
      for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
793 794
	mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
			    MARK_SRC_DEST);
795 796
      return;

797 798 799 800 801 802 803 804 805 806
    default:
      break;
    }

  /* Process each sub-expression and flag what it needs.  */
  format_ptr = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++)
    switch (*format_ptr++)
      {
      case 'e':
807
	mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
808 809 810 811
	break;

      case 'E':
	for (j = 0; j < XVECLEN (x, i); j++)
812
	  mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
813 814 815 816
	break;
      }
}

817 818 819
/* Return TRUE if INSN is a return, possibly with a filled delay slot.  */

static bool
820
return_insn_p (const_rtx insn)
821
{
822
  if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
823 824
    return true;

825
  if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
826 827 828 829 830
    return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));

  return false;
}

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
/* Set the resources that are live at TARGET.

   If TARGET is zero, we refer to the end of the current function and can
   return our precomputed value.

   Otherwise, we try to find out what is live by consulting the basic block
   information.  This is tricky, because we must consider the actions of
   reload and jump optimization, which occur after the basic block information
   has been computed.

   Accordingly, we proceed as follows::

   We find the previous BARRIER and look at all immediately following labels
   (with no intervening active insns) to see if any of them start a basic
   block.  If we hit the start of the function first, we use block 0.

847 848 849 850 851 852
   Once we have found a basic block and a corresponding first insn, we can
   accurately compute the live status (by starting at a label following a
   BARRIER, we are immune to actions taken by reload and jump.)  Then we
   scan all insns between that point and our target.  For each CLOBBER (or
   for call-clobbered regs when we pass a CALL_INSN), mark the appropriate
   registers are dead.  For a SET, mark them as live.
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869

   We have to be careful when using REG_DEAD notes because they are not
   updated by such things as find_equiv_reg.  So keep track of registers
   marked as dead that haven't been assigned to, and mark them dead at the
   next CODE_LABEL since reload and jump won't propagate values across labels.

   If we cannot find the start of a basic block (should be a very rare
   case, if it can happen at all), mark everything as potentially live.

   Next, scan forward from TARGET looking for things set or clobbered
   before they are used.  These are not live.

   Because we can be called many times on the same target, save our results
   in a hash table indexed by INSN_UID.  This is only done if the function
   init_resource_info () was invoked before we are called.  */

void
870
mark_target_live_regs (rtx insns, rtx target, struct resources *res)
871 872
{
  int b = -1;
873
  unsigned int i;
874 875 876 877 878 879 880 881 882 883 884 885 886 887
  struct target_info *tinfo = NULL;
  rtx insn;
  rtx jump_insn = 0;
  rtx jump_target;
  HARD_REG_SET scratch;
  struct resources set, needed;

  /* Handle end of function.  */
  if (target == 0)
    {
      *res = end_of_function_needs;
      return;
    }

888 889 890 891
  /* Handle return insn.  */
  else if (return_insn_p (target))
    {
      *res = end_of_function_needs;
892
      mark_referenced_resources (target, res, false);
893 894 895
      return;
    }

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
  /* We have to assume memory is needed, but the CC isn't.  */
  res->memory = 1;
  res->volatil = res->unch_memory = 0;
  res->cc = 0;

  /* See if we have computed this value already.  */
  if (target_hash_table != NULL)
    {
      for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
	   tinfo; tinfo = tinfo->next)
	if (tinfo->uid == INSN_UID (target))
	  break;

      /* Start by getting the basic block number.  If we have saved
	 information, we can get it from there unless the insn at the
	 start of the basic block has been deleted.  */
      if (tinfo && tinfo->block != -1
913
	  && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
914 915 916
	b = tinfo->block;
    }

917
  if (b == -1)
918
    b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933

  if (target_hash_table != NULL)
    {
      if (tinfo)
	{
	  /* If the information is up-to-date, use it.  Otherwise, we will
	     update it below.  */
	  if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
	    {
	      COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
	      return;
	    }
	}
      else
	{
934
	  /* Allocate a place to put our results and chain it into the
935
	     hash table.  */
936
	  tinfo = XNEW (struct target_info);
937 938
	  tinfo->uid = INSN_UID (target);
	  tinfo->block = b;
939 940
	  tinfo->next
	    = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
941 942 943 944 945 946 947 948
	  target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
	}
    }

