sum_c8.c 12.4 KB
Newer Older
1
/* Implementation of the SUM intrinsic
2
   Copyright (C) 2002-2018 Free Software Foundation, Inc.
3 4
   Contributed by Paul Brook <paul@nowt.org>

5
This file is part of the GNU Fortran 95 runtime library (libgfortran).
6 7

Libgfortran is free software; you can redistribute it and/or
8
modify it under the terms of the GNU General Public
9
License as published by the Free Software Foundation; either
10
version 3 of the License, or (at your option) any later version.
11 12 13 14

Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
GNU General Public License for more details.
16

17 18 19 20 21 22 23 24
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */
25

26
#include "libgfortran.h"
27

28

29 30 31
#if defined (HAVE_GFC_COMPLEX_8) && defined (HAVE_GFC_COMPLEX_8)


Janne Blomqvist committed
32 33
extern void sum_c8 (gfc_array_c8 * const restrict, 
	gfc_array_c8 * const restrict, const index_type * const restrict);
34
export_proto(sum_c8);
35

36
void
Janne Blomqvist committed
37 38 39
sum_c8 (gfc_array_c8 * const restrict retarray, 
	gfc_array_c8 * const restrict array, 
	const index_type * const restrict pdim)
40
{
41 42 43 44
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type dstride[GFC_MAX_DIMENSIONS];
Janne Blomqvist committed
45 46
  const GFC_COMPLEX_8 * restrict base;
  GFC_COMPLEX_8 * restrict dest;
47 48 49 50 51
  index_type rank;
  index_type n;
  index_type len;
  index_type delta;
  index_type dim;
52
  int continue_loop;
53 54 55

  /* Make dim zero based to avoid confusion.  */
  rank = GFC_DESCRIPTOR_RANK (array) - 1;
56 57 58 59 60 61 62 63
  dim = (*pdim) - 1;

  if (unlikely (dim < 0 || dim > rank))
    {
      runtime_error ("Dim argument incorrect in SUM intrinsic: "
 		     "is %ld, should be between 1 and %ld",
		     (long int) dim + 1, (long int) rank + 1);
    }
64

65
  len = GFC_DESCRIPTOR_EXTENT(array,dim);
66 67
  if (len < 0)
    len = 0;
68
  delta = GFC_DESCRIPTOR_STRIDE(array,dim);
69 70 71

  for (n = 0; n < dim; n++)
    {
72 73
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
74 75 76

      if (extent[n] < 0)
	extent[n] = 0;
77 78 79
    }
  for (n = dim; n < rank; n++)
    {
80 81
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
82 83 84

      if (extent[n] < 0)
	extent[n] = 0;
85 86
    }

87
  if (retarray->base_addr == NULL)
88
    {
89
      size_t alloc_size, str;
90

91
      for (n = 0; n < rank; n++)
92 93
	{
	  if (n == 0)
94
	    str = 1;
95 96
	  else
	    str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
97 98 99

	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);

100
	}
101

102
      retarray->offset = 0;
103
      retarray->dtype.rank = rank;
104

105
      alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
106

107
      retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_COMPLEX_8));
108 109 110
      if (alloc_size == 0)
	{
	  /* Make sure we have a zero-sized array.  */
111
	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
112
	  return;
113

114
	}
115
    }
116 117 118
  else
    {
      if (rank != GFC_DESCRIPTOR_RANK (retarray))
119
	runtime_error ("rank of return array incorrect in"
120 121 122
		       " SUM intrinsic: is %ld, should be %ld",
		       (long int) (GFC_DESCRIPTOR_RANK (retarray)),
		       (long int) rank);
123

124
      if (unlikely (compile_options.bounds_check))
Thomas Koenig committed
125 126
	bounds_ifunction_return ((array_t *) retarray, extent,
				 "return value", "SUM");
127 128
    }

129 130 131
  for (n = 0; n < rank; n++)
    {
      count[n] = 0;
132
      dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
133
      if (extent[n] <= 0)
134
	return;
135 136
    }

137 138
  base = array->base_addr;
  dest = retarray->base_addr;
139

140 141
  continue_loop = 1;
  while (continue_loop)
142
    {
Janne Blomqvist committed
143
      const GFC_COMPLEX_8 * restrict src;
144 145 146 147 148
      GFC_COMPLEX_8 result;
      src = base;
      {

  result = 0;
149
	if (len <= 0)
150 151 152
	  *dest = 0;
	else
	  {
153
#if ! defined HAVE_BACK_ARG
154 155
	    for (n = 0; n < len; n++, src += delta)
	      {
156
#endif
157 158

  result += *src;
159
	      }
160
	    
161 162 163 164 165 166 167 168 169
	    *dest = result;
	  }
      }
      /* Advance to the next element.  */
      count[0]++;
      base += sstride[0];
      dest += dstride[0];
      n = 0;
      while (count[n] == extent[n])
170 171 172 173 174 175 176 177 178
	{
	  /* When we get to the end of a dimension, reset it and increment
	     the next dimension.  */
	  count[n] = 0;
	  /* We could precalculate these products, but this is a less
	     frequently used path so probably not worth it.  */
	  base -= sstride[n] * extent[n];
	  dest -= dstride[n] * extent[n];
	  n++;
179
	  if (n >= rank)
180
	    {
181
	      /* Break out of the loop.  */
182 183
	      continue_loop = 0;
	      break;
184 185 186 187 188 189 190 191
	    }
	  else
	    {
	      count[n]++;
	      base += sstride[n];
	      dest += dstride[n];
	    }
	}
192 193 194
    }
}

