onepass.go 14.1 KB
Newer Older
1
// Copyright 2014 The Go Authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
4 5 6 7 8 9

package regexp

import (
	"regexp/syntax"
	"sort"
10
	"strings"
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
	"unicode"
)

// "One-pass" regexp execution.
// Some regexps can be analyzed to determine that they never need
// backtracking: they are guaranteed to run in one pass over the string
// without bothering to save all the usual NFA state.
// Detect those and execute them more quickly.

// A onePassProg is a compiled one-pass regular expression program.
// It is the same as syntax.Prog except for the use of onePassInst.
type onePassProg struct {
	Inst   []onePassInst
	Start  int // index of start instruction
	NumCap int // number of InstCapture insts in re
}

// A onePassInst is a single instruction in a one-pass regular expression program.
// It is the same as syntax.Inst except for the new 'Next' field.
type onePassInst struct {
	syntax.Inst
	Next []uint32
}

// OnePassPrefix returns a literal string that all matches for the
36
// regexp must start with. Complete is true if the prefix
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
// is the entire match. Pc is the index of the last rune instruction
// in the string. The OnePassPrefix skips over the mandatory
// EmptyBeginText
func onePassPrefix(p *syntax.Prog) (prefix string, complete bool, pc uint32) {
	i := &p.Inst[p.Start]
	if i.Op != syntax.InstEmptyWidth || (syntax.EmptyOp(i.Arg))&syntax.EmptyBeginText == 0 {
		return "", i.Op == syntax.InstMatch, uint32(p.Start)
	}
	pc = i.Out
	i = &p.Inst[pc]
	for i.Op == syntax.InstNop {
		pc = i.Out
		i = &p.Inst[pc]
	}
	// Avoid allocation of buffer if prefix is empty.
	if iop(i) != syntax.InstRune || len(i.Rune) != 1 {
		return "", i.Op == syntax.InstMatch, uint32(p.Start)
	}

	// Have prefix; gather characters.
57
	var buf strings.Builder
58 59 60 61
	for iop(i) == syntax.InstRune && len(i.Rune) == 1 && syntax.Flags(i.Arg)&syntax.FoldCase == 0 {
		buf.WriteRune(i.Rune[0])
		pc, i = i.Out, &p.Inst[i.Out]
	}
62 63 64 65 66 67
	if i.Op == syntax.InstEmptyWidth &&
		syntax.EmptyOp(i.Arg)&syntax.EmptyEndText != 0 &&
		p.Inst[i.Out].Op == syntax.InstMatch {
		complete = true
	}
	return buf.String(), complete, pc
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
}

// OnePassNext selects the next actionable state of the prog, based on the input character.
// It should only be called when i.Op == InstAlt or InstAltMatch, and from the one-pass machine.
// One of the alternates may ultimately lead without input to end of line. If the instruction
// is InstAltMatch the path to the InstMatch is in i.Out, the normal node in i.Next.
func onePassNext(i *onePassInst, r rune) uint32 {
	next := i.MatchRunePos(r)
	if next >= 0 {
		return i.Next[next]
	}
	if i.Op == syntax.InstAltMatch {
		return i.Out
	}
	return 0
}

func iop(i *syntax.Inst) syntax.InstOp {
	op := i.Op
	switch op {
	case syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
		op = syntax.InstRune
	}
	return op
}

// Sparse Array implementation is used as a queueOnePass.
type queueOnePass struct {
	sparse          []uint32
	dense           []uint32
	size, nextIndex uint32
}

func (q *queueOnePass) empty() bool {
	return q.nextIndex >= q.size
}

func (q *queueOnePass) next() (n uint32) {
	n = q.dense[q.nextIndex]
	q.nextIndex++
	return
}

func (q *queueOnePass) clear() {
	q.size = 0
	q.nextIndex = 0
}

func (q *queueOnePass) contains(u uint32) bool {
	if u >= uint32(len(q.sparse)) {
		return false
	}
	return q.sparse[u] < q.size && q.dense[q.sparse[u]] == u
}

func (q *queueOnePass) insert(u uint32) {
	if !q.contains(u) {
		q.insertNew(u)
	}
}

func (q *queueOnePass) insertNew(u uint32) {
	if u >= uint32(len(q.sparse)) {
		return
	}
	q.sparse[u] = q.size
	q.dense[q.size] = u
	q.size++
}

func newQueue(size int) (q *queueOnePass) {
	return &queueOnePass{
		sparse: make([]uint32, size),
		dense:  make([]uint32, size),
	}
}

