final.c 114 KB
Newer Older
1
/* Convert RTL to assembler code and output it, for GNU compiler.
2
   Copyright (C) 1987, 88, 89, 92-99, 2000 Free Software Foundation, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
Richard Kenner committed
18 19
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47


/* This is the final pass of the compiler.
   It looks at the rtl code for a function and outputs assembler code.

   Call `final_start_function' to output the assembler code for function entry,
   `final' to output assembler code for some RTL code,
   `final_end_function' to output assembler code for function exit.
   If a function is compiled in several pieces, each piece is
   output separately with `final'.

   Some optimizations are also done at this level.
   Move instructions that were made unnecessary by good register allocation
   are detected and omitted from the output.  (Though most of these
   are removed by the last jump pass.)

   Instructions to set the condition codes are omitted when it can be
   seen that the condition codes already had the desired values.

   In some cases it is sufficient if the inherited condition codes
   have related values, but this may require the following insn
   (the one that tests the condition codes) to be modified.

   The code for the function prologue and epilogue are generated
   directly as assembler code by the macros FUNCTION_PROLOGUE and
   FUNCTION_EPILOGUE.  Those instructions never exist as rtl.  */

#include "config.h"
48
#include "system.h"
49 50 51

#include "tree.h"
#include "rtl.h"
52
#include "tm_p.h"
53 54 55 56 57 58 59 60 61 62 63 64
#include "regs.h"
#include "insn-config.h"
#include "insn-flags.h"
#include "insn-attr.h"
#include "insn-codes.h"
#include "recog.h"
#include "conditions.h"
#include "flags.h"
#include "real.h"
#include "hard-reg-set.h"
#include "defaults.h"
#include "output.h"
Mike Stump committed
65
#include "except.h"
66
#include "function.h"
Robert Lipe committed
67
#include "toplev.h"
Kaveh R. Ghazi committed
68
#include "reload.h"
69
#include "intl.h"
70 71 72

/* Get N_SLINE and N_SOL from stab.h if we can expect the file to exist.  */
#if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
73
#include "dbxout.h"
74
#if defined (USG) || !defined (HAVE_STAB_H)
75 76
#include "gstab.h"  /* If doing DBX on sysV, use our own stab.h.  */
#else
77 78 79
#include <stab.h>
#endif

80 81 82 83 84 85
#endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */

#ifdef XCOFF_DEBUGGING_INFO
#include "xcoffout.h"
#endif

86 87 88 89 90 91 92 93 94 95 96 97
#ifdef DWARF_DEBUGGING_INFO
#include "dwarfout.h"
#endif

#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
#include "dwarf2out.h"
#endif

#ifdef SDB_DEBUGGING_INFO
#include "sdbout.h"
#endif

98 99 100 101 102 103 104 105 106 107 108 109 110 111
/* .stabd code for line number.  */
#ifndef N_SLINE
#define	N_SLINE	0x44
#endif

/* .stabs code for included file name.  */
#ifndef N_SOL
#define	N_SOL 0x84
#endif

#ifndef INT_TYPE_SIZE
#define INT_TYPE_SIZE BITS_PER_WORD
#endif

112 113 114 115
#ifndef LONG_TYPE_SIZE
#define LONG_TYPE_SIZE BITS_PER_WORD
#endif

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
/* If we aren't using cc0, CC_STATUS_INIT shouldn't exist.  So define a
   null default for it to save conditionalization later.  */
#ifndef CC_STATUS_INIT
#define CC_STATUS_INIT
#endif

/* How to start an assembler comment.  */
#ifndef ASM_COMMENT_START
#define ASM_COMMENT_START ";#"
#endif

/* Is the given character a logical line separator for the assembler?  */
#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
#endif

132 133 134 135
#ifndef JUMP_TABLES_IN_TEXT_SECTION
#define JUMP_TABLES_IN_TEXT_SECTION 0
#endif

136 137 138 139 140 141
/* Last insn processed by final_scan_insn.  */
static rtx debug_insn = 0;

/* Line number of last NOTE.  */
static int last_linenum;

142 143 144 145 146 147
/* Highest line number in current block.  */
static int high_block_linenum;

/* Likewise for function.  */
static int high_function_linenum;

148 149 150 151 152 153 154
/* Filename of last NOTE.  */
static char *last_filename;

/* Number of basic blocks seen so far;
   used if profile_block_flag is set.  */
static int count_basic_blocks;

155 156 157
/* Number of instrumented arcs when profile_arc_flag is set.  */
extern int count_instrumented_arcs;

158 159
extern int length_unit_log; /* This is defined in insn-attrtab.c.  */

160 161 162 163 164 165
/* Nonzero while outputting an `asm' with operands.
   This means that inconsistencies are the user's fault, so don't abort.
   The precise value is the insn being output, to pass to error_for_asm.  */
static rtx this_is_asm_operands;

/* Number of operands of this insn, for an `asm' with operands.  */
166
static unsigned int insn_noperands;
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

/* Compare optimization flag.  */

static rtx last_ignored_compare = 0;

/* Flag indicating this insn is the start of a new basic block.  */

static int new_block = 1;

/* All the symbol-blocks (levels of scoping) in the compilation
   are assigned sequence numbers in order of appearance of the
   beginnings of the symbol-blocks.  Both final and dbxout do this,
   and assume that they will both give the same number to each block.
   Final uses these sequence numbers to generate assembler label names
   LBBnnn and LBEnnn for the beginning and end of the symbol-block.
   Dbxout uses the sequence numbers to generate references to the same labels
   from the dbx debugging information.

   Sdb records this level at the beginning of each function,
   in order to find the current level when recursing down declarations.
   It outputs the block beginning and endings
   at the point in the asm file where the blocks would begin and end.  */

int next_block_index;

/* Assign a unique number to each insn that is output.
   This can be used to generate unique local labels.  */

static int insn_counter = 0;

#ifdef HAVE_cc0
/* This variable contains machine-dependent flags (defined in tm.h)
   set and examined by output routines
   that describe how to interpret the condition codes properly.  */

CC_STATUS cc_status;

/* During output of an insn, this contains a copy of cc_status
   from before the insn.  */

CC_STATUS cc_prev_status;
#endif

/* Indexed by hardware reg number, is 1 if that register is ever
   used in the current function.

   In life_analysis, or in stupid_life_analysis, this is set
   up to record the hard regs used explicitly.  Reload adds
   in the hard regs used for holding pseudo regs.  Final uses
   it to generate the code in the function prologue and epilogue
   to save and restore registers as needed.  */

char regs_ever_live[FIRST_PSEUDO_REGISTER];

/* Nonzero means current function must be given a frame pointer.
   Set in stmt.c if anything is allocated on the stack there.
   Set in reload1.c if anything is allocated on the stack there.  */

int frame_pointer_needed;

/* Assign unique numbers to labels generated for profiling.  */

int profile_label_no;

/* Length so far allocated in PENDING_BLOCKS.  */

static int max_block_depth;

/* Stack of sequence numbers of symbol-blocks of which we have seen the
   beginning but not yet the end.  Sequence numbers are assigned at
   the beginning; this stack allows us to find the sequence number
   of a block that is ending.  */

static int *pending_blocks;

/* Number of elements currently in use in PENDING_BLOCKS.  */

static int block_depth;

/* Nonzero if have enabled APP processing of our assembler output.  */

static int app_on;

/* If we are outputting an insn sequence, this contains the sequence rtx.
   Zero otherwise.  */

rtx final_sequence;

#ifdef ASSEMBLER_DIALECT

/* Number of the assembler dialect to use, starting at 0.  */
static int dialect_number;
#endif

/* Indexed by line number, nonzero if there is a note for that line.  */

static char *line_note_exists;

/* Linked list to hold line numbers for each basic block.  */

struct bb_list {
  struct bb_list *next;		/* pointer to next basic block */
  int line_num;			/* line number */
  int file_label_num;		/* LPBC<n> label # for stored filename */
  int func_label_num;		/* LPBC<n> label # for stored function name */
};

static struct bb_list *bb_head	= 0;		/* Head of basic block list */
static struct bb_list **bb_tail = &bb_head;	/* Ptr to store next bb ptr */
static int bb_file_label_num	= -1;		/* Current label # for file */
static int bb_func_label_num	= -1;		/* Current label # for func */

/* Linked list to hold the strings for each file and function name output.  */

struct bb_str {
  struct bb_str *next;		/* pointer to next string */
283
  const char *string;		/* string */
284 285 286 287 288 289 290 291
  int label_num;		/* label number */
  int length;			/* string length */
};

static struct bb_str *sbb_head	= 0;		/* Head of string list.  */
static struct bb_str **sbb_tail	= &sbb_head;	/* Ptr to store next bb str */
static int sbb_label_num	= 0;		/* Last label used */

292
#ifdef HAVE_ATTR_length
293 294 295 296 297 298 299 300 301 302
static int asm_insn_count	PARAMS ((rtx));
#endif
static void profile_function	PARAMS ((FILE *));
static void profile_after_prologue PARAMS ((FILE *));
static void add_bb		PARAMS ((FILE *));
static int add_bb_string	PARAMS ((const char *, int));
static void output_source_line	PARAMS ((FILE *, rtx));
static rtx walk_alter_subreg	PARAMS ((rtx));
static void output_asm_name	PARAMS ((void));
static void output_operand	PARAMS ((rtx, int));
303
#ifdef LEAF_REGISTERS
304
static void leaf_renumber_regs	PARAMS ((rtx));
305 306
#endif
#ifdef HAVE_cc0
307
static int alter_cond		PARAMS ((rtx));
308
#endif
309
#ifndef ADDR_VEC_ALIGN
310
static int final_addr_vec_align PARAMS ((rtx));
311
#endif
312
#ifdef HAVE_ATTR_length
313
static int align_fuzz		PARAMS ((rtx, rtx, int, unsigned));
314
#endif
315 316 317 318 319

/* Initialize data in final at the beginning of a compilation.  */

void
init_final (filename)
Kaveh R. Ghazi committed
320
     const char *filename ATTRIBUTE_UNUSED;
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
{
  next_block_index = 2;
  app_on = 0;
  max_block_depth = 20;
  pending_blocks = (int *) xmalloc (20 * sizeof *pending_blocks);
  final_sequence = 0;

#ifdef ASSEMBLER_DIALECT
  dialect_number = ASSEMBLER_DIALECT;
#endif
}

/* Called at end of source file,
   to output the block-profiling table for this entire compilation.  */

void
end_final (filename)
338
  const char *filename;
339 340 341
{
  int i;

342
  if (profile_block_flag || profile_arc_flag)
343 344 345
    {
      char name[20];
      int align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
346
      int size, rounded;
347 348
      struct bb_list *ptr;
      struct bb_str *sptr;
349 350 351 352 353 354 355 356
      int long_bytes = LONG_TYPE_SIZE / BITS_PER_UNIT;
      int pointer_bytes = POINTER_SIZE / BITS_PER_UNIT;

      if (profile_block_flag)
	size = long_bytes * count_basic_blocks;
      else
	size = long_bytes * count_instrumented_arcs;
      rounded = size;
357 358 359 360 361 362 363

      rounded += (BIGGEST_ALIGNMENT / BITS_PER_UNIT) - 1;
      rounded = (rounded / (BIGGEST_ALIGNMENT / BITS_PER_UNIT)
		 * (BIGGEST_ALIGNMENT / BITS_PER_UNIT));

      data_section ();

364 365
      /* Output the main header, of 11 words:
	 0:  1 if this file is initialized, else 0.
366 367 368 369 370 371 372 373 374 375 376
	 1:  address of file name (LPBX1).
	 2:  address of table of counts (LPBX2).
	 3:  number of counts in the table.
	 4:  always 0, for compatibility with Sun.

         The following are GNU extensions:

	 5:  address of table of start addrs of basic blocks (LPBX3).
	 6:  Number of bytes in this header.
	 7:  address of table of function names (LPBX4).
	 8:  address of table of line numbers (LPBX5) or 0.
377
	 9:  address of table of file names (LPBX6) or 0.
Mike Stump committed
378
	10:  space reserved for basic block profiling.  */
379 380 381 382 383

      ASM_OUTPUT_ALIGN (asm_out_file, align);

      ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 0);
      /* zero word */
384
      assemble_integer (const0_rtx, long_bytes, 1);
385 386 387

      /* address of filename */
      ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 1);
388
      assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
389 390 391

      /* address of count table */
      ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
392
      assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
393

394 395 396 397 398 399
      /* count of the # of basic blocks or # of instrumented arcs */
      if (profile_block_flag)
	assemble_integer (GEN_INT (count_basic_blocks), long_bytes, 1);
      else
	assemble_integer (GEN_INT (count_instrumented_arcs), long_bytes,
			  1);
400 401

      /* zero word (link field) */
402
      assemble_integer (const0_rtx, pointer_bytes, 1);
403 404

      /* address of basic block start address table */
405 406 407
      if (profile_block_flag)
	{
	  ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
408
	  assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
409 410 411 412
			    1);
	}
      else
	assemble_integer (const0_rtx, pointer_bytes, 1);
413 414

      /* byte count for extended structure.  */
415
      assemble_integer (GEN_INT (11 * UNITS_PER_WORD), long_bytes, 1);
416 417

      /* address of function name table */
418 419 420
      if (profile_block_flag)
	{
	  ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 4);
421
	  assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
422 423 424 425
			    1);
	}
      else
	assemble_integer (const0_rtx, pointer_bytes, 1);
426 427

      /* address of line number and filename tables if debugging.  */
428
      if (write_symbols != NO_DEBUG && profile_block_flag)
429 430
	{
	  ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 5);
Jeff Law committed
431 432
	  assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
			    pointer_bytes, 1);
433
	  ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 6);
Jeff Law committed
434 435
	  assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
			    pointer_bytes, 1);
436 437 438
	}
      else
	{
439 440
	  assemble_integer (const0_rtx, pointer_bytes, 1);
	  assemble_integer (const0_rtx, pointer_bytes, 1);
441 442
	}

443 444 445
      /* space for extension ptr (link field) */
      assemble_integer (const0_rtx, UNITS_PER_WORD, 1);

446 447 448 449
      /* Output the file name changing the suffix to .d for Sun tcov
	 compatibility.  */
      ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 1);
      {
450 451 452 453 454 455 456
	char *cwd = getpwd ();
	int len = strlen (filename) + strlen (cwd) + 1;
	char *data_file = (char *) alloca (len + 4);

	strcpy (data_file, cwd);
	strcat (data_file, "/");
	strcat (data_file, filename);
457
	strip_off_ending (data_file, len);
458 459 460 461
	if (profile_block_flag)
	  strcat (data_file, ".d");
	else
	  strcat (data_file, ".da");
462 463 464 465
	assemble_string (data_file, strlen (data_file) + 1);
      }

      /* Make space for the table of counts.  */
Jason Merrill committed
466
      if (size == 0)
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
	{
	  /* Realign data section.  */
	  ASM_OUTPUT_ALIGN (asm_out_file, align);
	  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 2);
	  if (size != 0)
	    assemble_zeros (size);
	}
      else
	{
	  ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
#ifdef ASM_OUTPUT_SHARED_LOCAL
	  if (flag_shared_data)
	    ASM_OUTPUT_SHARED_LOCAL (asm_out_file, name, size, rounded);
	  else
#endif
482 483 484 485
#ifdef ASM_OUTPUT_ALIGNED_DECL_LOCAL
	    ASM_OUTPUT_ALIGNED_DECL_LOCAL (asm_out_file, NULL_TREE, name, size,
					      BIGGEST_ALIGNMENT);
#else
486 487 488 489 490 491
#ifdef ASM_OUTPUT_ALIGNED_LOCAL
	    ASM_OUTPUT_ALIGNED_LOCAL (asm_out_file, name, size,
				      BIGGEST_ALIGNMENT);
#else
	    ASM_OUTPUT_LOCAL (asm_out_file, name, size, rounded);
#endif
492
#endif
493 494 495
	}

      /* Output any basic block strings */
496
      if (profile_block_flag)
497
	{
498 499
	  readonly_data_section ();
	  if (sbb_head)
500
	    {
501 502 503 504 505 506 507
	      ASM_OUTPUT_ALIGN (asm_out_file, align);
	      for (sptr = sbb_head; sptr != 0; sptr = sptr->next)
		{
		  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBC",
					     sptr->label_num);
		  assemble_string (sptr->string, sptr->length);
		}
508 509 510 511
	    }
	}