  CLEAR_HARD_REG_SET (pending_dead_regs);

  /* If we found a basic block, get the live registers from it and update
     them with anything set or killed between its start and the insn before
949 950
     TARGET; this custom life analysis is really about registers so we need
     to use the LR problem.  Otherwise, we must assume everything is live.  */
951 952
  if (b != -1)
    {
953
      regset regs_live = DF_LR_IN (BASIC_BLOCK (b));
954 955
      rtx start_insn, stop_insn;

956
      /* Compute hard regs live at start of block.  */
957 958 959 960
      REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);

      /* Get starting and ending insn, handling the case where each might
	 be a SEQUENCE.  */
H.J. Lu committed
961
      start_insn = (b == ENTRY_BLOCK_PTR->next_bb->index ?
962
		    insns : BB_HEAD (BASIC_BLOCK (b)));
963 964
      stop_insn = target;

965
      if (NONJUMP_INSN_P (start_insn)
966 967 968
	  && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
	start_insn = XVECEXP (PATTERN (start_insn), 0, 0);

969
      if (NONJUMP_INSN_P (stop_insn)
970 971 972 973 974 975 976 977
	  && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
	stop_insn = next_insn (PREV_INSN (stop_insn));

      for (insn = start_insn; insn != stop_insn;
	   insn = next_insn_no_annul (insn))
	{
	  rtx link;
	  rtx real_insn = insn;
978
	  enum rtx_code code = GET_CODE (insn);
979

980 981 982
	  if (DEBUG_INSN_P (insn))
	    continue;

983 984 985
	  /* If this insn is from the target of a branch, it isn't going to
	     be used in the sequel.  If it is used in both cases, this
	     test will not be true.  */
986 987
	  if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
	      && INSN_FROM_TARGET_P (insn))
988 989 990 991
	    continue;

	  /* If this insn is a USE made by update_block, we care about the
	     underlying insn.  */
992
	  if (code == INSN && GET_CODE (PATTERN (insn)) == USE
993
	      && INSN_P (XEXP (PATTERN (insn), 0)))
994 995
	      real_insn = XEXP (PATTERN (insn), 0);

996
	  if (CALL_P (real_insn))
997 998 999 1000
	    {
	      /* CALL clobbers all call-used regs that aren't fixed except
		 sp, ap, and fp.  Do this before setting the result of the
		 call live.  */
1001 1002
	      AND_COMPL_HARD_REG_SET (current_live_regs,
				      regs_invalidated_by_call);
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

	      /* A CALL_INSN sets any global register live, since it may
		 have been modified by the call.  */
	      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
		if (global_regs[i])
		  SET_HARD_REG_BIT (current_live_regs, i);
	    }

	  /* Mark anything killed in an insn to be deadened at the next
	     label.  Ignore USE insns; the only REG_DEAD notes will be for
	     parameters.  But they might be early.  A CALL_INSN will usually
	     clobber registers used for parameters.  It isn't worth bothering
	     with the unlikely case when it won't.  */
1016
	  if ((NONJUMP_INSN_P (real_insn)
1017 1018
	       && GET_CODE (PATTERN (real_insn)) != USE
	       && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1019 1020
	      || JUMP_P (real_insn)
	      || CALL_P (real_insn))
1021 1022 1023
	    {
	      for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
		if (REG_NOTE_KIND (link) == REG_DEAD
1024
		    && REG_P (XEXP (link, 0))
1025
		    && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1026 1027 1028
		  add_to_hard_reg_set (&pending_dead_regs,
				      GET_MODE (XEXP (link, 0)),
				      REGNO (XEXP (link, 0)));
1029

1030
	      note_stores (PATTERN (real_insn), update_live_status, NULL);
1031 1032 1033 1034 1035