// mergeRuneSets merges two non-intersecting runesets, and returns the merged result,
// and a NextIp array. The idea is that if a rune matches the OnePassRunes at index
// i, NextIp[i/2] is the target. If the input sets intersect, an empty runeset and a
// NextIp array with the single element mergeFailed is returned.
// The code assumes that both inputs contain ordered and non-intersecting rune pairs.
const mergeFailed = uint32(0xffffffff)

var (
	noRune = []rune{}
	noNext = []uint32{mergeFailed}
)

func mergeRuneSets(leftRunes, rightRunes *[]rune, leftPC, rightPC uint32) ([]rune, []uint32) {
	leftLen := len(*leftRunes)
	rightLen := len(*rightRunes)
	if leftLen&0x1 != 0 || rightLen&0x1 != 0 {
		panic("mergeRuneSets odd length []rune")
	}
	var (
		lx, rx int
	)
	merged := make([]rune, 0)
	next := make([]uint32, 0)
	ok := true
	defer func() {
		if !ok {
			merged = nil
			next = nil
		}
	}()

	ix := -1
	extend := func(newLow *int, newArray *[]rune, pc uint32) bool {
		if ix > 0 && (*newArray)[*newLow] <= merged[ix] {
			return false
		}
		merged = append(merged, (*newArray)[*newLow], (*newArray)[*newLow+1])
		*newLow += 2
		ix += 2
		next = append(next, pc)
		return true
	}

	for lx < leftLen || rx < rightLen {
		switch {
		case rx >= rightLen:
			ok = extend(&lx, leftRunes, leftPC)
		case lx >= leftLen:
			ok = extend(&rx, rightRunes, rightPC)
		case (*rightRunes)[rx] < (*leftRunes)[lx]:
			ok = extend(&rx, rightRunes, rightPC)
		default:
			ok = extend(&lx, leftRunes, leftPC)
		}
		if !ok {
			return noRune, noNext
		}
	}
	return merged, next
}

// cleanupOnePass drops working memory, and restores certain shortcut instructions.
func cleanupOnePass(prog *onePassProg, original *syntax.Prog) {
	for ix, instOriginal := range original.Inst {
		switch instOriginal.Op {
		case syntax.InstAlt, syntax.InstAltMatch, syntax.InstRune:
		case syntax.InstCapture, syntax.InstEmptyWidth, syntax.InstNop, syntax.InstMatch, syntax.InstFail:
			prog.Inst[ix].Next = nil
		case syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
			prog.Inst[ix].Next = nil
			prog.Inst[ix] = onePassInst{Inst: instOriginal}
		}
	}
}

// onePassCopy creates a copy of the original Prog, as we'll be modifying it
func onePassCopy(prog *syntax.Prog) *onePassProg {
	p := &onePassProg{
		Start:  prog.Start,
		NumCap: prog.NumCap,
225
		Inst:   make([]onePassInst, len(prog.Inst)),
226
	}
227 228
	for i, inst := range prog.Inst {
		p.Inst[i] = onePassInst{Inst: inst}
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	}

	// rewrites one or more common Prog constructs that enable some otherwise
	// non-onepass Progs to be onepass. A:BD (for example) means an InstAlt at
	// ip A, that points to ips B & C.
	// A:BC + B:DA => A:BC + B:CD
	// A:BC + B:DC => A:DC + B:DC
	for pc := range p.Inst {
		switch p.Inst[pc].Op {
		default:
			continue
		case syntax.InstAlt, syntax.InstAltMatch:
			// A:Bx + B:Ay
			p_A_Other := &p.Inst[pc].Out
			p_A_Alt := &p.Inst[pc].Arg
			// make sure a target is another Alt
			instAlt := p.Inst[*p_A_Alt]
			if !(instAlt.Op == syntax.InstAlt || instAlt.Op == syntax.InstAltMatch) {
				p_A_Alt, p_A_Other = p_A_Other, p_A_Alt
				instAlt = p.Inst[*p_A_Alt]
				if !(instAlt.Op == syntax.InstAlt || instAlt.Op == syntax.InstAltMatch) {
					continue
				}
			}
			instOther := p.Inst[*p_A_Other]
			// Analyzing both legs pointing to Alts is for another day
			if instOther.Op == syntax.InstAlt || instOther.Op == syntax.InstAltMatch {
				// too complicated
				continue
			}
			// simple empty transition loop
			// A:BC + B:DA => A:BC + B:DC
			p_B_Alt := &p.Inst[*p_A_Alt].Out
			p_B_Other := &p.Inst[*p_A_Alt].Arg
			patch := false
			if instAlt.Out == uint32(pc) {
				patch = true
			} else if instAlt.Arg == uint32(pc) {
				patch = true
				p_B_Alt, p_B_Other = p_B_Other, p_B_Alt
			}
			if patch {
				*p_B_Alt = *p_A_Other
			}