      /* Output the table of addresses.  */
512
      if (profile_block_flag)
513
	{
514 515 516 517 518 519
	  /* Realign in new section */
	  ASM_OUTPUT_ALIGN (asm_out_file, align);
	  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 3);
	  for (i = 0; i < count_basic_blocks; i++)
	    {
	      ASM_GENERATE_INTERNAL_LABEL (name, "LPB", i);
520
	      assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
521 522
				pointer_bytes, 1);
	    }
523 524 525
	}

      /* Output the table of function names.  */
526
      if (profile_block_flag)
527
	{
528 529
	  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 4);
	  for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
530
	    {
531 532 533 534
	      if (ptr->func_label_num >= 0)
		{
		  ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
					       ptr->func_label_num);
535
		  assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
536 537 538 539
				    pointer_bytes, 1);
		}
	      else
		assemble_integer (const0_rtx, pointer_bytes, 1);
540 541
	    }

542 543 544
	  for ( ; i < count_basic_blocks; i++)
	    assemble_integer (const0_rtx, pointer_bytes, 1);
	}
545

546
      if (write_symbols != NO_DEBUG && profile_block_flag)
547 548 549 550
	{
	  /* Output the table of line numbers.  */
	  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 5);
	  for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
551
	    assemble_integer (GEN_INT (ptr->line_num), long_bytes, 1);
552 553

	  for ( ; i < count_basic_blocks; i++)
554
	    assemble_integer (const0_rtx, long_bytes, 1);
555 556 557 558 559 560 561

	  /* Output the table of file names.  */
	  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 6);
	  for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
	    {
	      if (ptr->file_label_num >= 0)
		{
562 563
		  ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
					       ptr->file_label_num);
564
		  assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
565
				    pointer_bytes, 1);
566 567
		}
	      else
568
		assemble_integer (const0_rtx, pointer_bytes, 1);
569 570 571
	    }

	  for ( ; i < count_basic_blocks; i++)
572
	    assemble_integer (const0_rtx, pointer_bytes, 1);
573 574 575 576
	}

      /* End with the address of the table of addresses,
	 so we can find it easily, as the last word in the file's text.  */
577 578 579
      if (profile_block_flag)
	{
	  ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
580
	  assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
581 582
			    1);
	}
583 584 585 586 587 588 589 590 591 592 593
    }
}

/* Enable APP processing of subsequent output.
   Used before the output from an `asm' statement.  */

void
app_enable ()
{
  if (! app_on)
    {
Kaveh R. Ghazi committed
594
      fputs (ASM_APP_ON, asm_out_file);
595 596 597 598 599 600 601 602 603 604 605 606
      app_on = 1;
    }
}

/* Disable APP processing of subsequent output.
   Called from varasm.c before most kinds of output.  */

void
app_disable ()
{
  if (app_on)
    {
Kaveh R. Ghazi committed
607
      fputs (ASM_APP_OFF, asm_out_file);
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
      app_on = 0;
    }
}

/* Return the number of slots filled in the current 
   delayed branch sequence (we don't count the insn needing the
   delay slot).   Zero if not in a delayed branch sequence.  */

#ifdef DELAY_SLOTS
int
dbr_sequence_length ()
{
  if (final_sequence != 0)
    return XVECLEN (final_sequence, 0) - 1;
  else
    return 0;
}
#endif

/* The next two pages contain routines used to compute the length of an insn
   and to shorten branches.  */

/* Arrays for insn lengths, and addresses.  The latter is referenced by
   `insn_current_length'.  */

static short *insn_lengths;
int *insn_addresses;

636 637 638
/* Max uid for which the above arrays are valid.  */
static int insn_lengths_max_uid;

639 640 641
/* Address of insn being processed.  Used by `insn_current_length'.  */
int insn_current_address;

642 643 644 645 646 647
/* Address of insn being processed in previous iteration.  */
int insn_last_address;

/* konwn invariant alignment of insn being processed.  */
int insn_current_align;

648 649 650 651 652 653 654 655 656
/* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
   gives the next following alignment insn that increases the known
   alignment, or NULL_RTX if there is no such insn.
   For any alignment obtained this way, we can again index uid_align with
   its uid to obtain the next following align that in turn increases the
   alignment, till we reach NULL_RTX; the sequence obtained this way
   for each insn we'll call the alignment chain of this insn in the following
   comments.  */

657 658 659 660 661 662 663 664
struct label_alignment {
  short alignment;
  short max_skip;
};

static rtx *uid_align;
static int *uid_shuid;
static struct label_alignment *label_align;
665

666 667 668 669 670
/* Indicate that branch shortening hasn't yet been done.  */

void
init_insn_lengths ()
{
671 672 673 674 675 676 677 678 679 680 681 682 683 684
  if (label_align)
    {
      free (label_align);
      label_align = 0;
    }
  if (uid_shuid)
    {
      free (uid_shuid);
      uid_shuid = 0;
    }
  if (insn_lengths)
    {
      free (insn_lengths);
      insn_lengths = 0;
685
      insn_lengths_max_uid = 0;
686 687 688 689 690 691 692 693 694 695 696
    }
  if (insn_addresses)
    {
      free (insn_addresses);
      insn_addresses = 0;
    }
  if (uid_align)
    {
      free (uid_align);
      uid_align = 0;
    }
697 698 699 700 701 702 703
}

/* Obtain the current length of an insn.  If branch shortening has been done,
   get its actual length.  Otherwise, get its maximum length.  */

int
get_attr_length (insn)
704
     rtx insn ATTRIBUTE_UNUSED;
705 706 707 708 709 710
{
#ifdef HAVE_ATTR_length
  rtx body;
  int i;
  int length = 0;

711
  if (insn_lengths_max_uid > INSN_UID (insn))
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
    return insn_lengths[INSN_UID (insn)];
  else
    switch (GET_CODE (insn))
      {
      case NOTE:
      case BARRIER:
      case CODE_LABEL:
	return 0;

      case CALL_INSN:
	length = insn_default_length (insn);
	break;

      case JUMP_INSN:
	body = PATTERN (insn);
        if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
	  {
729 730
	    /* Alignment is machine-dependent and should be handled by
	       ADDR_VEC_ALIGN.  */
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	  }
	else
	  length = insn_default_length (insn);
	break;

      case INSN:
	body = PATTERN (insn);
	if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
	  return 0;

	else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
	  length = asm_insn_count (body) * insn_default_length (insn);
	else if (GET_CODE (body) == SEQUENCE)
	  for (i = 0; i < XVECLEN (body, 0); i++)
	    length += get_attr_length (XVECEXP (body, 0, i));
	else
	  length = insn_default_length (insn);
748 749 750 751
	break;

      default:
	break;
752 753 754 755 756 757 758 759 760 761 762
      }

#ifdef ADJUST_INSN_LENGTH
  ADJUST_INSN_LENGTH (insn, length);
#endif
  return length;
#else /* not HAVE_ATTR_length */
  return 0;
#endif /* not HAVE_ATTR_length */
}

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
/* Code to handle alignment inside shorten_branches.  */

/* Here is an explanation how the algorithm in align_fuzz can give
   proper results:

   Call a sequence of instructions beginning with alignment point X
   and continuing until the next alignment point `block X'.  When `X'
   is used in an expression, it means the alignment value of the 
   alignment point.
   
   Call the distance between the start of the first insn of block X, and
   the end of the last insn of block X `IX', for the `inner size of X'.
   This is clearly the sum of the instruction lengths.
   
   Likewise with the next alignment-delimited block following X, which we
   shall call block Y.
   
   Call the distance between the start of the first insn of block X, and
   the start of the first insn of block Y `OX', for the `outer size of X'.
   
   The estimated padding is then OX - IX.
   
   OX can be safely estimated as
   
           if (X >= Y)
                   OX = round_up(IX, Y)
           else
                   OX = round_up(IX, X) + Y - X
   
   Clearly est(IX) >= real(IX), because that only depends on the
   instruction lengths, and those being overestimated is a given.
   
   Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
   we needn't worry about that when thinking about OX.
   
   When X >= Y, the alignment provided by Y adds no uncertainty factor
   for branch ranges starting before X, so we can just round what we have.
   But when X < Y, we don't know anything about the, so to speak,
   `middle bits', so we have to assume the worst when aligning up from an
   address mod X to one mod Y, which is Y - X.  */

#ifndef LABEL_ALIGN
805
#define LABEL_ALIGN(LABEL) align_labels_log
806 807
#endif

808
#ifndef LABEL_ALIGN_MAX_SKIP
809
#define LABEL_ALIGN_MAX_SKIP (align_labels-1)
810 811
#endif

812
#ifndef LOOP_ALIGN
813
#define LOOP_ALIGN(LABEL) align_loops_log
814 815
#endif

816
#ifndef LOOP_ALIGN_MAX_SKIP
817
#define LOOP_ALIGN_MAX_SKIP (align_loops-1)
818 819
#endif

820
#ifndef LABEL_ALIGN_AFTER_BARRIER
821
#define LABEL_ALIGN_AFTER_BARRIER(LABEL) align_jumps_log
822 823
#endif

824
#ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
825
#define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP (align_jumps-1)
826 827
#endif

828
#ifndef ADDR_VEC_ALIGN
829
static int
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
final_addr_vec_align (addr_vec)
     rtx addr_vec;
{
  int align = exact_log2 (GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec))));

  if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
    align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
  return align;

}
#define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
#endif

#ifndef INSN_LENGTH_ALIGNMENT
#define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
#endif

#define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])

849
static int min_labelno, max_labelno;
850 851

#define LABEL_TO_ALIGNMENT(LABEL) \
852 853 854 855
  (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)

#define LABEL_TO_MAX_SKIP(LABEL) \
  (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893

/* For the benefit of port specific code do this also as a function.  */
int
label_to_alignment (label)
     rtx label;
{
  return LABEL_TO_ALIGNMENT (label);
}

#ifdef HAVE_ATTR_length
/* The differences in addresses
   between a branch and its target might grow or shrink depending on
   the alignment the start insn of the range (the branch for a forward
   branch or the label for a backward branch) starts out on; if these
   differences are used naively, they can even oscillate infinitely.
   We therefore want to compute a 'worst case' address difference that
   is independent of the alignment the start insn of the range end
   up on, and that is at least as large as the actual difference.
   The function align_fuzz calculates the amount we have to add to the
   naively computed difference, by traversing the part of the alignment
   chain of the start insn of the range that is in front of the end insn
   of the range, and considering for each alignment the maximum amount
   that it might contribute to a size increase.

   For casesi tables, we also want to know worst case minimum amounts of
   address difference, in case a machine description wants to introduce
   some common offset that is added to all offsets in a table.
   For this purpose, align_fuzz with a growth argument of 0 comuptes the
   appropriate adjustment.  */


/* Compute the maximum delta by which the difference of the addresses of
   START and END might grow / shrink due to a different address for start
   which changes the size of alignment insns between START and END.
   KNOWN_ALIGN_LOG is the alignment known for START.
   GROWTH should be ~0 if the objective is to compute potential code size
   increase, and 0 if the objective is to compute potential shrink.
   The return value is undefined for any other value of GROWTH.  */
894
static int
J"orn Rennecke committed
895
align_fuzz (start, end, known_align_log, growth)
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
     rtx start, end;
     int known_align_log;
     unsigned growth;
{
  int uid = INSN_UID (start);
  rtx align_label;
  int known_align = 1 << known_align_log;
  int end_shuid = INSN_SHUID (end);
  int fuzz = 0;

  for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
    {
      int align_addr, new_align;

      uid = INSN_UID (align_label);
      align_addr = insn_addresses[uid] - insn_lengths[uid];
      if (uid_shuid[uid] > end_shuid)
	break;
      known_align_log = LABEL_TO_ALIGNMENT (align_label);
      new_align = 1 << known_align_log;
      if (new_align < known_align)
	continue;
      fuzz += (-align_addr ^ growth) & (new_align - known_align);
      known_align = new_align;
    }
  return fuzz;
}

/* Compute a worst-case reference address of a branch so that it
   can be safely used in the presence of aligned labels.  Since the
   size of the branch itself is unknown, the size of the branch is
   not included in the range.  I.e. for a forward branch, the reference
   address is the end address of the branch as known from the previous
   branch shortening pass, minus a value to account for possible size
   increase due to alignment.  For a backward branch, it is the start
   address of the branch as known from the current pass, plus a value
   to account for possible size increase due to alignment.
   NB.: Therefore, the maximum offset allowed for backward branches needs
   to exclude the branch size.  */
int
insn_current_reference_address (branch)
     rtx branch;
{
  rtx dest;
  rtx seq = NEXT_INSN (PREV_INSN (branch));
  int seq_uid = INSN_UID (seq);
  if (GET_CODE (branch) != JUMP_INSN)
    /* This can happen for example on the PA; the objective is to know the
       offset to address something in front of the start of the function.
       Thus, we can treat it like a backward branch.
       We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
       any alignment we'd encounter, so we skip the call to align_fuzz.  */
    return insn_current_address;
  dest = JUMP_LABEL (branch);
950
  /* BRANCH has no proper alignment chain set, so use SEQ.  */
951 952 953 954
  if (INSN_SHUID (branch) < INSN_SHUID (dest))
    {
      /* Forward branch. */
      return (insn_last_address + insn_lengths[seq_uid]
955
	      - align_fuzz (seq, dest, length_unit_log, ~0));
956 957 958 959 960
    }
  else
    {
      /* Backward branch. */
      return (insn_current_address
Joern Rennecke committed
961
	      + align_fuzz (dest, seq, length_unit_log, ~0));
962 963 964 965
    }
}
#endif /* HAVE_ATTR_length */

966 967 968 969 970 971 972 973 974
/* Make a pass over all insns and compute their actual lengths by shortening
   any branches of variable length if possible.  */

/* Give a default value for the lowest address in a function.  */

#ifndef FIRST_INSN_ADDRESS
#define FIRST_INSN_ADDRESS 0
#endif

975 976 977 978 979 980 981 982
/* shorten_branches might be called multiple times:  for example, the SH
   port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
   In order to do this, it needs proper length information, which it obtains
   by calling shorten_branches.  This cannot be collapsed with
   shorten_branches itself into a single pass unless we also want to intergate
   reorg.c, since the branch splitting exposes new instructions with delay
   slots.  */

983 984
void
shorten_branches (first)
985
     rtx first ATTRIBUTE_UNUSED;
986 987
{
  rtx insn;
988 989 990
  int max_uid;
  int i;
  int max_log;
991
  int max_skip;
992 993 994
#ifdef HAVE_ATTR_length
#define MAX_CODE_ALIGN 16
  rtx seq;
995 996 997 998
  int something_changed = 1;
  char *varying_length;
  rtx body;
  int uid;
999
  rtx align_tab[MAX_CODE_ALIGN];
1000

1001 1002 1003 1004 1005
  /* In order to make sure that all instructions have valid length info,
     we must split them before we compute the address/length info.  */

  for (insn = NEXT_INSN (first); insn; insn = NEXT_INSN (insn))
    if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1006 1007
      {
	rtx old = insn;
1008 1009 1010
	/* Don't split the insn if it has been deleted.  */
	if (! INSN_DELETED_P (old))
	  insn = try_split (PATTERN (old), old, 1);
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	/* When not optimizing, the old insn will be still left around
	   with only the 'deleted' bit set.  Transform it into a note
	   to avoid confusion of subsequent processing.  */
	if (INSN_DELETED_P (old))
          {
            PUT_CODE (old , NOTE);
            NOTE_LINE_NUMBER (old) = NOTE_INSN_DELETED;
            NOTE_SOURCE_FILE (old) = 0;
          }
      }
#endif
1022

1023 1024 1025
  /* We must do some computations even when not actually shortening, in
     order to get the alignment information for the labels.  */

1026 1027
  init_insn_lengths ();

1028 1029 1030 1031 1032
  /* Compute maximum UID and allocate label_align / uid_shuid.  */
  max_uid = get_max_uid ();

  max_labelno = max_label_num ();
  min_labelno = get_first_label_num ();
1033
  label_align = (struct label_alignment *)
1034
    xcalloc ((max_labelno - min_labelno + 1), sizeof (struct label_alignment));
1035 1036 1037 1038 1039

  uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);

  /* Initialize label_align and set up uid_shuid to be strictly
     monotonically rising with insn order.  */
1040 1041 1042 1043
  /* We use max_log here to keep track of the maximum alignment we want to
     impose on the next CODE_LABEL (or the current one if we are processing
     the CODE_LABEL itself).  */
     
1044 1045 1046 1047
  max_log = 0;
  max_skip = 0;

  for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
1048 1049 1050 1051 1052
    {
      int log;