	      /* If any registers were unused after this insn, kill them.
		 These notes will always be accurate.  */
	      for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
		if (REG_NOTE_KIND (link) == REG_UNUSED
1036
		    && REG_P (XEXP (link, 0))
1037
		    && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1038 1039 1040
		  remove_from_hard_reg_set (&current_live_regs,
					   GET_MODE (XEXP (link, 0)),
					   REGNO (XEXP (link, 0)));
1041 1042
	    }

1043
	  else if (LABEL_P (real_insn))
1044
	    {
1045 1046
	      basic_block bb;

1047 1048 1049 1050
	      /* A label clobbers the pending dead registers since neither
		 reload nor jump will propagate a value across a label.  */
	      AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
	      CLEAR_HARD_REG_SET (pending_dead_regs);
1051 1052 1053 1054 1055 1056 1057 1058 1059

	      /* We must conservatively assume that all registers that used
		 to be live here still are.  The fallthrough edge may have
		 left a live register uninitialized.  */
	      bb = BLOCK_FOR_INSN (real_insn);
	      if (bb)
		{
		  HARD_REG_SET extra_live;

1060
		  REG_SET_TO_HARD_REG_SET (extra_live, DF_LR_IN (bb));
1061 1062
		  IOR_HARD_REG_SET (current_live_regs, extra_live);
		}
1063 1064 1065 1066 1067
	    }

	  /* The beginning of the epilogue corresponds to the end of the
	     RTL chain when there are no epilogue insns.  Certain resources
	     are implicitly required at that point.  */
1068
	  else if (NOTE_P (real_insn)
1069
		   && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	    IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
	}

      COPY_HARD_REG_SET (res->regs, current_live_regs);
      if (tinfo != NULL)
	{
	  tinfo->block = b;
	  tinfo->bb_tick = bb_ticks[b];
	}
    }
  else
    /* We didn't find the start of a basic block.  Assume everything
       in use.  This should happen only extremely rarely.  */
    SET_HARD_REG_SET (res->regs);

  CLEAR_RESOURCE (&set);
  CLEAR_RESOURCE (&needed);

  jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
					  set, needed);

  /* If we hit an unconditional branch, we have another way of finding out
     what is live: we can see what is live at the branch target and include
1093
     anything used but not set before the branch.  We add the live
1094
     resources found using the test below to those found until now.  */
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

  if (jump_insn)
    {
      struct resources new_resources;
      rtx stop_insn = next_active_insn (jump_insn);

      mark_target_live_regs (insns, next_active_insn (jump_target),
			     &new_resources);
      CLEAR_RESOURCE (&set);
      CLEAR_RESOURCE (&needed);

      /* Include JUMP_INSN in the needed registers.  */
      for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
	{
1109
	  mark_referenced_resources (insn, &needed, true);
1110 1111 1112 1113 1114

	  COPY_HARD_REG_SET (scratch, needed.regs);
	  AND_COMPL_HARD_REG_SET (scratch, set.regs);
	  IOR_HARD_REG_SET (new_resources.regs, scratch);

1115
	  mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1116 1117
	}

1118
      IOR_HARD_REG_SET (res->regs, new_resources.regs);
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
    }

  if (tinfo != NULL)
    {
      COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
    }
}

/* Initialize the resources required by mark_target_live_regs ().
   This should be invoked before the first call to mark_target_live_regs.  */

void
1131
init_resource_info (rtx epilogue_insn)
1132 1133
{
  int i;
1134
  basic_block bb;
1135 1136 1137 1138

  /* Indicate what resources are required to be valid at the end of the current
     function.  The condition code never is and memory always is.  If the
     frame pointer is needed, it is and so is the stack pointer unless
1139
     EXIT_IGNORE_STACK is nonzero.  If the frame pointer is not needed, the
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
     stack pointer is.  Registers used to return the function value are
     needed.  Registers holding global variables are needed.  */

  end_of_function_needs.cc = 0;
  end_of_function_needs.memory = 1;
  end_of_function_needs.unch_memory = 0;
  CLEAR_HARD_REG_SET (end_of_function_needs.regs);

  if (frame_pointer_needed)
    {
      SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
      SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
#endif
      if (! EXIT_IGNORE_STACK
	  || current_function_sp_is_unchanging)
	SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
    }
  else
    SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);