195

Janne Blomqvist committed
196 197
extern void msum_c8 (gfc_array_c8 * const restrict, 
	gfc_array_c8 * const restrict, const index_type * const restrict,
198
	gfc_array_l1 * const restrict);
199
export_proto(msum_c8);
200

201
void
Janne Blomqvist committed
202 203 204
msum_c8 (gfc_array_c8 * const restrict retarray, 
	gfc_array_c8 * const restrict array, 
	const index_type * const restrict pdim, 
205
	gfc_array_l1 * const restrict mask)
206
{
207 208 209 210 211
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type dstride[GFC_MAX_DIMENSIONS];
  index_type mstride[GFC_MAX_DIMENSIONS];
Janne Blomqvist committed
212 213
  GFC_COMPLEX_8 * restrict dest;
  const GFC_COMPLEX_8 * restrict base;
214
  const GFC_LOGICAL_1 * restrict mbase;
215 216
  index_type rank;
  index_type dim;
217 218 219 220
  index_type n;
  index_type len;
  index_type delta;
  index_type mdelta;
221
  int mask_kind;
222 223 224

  dim = (*pdim) - 1;
  rank = GFC_DESCRIPTOR_RANK (array) - 1;
225

226 227 228 229 230 231 232 233

  if (unlikely (dim < 0 || dim > rank))
    {
      runtime_error ("Dim argument incorrect in SUM intrinsic: "
 		     "is %ld, should be between 1 and %ld",
		     (long int) dim + 1, (long int) rank + 1);
    }

234
  len = GFC_DESCRIPTOR_EXTENT(array,dim);
235 236
  if (len <= 0)
    return;
237

238
  mbase = mask->base_addr;
239 240 241 242 243 244 245 246 247 248 249 250

  mask_kind = GFC_DESCRIPTOR_SIZE (mask);

  if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
      || mask_kind == 16
#endif
      )
    mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
  else
    runtime_error ("Funny sized logical array");

251 252
  delta = GFC_DESCRIPTOR_STRIDE(array,dim);
  mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
253 254 255

  for (n = 0; n < dim; n++)
    {
256 257 258
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
      mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
259 260 261 262

      if (extent[n] < 0)
	extent[n] = 0;

263 264 265
    }
  for (n = dim; n < rank; n++)
    {
266 267 268
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
      mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
269 270 271

      if (extent[n] < 0)
	extent[n] = 0;
272 273
    }

274
  if (retarray->base_addr == NULL)
275
    {
276
      size_t alloc_size, str;
277

278
      for (n = 0; n < rank; n++)
279 280 281 282 283
	{
	  if (n == 0)
	    str = 1;
	  else
	    str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
284 285 286

	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);

287
	}
288

289
      alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
290

291
      retarray->offset = 0;
292
      retarray->dtype.rank = rank;
293 294 295 296

      if (alloc_size == 0)
	{
	  /* Make sure we have a zero-sized array.  */
297
	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
298 299 300
	  return;
	}
      else
301
	retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_COMPLEX_8));
302

303 304 305 306
    }
  else
    {
      if (rank != GFC_DESCRIPTOR_RANK (retarray))
307 308
	runtime_error ("rank of return array incorrect in SUM intrinsic");

309
      if (unlikely (compile_options.bounds_check))
310
	{
Thomas Koenig committed
311 312 313 314
	  bounds_ifunction_return ((array_t *) retarray, extent,
				   "return value", "SUM");
	  bounds_equal_extents ((array_t *) mask, (array_t *) array,
	  			"MASK argument", "SUM");
315
	}
316 317
    }

318 319 320
  for (n = 0; n < rank; n++)
    {
      count[n] = 0;
321
      dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
322
      if (extent[n] <= 0)
323
	return;
324 325
    }

326 327
  dest = retarray->base_addr;
  base = array->base_addr;
328 329 330

  while (base)
    {
Janne Blomqvist committed
331
      const GFC_COMPLEX_8 * restrict src;
332
      const GFC_LOGICAL_1 * restrict msrc;
333 334 335 336 337 338
      GFC_COMPLEX_8 result;
      src = base;
      msrc = mbase;
      {

  result = 0;
339
	for (n = 0; n < len; n++, src += delta, msrc += mdelta)
340 341 342 343 344
	  {