      INSN_SHUID (insn) = i++;
      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1053 1054 1055 1056 1057 1058 1059
	{
	  /* reorg might make the first insn of a loop being run once only,
             and delete the label in front of it.  Then we want to apply
             the loop alignment to the new label created by reorg, which
             is separated by the former loop start insn from the
	     NOTE_INSN_LOOP_BEG.  */
	}
1060 1061 1062 1063 1064 1065
      else if (GET_CODE (insn) == CODE_LABEL)
	{
	  rtx next;

	  log = LABEL_ALIGN (insn);
	  if (max_log < log)
1066 1067 1068 1069
	    {
	      max_log = log;
	      max_skip = LABEL_ALIGN_MAX_SKIP;
	    }
1070
	  next = NEXT_INSN (insn);
1071 1072 1073 1074 1075
	  /* ADDR_VECs only take room if read-only data goes into the text
	     section.  */
	  if (JUMP_TABLES_IN_TEXT_SECTION
#if !defined(READONLY_DATA_SECTION)
	      || 1
1076
#endif
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	      )
	    if (next && GET_CODE (next) == JUMP_INSN)
	      {
		rtx nextbody = PATTERN (next);
		if (GET_CODE (nextbody) == ADDR_VEC
		    || GET_CODE (nextbody) == ADDR_DIFF_VEC)
		  {
		    log = ADDR_VEC_ALIGN (next);
		    if (max_log < log)
		      {
			max_log = log;
			max_skip = LABEL_ALIGN_MAX_SKIP;
		      }
		  }
	      }
1092
	  LABEL_TO_ALIGNMENT (insn) = max_log;
1093
	  LABEL_TO_MAX_SKIP (insn) = max_skip;
1094
	  max_log = 0;
1095
	  max_skip = 0;
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	}
      else if (GET_CODE (insn) == BARRIER)
	{
	  rtx label;

	  for (label = insn; label && GET_RTX_CLASS (GET_CODE (label)) != 'i';
	       label = NEXT_INSN (label))
	    if (GET_CODE (label) == CODE_LABEL)
	      {
		log = LABEL_ALIGN_AFTER_BARRIER (insn);
		if (max_log < log)
1107 1108 1109 1110
		  {
		    max_log = log;
		    max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
		  }
1111 1112 1113
		break;
	      }
	}
1114 1115
      /* Again, we allow NOTE_INSN_LOOP_BEG - INSN - CODE_LABEL
	 sequences in order to handle reorg output efficiently.  */
1116 1117 1118 1119
      else if (GET_CODE (insn) == NOTE
	       && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
	{
	  rtx label;
1120
	  int nest = 0;
1121

1122 1123 1124 1125
	  /* Search for the label that starts the loop.
	     Don't skip past the end of the loop, since that could
	     lead to putting an alignment where it does not belong.
	     However, a label after a nested (non-)loop would be OK.  */
1126
	  for (label = insn; label; label = NEXT_INSN (label))
1127 1128 1129 1130 1131 1132 1133
	    {
	      if (GET_CODE (label) == NOTE
		  && NOTE_LINE_NUMBER (label) == NOTE_INSN_LOOP_BEG)
		nest++;
	      else if (GET_CODE (label) == NOTE
		       && NOTE_LINE_NUMBER (label) == NOTE_INSN_LOOP_END
		       && --nest == 0)
1134
		break;
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	      else if (GET_CODE (label) == CODE_LABEL)
		{
		  log = LOOP_ALIGN (insn);
		  if (max_log < log)
		    {
		      max_log = log;
		      max_skip = LOOP_ALIGN_MAX_SKIP;
		    }
		  break;
		}
	    }
1146 1147 1148 1149 1150 1151 1152 1153
	}
      else
	continue;
    }
#ifdef HAVE_ATTR_length

  /* Allocate the rest of the arrays.  */
  insn_lengths = (short *) xmalloc (max_uid * sizeof (short));
1154
  insn_lengths_max_uid = max_uid;
1155 1156
  /* Syntax errors can lead to labels being outside of the main insn stream.
     Initialize insn_addresses, so that we get reproducible results.  */
1157
  insn_addresses = (int *) xcalloc (max_uid, sizeof (int));
1158

1159
  varying_length = (char *) xcalloc (max_uid, sizeof (char));
1160 1161 1162 1163 1164 1165

  /* Initialize uid_align.  We scan instructions
     from end to start, and keep in align_tab[n] the last seen insn
     that does an alignment of at least n+1, i.e. the successor
     in the alignment chain for an insn that does / has a known
     alignment of n.  */
1166
  uid_align = (rtx *) xcalloc (max_uid, sizeof *uid_align);
1167 1168 1169 1170

  for (i = MAX_CODE_ALIGN; --i >= 0; )
    align_tab[i] = NULL_RTX;
  seq = get_last_insn ();
1171
  for (; seq; seq = PREV_INSN (seq))
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
    {
      int uid = INSN_UID (seq);
      int log;
      log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
      uid_align[uid] = align_tab[0];
      if (log)
	{
	  /* Found an alignment label.  */
	  uid_align[uid] = align_tab[log];
	  for (i = log - 1; i >= 0; i--)
	    align_tab[i] = seq;
	}
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
    }
#ifdef CASE_VECTOR_SHORTEN_MODE
  if (optimize)
    {
      /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
         label fields.  */

      int min_shuid = INSN_SHUID (get_insns ()) - 1;
      int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
      int rel;

      for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1196
	{
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	  rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
	  int len, i, min, max, insn_shuid;
	  int min_align;
	  addr_diff_vec_flags flags;

	  if (GET_CODE (insn) != JUMP_INSN
	      || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
	    continue;
	  pat = PATTERN (insn);
	  len = XVECLEN (pat, 1);
	  if (len <= 0)
	    abort ();
	  min_align = MAX_CODE_ALIGN;
	  for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
	    {
	      rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
	      int shuid = INSN_SHUID (lab);
	      if (shuid < min)
		{
		  min = shuid;
		  min_lab = lab;
		}
	      if (shuid > max)
		{
		  max = shuid;
		  max_lab = lab;
		}
	      if (min_align > LABEL_TO_ALIGNMENT (lab))
		min_align = LABEL_TO_ALIGNMENT (lab);
	    }
	  XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
	  XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
	  insn_shuid = INSN_SHUID (insn);
	  rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
	  flags.min_align = min_align;
	  flags.base_after_vec = rel > insn_shuid;
	  flags.min_after_vec  = min > insn_shuid;
	  flags.max_after_vec  = max > insn_shuid;
	  flags.min_after_base = min > rel;
	  flags.max_after_base = max > rel;
	  ADDR_DIFF_VEC_FLAGS (pat) = flags;
1238 1239
	}
    }
1240
#endif /* CASE_VECTOR_SHORTEN_MODE */
1241 1242 1243 1244 1245 1246 1247 1248


  /* Compute initial lengths, addresses, and varying flags for each insn.  */
  for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
       insn != 0;
       insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
    {
      uid = INSN_UID (insn);
1249

1250
      insn_lengths[uid] = 0;
1251 1252 1253 1254 1255 1256 1257

      if (GET_CODE (insn) == CODE_LABEL)
	{
	  int log = LABEL_TO_ALIGNMENT (insn);
	  if (log)
	    {
	      int align = 1 << log;
Kaveh R. Ghazi committed
1258
	      int new_address = (insn_current_address + align - 1) & -align;
1259 1260 1261 1262 1263 1264
	      insn_lengths[uid] = new_address - insn_current_address;
	      insn_current_address = new_address;
	    }
	}

      insn_addresses[uid] = insn_current_address;
1265 1266 1267 1268
      
      if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
	  || GET_CODE (insn) == CODE_LABEL)
	continue;
1269 1270
      if (INSN_DELETED_P (insn))
	continue;
1271 1272 1273

      body = PATTERN (insn);
      if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1274 1275 1276
	{
	  /* This only takes room if read-only data goes into the text
	     section.  */
1277 1278 1279 1280 1281 1282 1283 1284
	  if (JUMP_TABLES_IN_TEXT_SECTION
#if !defined(READONLY_DATA_SECTION)
	      || 1
#endif
	      )
	    insn_lengths[uid] = (XVECLEN (body,
					  GET_CODE (body) == ADDR_DIFF_VEC)
				 * GET_MODE_SIZE (GET_MODE (body)));
1285 1286
	  /* Alignment is handled by ADDR_VEC_ALIGN.  */
	}
1287
      else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
      else if (GET_CODE (body) == SEQUENCE)
	{
	  int i;
	  int const_delay_slots;
#ifdef DELAY_SLOTS
	  const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
#else
	  const_delay_slots = 0;
#endif
	  /* Inside a delay slot sequence, we do not do any branch shortening
	     if the shortening could change the number of delay slots
Mike Stump committed
1300
	     of the branch.  */
1301 1302 1303 1304 1305 1306
	  for (i = 0; i < XVECLEN (body, 0); i++)
	    {
	      rtx inner_insn = XVECEXP (body, 0, i);
	      int inner_uid = INSN_UID (inner_insn);
	      int inner_length;

1307 1308
	      if (GET_CODE (body) == ASM_INPUT
		  || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
		inner_length = (asm_insn_count (PATTERN (inner_insn))
				* insn_default_length (inner_insn));
	      else
		inner_length = insn_default_length (inner_insn);
	      
	      insn_lengths[inner_uid] = inner_length;
	      if (const_delay_slots)
		{
		  if ((varying_length[inner_uid]
		       = insn_variable_length_p (inner_insn)) != 0)
		    varying_length[uid] = 1;
		  insn_addresses[inner_uid] = (insn_current_address +
					       insn_lengths[uid]);
		}
	      else
		varying_length[inner_uid] = 0;
	      insn_lengths[uid] += inner_length;
	    }
	}
      else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
	{
	  insn_lengths[uid] = insn_default_length (insn);
	  varying_length[uid] = insn_variable_length_p (insn);
	}

      /* If needed, do any adjustment.  */
#ifdef ADJUST_INSN_LENGTH
      ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1337 1338
      if (insn_lengths[uid] < 0)
	fatal_insn ("Negative insn length", insn);
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
#endif
    }

  /* Now loop over all the insns finding varying length insns.  For each,
     get the current insn length.  If it has changed, reflect the change.
     When nothing changes for a full pass, we are done.  */

  while (something_changed)
    {
      something_changed = 0;
1349
      insn_current_align = MAX_CODE_ALIGN - 1;
1350 1351 1352 1353 1354
      for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
	   insn != 0;
	   insn = NEXT_INSN (insn))
	{
	  int new_length;
1355
#ifdef ADJUST_INSN_LENGTH
1356
	  int tmp_length;
1357
#endif
1358
	  int length_align;
1359 1360

	  uid = INSN_UID (insn);
1361 1362 1363 1364 1365 1366 1367

	  if (GET_CODE (insn) == CODE_LABEL)
	    {
	      int log = LABEL_TO_ALIGNMENT (insn);
	      if (log > insn_current_align)
		{
		  int align = 1 << log;
Kaveh R. Ghazi committed
1368
		  int new_address= (insn_current_address + align - 1) & -align;
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
		  insn_lengths[uid] = new_address - insn_current_address;
		  insn_current_align = log;
		  insn_current_address = new_address;
		}
	      else
		insn_lengths[uid] = 0;
	      insn_addresses[uid] = insn_current_address;
	      continue;
	    }

	  length_align = INSN_LENGTH_ALIGNMENT (insn);
	  if (length_align < insn_current_align)
	    insn_current_align = length_align;

	  insn_last_address = insn_addresses[uid];
1384
	  insn_addresses[uid] = insn_current_address;
1385

1386
#ifdef CASE_VECTOR_SHORTEN_MODE
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	  if (optimize && GET_CODE (insn) == JUMP_INSN
	      && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
	    {
	      rtx body = PATTERN (insn);
	      int old_length = insn_lengths[uid];
	      rtx rel_lab = XEXP (XEXP (body, 0), 0);
	      rtx min_lab = XEXP (XEXP (body, 2), 0);
	      rtx max_lab = XEXP (XEXP (body, 3), 0);
	      addr_diff_vec_flags flags = ADDR_DIFF_VEC_FLAGS (body);
	      int rel_addr = insn_addresses[INSN_UID (rel_lab)];
	      int min_addr = insn_addresses[INSN_UID (min_lab)];
	      int max_addr = insn_addresses[INSN_UID (max_lab)];
	      rtx prev;
	      int rel_align = 0;

	      /* Try to find a known alignment for rel_lab.  */
	      for (prev = rel_lab;
		   prev
		   && ! insn_lengths[INSN_UID (prev)]
		   && ! (varying_length[INSN_UID (prev)] & 1);
		   prev = PREV_INSN (prev))
		if (varying_length[INSN_UID (prev)] & 2)
		  {
		    rel_align = LABEL_TO_ALIGNMENT (prev);
		    break;
		  }

	      /* See the comment on addr_diff_vec_flags in rtl.h for the
		 meaning of the flags values.  base: REL_LAB   vec: INSN  */
	      /* Anything after INSN has still addresses from the last
		 pass; adjust these so that they reflect our current
		 estimate for this pass.  */
	      if (flags.base_after_vec)
		rel_addr += insn_current_address - insn_last_address;
	      if (flags.min_after_vec)
		min_addr += insn_current_address - insn_last_address;
	      if (flags.max_after_vec)
		max_addr += insn_current_address - insn_last_address;
	      /* We want to know the worst case, i.e. lowest possible value
		 for the offset of MIN_LAB.  If MIN_LAB is after REL_LAB,
		 its offset is positive, and we have to be wary of code shrink;
		 otherwise, it is negative, and we have to be vary of code
		 size increase.  */
	      if (flags.min_after_base)
		{
		  /* If INSN is between REL_LAB and MIN_LAB, the size
		     changes we are about to make can change the alignment
		     within the observed offset, therefore we have to break
		     it up into two parts that are independent.  */
		  if (! flags.base_after_vec && flags.min_after_vec)
		    {
		      min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
		      min_addr -= align_fuzz (insn, min_lab, 0, 0);
		    }
		  else
		    min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
		}
	      else
		{
		  if (flags.base_after_vec && ! flags.min_after_vec)
		    {
		      min_addr -= align_fuzz (min_lab, insn, 0, ~0);
		      min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
		    }
		  else
		    min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
		}
	      /* Likewise, determine the highest lowest possible value
		 for the offset of MAX_LAB.  */
	      if (flags.max_after_base)
		{
		  if (! flags.base_after_vec && flags.max_after_vec)
		    {
		      max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
		      max_addr += align_fuzz (insn, max_lab, 0, ~0);
		    }
		  else
		    max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
		}
	      else
		{
		  if (flags.base_after_vec && ! flags.max_after_vec)
		    {
		      max_addr += align_fuzz (max_lab, insn, 0, 0);
		      max_addr += align_fuzz (insn, rel_lab, 0, 0);
		    }
		  else
		    max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
		}
	      PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
							max_addr - rel_addr,
							body));
1479 1480 1481
	      if (JUMP_TABLES_IN_TEXT_SECTION
#if !defined(READONLY_DATA_SECTION)
		  || 1
1482
#endif
1483 1484 1485 1486 1487 1488 1489 1490 1491
		  )
		{
		  insn_lengths[uid]
		    = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
		  insn_current_address += insn_lengths[uid];
		  if (insn_lengths[uid] != old_length)
		    something_changed = 1;
		}

1492 1493
	      continue;
	    }
1494 1495 1496
#endif /* CASE_VECTOR_SHORTEN_MODE */

	  if (! (varying_length[uid]))
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
	    {
	      insn_current_address += insn_lengths[uid];
	      continue;
	    }
	  if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
	    {
	      int i;
	      
	      body = PATTERN (insn);
	      new_length = 0;
	      for (i = 0; i < XVECLEN (body, 0); i++)
		{
		  rtx inner_insn = XVECEXP (body, 0, i);
		  int inner_uid = INSN_UID (inner_insn);
		  int inner_length;

		  insn_addresses[inner_uid] = insn_current_address;

		  /* insn_current_length returns 0 for insns with a
		     non-varying length.  */
		  if (! varying_length[inner_uid])
		    inner_length = insn_lengths[inner_uid];
		  else
		    inner_length = insn_current_length (inner_insn);

		  if (inner_length != insn_lengths[inner_uid])
		    {
		      insn_lengths[inner_uid] = inner_length;
		      something_changed = 1;
		    }
		  insn_current_address += insn_lengths[inner_uid];
		  new_length += inner_length;
		}
	    }
	  else
	    {
	      new_length = insn_current_length (insn);
	      insn_current_address += new_length;
	    }

#ifdef ADJUST_INSN_LENGTH
	  /* If needed, do any adjustment.  */
	  tmp_length = new_length;
	  ADJUST_INSN_LENGTH (insn, new_length);
	  insn_current_address += (new_length - tmp_length);
#endif

	  if (new_length != insn_lengths[uid])
	    {
	      insn_lengths[uid] = new_length;
	      something_changed = 1;
	    }
	}
1550 1551 1552
      /* For a non-optimizing compile, do only a single pass.  */
      if (!optimize)
	break;
1553
    }
1554 1555 1556

  free (varying_length);

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
#endif /* HAVE_ATTR_length */
}

#ifdef HAVE_ATTR_length
/* Given the body of an INSN known to be generated by an ASM statement, return
   the number of machine instructions likely to be generated for this insn.
   This is used to compute its length.  */

static int
asm_insn_count (body)
     rtx body;
{
  char *template;
  int count = 1;

1572 1573 1574 1575 1576 1577 1578
  if (GET_CODE (body) == ASM_INPUT)
    template = XSTR (body, 0);
  else
    template = decode_asm_operands (body, NULL_PTR, NULL_PTR,
				    NULL_PTR, NULL_PTR);

  for ( ; *template; template++)
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
    if (IS_ASM_LOGICAL_LINE_SEPARATOR(*template) || *template == '\n')
      count++;

  return count;
}
#endif

/* Output assembler code for the start of a function,
   and initialize some of the variables in this file
   for the new function.  The label for the function and associated
   assembler pseudo-ops have already been output in `assemble_start_function'.