1161 1162
  if (crtl->return_rtx != 0)
    mark_referenced_resources (crtl->return_rtx,
1163
			       &end_of_function_needs, true);
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if (global_regs[i]
#ifdef EPILOGUE_USES
	|| EPILOGUE_USES (i)
#endif
	)
      SET_HARD_REG_BIT (end_of_function_needs.regs, i);

  /* The registers required to be live at the end of the function are
     represented in the flow information as being dead just prior to
     reaching the end of the function.  For example, the return of a value
     might be represented by a USE of the return register immediately
     followed by an unconditional jump to the return label where the
     return label is the end of the RTL chain.  The end of the RTL chain
     is then taken to mean that the return register is live.

     This sequence is no longer maintained when epilogue instructions are
     added to the RTL chain.  To reconstruct the original meaning, the
     start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
     point where these registers become live (start_of_epilogue_needs).
     If epilogue instructions are present, the registers set by those
     instructions won't have been processed by flow.  Thus, those
     registers are additionally required at the end of the RTL chain
     (end_of_function_needs).  */

  start_of_epilogue_needs = end_of_function_needs;

  while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1193 1194 1195 1196 1197 1198
    {
      mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
			  MARK_SRC_DEST_CALL);
      if (return_insn_p (epilogue_insn))
	break;
    }
1199 1200

  /* Allocate and initialize the tables used by mark_target_live_regs.  */
1201 1202
  target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
  bb_ticks = XCNEWVEC (int, last_basic_block);
1203 1204 1205 1206 1207

  /* Set the BLOCK_FOR_INSN of each label that starts a basic block.  */
  FOR_EACH_BB (bb)
    if (LABEL_P (BB_HEAD (bb)))
      BLOCK_FOR_INSN (BB_HEAD (bb)) = bb;
1208 1209
}

1210
/* Free up the resources allocated to mark_target_live_regs ().  This
1211 1212 1213
   should be invoked after the last call to mark_target_live_regs ().  */

void
1214
free_resource_info (void)
1215
{
1216 1217
  basic_block bb;

1218 1219
  if (target_hash_table != NULL)
    {
Mark Mitchell committed
1220
      int i;
1221 1222

      for (i = 0; i < TARGET_HASH_PRIME; ++i)
Mark Mitchell committed
1223 1224 1225
	{
	  struct target_info *ti = target_hash_table[i];

1226
	  while (ti)
Mark Mitchell committed
1227 1228 1229 1230 1231 1232 1233
	    {
	      struct target_info *next = ti->next;
	      free (ti);
	      ti = next;
	    }
	}

1234 1235 1236 1237 1238 1239 1240 1241 1242
      free (target_hash_table);
      target_hash_table = NULL;
    }

  if (bb_ticks != NULL)
    {
      free (bb_ticks);
      bb_ticks = NULL;
    }
1243 1244 1245 1246

  FOR_EACH_BB (bb)
    if (LABEL_P (BB_HEAD (bb)))
      BLOCK_FOR_INSN (BB_HEAD (bb)) = NULL;
1247 1248 1249 1250 1251
}

/* Clear any hashed information that we have stored for INSN.  */

void
1252
clear_hashed_info_for_insn (rtx insn)
1253 1254
{
  struct target_info *tinfo;
1255

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
  if (target_hash_table != NULL)
    {
      for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
	   tinfo; tinfo = tinfo->next)
	if (tinfo->uid == INSN_UID (insn))
	  break;

      if (tinfo)
	tinfo->block = -1;
    }
}

/* Increment the tick count for the basic block that contains INSN.  */

void
1271
incr_ticks_for_insn (rtx insn)
1272
{
1273
  int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1274 1275 1276 1277 1278 1279

  if (b != -1)
    bb_ticks[b]++;
}

/* Add TRIAL to the set of resources used at the end of the current
1280
   function.  */
1281
void
1282
mark_end_of_function_resources (rtx trial, bool include_delayed_effects)
1283 1284 1285 1286
{
  mark_referenced_resources (trial, &end_of_function_needs,
			     include_delayed_effects);
}