			// empty transition to common target
			// A:BC + B:DC => A:DC + B:DC
			if *p_A_Other == *p_B_Alt {
				*p_A_Alt = *p_B_Other
			}
		}
	}
	return p
}

// runeSlice exists to permit sorting the case-folded rune sets.
type runeSlice []rune

func (p runeSlice) Len() int           { return len(p) }
func (p runeSlice) Less(i, j int) bool { return p[i] < p[j] }
func (p runeSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

var anyRuneNotNL = []rune{0, '\n' - 1, '\n' + 1, unicode.MaxRune}
var anyRune = []rune{0, unicode.MaxRune}

// makeOnePass creates a onepass Prog, if possible. It is possible if at any alt,
// the match engine can always tell which branch to take. The routine may modify
// p if it is turned into a onepass Prog. If it isn't possible for this to be a
// onepass Prog, the Prog notOnePass is returned. makeOnePass is recursive
// to the size of the Prog.
func makeOnePass(p *onePassProg) *onePassProg {
	// If the machine is very long, it's not worth the time to check if we can use one pass.
	if len(p.Inst) >= 1000 {
		return notOnePass
	}

	var (
		instQueue    = newQueue(len(p.Inst))
		visitQueue   = newQueue(len(p.Inst))
308
		check        func(uint32, []bool) bool
309 310 311 312 313
		onePassRunes = make([][]rune, len(p.Inst))
	)

	// check that paths from Alt instructions are unambiguous, and rebuild the new
	// program as a onepass program
314
	check = func(pc uint32, m []bool) (ok bool) {
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
		ok = true
		inst := &p.Inst[pc]
		if visitQueue.contains(pc) {
			return
		}
		visitQueue.insert(pc)
		switch inst.Op {
		case syntax.InstAlt, syntax.InstAltMatch:
			ok = check(inst.Out, m) && check(inst.Arg, m)
			// check no-input paths to InstMatch
			matchOut := m[inst.Out]
			matchArg := m[inst.Arg]
			if matchOut && matchArg {
				ok = false
				break
			}
			// Match on empty goes in inst.Out
			if matchArg {
				inst.Out, inst.Arg = inst.Arg, inst.Out
				matchOut, matchArg = matchArg, matchOut
			}
			if matchOut {
				m[pc] = true
				inst.Op = syntax.InstAltMatch
			}