   FIRST is the first insn of the rtl for the function being compiled.
   FILE is the file to write assembler code to.
   OPTIMIZE is nonzero if we should eliminate redundant
     test and compare insns.  */

void
final_start_function (first, file, optimize)
     rtx first;
     FILE *file;
Kaveh R. Ghazi committed
1600
     int optimize ATTRIBUTE_UNUSED;
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
{
  block_depth = 0;

  this_is_asm_operands = 0;

#ifdef NON_SAVING_SETJMP
  /* A function that calls setjmp should save and restore all the
     call-saved registers on a system where longjmp clobbers them.  */
  if (NON_SAVING_SETJMP && current_function_calls_setjmp)
    {
      int i;

      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1614
	if (!call_used_regs[i])
1615 1616 1617 1618 1619 1620 1621 1622 1623
	  regs_ever_live[i] = 1;
    }
#endif
  
  /* Initial line number is supposed to be output
     before the function's prologue and label
     so that the function's address will not appear to be
     in the last statement of the preceding function.  */
  if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1624 1625
    last_linenum = high_block_linenum = high_function_linenum
      = NOTE_LINE_NUMBER (first);
1626

1627
#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
Jason Merrill committed
1628
  /* Output DWARF definition of the function.  */
Jason Merrill committed
1629
  if (dwarf2out_do_frame ())
x  
Jason Merrill committed
1630
    dwarf2out_begin_prologue ();
Jason Merrill committed
1631 1632
#endif

1633 1634
  /* For SDB and XCOFF, the function beginning must be marked between
     the function label and the prologue.  We always need this, even when
1635
     -g1 was used.  Defer on MIPS systems so that parameter descriptions
Mike Stump committed
1636
     follow function entry.  */
1637
#if defined(SDB_DEBUGGING_INFO) && !defined(MIPS_DEBUGGING_INFO)
1638 1639 1640
  if (write_symbols == SDB_DEBUG)
    sdbout_begin_function (last_linenum);
  else
1641
#endif
1642
#ifdef XCOFF_DEBUGGING_INFO
1643 1644 1645
    if (write_symbols == XCOFF_DEBUG)
      xcoffout_begin_function (file, last_linenum);
    else
1646
#endif	  
1647 1648 1649 1650
      /* But only output line number for other debug info types if -g2
	 or better.  */
      if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
	output_source_line (file, first);
1651 1652

#ifdef LEAF_REG_REMAP
1653
  if (current_function_uses_only_leaf_regs)
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
    leaf_renumber_regs (first);
#endif

  /* The Sun386i and perhaps other machines don't work right
     if the profiling code comes after the prologue.  */
#ifdef PROFILE_BEFORE_PROLOGUE
  if (profile_flag)
    profile_function (file);
#endif /* PROFILE_BEFORE_PROLOGUE */

Jason Merrill committed
1664 1665 1666 1667 1668
#if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
  if (dwarf2out_do_frame ())
    dwarf2out_frame_debug (NULL_RTX);
#endif

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
#ifdef FUNCTION_PROLOGUE
  /* First output the function prologue: code to set up the stack frame.  */
  FUNCTION_PROLOGUE (file, get_frame_size ());
#endif

#if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
  if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
    next_block_index = 1;
#endif

  /* If the machine represents the prologue as RTL, the profiling code must
     be emitted when NOTE_INSN_PROLOGUE_END is scanned.  */
#ifdef HAVE_prologue
  if (! HAVE_prologue)
#endif
    profile_after_prologue (file);

  profile_label_no++;

  /* If we are doing basic block profiling, remember a printable version
     of the function name.  */
  if (profile_block_flag)
    {
1692 1693
      bb_func_label_num
	= add_bb_string ((*decl_printable_name) (current_function_decl, 2), FALSE);
1694 1695 1696 1697 1698
    }
}

static void
profile_after_prologue (file)
1699
     FILE *file ATTRIBUTE_UNUSED;
1700 1701 1702 1703
{
#ifdef FUNCTION_BLOCK_PROFILER
  if (profile_block_flag)
    {
1704
      FUNCTION_BLOCK_PROFILER (file, count_basic_blocks);
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
    }
#endif /* FUNCTION_BLOCK_PROFILER */

#ifndef PROFILE_BEFORE_PROLOGUE
  if (profile_flag)
    profile_function (file);
#endif /* not PROFILE_BEFORE_PROLOGUE */
}

static void
profile_function (file)
     FILE *file;
{
1718
  int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1719 1720
#if defined(ASM_OUTPUT_REG_PUSH)
#if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1721
  int sval = current_function_returns_struct;
1722 1723
#endif
#if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1724
  int cxt = current_function_needs_context;
1725 1726
#endif
#endif /* ASM_OUTPUT_REG_PUSH */
1727 1728 1729 1730

  data_section ();
  ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
  ASM_OUTPUT_INTERNAL_LABEL (file, "LP", profile_label_no);
1731
  assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, 1);
1732

1733
  function_section (current_function_decl);
1734

1735
#if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1736 1737 1738
  if (sval)
    ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
#else
1739
#if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1740
  if (sval)
Kaveh R. Ghazi committed
1741 1742 1743
    {
      ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
    }
1744 1745 1746
#endif
#endif

1747
#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1748 1749 1750
  if (cxt)
    ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
#else
1751
#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1752
  if (cxt)
Kaveh R. Ghazi committed
1753 1754 1755
    {
      ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
    }
1756 1757 1758 1759 1760
#endif
#endif

  FUNCTION_PROFILER (file, profile_label_no);

1761
#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1762 1763 1764
  if (cxt)
    ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
#else
1765
#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1766
  if (cxt)
Kaveh R. Ghazi committed
1767 1768 1769
    {
      ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
    }
1770 1771 1772
#endif
#endif

1773
#if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1774 1775 1776
  if (sval)
    ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
#else
1777
#if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1778
  if (sval)
Kaveh R. Ghazi committed
1779 1780 1781
    {
      ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
    }
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
#endif
#endif
}

/* Output assembler code for the end of a function.
   For clarity, args are same as those of `final_start_function'
   even though not all of them are needed.  */

void
final_end_function (first, file, optimize)
Kaveh R. Ghazi committed
1792
     rtx first ATTRIBUTE_UNUSED;
1793
     FILE *file;
Kaveh R. Ghazi committed
1794
     int optimize ATTRIBUTE_UNUSED;
1795 1796 1797
{
  if (app_on)
    {
Kaveh R. Ghazi committed
1798
      fputs (ASM_APP_OFF, file);
1799 1800 1801 1802 1803
      app_on = 0;
    }

#ifdef SDB_DEBUGGING_INFO
  if (write_symbols == SDB_DEBUG)
1804
    sdbout_end_function (high_function_linenum);
1805 1806 1807 1808 1809 1810 1811 1812 1813
#endif

#ifdef DWARF_DEBUGGING_INFO
  if (write_symbols == DWARF_DEBUG)
    dwarfout_end_function ();
#endif

#ifdef XCOFF_DEBUGGING_INFO
  if (write_symbols == XCOFF_DEBUG)
1814
    xcoffout_end_function (file, high_function_linenum);
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
#endif

#ifdef FUNCTION_EPILOGUE
  /* Finally, output the function epilogue:
     code to restore the stack frame and return to the caller.  */
  FUNCTION_EPILOGUE (file, get_frame_size ());
#endif

#ifdef SDB_DEBUGGING_INFO
  if (write_symbols == SDB_DEBUG)
    sdbout_end_epilogue ();
#endif

#ifdef DWARF_DEBUGGING_INFO
  if (write_symbols == DWARF_DEBUG)
    dwarfout_end_epilogue ();
#endif

1833
#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
Jason Merrill committed
1834
  if (dwarf2out_do_frame ())
x  
Jason Merrill committed
1835 1836 1837
    dwarf2out_end_epilogue ();
#endif

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
#ifdef XCOFF_DEBUGGING_INFO
  if (write_symbols == XCOFF_DEBUG)
    xcoffout_end_epilogue (file);
#endif

  bb_func_label_num = -1;	/* not in function, nuke label # */

  /* If FUNCTION_EPILOGUE is not defined, then the function body
     itself contains return instructions wherever needed.  */
}

/* Add a block to the linked list that remembers the current line/file/function
   for basic block profiling.  Emit the label in front of the basic block and
   the instructions that increment the count field.  */

static void
add_bb (file)
     FILE *file;
{
  struct bb_list *ptr = (struct bb_list *) permalloc (sizeof (struct bb_list));

  /* Add basic block to linked list.  */
  ptr->next = 0;
  ptr->line_num = last_linenum;
  ptr->file_label_num = bb_file_label_num;
  ptr->func_label_num = bb_func_label_num;
  *bb_tail = ptr;
  bb_tail = &ptr->next;

  /* Enable the table of basic-block use counts
     to point at the code it applies to.  */
  ASM_OUTPUT_INTERNAL_LABEL (file, "LPB", count_basic_blocks);

  /* Before first insn of this basic block, increment the
     count of times it was entered.  */
#ifdef BLOCK_PROFILER
  BLOCK_PROFILER (file, count_basic_blocks);
1875 1876
#endif
#ifdef HAVE_cc0
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
  CC_STATUS_INIT;
#endif

  new_block = 0;
  count_basic_blocks++;
}

/* Add a string to be used for basic block profiling.  */

static int
add_bb_string (string, perm_p)
1888
     const char *string;
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
     int perm_p;
{
  int len;
  struct bb_str *ptr = 0;

  if (!string)
    {
      string = "<unknown>";
      perm_p = TRUE;
    }

  /* Allocate a new string if the current string isn't permanent.  If
     the string is permanent search for the same string in other
     allocations.  */

  len = strlen (string) + 1;
  if (!perm_p)
    {
      char *p = (char *) permalloc (len);
      bcopy (string, p, len);
      string = p;
    }
  else
Mike Stump committed
1912
    for (ptr = sbb_head; ptr != (struct bb_str *) 0; ptr = ptr->next)
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
      if (ptr->string == string)
	break;

  /* Allocate a new string block if we need to.  */
  if (!ptr)
    {
      ptr = (struct bb_str *) permalloc (sizeof (*ptr));
      ptr->next = 0;
      ptr->length = len;
      ptr->label_num = sbb_label_num++;
      ptr->string = string;
      *sbb_tail = ptr;
      sbb_tail = &ptr->next;
    }

  return ptr->label_num;
}


/* Output assembler code for some insns: all or part of a function.
   For description of args, see `final_start_function', above.

   PRESCAN is 1 if we are not really outputting,
     just scanning as if we were outputting.
   Prescanning deletes and rearranges insns just like ordinary output.
   PRESCAN is -2 if we are outputting after having prescanned.
   In this case, don't try to delete or rearrange insns
   because that has already been done.
   Prescanning is done only on certain machines.  */

void
final (first, file, optimize, prescan)
     rtx first;
     FILE *file;
     int optimize;
     int prescan;
{
  register rtx insn;
  int max_line = 0;
1952
  int max_uid = 0;
1953 1954 1955 1956

  last_ignored_compare = 0;
  new_block = 1;

Mike Stump committed
1957 1958
  check_exception_handler_labels ();

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
  /* Make a map indicating which line numbers appear in this function.
     When producing SDB debugging info, delete troublesome line number
     notes from inlined functions in other files as well as duplicate
     line number notes.  */
#ifdef SDB_DEBUGGING_INFO
  if (write_symbols == SDB_DEBUG)
    {
      rtx last = 0;
      for (insn = first; insn; insn = NEXT_INSN (insn))
	if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
	  {
	    if ((RTX_INTEGRATED_P (insn)
		 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
		 || (last != 0
		     && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
		     && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
	      {
		NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
		NOTE_SOURCE_FILE (insn) = 0;
		continue;
	      }
	    last = insn;
	    if (NOTE_LINE_NUMBER (insn) > max_line)
	      max_line = NOTE_LINE_NUMBER (insn);
	  }
    }
  else
#endif
    {
      for (insn = first; insn; insn = NEXT_INSN (insn))
	if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
	  max_line = NOTE_LINE_NUMBER (insn);
    }

  line_note_exists = (char *) oballoc (max_line + 1);
  bzero (line_note_exists, max_line + 1);

  for (insn = first; insn; insn = NEXT_INSN (insn))
1997 1998 1999 2000 2001
    {
      if (INSN_UID (insn) > max_uid)       /* find largest UID */
        max_uid = INSN_UID (insn);
      if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
        line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
2002 2003 2004
#ifdef HAVE_cc0
      /* If CC tracking across branches is enabled, record the insn which
	 jumps to each branch only reached from one place.  */
2005
      if (optimize && GET_CODE (insn) == JUMP_INSN)
2006 2007 2008 2009 2010 2011 2012 2013
	{
	  rtx lab = JUMP_LABEL (insn);
	  if (lab && LABEL_NUSES (lab) == 1)
	    {
	      LABEL_REFS (lab) = insn;
	    }
	}
#endif
2014 2015 2016 2017 2018
    }

  /* Initialize insn_eh_region table if eh is being used. */
  
  init_insn_eh_region (first, max_uid);
2019 2020 2021 2022 2023 2024 2025

  init_recog ();

  CC_STATUS_INIT;

  /* Output the insns.  */
  for (insn = NEXT_INSN (first); insn;)
2026 2027 2028 2029 2030 2031
    {
#ifdef HAVE_ATTR_length
      insn_current_address = insn_addresses[INSN_UID (insn)];
#endif
      insn = final_scan_insn (insn, file, optimize, prescan, 0);
    }
2032 2033 2034 2035 2036

  /* Do basic-block profiling here
     if the last insn was a conditional branch.  */
  if (profile_block_flag && new_block)
    add_bb (file);
2037 2038

  free_insn_eh_region ();
2039 2040
}

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
const char *
get_insn_template (code, insn)
     int code;
     rtx insn;
{
  const void *output = insn_data[code].output;
  switch (insn_data[code].output_format)
    {
    case INSN_OUTPUT_FORMAT_SINGLE:
      return (const char *) output;
    case INSN_OUTPUT_FORMAT_MULTI:
      return ((const char * const *) output)[which_alternative];
    case INSN_OUTPUT_FORMAT_FUNCTION:
      if (insn == NULL)
	abort ();
      return (* (insn_output_fn) output) (recog_data.operand, insn);

    default:
      abort ();
    }
}
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
/* The final scan for one insn, INSN.
   Args are same as in `final', except that INSN
   is the insn being scanned.
   Value returned is the next insn to be scanned.