  if (*msrc)
    result += *src;
	  }
345
	*dest = result;
346 347 348 349 350 351 352 353
      }
      /* Advance to the next element.  */
      count[0]++;
      base += sstride[0];
      mbase += mstride[0];
      dest += dstride[0];
      n = 0;
      while (count[n] == extent[n])
354 355 356 357 358 359 360 361 362 363
	{
	  /* When we get to the end of a dimension, reset it and increment
	     the next dimension.  */
	  count[n] = 0;
	  /* We could precalculate these products, but this is a less
	     frequently used path so probably not worth it.  */
	  base -= sstride[n] * extent[n];
	  mbase -= mstride[n] * extent[n];
	  dest -= dstride[n] * extent[n];
	  n++;
364
	  if (n >= rank)
365
	    {
366
	      /* Break out of the loop.  */
367 368 369 370 371 372 373 374 375 376 377
	      base = NULL;
	      break;
	    }
	  else
	    {
	      count[n]++;
	      base += sstride[n];
	      mbase += mstride[n];
	      dest += dstride[n];
	    }
	}
378 379
    }
}
380

381 382 383 384 385 386 387 388 389 390 391 392

extern void ssum_c8 (gfc_array_c8 * const restrict, 
	gfc_array_c8 * const restrict, const index_type * const restrict,
	GFC_LOGICAL_4 *);
export_proto(ssum_c8);

void
ssum_c8 (gfc_array_c8 * const restrict retarray, 
	gfc_array_c8 * const restrict array, 
	const index_type * const restrict pdim, 
	GFC_LOGICAL_4 * mask)
{
393 394 395 396
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type dstride[GFC_MAX_DIMENSIONS];
  GFC_COMPLEX_8 * restrict dest;
397 398
  index_type rank;
  index_type n;
399 400
  index_type dim;

401 402 403

  if (*mask)
    {
404 405 406
#ifdef HAVE_BACK_ARG
      sum_c8 (retarray, array, pdim, back);
#else
407
      sum_c8 (retarray, array, pdim);
408
#endif
409 410
      return;
    }
411 412 413 414
  /* Make dim zero based to avoid confusion.  */
  dim = (*pdim) - 1;
  rank = GFC_DESCRIPTOR_RANK (array) - 1;

415 416 417 418 419 420 421
  if (unlikely (dim < 0 || dim > rank))
    {
      runtime_error ("Dim argument incorrect in SUM intrinsic: "
 		     "is %ld, should be between 1 and %ld",
		     (long int) dim + 1, (long int) rank + 1);
    }

422 423
  for (n = 0; n < dim; n++)
    {
424
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
425 426 427 428 429 430 431 432

      if (extent[n] <= 0)
	extent[n] = 0;
    }

  for (n = dim; n < rank; n++)
    {
      extent[n] =
433
	GFC_DESCRIPTOR_EXTENT(array,n + 1);
434 435

      if (extent[n] <= 0)
436
	extent[n] = 0;
437
    }
438

439
  if (retarray->base_addr == NULL)
440
    {
441
      size_t alloc_size, str;
442 443

      for (n = 0; n < rank; n++)
444 445 446 447 448
	{
	  if (n == 0)
	    str = 1;
	  else
	    str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
449 450 451

	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);

452
	}
453

454
      retarray->offset = 0;
455
      retarray->dtype.rank = rank;
456

457
      alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
458 459 460 461

      if (alloc_size == 0)
	{
	  /* Make sure we have a zero-sized array.  */
462
	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
463 464 465
	  return;
	}
      else
466
	retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_COMPLEX_8));
467 468 469
    }
  else
    {
470 471 472 473 474 475
      if (rank != GFC_DESCRIPTOR_RANK (retarray))
	runtime_error ("rank of return array incorrect in"
		       " SUM intrinsic: is %ld, should be %ld",
		       (long int) (GFC_DESCRIPTOR_RANK (retarray)),
		       (long int) rank);

476
      if (unlikely (compile_options.bounds_check))
477
	{
478 479 480
	  for (n=0; n < rank; n++)
	    {
	      index_type ret_extent;
481

482
	      ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
483 484 485 486 487 488
	      if (extent[n] != ret_extent)
		runtime_error ("Incorrect extent in return value of"
			       " SUM intrinsic in dimension %ld:"
			       " is %ld, should be %ld", (long int) n + 1,
			       (long int) ret_extent, (long int) extent[n]);
	    }
489 490
	}
    }
491

492 493 494
  for (n = 0; n < rank; n++)
    {
      count[n] = 0;
495
      dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
496 497
    }

498
  dest = retarray->base_addr;
499 500 501 502 503 504 505 506

  while(1)
    {
      *dest = 0;
      count[0]++;
      dest += dstride[0];
      n = 0;
      while (count[n] == extent[n])
507
	{
508
	  /* When we get to the end of a dimension, reset it and increment
509 510 511 512 513 514
	     the next dimension.  */
	  count[n] = 0;
	  /* We could precalculate these products, but this is a less
	     frequently used path so probably not worth it.  */
	  dest -= dstride[n] * extent[n];
	  n++;
515
	  if (n >= rank)
516
	    return;
517 518 519 520 521
	  else
	    {
	      count[n]++;
	      dest += dstride[n];
	    }
522 523
      	}
    }
524 525
}

526
#endif