			// build a dispatch operator from the two legs of the alt.
			onePassRunes[pc], inst.Next = mergeRuneSets(
				&onePassRunes[inst.Out], &onePassRunes[inst.Arg], inst.Out, inst.Arg)
			if len(inst.Next) > 0 && inst.Next[0] == mergeFailed {
				ok = false
				break
			}
		case syntax.InstCapture, syntax.InstNop:
			ok = check(inst.Out, m)
			m[pc] = m[inst.Out]
			// pass matching runes back through these no-ops.
			onePassRunes[pc] = append([]rune{}, onePassRunes[inst.Out]...)
353 354 355
			inst.Next = make([]uint32, len(onePassRunes[pc])/2+1)
			for i := range inst.Next {
				inst.Next[i] = inst.Out
356 357 358 359 360
			}
		case syntax.InstEmptyWidth:
			ok = check(inst.Out, m)
			m[pc] = m[inst.Out]
			onePassRunes[pc] = append([]rune{}, onePassRunes[inst.Out]...)
361 362 363
			inst.Next = make([]uint32, len(onePassRunes[pc])/2+1)
			for i := range inst.Next {
				inst.Next[i] = inst.Out
364 365 366 367 368 369 370 371
			}
		case syntax.InstMatch, syntax.InstFail:
			m[pc] = inst.Op == syntax.InstMatch
		case syntax.InstRune:
			m[pc] = false
			if len(inst.Next) > 0 {
				break
			}
372
			instQueue.insert(inst.Out)
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
			if len(inst.Rune) == 0 {
				onePassRunes[pc] = []rune{}
				inst.Next = []uint32{inst.Out}
				break
			}
			runes := make([]rune, 0)
			if len(inst.Rune) == 1 && syntax.Flags(inst.Arg)&syntax.FoldCase != 0 {
				r0 := inst.Rune[0]
				runes = append(runes, r0, r0)
				for r1 := unicode.SimpleFold(r0); r1 != r0; r1 = unicode.SimpleFold(r1) {
					runes = append(runes, r1, r1)
				}
				sort.Sort(runeSlice(runes))
			} else {
				runes = append(runes, inst.Rune...)
			}
			onePassRunes[pc] = runes
390 391 392
			inst.Next = make([]uint32, len(onePassRunes[pc])/2+1)
			for i := range inst.Next {
				inst.Next[i] = inst.Out
393 394 395 396 397 398 399
			}
			inst.Op = syntax.InstRune
		case syntax.InstRune1:
			m[pc] = false
			if len(inst.Next) > 0 {
				break
			}
400
			instQueue.insert(inst.Out)
401 402 403 404 405 406 407 408 409 410 411 412 413
			runes := []rune{}
			// expand case-folded runes
			if syntax.Flags(inst.Arg)&syntax.FoldCase != 0 {
				r0 := inst.Rune[0]
				runes = append(runes, r0, r0)
				for r1 := unicode.SimpleFold(r0); r1 != r0; r1 = unicode.SimpleFold(r1) {
					runes = append(runes, r1, r1)
				}
				sort.Sort(runeSlice(runes))
			} else {
				runes = append(runes, inst.Rune[0], inst.Rune[0])
			}
			onePassRunes[pc] = runes
414 415 416
			inst.Next = make([]uint32, len(onePassRunes[pc])/2+1)
			for i := range inst.Next {
				inst.Next[i] = inst.Out
417 418 419 420 421 422 423
			}
			inst.Op = syntax.InstRune
		case syntax.InstRuneAny:
			m[pc] = false
			if len(inst.Next) > 0 {
				break
			}
424
			instQueue.insert(inst.Out)
425 426 427 428 429 430 431
			onePassRunes[pc] = append([]rune{}, anyRune...)
			inst.Next = []uint32{inst.Out}
		case syntax.InstRuneAnyNotNL:
			m[pc] = false
			if len(inst.Next) > 0 {
				break
			}
432
			instQueue.insert(inst.Out)
433
			onePassRunes[pc] = append([]rune{}, anyRuneNotNL...)
434 435 436
			inst.Next = make([]uint32, len(onePassRunes[pc])/2+1)
			for i := range inst.Next {
				inst.Next[i] = inst.Out
437 438 439 440 441 442 443
			}
		}
		return
	}

	instQueue.clear()
	instQueue.insert(uint32(p.Start))
444
	m := make([]bool, len(p.Inst))
445 446
	for !instQueue.empty() {
		visitQueue.clear()
447
		pc := instQueue.next()
448
		if !check(pc, m) {
449 450 451 452 453
			p = notOnePass
			break
		}
	}
	if p != notOnePass {
454
		for i := range p.Inst {
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
			p.Inst[i].Rune = onePassRunes[i]
		}
	}
	return p
}

var notOnePass *onePassProg = nil

// compileOnePass returns a new *syntax.Prog suitable for onePass execution if the original Prog
// can be recharacterized as a one-pass regexp program, or syntax.notOnePass if the
// Prog cannot be converted. For a one pass prog, the fundamental condition that must
// be true is: at any InstAlt, there must be no ambiguity about what branch to  take.
func compileOnePass(prog *syntax.Prog) (p *onePassProg) {
	if prog.Start == 0 {
		return notOnePass
	}
	// onepass regexp is anchored
	if prog.Inst[prog.Start].Op != syntax.InstEmptyWidth ||
		syntax.EmptyOp(prog.Inst[prog.Start].Arg)&syntax.EmptyBeginText != syntax.EmptyBeginText {
		return notOnePass
	}
	// every instruction leading to InstMatch must be EmptyEndText
	for _, inst := range prog.Inst {
		opOut := prog.Inst[inst.Out].Op
		switch inst.Op {
		default:
			if opOut == syntax.InstMatch {
				return notOnePass
			}
		case syntax.InstAlt, syntax.InstAltMatch:
			if opOut == syntax.InstMatch || prog.Inst[inst.Arg].Op == syntax.InstMatch {
				return notOnePass
			}
		case syntax.InstEmptyWidth:
			if opOut == syntax.InstMatch {
				if syntax.EmptyOp(inst.Arg)&syntax.EmptyEndText == syntax.EmptyEndText {
					continue
				}
				return notOnePass
			}
		}
	}
	// Creates a slightly optimized copy of the original Prog
	// that cleans up some Prog idioms that block valid onepass programs
	p = onePassCopy(prog)

	// checkAmbiguity on InstAlts, build onepass Prog if possible
	p = makeOnePass(p)

	if p != notOnePass {
		cleanupOnePass(p, prog)
	}
	return p
}