   NOPEEPHOLES is the flag to disallow peephole processing (currently
   used for within delayed branch sequence output).  */

rtx
final_scan_insn (insn, file, optimize, prescan, nopeepholes)
     rtx insn;
     FILE *file;
2074
     int optimize ATTRIBUTE_UNUSED;
2075
     int prescan;
2076
     int nopeepholes ATTRIBUTE_UNUSED;
2077
{
2078 2079 2080 2081
#ifdef HAVE_cc0
  rtx set;
#endif

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
  insn_counter++;

  /* Ignore deleted insns.  These can occur when we split insns (due to a
     template of "#") while not optimizing.  */
  if (INSN_DELETED_P (insn))
    return NEXT_INSN (insn);

  switch (GET_CODE (insn))
    {
    case NOTE:
      if (prescan > 0)
	break;

      /* Align the beginning of a loop, for higher speed
	 on certain machines.  */

2098 2099
      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
	break; /* This used to depend on optimize, but that was bogus.  */
2100 2101 2102
      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
	break;

2103 2104
      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
	  && ! exceptions_via_longjmp)
Mike Stump committed
2105
	{
2106
	  ASM_OUTPUT_INTERNAL_LABEL (file, "LEHB", NOTE_EH_HANDLER (insn));
Andrew MacLeod committed
2107
          if (! flag_new_exceptions)
2108
            add_eh_table_entry (NOTE_EH_HANDLER (insn));
Mike Stump committed
2109
#ifdef ASM_OUTPUT_EH_REGION_BEG
2110
	  ASM_OUTPUT_EH_REGION_BEG (file, NOTE_EH_HANDLER (insn));
Mike Stump committed
2111 2112 2113 2114
#endif
	  break;
	}

2115 2116
      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END
	  && ! exceptions_via_longjmp)
Mike Stump committed
2117
	{
2118
	  ASM_OUTPUT_INTERNAL_LABEL (file, "LEHE", NOTE_EH_HANDLER (insn));
Andrew MacLeod committed
2119
          if (flag_new_exceptions)
2120
            add_eh_table_entry (NOTE_EH_HANDLER (insn));
Mike Stump committed
2121
#ifdef ASM_OUTPUT_EH_REGION_END
2122
	  ASM_OUTPUT_EH_REGION_END (file, NOTE_EH_HANDLER (insn));
Mike Stump committed
2123 2124 2125 2126
#endif
	  break;
	}

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
	{
#ifdef FUNCTION_END_PROLOGUE
	  FUNCTION_END_PROLOGUE (file);
#endif
	  profile_after_prologue (file);
	  break;
	}

#ifdef FUNCTION_BEGIN_EPILOGUE
      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
	{
	  FUNCTION_BEGIN_EPILOGUE (file);
	  break;
	}
#endif

      if (write_symbols == NO_DEBUG)
	break;
      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
	{
2148 2149
#if defined(SDB_DEBUGGING_INFO) && defined(MIPS_DEBUGGING_INFO)
	  /* MIPS stabs require the parameter descriptions to be after the
Mike Stump committed
2150
	     function entry point rather than before.  */
2151 2152 2153 2154
	  if (write_symbols == SDB_DEBUG)
	    sdbout_begin_function (last_linenum);
	  else
#endif
2155
#ifdef DWARF_DEBUGGING_INFO
2156 2157
	  /* This outputs a marker where the function body starts, so it
	     must be after the prologue.  */
2158 2159 2160 2161 2162 2163 2164 2165 2166
	  if (write_symbols == DWARF_DEBUG)
	    dwarfout_begin_function ();
#endif
	  break;
	}
      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
	break;			/* An insn that was "deleted" */
      if (app_on)
	{
Kaveh R. Ghazi committed
2167
	  fputs (ASM_APP_OFF, file);
2168 2169 2170 2171 2172 2173
	  app_on = 0;
	}
      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
	  && (debug_info_level == DINFO_LEVEL_NORMAL
	      || debug_info_level == DINFO_LEVEL_VERBOSE
	      || write_symbols == DWARF_DEBUG
x  
Jason Merrill committed
2174
	      || write_symbols == DWARF2_DEBUG))
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
	{
	  /* Beginning of a symbol-block.  Assign it a sequence number
	     and push the number onto the stack PENDING_BLOCKS.  */

	  if (block_depth == max_block_depth)
	    {
	      /* PENDING_BLOCKS is full; make it longer.  */
	      max_block_depth *= 2;
	      pending_blocks
		= (int *) xrealloc (pending_blocks,
				    max_block_depth * sizeof (int));
	    }
	  pending_blocks[block_depth++] = next_block_index;

2189 2190
	  high_block_linenum = last_linenum;

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
	  /* Output debugging info about the symbol-block beginning.  */

#ifdef SDB_DEBUGGING_INFO
	  if (write_symbols == SDB_DEBUG)
	    sdbout_begin_block (file, last_linenum, next_block_index);
#endif
#ifdef XCOFF_DEBUGGING_INFO
	  if (write_symbols == XCOFF_DEBUG)
	    xcoffout_begin_block (file, last_linenum, next_block_index);
#endif
#ifdef DBX_DEBUGGING_INFO
	  if (write_symbols == DBX_DEBUG)
	    ASM_OUTPUT_INTERNAL_LABEL (file, "LBB", next_block_index);
#endif
#ifdef DWARF_DEBUGGING_INFO
Jason Merrill committed
2206
	  if (write_symbols == DWARF_DEBUG)
2207 2208
	    dwarfout_begin_block (next_block_index);
#endif
x  
Jason Merrill committed
2209 2210 2211 2212
#ifdef DWARF2_DEBUGGING_INFO
	  if (write_symbols == DWARF2_DEBUG)
	    dwarf2out_begin_block (next_block_index);
#endif
2213 2214 2215 2216 2217 2218 2219

	  next_block_index++;
	}
      else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
	       && (debug_info_level == DINFO_LEVEL_NORMAL
		   || debug_info_level == DINFO_LEVEL_VERBOSE
	           || write_symbols == DWARF_DEBUG
x  
Jason Merrill committed
2220
	           || write_symbols == DWARF2_DEBUG))
2221 2222 2223 2224 2225
	{
	  /* End of a symbol-block.  Pop its sequence number off
	     PENDING_BLOCKS and output debugging info based on that.  */

	  --block_depth;
2226 2227
	  if (block_depth < 0)
	    abort ();
2228 2229

#ifdef XCOFF_DEBUGGING_INFO
2230
	  if (write_symbols == XCOFF_DEBUG)
2231 2232
	    xcoffout_end_block (file, high_block_linenum,
				pending_blocks[block_depth]);
2233 2234
#endif
#ifdef DBX_DEBUGGING_INFO
2235
	  if (write_symbols == DBX_DEBUG)
2236 2237 2238 2239
	    ASM_OUTPUT_INTERNAL_LABEL (file, "LBE",
				       pending_blocks[block_depth]);
#endif
#ifdef SDB_DEBUGGING_INFO
2240
	  if (write_symbols == SDB_DEBUG)
2241 2242
	    sdbout_end_block (file, high_block_linenum,
			      pending_blocks[block_depth]);
2243 2244
#endif
#ifdef DWARF_DEBUGGING_INFO
2245
	  if (write_symbols == DWARF_DEBUG)
2246 2247
	    dwarfout_end_block (pending_blocks[block_depth]);
#endif
x  
Jason Merrill committed
2248
#ifdef DWARF2_DEBUGGING_INFO
2249
	  if (write_symbols == DWARF2_DEBUG)
x  
Jason Merrill committed
2250 2251
	    dwarf2out_end_block (pending_blocks[block_depth]);
#endif
2252 2253 2254 2255 2256 2257 2258 2259 2260
	}
      else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL
	       && (debug_info_level == DINFO_LEVEL_NORMAL
		   || debug_info_level == DINFO_LEVEL_VERBOSE))
	{
#ifdef DWARF_DEBUGGING_INFO
          if (write_symbols == DWARF_DEBUG)
            dwarfout_label (insn);
#endif
x  
Jason Merrill committed
2261 2262 2263 2264
#ifdef DWARF2_DEBUGGING_INFO
          if (write_symbols == DWARF2_DEBUG)
            dwarf2out_label (insn);
#endif
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
	}
      else if (NOTE_LINE_NUMBER (insn) > 0)
	/* This note is a line-number.  */
	{
	  register rtx note;

#if 0 /* This is what we used to do.  */
	  output_source_line (file, insn);
#endif
	  int note_after = 0;

	  /* If there is anything real after this note,
	     output it.  If another line note follows, omit this one.  */
	  for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
	    {
	      if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
		break;
	      /* These types of notes can be significant
		 so make sure the preceding line number stays.  */
	      else if (GET_CODE (note) == NOTE
		       && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
			   || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
			   || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
  		break;
	      else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
		{
		  /* Another line note follows; we can delete this note
		     if no intervening line numbers have notes elsewhere.  */
		  int num;
		  for (num = NOTE_LINE_NUMBER (insn) + 1;
		       num < NOTE_LINE_NUMBER (note);
		       num++)
		    if (line_note_exists[num])
		      break;

		  if (num >= NOTE_LINE_NUMBER (note))
		    note_after = 1;
		  break;
		}
	    }

	  /* Output this line note
	     if it is the first or the last line note in a row.  */
	  if (!note_after)
	    output_source_line (file, insn);
	}
      break;

    case BARRIER:
2314 2315 2316 2317 2318 2319
#if defined (DWARF2_UNWIND_INFO) && !defined (ACCUMULATE_OUTGOING_ARGS)
	/* If we push arguments, we need to check all insns for stack
	   adjustments.  */
	if (dwarf2out_do_frame ())
	  dwarf2out_frame_debug (insn);
#endif
2320 2321 2322
      break;

    case CODE_LABEL:
2323 2324
      /* The target port might emit labels in the output function for
	 some insn, e.g. sh.c output_branchy_insn.  */
2325 2326 2327
      if (CODE_LABEL_NUMBER (insn) <= max_labelno)
	{
	  int align = LABEL_TO_ALIGNMENT (insn);
Kaveh R. Ghazi committed
2328
#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2329
	  int max_skip = LABEL_TO_MAX_SKIP (insn);
Kaveh R. Ghazi committed
2330
#endif
2331

2332
	  if (align && NEXT_INSN (insn))
2333 2334 2335
#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
	    ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
#else
2336
	    ASM_OUTPUT_ALIGN (file, align);
2337
#endif
2338
	}
2339
#ifdef HAVE_cc0
2340
      CC_STATUS_INIT;
2341 2342
      /* If this label is reached from only one place, set the condition
	 codes from the instruction just before the branch.  */
2343 2344 2345 2346

      /* Disabled because some insns set cc_status in the C output code
	 and NOTICE_UPDATE_CC alone can set incorrect status.  */
      if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
	{
	  rtx jump = LABEL_REFS (insn);
	  rtx barrier = prev_nonnote_insn (insn);
	  rtx prev;
	  /* If the LABEL_REFS field of this label has been set to point
	     at a branch, the predecessor of the branch is a regular
	     insn, and that branch is the only way to reach this label,
	     set the condition codes based on the branch and its
	     predecessor.  */
	  if (barrier && GET_CODE (barrier) == BARRIER
	      && jump && GET_CODE (jump) == JUMP_INSN
	      && (prev = prev_nonnote_insn (jump))
	      && GET_CODE (prev) == INSN)
	    {
	      NOTICE_UPDATE_CC (PATTERN (prev), prev);
	      NOTICE_UPDATE_CC (PATTERN (jump), jump);
	    }
	}
#endif
2366 2367 2368
      if (prescan > 0)
	break;
      new_block = 1;
2369 2370 2371 2372 2373

#ifdef FINAL_PRESCAN_LABEL
      FINAL_PRESCAN_INSN (insn, NULL_PTR, 0);
#endif

2374 2375 2376 2377 2378 2379 2380 2381
#ifdef SDB_DEBUGGING_INFO
      if (write_symbols == SDB_DEBUG && LABEL_NAME (insn))
	sdbout_label (insn);
#endif
#ifdef DWARF_DEBUGGING_INFO
      if (write_symbols == DWARF_DEBUG && LABEL_NAME (insn))
	dwarfout_label (insn);
#endif
x  
Jason Merrill committed
2382 2383 2384 2385
#ifdef DWARF2_DEBUGGING_INFO
      if (write_symbols == DWARF2_DEBUG && LABEL_NAME (insn))
	dwarf2out_label (insn);
#endif
2386 2387
      if (app_on)
	{
Kaveh R. Ghazi committed
2388
	  fputs (ASM_APP_OFF, file);
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
	  app_on = 0;
	}
      if (NEXT_INSN (insn) != 0
	  && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
	{
	  rtx nextbody = PATTERN (NEXT_INSN (insn));

	  /* If this label is followed by a jump-table,
	     make sure we put the label in the read-only section.  Also
	     possibly write the label and jump table together.  */

	  if (GET_CODE (nextbody) == ADDR_VEC
	      || GET_CODE (nextbody) == ADDR_DIFF_VEC)
	    {
2403 2404 2405 2406 2407
#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
	      /* In this case, the case vector is being moved by the
		 target, so don't output the label at all.  Leave that
		 to the back end macros.  */
#else
2408 2409 2410
	      if (! JUMP_TABLES_IN_TEXT_SECTION)
		{
		  readonly_data_section ();
2411
#ifdef READONLY_DATA_SECTION
2412 2413 2414
		  ASM_OUTPUT_ALIGN (file,
				    exact_log2 (BIGGEST_ALIGNMENT
						/ BITS_PER_UNIT));
2415
#endif /* READONLY_DATA_SECTION */
2416 2417 2418 2419
		}
	      else
		function_section (current_function_decl);

2420 2421 2422 2423
#ifdef ASM_OUTPUT_CASE_LABEL
	      ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
				     NEXT_INSN (insn));
#else
2424 2425 2426 2427
              if (LABEL_ALTERNATE_NAME (insn))
                ASM_OUTPUT_ALTERNATE_LABEL_NAME (file, insn);
              else
	        ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2428
#endif
2429
#endif
2430 2431 2432
	      break;
	    }
	}
2433 2434 2435 2436
      if (LABEL_ALTERNATE_NAME (insn))
        ASM_OUTPUT_ALTERNATE_LABEL_NAME (file, insn);
      else
        ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2437 2438 2439 2440
      break;

    default:
      {
Kaveh R. Ghazi committed
2441
	register rtx body = PATTERN (insn);
2442
	int insn_code_number;
2443
	const char *template;
2444
#ifdef HAVE_cc0
2445
	rtx note;
2446
#endif
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473

	/* An INSN, JUMP_INSN or CALL_INSN.
	   First check for special kinds that recog doesn't recognize.  */

	if (GET_CODE (body) == USE /* These are just declarations */
	    || GET_CODE (body) == CLOBBER)
	  break;

#ifdef HAVE_cc0
	/* If there is a REG_CC_SETTER note on this insn, it means that
	   the setting of the condition code was done in the delay slot
	   of the insn that branched here.  So recover the cc status
	   from the insn that set it.  */

	note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
	if (note)
	  {
	    NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
	    cc_prev_status = cc_status;
	  }
#endif

	/* Detect insns that are really jump-tables
	   and output them as such.  */

	if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
	  {
Kaveh R. Ghazi committed
2474
#if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2475
	    register int vlen, idx;
Kaveh R. Ghazi committed
2476
#endif
2477 2478 2479 2480 2481 2482

	    if (prescan > 0)
	      break;

	    if (app_on)
	      {
Kaveh R. Ghazi committed
2483
		fputs (ASM_APP_OFF, file);
2484 2485 2486
		app_on = 0;
	      }

2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
	    if (GET_CODE (body) == ADDR_VEC)
	      {
#ifdef ASM_OUTPUT_ADDR_VEC
		ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
#else
		abort();
#endif
	      }
	    else
	      {
#ifdef ASM_OUTPUT_ADDR_DIFF_VEC
		ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
#else
		abort();
#endif
	      }
#else
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
	    vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
	    for (idx = 0; idx < vlen; idx++)
	      {
		if (GET_CODE (body) == ADDR_VEC)
		  {
#ifdef ASM_OUTPUT_ADDR_VEC_ELT
		    ASM_OUTPUT_ADDR_VEC_ELT
		      (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
#else
		    abort ();
#endif
		  }
		else
		  {
#ifdef ASM_OUTPUT_ADDR_DIFF_ELT
		    ASM_OUTPUT_ADDR_DIFF_ELT
		      (file,
2522
		       body,
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
		       CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
		       CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
#else
		    abort ();
#endif
		  }
	      }
#ifdef ASM_OUTPUT_CASE_END
	    ASM_OUTPUT_CASE_END (file,
				 CODE_LABEL_NUMBER (PREV_INSN (insn)),
				 insn);
#endif
2535
#endif
2536

2537
	    function_section (current_function_decl);
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554

	    break;
	  }

	/* Do basic-block profiling when we reach a new block.
	   Done here to avoid jump tables.  */
	if (profile_block_flag && new_block)
	  add_bb (file);

	if (GET_CODE (body) == ASM_INPUT)
	  {
	    /* There's no telling what that did to the condition codes.  */
	    CC_STATUS_INIT;
	    if (prescan > 0)
	      break;
	    if (! app_on)
	      {
Kaveh R. Ghazi committed
2555
		fputs (ASM_APP_ON, file);
2556 2557 2558 2559 2560 2561 2562 2563 2564
		app_on = 1;
	      }
	    fprintf (asm_out_file, "\t%s\n", XSTR (body, 0));
	    break;
	  }

	/* Detect `asm' construct with operands.  */
	if (asm_noperands (body) >= 0)
	  {
2565
	    unsigned int noperands = asm_noperands (body);
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
	    rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
	    char *string;

	    /* There's no telling what that did to the condition codes.  */
	    CC_STATUS_INIT;
	    if (prescan > 0)
	      break;

	    if (! app_on)
	      {
Kaveh R. Ghazi committed
2576
		fputs (ASM_APP_ON, file);
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
		app_on = 1;
	      }

	    /* Get out the operand values.  */
	    string = decode_asm_operands (body, ops, NULL_PTR,
					  NULL_PTR, NULL_PTR);
	    /* Inhibit aborts on what would otherwise be compiler bugs.  */
	    insn_noperands = noperands;
	    this_is_asm_operands = insn;

	    /* Output the insn using them.  */
	    output_asm_insn (string, ops);
	    this_is_asm_operands = 0;
	    break;
	  }

	if (prescan <= 0 && app_on)
	  {
Kaveh R. Ghazi committed
2595
	    fputs (ASM_APP_OFF, file);
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
	    app_on = 0;
	  }

	if (GET_CODE (body) == SEQUENCE)
	  {
	    /* A delayed-branch sequence */
	    register int i;
	    rtx next;

	    if (prescan > 0)
	      break;
	    final_sequence = body;

	    /* The first insn in this SEQUENCE might be a JUMP_INSN that will
	       force the restoration of a comparison that was previously
	       thought unnecessary.  If that happens, cancel this sequence
	       and cause that insn to be restored.  */

	    next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
	    if (next != XVECEXP (body, 0, 1))
	      {
		final_sequence = 0;
		return next;
	      }

	    for (i = 1; i < XVECLEN (body, 0); i++)
2622 2623 2624 2625 2626 2627 2628 2629 2630
	      {
		rtx insn = XVECEXP (body, 0, i);
		rtx next = NEXT_INSN (insn);
		/* We loop in case any instruction in a delay slot gets
		   split.  */
		do
		  insn = final_scan_insn (insn, file, 0, prescan, 1);
		while (insn != next);
	      }
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
#ifdef DBR_OUTPUT_SEQEND
	    DBR_OUTPUT_SEQEND (file);
#endif
	    final_sequence = 0;

	    /* If the insn requiring the delay slot was a CALL_INSN, the
	       insns in the delay slot are actually executed before the
	       called function.  Hence we don't preserve any CC-setting
	       actions in these insns and the CC must be marked as being
	       clobbered by the function.  */
	    if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2642 2643 2644
	      {
		CC_STATUS_INIT;
	      }
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668

	    /* Following a conditional branch sequence, we have a new basic
	       block.  */
	    if (profile_block_flag)
	      {
		rtx insn = XVECEXP (body, 0, 0);
		rtx body = PATTERN (insn);

		if ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
		     && GET_CODE (SET_SRC (body)) != LABEL_REF)
		    || (GET_CODE (insn) == JUMP_INSN
			&& GET_CODE (body) == PARALLEL
			&& GET_CODE (XVECEXP (body, 0, 0)) == SET
			&& GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF))
		  new_block = 1;
	      }
	    break;
	  }

	/* We have a real machine instruction as rtl.  */

	body = PATTERN (insn);

#ifdef HAVE_cc0
2669 2670
	set = single_set(insn);

2671 2672 2673 2674 2675 2676 2677 2678
	/* Check for redundant test and compare instructions
	   (when the condition codes are already set up as desired).
	   This is done only when optimizing; if not optimizing,
	   it should be possible for the user to alter a variable
	   with the debugger in between statements
	   and the next statement should reexamine the variable
	   to compute the condition codes.  */

2679
	if (optimize)
2680
	  {
2681
#if 0
2682
	    rtx set = single_set(insn);
2683
#endif
2684 2685 2686 2687

	    if (set
		&& GET_CODE (SET_DEST (set)) == CC0
		&& insn != last_ignored_compare)
2688
	      {
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
		if (GET_CODE (SET_SRC (set)) == SUBREG)
		  SET_SRC (set) = alter_subreg (SET_SRC (set));
		else if (GET_CODE (SET_SRC (set)) == COMPARE)
		  {
		    if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
		      XEXP (SET_SRC (set), 0)
			= alter_subreg (XEXP (SET_SRC (set), 0));
		    if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
		      XEXP (SET_SRC (set), 1)
			= alter_subreg (XEXP (SET_SRC (set), 1));
		  }
		if ((cc_status.value1 != 0
		     && rtx_equal_p (SET_SRC (set), cc_status.value1))
		    || (cc_status.value2 != 0
			&& rtx_equal_p (SET_SRC (set), cc_status.value2)))
2704
		  {
2705 2706 2707 2708 2709 2710 2711 2712 2713
		    /* Don't delete insn if it has an addressing side-effect.  */
		    if (! FIND_REG_INC_NOTE (insn, 0)
			/* or if anything in it is volatile.  */
			&& ! volatile_refs_p (PATTERN (insn)))
		      {
			/* We don't really delete the insn; just ignore it.  */
			last_ignored_compare = insn;
			break;
		      }
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
		  }
	      }
	  }
#endif

	/* Following a conditional branch, we have a new basic block.
	   But if we are inside a sequence, the new block starts after the
	   last insn of the sequence.  */
	if (profile_block_flag && final_sequence == 0
	    && ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
		 && GET_CODE (SET_SRC (body)) != LABEL_REF)
		|| (GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == PARALLEL
		    && GET_CODE (XVECEXP (body, 0, 0)) == SET
		    && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF)))
	  new_block = 1;

#ifndef STACK_REGS
	/* Don't bother outputting obvious no-ops, even without -O.
	   This optimization is fast and doesn't interfere with debugging.
	   Don't do this if the insn is in a delay slot, since this
	   will cause an improper number of delay insns to be written.  */
	if (final_sequence == 0
	    && prescan >= 0
	    && GET_CODE (insn) == INSN && GET_CODE (body) == SET
	    && GET_CODE (SET_SRC (body)) == REG
	    && GET_CODE (SET_DEST (body)) == REG
	    && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
	  break;
#endif

#ifdef HAVE_cc0
	/* If this is a conditional branch, maybe modify it
	   if the cc's are in a nonstandard state
	   so that it accomplishes the same thing that it would
	   do straightforwardly if the cc's were set up normally.  */

	if (cc_status.flags != 0
	    && GET_CODE (insn) == JUMP_INSN
	    && GET_CODE (body) == SET
	    && SET_DEST (body) == pc_rtx
	    && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2755
	    && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2756
	    && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
	    /* This is done during prescan; it is not done again
	       in final scan when prescan has been done.  */
	    && prescan >= 0)
	  {
	    /* This function may alter the contents of its argument
	       and clear some of the cc_status.flags bits.
	       It may also return 1 meaning condition now always true
	       or -1 meaning condition now always false
	       or 2 meaning condition nontrivial but altered.  */
	    register int result = alter_cond (XEXP (SET_SRC (body), 0));
	    /* If condition now has fixed value, replace the IF_THEN_ELSE
	       with its then-operand or its else-operand.  */
	    if (result == 1)
	      SET_SRC (body) = XEXP (SET_SRC (body), 1);
	    if (result == -1)
	      SET_SRC (body) = XEXP (SET_SRC (body), 2);

	    /* The jump is now either unconditional or a no-op.
	       If it has become a no-op, don't try to output it.
	       (It would not be recognized.)  */
	    if (SET_SRC (body) == pc_rtx)
	      {
		PUT_CODE (insn, NOTE);
		NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
		NOTE_SOURCE_FILE (insn) = 0;
		break;
	      }
	    else if (GET_CODE (SET_SRC (body)) == RETURN)
	      /* Replace (set (pc) (return)) with (return).  */
	      PATTERN (insn) = body = SET_SRC (body);

	    /* Rerecognize the instruction if it has changed.  */
	    if (result != 0)
	      INSN_CODE (insn) = -1;
	  }

	/* Make same adjustments to instructions that examine the
2794 2795
	   condition codes without jumping and instructions that
	   handle conditional moves (if this machine has either one).  */
2796 2797

	if (cc_status.flags != 0
2798
	    && set != 0)
2799
	  {
2800 2801 2802
	    rtx cond_rtx, then_rtx, else_rtx;
	    
	    if (GET_CODE (insn) != JUMP_INSN
2803
		&& GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2804
	      {
2805 2806 2807
		cond_rtx = XEXP (SET_SRC (set), 0);
		then_rtx = XEXP (SET_SRC (set), 1);
		else_rtx = XEXP (SET_SRC (set), 2);
2808 2809 2810
	      }
	    else
	      {
2811
		cond_rtx = SET_SRC (set);
2812 2813 2814 2815 2816
		then_rtx = const_true_rtx;
		else_rtx = const0_rtx;
	      }
	    
	    switch (GET_CODE (cond_rtx))
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
	      {
	      case GTU:
	      case GT:
	      case LTU:
	      case LT:
	      case GEU:
	      case GE:
	      case LEU:
	      case LE:
	      case EQ:
	      case NE:
		{
		  register int result;
2830
		  if (XEXP (cond_rtx, 0) != cc0_rtx)
2831
		    break;
2832
		  result = alter_cond (cond_rtx);
2833
		  if (result == 1)
2834
		    validate_change (insn, &SET_SRC (set), then_rtx, 0);
2835
		  else if (result == -1)
2836
		    validate_change (insn, &SET_SRC (set), else_rtx, 0);
2837 2838
		  else if (result == 2)
		    INSN_CODE (insn) = -1;
2839
		  if (SET_DEST (set) == SET_SRC (set))
2840 2841 2842 2843 2844
		    {
		      PUT_CODE (insn, NOTE);
		      NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
		      NOTE_SOURCE_FILE (insn) = 0;
		    }
2845
		}
2846 2847 2848 2849
		break;

	      default:
		break;
2850 2851
	      }
	  }
2852

2853 2854
#endif

2855
#ifdef HAVE_peephole
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
	/* Do machine-specific peephole optimizations if desired.  */

	if (optimize && !flag_no_peephole && !nopeepholes)
	  {
	    rtx next = peephole (insn);
	    /* When peepholing, if there were notes within the peephole,
	       emit them before the peephole.  */
	    if (next != 0 && next != NEXT_INSN (insn))
	      {
		rtx prev = PREV_INSN (insn);
		rtx note;

		for (note = NEXT_INSN (insn); note != next;
		     note = NEXT_INSN (note))
		  final_scan_insn (note, file, optimize, prescan, nopeepholes);

		/* In case this is prescan, put the notes
		   in proper position for later rescan.  */
		note = NEXT_INSN (insn);
		PREV_INSN (note) = prev;
		NEXT_INSN (prev) = note;
		NEXT_INSN (PREV_INSN (next)) = insn;
		PREV_INSN (insn) = PREV_INSN (next);
		NEXT_INSN (insn) = next;
		PREV_INSN (next) = insn;
	      }

	    /* PEEPHOLE might have changed this.  */
	    body = PATTERN (insn);
	  }
2886
#endif
2887 2888 2889 2890 2891 2892 2893

	/* Try to recognize the instruction.
	   If successful, verify that the operands satisfy the
	   constraints for the instruction.  Crash if they don't,
	   since `reload' should have changed them so that they do.  */

	insn_code_number = recog_memoized (insn);
2894
	extract_insn (insn);
2895
	cleanup_subreg_operands (insn);
2896

2897
	if (! constrain_operands (1))
2898 2899 2900 2901 2902 2903
	  fatal_insn_not_found (insn);

	/* Some target machines need to prescan each insn before
	   it is output.  */

#ifdef FINAL_PRESCAN_INSN
2904
	FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
#endif

#ifdef HAVE_cc0
	cc_prev_status = cc_status;

	/* Update `cc_status' for this instruction.
	   The instruction's output routine may change it further.
	   If the output routine for a jump insn needs to depend
	   on the cc status, it should look at cc_prev_status.  */

	NOTICE_UPDATE_CC (body, insn);
#endif

	debug_insn = insn;

2920 2921 2922 2923 2924 2925
#if defined (DWARF2_UNWIND_INFO) && !defined (ACCUMULATE_OUTGOING_ARGS)
	/* If we push arguments, we want to know where the calls are.  */
	if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
	  dwarf2out_frame_debug (insn);
#endif

2926 2927
	/* Find the proper template for this insn.  */
	template = get_insn_template (insn_code_number, insn);
2928

2929 2930 2931
	/* If the C code returns 0, it means that it is a jump insn
	   which follows a deleted test insn, and that test insn
	   needs to be reinserted.  */
2932 2933
	if (template == 0)
	  {
2934 2935 2936 2937
	    if (prev_nonnote_insn (insn) != last_ignored_compare)
	      abort ();
	    new_block = 0;
	    return prev_nonnote_insn (insn);
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
	  }

	/* If the template is the string "#", it means that this insn must
	   be split.  */
	if (template[0] == '#' && template[1] == '\0')
	  {
	    rtx new = try_split (body, insn, 0);

	    /* If we didn't split the insn, go away.  */
	    if (new == insn && PATTERN (new) == body)
2948
	      fatal_insn ("Could not split insn", insn);
2949
	      
2950 2951 2952 2953 2954 2955 2956
#ifdef HAVE_ATTR_length
	    /* This instruction should have been split in shorten_branches,
	       to ensure that we would have valid length info for the
	       splitees.  */
	    abort ();
#endif

2957 2958 2959 2960 2961 2962 2963 2964 2965
	    new_block = 0;
	    return new;
	  }
	
	if (prescan > 0)
	  break;

	/* Output assembler code from the template.  */

2966
	output_asm_insn (template, recog_data.operand);
2967

Jason Merrill committed
2968 2969 2970 2971
#if defined (DWARF2_UNWIND_INFO)
#if !defined (ACCUMULATE_OUTGOING_ARGS)
	/* If we push arguments, we need to check all insns for stack
	   adjustments.  */
2972
	if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
Jason Merrill committed
2973 2974 2975
	  dwarf2out_frame_debug (insn);
#else
#if defined (HAVE_prologue)
x  
Jason Merrill committed
2976 2977
	/* If this insn is part of the prologue, emit DWARF v2
	   call frame info.  */
Jason Merrill committed
2978
	if (RTX_FRAME_RELATED_P (insn) && dwarf2out_do_frame ())
x  
Jason Merrill committed
2979 2980
	  dwarf2out_frame_debug (insn);
#endif
Jason Merrill committed
2981 2982
#endif
#endif
x  
Jason Merrill committed
2983

2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
#if 0
	/* It's not at all clear why we did this and doing so interferes
	   with tests we'd like to do to use REG_WAS_0 notes, so let's try
	   with this out.  */

	/* Mark this insn as having been output.  */
	INSN_DELETED_P (insn) = 1;
#endif

	debug_insn = 0;
      }
    }
  return NEXT_INSN (insn);
}

/* Output debugging info to the assembler file FILE
   based on the NOTE-insn INSN, assumed to be a line number.  */

static void
output_source_line (file, insn)
Kaveh R. Ghazi committed
3004
     FILE *file ATTRIBUTE_UNUSED;
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
     rtx insn;
{
  register char *filename = NOTE_SOURCE_FILE (insn);

  /* Remember filename for basic block profiling.
     Filenames are allocated on the permanent obstack
     or are passed in ARGV, so we don't have to save
     the string.  */

  if (profile_block_flag && last_filename != filename)
    bb_file_label_num = add_bb_string (filename, TRUE);

  last_filename = filename;
  last_linenum = NOTE_LINE_NUMBER (insn);
3019 3020
  high_block_linenum = MAX (last_linenum, high_block_linenum);
  high_function_linenum = MAX (last_linenum, high_function_linenum);
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056

  if (write_symbols != NO_DEBUG)
    {
#ifdef SDB_DEBUGGING_INFO
      if (write_symbols == SDB_DEBUG
#if 0 /* People like having line numbers even in wrong file!  */
	  /* COFF can't handle multiple source files--lose, lose.  */
	  && !strcmp (filename, main_input_filename)
#endif
	  /* COFF relative line numbers must be positive.  */
	  && last_linenum > sdb_begin_function_line)
	{
#ifdef ASM_OUTPUT_SOURCE_LINE
	  ASM_OUTPUT_SOURCE_LINE (file, last_linenum);
#else
	  fprintf (file, "\t.ln\t%d\n",
		   ((sdb_begin_function_line > -1)
		    ? last_linenum - sdb_begin_function_line : 1));
#endif
	}
#endif

#if defined (DBX_DEBUGGING_INFO)
      if (write_symbols == DBX_DEBUG)
	dbxout_source_line (file, filename, NOTE_LINE_NUMBER (insn));
#endif

#if defined (XCOFF_DEBUGGING_INFO)
      if (write_symbols == XCOFF_DEBUG)
	xcoffout_source_line (file, filename, insn);
#endif

#ifdef DWARF_DEBUGGING_INFO
      if (write_symbols == DWARF_DEBUG)
	dwarfout_line (filename, NOTE_LINE_NUMBER (insn));
#endif
x  
Jason Merrill committed
3057 3058 3059 3060 3061

#ifdef DWARF2_DEBUGGING_INFO
      if (write_symbols == DWARF2_DEBUG)
	dwarf2out_line (filename, NOTE_LINE_NUMBER (insn));
#endif
3062 3063 3064
    }
}

3065 3066 3067 3068 3069 3070 3071

/* For each operand in INSN, simplify (subreg (reg)) so that it refers
   directly to the desired hard register.  */
void
cleanup_subreg_operands (insn)
     rtx insn;
{
3072 3073
  int i;

3074
  extract_insn (insn);
3075
  for (i = 0; i < recog_data.n_operands; i++)
3076
    {
3077 3078 3079 3080 3081
      if (GET_CODE (recog_data.operand[i]) == SUBREG)
        recog_data.operand[i] = alter_subreg (recog_data.operand[i]);
      else if (GET_CODE (recog_data.operand[i]) == PLUS
               || GET_CODE (recog_data.operand[i]) == MULT)
       recog_data.operand[i] = walk_alter_subreg (recog_data.operand[i]);
3082 3083
    }

3084
  for (i = 0; i < recog_data.n_dups; i++)
3085
    {
3086 3087 3088 3089 3090
      if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
        *recog_data.dup_loc[i] = alter_subreg (*recog_data.dup_loc[i]);
      else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
               || GET_CODE (*recog_data.dup_loc[i]) == MULT)
        *recog_data.dup_loc[i] = walk_alter_subreg (*recog_data.dup_loc[i]);
3091 3092 3093
    }
}

3094 3095 3096 3097 3098 3099 3100 3101
/* If X is a SUBREG, replace it with a REG or a MEM,
   based on the thing it is a subreg of.  */

rtx
alter_subreg (x)
     register rtx x;
{
  register rtx y = SUBREG_REG (x);
3102

3103 3104 3105
  if (GET_CODE (y) == SUBREG)
    y = alter_subreg (y);

3106 3107 3108 3109 3110
  /* If reload is operating, we may be replacing inside this SUBREG.
     Check for that and make a new one if so.  */
  if (reload_in_progress && find_replacement (&SUBREG_REG (x)) != 0)
    x = copy_rtx (x);

3111 3112
  if (GET_CODE (y) == REG)
    {
3113
      int regno;
3114 3115 3116 3117 3118 3119 3120 3121
      /* If the word size is larger than the size of this register,
	 adjust the register number to compensate.  */
      /* ??? Note that this just catches stragglers created by/for
	 integrate.  It would be better if we either caught these
	 earlier, or kept _all_ subregs until now and eliminate
	 gen_lowpart and friends.  */

#ifdef ALTER_HARD_SUBREG
3122 3123
      regno = ALTER_HARD_SUBREG(GET_MODE (x), SUBREG_WORD (x),
				GET_MODE (y), REGNO (y));
3124
#else
3125
      regno = REGNO (y) + SUBREG_WORD (x);
3126
#endif
3127 3128
      PUT_CODE (x, REG);
      REGNO (x) = regno;
3129 3130 3131
      /* This field has a different meaning for REGs and SUBREGs.  Make sure
	 to clear it!  */
      x->used = 0;
3132 3133 3134 3135
    }
  else if (GET_CODE (y) == MEM)
    {
      register int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
3136 3137 3138
      if (BYTES_BIG_ENDIAN)
	offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x)))
		   - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (y))));
3139
      PUT_CODE (x, MEM);
3140
      MEM_COPY_ATTRIBUTES (x, y);
3141
      MEM_ALIAS_SET (x) = MEM_ALIAS_SET (y);
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
      XEXP (x, 0) = plus_constant (XEXP (y, 0), offset);
    }

  return x;
}

/* Do alter_subreg on all the SUBREGs contained in X.  */

static rtx
walk_alter_subreg (x)
     rtx x;
{
  switch (GET_CODE (x))
    {
    case PLUS:
    case MULT:
      XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
      XEXP (x, 1) = walk_alter_subreg (XEXP (x, 1));
      break;

    case MEM:
      XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
      break;

    case SUBREG:
      return alter_subreg (x);
3168 3169 3170
      
    default:
      break;
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
    }

  return x;
}

#ifdef HAVE_cc0

/* Given BODY, the body of a jump instruction, alter the jump condition
   as required by the bits that are set in cc_status.flags.
   Not all of the bits there can be handled at this level in all cases.

   The value is normally 0.
   1 means that the condition has become always true.
   -1 means that the condition has become always false.
   2 means that COND has been altered.  */

static int
alter_cond (cond)
     register rtx cond;
{
  int value = 0;

  if (cc_status.flags & CC_REVERSED)
    {
      value = 2;
      PUT_CODE (cond, swap_condition (GET_CODE (cond)));
    }

  if (cc_status.flags & CC_INVERTED)
    {
      value = 2;
      PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
    }

  if (cc_status.flags & CC_NOT_POSITIVE)
    switch (GET_CODE (cond))
      {
      case LE:
      case LEU:
      case GEU:
	/* Jump becomes unconditional.  */
	return 1;

      case GT:
      case GTU:
      case LTU:
	/* Jump becomes no-op.  */
	return -1;

      case GE:
	PUT_CODE (cond, EQ);
	value = 2;
	break;

      case LT:
	PUT_CODE (cond, NE);
	value = 2;
	break;
3229 3230 3231
	
      default:
	break;
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
      }

  if (cc_status.flags & CC_NOT_NEGATIVE)
    switch (GET_CODE (cond))
      {
      case GE:
      case GEU:
	/* Jump becomes unconditional.  */
	return 1;

      case LT:
      case LTU:
	/* Jump becomes no-op.  */
	return -1;

      case LE:
      case LEU:
	PUT_CODE (cond, EQ);
	value = 2;
	break;

      case GT:
      case GTU:
	PUT_CODE (cond, NE);
	value = 2;
	break;
3258 3259 3260
	
      default:
	break;
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
      }

  if (cc_status.flags & CC_NO_OVERFLOW)
    switch (GET_CODE (cond))
      {
      case GEU:
	/* Jump becomes unconditional.  */
	return 1;

      case LEU:
	PUT_CODE (cond, EQ);
	value = 2;
	break;

      case GTU:
	PUT_CODE (cond, NE);
	value = 2;
	break;

      case LTU:
	/* Jump becomes no-op.  */
	return -1;
3283 3284 3285
	
      default:
	break;
3286 3287 3288 3289 3290
      }

  if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
    switch (GET_CODE (cond))
      {
3291
      default:
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
	abort ();

      case NE:
	PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
	value = 2;
	break;

      case EQ:
	PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
	value = 2;
	break;
      }

  if (cc_status.flags & CC_NOT_SIGNED)
    /* The flags are valid if signed condition operators are converted
       to unsigned.  */
    switch (GET_CODE (cond))
      {
      case LE:
	PUT_CODE (cond, LEU);
	value = 2;
	break;

      case LT:
	PUT_CODE (cond, LTU);
	value = 2;
	break;

      case GT:
	PUT_CODE (cond, GTU);
	value = 2;
	break;

      case GE:
	PUT_CODE (cond, GEU);
	value = 2;
	break;
3329 3330 3331

      default:
	break;
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
      }

  return value;
}
#endif

/* Report inconsistency between the assembler template and the operands.
   In an `asm', it's the user's fault; otherwise, the compiler's fault.  */

void
3342 3343
output_operand_lossage (msgid)
     const char *msgid;
3344 3345
{
  if (this_is_asm_operands)
3346
    error_for_asm (this_is_asm_operands, "invalid `asm': %s", _(msgid));
3347
  else
3348 3349 3350 3351
    {
      error ("output_operand: %s", _(msgid));
      abort ();
    }
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
}

/* Output of assembler code from a template, and its subroutines.  */

/* Output text from TEMPLATE to the assembler output file,
   obeying %-directions to substitute operands taken from
   the vector OPERANDS.

   %N (for N a digit) means print operand N in usual manner.
   %lN means require operand N to be a CODE_LABEL or LABEL_REF
      and print the label name with no punctuation.
   %cN means require operand N to be a constant
      and print the constant expression with no punctuation.
   %aN means expect operand N to be a memory address
      (not a memory reference!) and print a reference
      to that address.
   %nN means expect operand N to be a constant
      and print a constant expression for minus the value
      of the operand, with no other punctuation.  */

3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
static void
output_asm_name ()
{
  if (flag_print_asm_name)
    {
      /* Annotate the assembly with a comment describing the pattern and
	 alternative used.  */
      if (debug_insn)
	{
	  register int num = INSN_CODE (debug_insn);
3382
	  fprintf (asm_out_file, "\t%s %d\t%s", 
3383 3384 3385
		   ASM_COMMENT_START, INSN_UID (debug_insn),
		   insn_data[num].name);
	  if (insn_data[num].n_alternatives > 1)
3386
	    fprintf (asm_out_file, "/%d", which_alternative + 1);
3387
#ifdef HAVE_ATTR_length
3388 3389
	  fprintf (asm_out_file, "\t[length = %d]",
		   get_attr_length (debug_insn));
3390
#endif
3391 3392 3393 3394 3395 3396 3397
	  /* Clear this so only the first assembler insn
	     of any rtl insn will get the special comment for -dp.  */
	  debug_insn = 0;
	}
    }
}

3398 3399
void
output_asm_insn (template, operands)
3400
     const char *template;
3401 3402
     rtx *operands;
{
3403
  register const char *p;
3404
  register int c;
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417

  /* An insn may return a null string template
     in a case where no assembler code is needed.  */
  if (*template == 0)
    return;

  p = template;
  putc ('\t', asm_out_file);

#ifdef ASM_OUTPUT_OPCODE
  ASM_OUTPUT_OPCODE (asm_out_file, p);
#endif

3418
  while ((c = *p++))
3419 3420 3421
    switch (c)
      {
      case '\n':
3422
	output_asm_name ();
3423
	putc (c, asm_out_file);
3424
#ifdef ASM_OUTPUT_OPCODE
3425 3426 3427 3428 3429 3430 3431
	while ((c = *p) == '\t')
	  {
	    putc (c, asm_out_file);
	    p++;
	  }
	ASM_OUTPUT_OPCODE (asm_out_file, p);
#endif
3432
	break;
3433 3434 3435

#ifdef ASSEMBLER_DIALECT
      case '{':
3436 3437 3438 3439 3440 3441 3442
	{
	  register int i;
	  
	  /* If we want the first dialect, do nothing.  Otherwise, skip
	     DIALECT_NUMBER of strings ending with '|'.  */
	  for (i = 0; i < dialect_number; i++)
	    {
3443
	      while (*p && *p != '}' && *p++ != '|')
3444
		;
3445 3446
	      if (*p == '}')
		break;
3447 3448 3449 3450
	      if (*p == '|')
		p++;
	    }
	}
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
	break;

      case '|':
	/* Skip to close brace.  */
	while (*p && *p++ != '}')
	  ;
	break;

      case '}':
	break;
#endif

      case '%':
	/* %% outputs a single %.  */
	if (*p == '%')
	  {
	    p++;
	    putc (c, asm_out_file);
	  }
	/* %= outputs a number which is unique to each insn in the entire
	   compilation.  This is useful for making local labels that are
	   referred to more than once in a given insn.  */
	else if (*p == '=')
	  {
	    p++;
	    fprintf (asm_out_file, "%d", insn_counter);
	  }
	/* % followed by a letter and some digits
	   outputs an operand in a special way depending on the letter.
	   Letters `acln' are implemented directly.
	   Other letters are passed to `output_operand' so that
	   the PRINT_OPERAND macro can define them.  */
	else if ((*p >= 'a' && *p <= 'z')
		 || (*p >= 'A' && *p <= 'Z'))
	  {
	    int letter = *p++;
	    c = atoi (p);

	    if (! (*p >= '0' && *p <= '9'))
	      output_operand_lossage ("operand number missing after %-letter");
3491
	    else if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
	      output_operand_lossage ("operand number out of range");
	    else if (letter == 'l')
	      output_asm_label (operands[c]);
	    else if (letter == 'a')
	      output_address (operands[c]);
	    else if (letter == 'c')
	      {
		if (CONSTANT_ADDRESS_P (operands[c]))
		  output_addr_const (asm_out_file, operands[c]);
		else
		  output_operand (operands[c], 'c');
	      }
	    else if (letter == 'n')
	      {
		if (GET_CODE (operands[c]) == CONST_INT)
3507
		  fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
			   - INTVAL (operands[c]));
		else
		  {
		    putc ('-', asm_out_file);
		    output_addr_const (asm_out_file, operands[c]);
		  }
	      }
	    else
	      output_operand (operands[c], letter);
	    
	    while ((c = *p) >= '0' && c <= '9') p++;
	  }
	/* % followed by a digit outputs an operand the default way.  */
	else if (*p >= '0' && *p <= '9')
	  {
	    c = atoi (p);
3524
	    if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
3525 3526 3527 3528 3529 3530 3531 3532 3533
	      output_operand_lossage ("operand number out of range");
	    else
	      output_operand (operands[c], 0);
	    while ((c = *p) >= '0' && c <= '9') p++;
	  }
	/* % followed by punctuation: output something for that
	   punctuation character alone, with no operand.
	   The PRINT_OPERAND macro decides what is actually done.  */
#ifdef PRINT_OPERAND_PUNCT_VALID_P
Kaveh R. Ghazi committed
3534
	else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char)*p))
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
	  output_operand (NULL_RTX, *p++);
#endif
	else
	  output_operand_lossage ("invalid %%-code");
	break;

      default:
	putc (c, asm_out_file);
      }

3545
  output_asm_name ();
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580

  putc ('\n', asm_out_file);
}

/* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol.  */

void
output_asm_label (x)
     rtx x;
{
  char buf[256];

  if (GET_CODE (x) == LABEL_REF)
    ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
  else if (GET_CODE (x) == CODE_LABEL)
    ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
  else
    output_operand_lossage ("`%l' operand isn't a label");

  assemble_name (asm_out_file, buf);
}

/* Print operand X using machine-dependent assembler syntax.
   The macro PRINT_OPERAND is defined just to control this function.
   CODE is a non-digit that preceded the operand-number in the % spec,
   such as 'z' if the spec was `%z3'.  CODE is 0 if there was no char
   between the % and the digits.
   When CODE is a non-letter, X is 0.

   The meanings of the letters are machine-dependent and controlled
   by PRINT_OPERAND.  */

static void
output_operand (x, code)
     rtx x;
3581
     int code ATTRIBUTE_UNUSED;
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
{
  if (x && GET_CODE (x) == SUBREG)
    x = alter_subreg (x);

  /* If X is a pseudo-register, abort now rather than writing trash to the
     assembler file.  */

  if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
    abort ();

  PRINT_OPERAND (asm_out_file, x, code);
}

/* Print a memory reference operand for address X
   using machine-dependent assembler syntax.
   The macro PRINT_OPERAND_ADDRESS exists just to control this function.  */

void
output_address (x)
     rtx x;
{
  walk_alter_subreg (x);
  PRINT_OPERAND_ADDRESS (asm_out_file, x);
}

/* Print an integer constant expression in assembler syntax.
   Addition and subtraction are the only arithmetic
   that may appear in these expressions.  */

void
output_addr_const (file, x)
     FILE *file;
     rtx x;
{
  char buf[256];

 restart:
  switch (GET_CODE (x))
    {
    case PC:
      if (flag_pic)
	putc ('.', file);
      else
	abort ();
      break;

    case SYMBOL_REF:
      assemble_name (file, XSTR (x, 0));
      break;

    case LABEL_REF:
      ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
      assemble_name (file, buf);
      break;

    case CODE_LABEL:
      ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
      assemble_name (file, buf);
      break;

    case CONST_INT:
3643
      fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
      break;

    case CONST:
      /* This used to output parentheses around the expression,
	 but that does not work on the 386 (either ATT or BSD assembler).  */
      output_addr_const (file, XEXP (x, 0));
      break;

    case CONST_DOUBLE:
      if (GET_MODE (x) == VOIDmode)
	{
	  /* We can use %d if the number is one word and positive.  */
	  if (CONST_DOUBLE_HIGH (x))
3657
	    fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3658 3659
		     CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
	  else if  (CONST_DOUBLE_LOW (x) < 0)
3660
	    fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3661
	  else
3662
	    fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
	}
      else
	/* We can't handle floating point constants;
	   PRINT_OPERAND must handle them.  */
	output_operand_lossage ("floating constant misused");
      break;

    case PLUS:
      /* Some assemblers need integer constants to appear last (eg masm).  */
      if (GET_CODE (XEXP (x, 0)) == CONST_INT)
	{
	  output_addr_const (file, XEXP (x, 1));
	  if (INTVAL (XEXP (x, 0)) >= 0)
	    fprintf (file, "+");
	  output_addr_const (file, XEXP (x, 0));
	}
      else
	{
	  output_addr_const (file, XEXP (x, 0));
	  if (INTVAL (XEXP (x, 1)) >= 0)
	    fprintf (file, "+");
	  output_addr_const (file, XEXP (x, 1));
	}
      break;

    case MINUS:
      /* Avoid outputting things like x-x or x+5-x,
	 since some assemblers can't handle that.  */
      x = simplify_subtraction (x);
      if (GET_CODE (x) != MINUS)
	goto restart;

      output_addr_const (file, XEXP (x, 0));
      fprintf (file, "-");
      if (GET_CODE (XEXP (x, 1)) == CONST_INT
	  && INTVAL (XEXP (x, 1)) < 0)
	{
3700
	  fprintf (file, "%s", ASM_OPEN_PAREN);
3701
	  output_addr_const (file, XEXP (x, 1));
3702
	  fprintf (file, "%s", ASM_CLOSE_PAREN);
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
	}
      else
	output_addr_const (file, XEXP (x, 1));
      break;

    case ZERO_EXTEND:
    case SIGN_EXTEND:
      output_addr_const (file, XEXP (x, 0));
      break;

    default:
      output_operand_lossage ("invalid expression as operand");
    }
}

/* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
   %R prints the value of REGISTER_PREFIX.
   %L prints the value of LOCAL_LABEL_PREFIX.
   %U prints the value of USER_LABEL_PREFIX.
   %I prints the value of IMMEDIATE_PREFIX.
   %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
   Also supported are %d, %x, %s, %e, %f, %g and %%.

   We handle alternate assembler dialects here, just like output_asm_insn.  */

void
3729
asm_fprintf VPARAMS ((FILE *file, const char *p, ...))
3730
{
3731
#ifndef ANSI_PROTOTYPES
3732
  FILE *file;
3733
  const char *p;
3734 3735 3736 3737 3738 3739 3740
#endif
  va_list argptr;
  char buf[10];
  char *q, c;

  VA_START (argptr, p);

3741
#ifndef ANSI_PROTOTYPES
Mike Stump committed
3742
  file = va_arg (argptr, FILE *);
3743
  p = va_arg (argptr, const char *);
3744 3745 3746 3747
#endif

  buf[0] = '%';

3748
  while ((c = *p++))
3749 3750 3751 3752
    switch (c)
      {
#ifdef ASSEMBLER_DIALECT
      case '{':
3753 3754
	{
	  int i;
3755

3756 3757 3758 3759 3760 3761 3762 3763 3764
	  /* If we want the first dialect, do nothing.  Otherwise, skip
	     DIALECT_NUMBER of strings ending with '|'.  */
	  for (i = 0; i < dialect_number; i++)
	    {
	      while (*p && *p++ != '|')
		;

	      if (*p == '|')
		p++;
3765
	  }
3766
	}
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
	break;

      case '|':
	/* Skip to close brace.  */
	while (*p && *p++ != '}')
	  ;
	break;

      case '}':
	break;
#endif

      case '%':
	c = *p++;
	q = &buf[1];
	while ((c >= '0' && c <= '9') || c == '.')
	  {
	    *q++ = c;
	    c = *p++;
	  }
	switch (c)
	  {
	  case '%':
	    fprintf (file, "%%");
	    break;

	  case 'd':  case 'i':  case 'u':
	  case 'x':  case 'p':  case 'X':
	  case 'o':
	    *q++ = c;
	    *q = 0;
	    fprintf (file, buf, va_arg (argptr, int));
	    break;

	  case 'w':
	    /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
	       but we do not check for those cases.  It means that the value
	       is a HOST_WIDE_INT, which may be either `int' or `long'.  */

3806 3807 3808 3809 3810 3811
#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
#else
#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
	    *q++ = 'l';
#else
	    *q++ = 'l';
3812 3813
	    *q++ = 'l';
#endif
3814
#endif
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866

	    *q++ = *p++;
	    *q = 0;
	    fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
	    break;

	  case 'l':
	    *q++ = c;
	    *q++ = *p++;
	    *q = 0;
	    fprintf (file, buf, va_arg (argptr, long));
	    break;

	  case 'e':
	  case 'f':
	  case 'g':
	    *q++ = c;
	    *q = 0;
	    fprintf (file, buf, va_arg (argptr, double));
	    break;

	  case 's':
	    *q++ = c;
	    *q = 0;
	    fprintf (file, buf, va_arg (argptr, char *));
	    break;

	  case 'O':
#ifdef ASM_OUTPUT_OPCODE
	    ASM_OUTPUT_OPCODE (asm_out_file, p);
#endif
	    break;

	  case 'R':
#ifdef REGISTER_PREFIX
	    fprintf (file, "%s", REGISTER_PREFIX);
#endif
	    break;

	  case 'I':
#ifdef IMMEDIATE_PREFIX
	    fprintf (file, "%s", IMMEDIATE_PREFIX);
#endif
	    break;

	  case 'L':
#ifdef LOCAL_LABEL_PREFIX
	    fprintf (file, "%s", LOCAL_LABEL_PREFIX);
#endif
	    break;

	  case 'U':
3867
	    fputs (user_label_prefix, file);
3868 3869
	    break;

3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
#ifdef ASM_FPRINTF_EXTENSIONS
	    /* Upper case letters are reserved for general use by asm_fprintf
	       and so are not available to target specific code.  In order to
	       prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
	       they are defined here.  As they get turned into real extensions
	       to asm_fprintf they should be removed from this list.  */
	  case 'A': case 'B': case 'C': case 'D': case 'E':
	  case 'F': case 'G': case 'H': case 'J': case 'K':
	  case 'M': case 'N': case 'P': case 'Q': case 'S':
	  case 'T': case 'V': case 'W': case 'Y': case 'Z':
	    break;
	    
	  ASM_FPRINTF_EXTENSIONS (file, argptr, p)
#endif
3884 3885 3886 3887 3888 3889 3890 3891
	  default:
	    abort ();
	  }
	break;

      default:
	fputc (c, file);
      }
3892
  va_end (argptr);
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
}

/* Split up a CONST_DOUBLE or integer constant rtx
   into two rtx's for single words,
   storing in *FIRST the word that comes first in memory in the target
   and in *SECOND the other.  */

void
split_double (value, first, second)
     rtx value;
     rtx *first, *second;
{
  if (GET_CODE (value) == CONST_INT)
    {
3907
      if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3908
	{
3909
	  /* In this case the CONST_INT holds both target words.
3910 3911
	     Extract the bits from it into two word-sized pieces.
	     Sign extend each half to HOST_WIDE_INT.  */
3912
	  rtx low, high;
Michael Meissner committed
3913 3914 3915 3916 3917 3918 3919 3920 3921
	  /* On machines where HOST_BITS_PER_WIDE_INT == BITS_PER_WORD
	     the shift below will cause a compiler warning, even though
	     this code won't be executed.  So put the shift amounts in
	     variables to avoid the warning.  */
	  int rshift = HOST_BITS_PER_WIDE_INT - BITS_PER_WORD;
	  int lshift = HOST_BITS_PER_WIDE_INT - 2 * BITS_PER_WORD;

	  low = GEN_INT ((INTVAL (value) << rshift) >> rshift);
	  high = GEN_INT ((INTVAL (value) << lshift) >> rshift);
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
	  if (WORDS_BIG_ENDIAN)
	    {
	      *first = high;
	      *second = low;
	    }
	  else
	    {
	      *first = low;
	      *second = high;
	    }
3932 3933 3934
	}
      else
	{
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
	  /* The rule for using CONST_INT for a wider mode
	     is that we regard the value as signed.
	     So sign-extend it.  */
	  rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
	  if (WORDS_BIG_ENDIAN)
	    {
	      *first = high;
	      *second = value;
	    }
	  else
	    {
	      *first = value;
	      *second = high;
	    }
3949
	}
3950 3951 3952
    }
  else if (GET_CODE (value) != CONST_DOUBLE)
    {
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
      if (WORDS_BIG_ENDIAN)
	{
	  *first = const0_rtx;
	  *second = value;
	}
      else
	{
	  *first = value;
	  *second = const0_rtx;
	}
3963 3964 3965 3966 3967 3968 3969
    }
  else if (GET_MODE (value) == VOIDmode
	   /* This is the old way we did CONST_DOUBLE integers.  */
	   || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
    {
      /* In an integer, the words are defined as most and least significant.
	 So order them by the target's convention.  */
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
      if (WORDS_BIG_ENDIAN)
	{
	  *first = GEN_INT (CONST_DOUBLE_HIGH (value));
	  *second = GEN_INT (CONST_DOUBLE_LOW (value));
	}
      else
	{
	  *first = GEN_INT (CONST_DOUBLE_LOW (value));
	  *second = GEN_INT (CONST_DOUBLE_HIGH (value));
	}
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
    }
  else
    {
#ifdef REAL_ARITHMETIC
      REAL_VALUE_TYPE r; long l[2];
      REAL_VALUE_FROM_CONST_DOUBLE (r, value);

      /* Note, this converts the REAL_VALUE_TYPE to the target's
	 format, splits up the floating point double and outputs
	 exactly 32 bits of it into each of l[0] and l[1] --
Mike Stump committed
3990
	 not necessarily BITS_PER_WORD bits.  */
3991 3992
      REAL_VALUE_TO_TARGET_DOUBLE (r, l);

3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
      /* If 32 bits is an entire word for the target, but not for the host,
	 then sign-extend on the host so that the number will look the same
	 way on the host that it would on the target.  See for instance
	 simplify_unary_operation.  The #if is needed to avoid compiler
	 warnings.  */

#if HOST_BITS_PER_LONG > 32
      if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
	{
	  if (l[0] & ((long) 1 << 31))
	    l[0] |= ((long) (-1) << 32);
	  if (l[1] & ((long) 1 << 31))
	    l[1] |= ((long) (-1) << 32);
	}
#endif

4009 4010 4011 4012 4013 4014 4015 4016
      *first = GEN_INT ((HOST_WIDE_INT) l[0]);
      *second = GEN_INT ((HOST_WIDE_INT) l[1]);
#else
      if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
	   || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
	  && ! flag_pretend_float)
      abort ();

4017 4018 4019
      if (
#ifdef HOST_WORDS_BIG_ENDIAN
	  WORDS_BIG_ENDIAN
4020
#else
4021
	  ! WORDS_BIG_ENDIAN
4022
#endif
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
	  )
	{
	  /* Host and target agree => no need to swap.  */
	  *first = GEN_INT (CONST_DOUBLE_LOW (value));
	  *second = GEN_INT (CONST_DOUBLE_HIGH (value));
	}
      else
	{
	  *second = GEN_INT (CONST_DOUBLE_LOW (value));
	  *first = GEN_INT (CONST_DOUBLE_HIGH (value));
	}
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
#endif /* no REAL_ARITHMETIC */
    }
}

/* Return nonzero if this function has no function calls.  */

int
leaf_function_p ()
{
  rtx insn;

4045
  if (profile_flag || profile_block_flag || profile_arc_flag)
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
    return 0;

  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
      if (GET_CODE (insn) == CALL_INSN)
	return 0;
      if (GET_CODE (insn) == INSN
	  && GET_CODE (PATTERN (insn)) == SEQUENCE
	  && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN)
	return 0;
    }
  for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1))
    {
      if (GET_CODE (XEXP (insn, 0)) == CALL_INSN)
	return 0;
      if (GET_CODE (XEXP (insn, 0)) == INSN
	  && GET_CODE (PATTERN (XEXP (insn, 0))) == SEQUENCE
	  && GET_CODE (XVECEXP (PATTERN (XEXP (insn, 0)), 0, 0)) == CALL_INSN)
	return 0;
    }

  return 1;
}

/* On some machines, a function with no call insns
   can run faster if it doesn't create its own register window.
   When output, the leaf function should use only the "output"
   registers.  Ordinarily, the function would be compiled to use
   the "input" registers to find its arguments; it is a candidate
   for leaf treatment if it uses only the "input" registers.
   Leaf function treatment means renumbering so the function
   uses the "output" registers instead.  */

#ifdef LEAF_REGISTERS

static char permitted_reg_in_leaf_functions[] = LEAF_REGISTERS;

/* Return 1 if this function uses only the registers that can be
   safely renumbered.  */

int
only_leaf_regs_used ()
{
  int i;

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
    if ((regs_ever_live[i] || global_regs[i])
	&& ! permitted_reg_in_leaf_functions[i])
      return 0;

  if (current_function_uses_pic_offset_table
      && pic_offset_table_rtx != 0
      && GET_CODE (pic_offset_table_rtx) == REG
      && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
    return 0;

4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
  return 1;
}

/* Scan all instructions and renumber all registers into those
   available in leaf functions.  */

static void
leaf_renumber_regs (first)
     rtx first;
{
  rtx insn;

  /* Renumber only the actual patterns.
     The reg-notes can contain frame pointer refs,
     and renumbering them could crash, and should not be needed.  */
  for (insn = first; insn; insn = NEXT_INSN (insn))
    if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
      leaf_renumber_regs_insn (PATTERN (insn));
  for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1))
    if (GET_RTX_CLASS (GET_CODE (XEXP (insn, 0))) == 'i')
      leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
}

/* Scan IN_RTX and its subexpressions, and renumber all regs into those
   available in leaf functions.  */

void
leaf_renumber_regs_insn (in_rtx)
     register rtx in_rtx;
{
  register int i, j;
4133
  register const char *format_ptr;
4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206

  if (in_rtx == 0)
    return;

  /* Renumber all input-registers into output-registers.
     renumbered_regs would be 1 for an output-register;
     they  */

  if (GET_CODE (in_rtx) == REG)
    {
      int newreg;

      /* Don't renumber the same reg twice.  */
      if (in_rtx->used)
	return;

      newreg = REGNO (in_rtx);
      /* Don't try to renumber pseudo regs.  It is possible for a pseudo reg
	 to reach here as part of a REG_NOTE.  */
      if (newreg >= FIRST_PSEUDO_REGISTER)
	{
	  in_rtx->used = 1;
	  return;
	}
      newreg = LEAF_REG_REMAP (newreg);
      if (newreg < 0)
	abort ();
      regs_ever_live[REGNO (in_rtx)] = 0;
      regs_ever_live[newreg] = 1;
      REGNO (in_rtx) = newreg;
      in_rtx->used = 1;
    }

  if (GET_RTX_CLASS (GET_CODE (in_rtx)) == 'i')
    {
      /* Inside a SEQUENCE, we find insns.
	 Renumber just the patterns of these insns,
	 just as we do for the top-level insns.  */
      leaf_renumber_regs_insn (PATTERN (in_rtx));
      return;
    }

  format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));

  for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
    switch (*format_ptr++)
      {
      case 'e':
	leaf_renumber_regs_insn (XEXP (in_rtx, i));
	break;

      case 'E':
	if (NULL != XVEC (in_rtx, i))
	  {
	    for (j = 0; j < XVECLEN (in_rtx, i); j++)
	      leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
	  }
	break;

      case 'S':
      case 's':
      case '0':
      case 'i':
      case 'w':
      case 'n':
      case 'u':
	break;

      default:
	abort ();
      }
}
#endif