dse.c 109 KB
Newer Older
1
/* RTL dead store elimination.
Jakub Jelinek committed
2
   Copyright (C) 2005-2015 Free Software Foundation, Inc.
3 4 5 6 7 8 9 10

   Contributed by Richard Sandiford <rsandifor@codesourcery.com>
   and Kenneth Zadeck <zadeck@naturalbridge.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
11
Software Foundation; either version 3, or (at your option) any later
12 13 14 15 16 17 18 19
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
20 21
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
22 23 24 25 26 27

#undef BASELINE

#include "config.h"
#include "system.h"
#include "coretypes.h"
28
#include "backend.h"
29
#include "predict.h"
30 31
#include "tree.h"
#include "gimple.h"
32
#include "rtl.h"
33
#include "df.h"
34 35
#include "alias.h"
#include "fold-const.h"
36
#include "stor-layout.h"
37
#include "tm_p.h"
38
#include "regs.h"
39
#include "regset.h"
40
#include "flags.h"
41
#include "cfgrtl.h"
42 43 44 45
#include "cselib.h"
#include "tree-pass.h"
#include "alloc-pool.h"
#include "insn-config.h"
46 47 48 49 50 51 52
#include "expmed.h"
#include "dojump.h"
#include "explow.h"
#include "calls.h"
#include "emit-rtl.h"
#include "varasm.h"
#include "stmt.h"
53 54
#include "expr.h"
#include "recog.h"
55
#include "insn-codes.h"
56
#include "optabs.h"
57
#include "dbgcnt.h"
58
#include "target.h"
59
#include "params.h"
60
#include "internal-fn.h"
61
#include "gimple-ssa.h"
62
#include "rtl-iter.h"
63
#include "cfgcleanup.h"
64 65

/* This file contains three techniques for performing Dead Store
H.J. Lu committed
66
   Elimination (dse).
67 68 69 70 71

   * The first technique performs dse locally on any base address.  It
   is based on the cselib which is a local value numbering technique.
   This technique is local to a basic block but deals with a fairly
   general addresses.
H.J. Lu committed
72

73 74 75 76 77
   * The second technique performs dse globally but is restricted to
   base addresses that are either constant or are relative to the
   frame_pointer.

   * The third technique, (which is only done after register allocation)
78
   processes the spill slots.  This differs from the second
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
   technique because it takes advantage of the fact that spilling is
   completely free from the effects of aliasing.

   Logically, dse is a backwards dataflow problem.  A store can be
   deleted if it if cannot be reached in the backward direction by any
   use of the value being stored.  However, the local technique uses a
   forwards scan of the basic block because cselib requires that the
   block be processed in that order.

   The pass is logically broken into 7 steps:

   0) Initialization.

   1) The local algorithm, as well as scanning the insns for the two
   global algorithms.

   2) Analysis to see if the global algs are necessary.  In the case
   of stores base on a constant address, there must be at least two
   stores to that address, to make it possible to delete some of the
   stores.  In the case of stores off of the frame or spill related
   stores, only one store to an address is necessary because those
   stores die at the end of the function.

H.J. Lu committed
102
   3) Set up the global dataflow equations based on processing the
103 104 105 106 107 108 109
   info parsed in the first step.

   4) Solve the dataflow equations.

   5) Delete the insns that the global analysis has indicated are
   unnecessary.

Joseph Myers committed
110
   6) Delete insns that store the same value as preceding store
111 112 113
   where the earlier store couldn't be eliminated.

   7) Cleanup.
114 115 116 117 118

   This step uses cselib and canon_rtx to build the largest expression
   possible for each address.  This pass is a forwards pass through
   each basic block.  From the point of view of the global technique,
   the first pass could examine a block in either direction.  The
119
   forwards ordering is to accommodate cselib.
120

121
   We make a simplifying assumption: addresses fall into four broad
122 123 124 125 126 127 128 129
   categories:

   1) base has rtx_varies_p == false, offset is constant.
   2) base has rtx_varies_p == false, offset variable.
   3) base has rtx_varies_p == true, offset constant.
   4) base has rtx_varies_p == true, offset variable.

   The local passes are able to process all 4 kinds of addresses.  The
130
   global pass only handles 1).
131 132 133 134 135

   The global problem is formulated as follows:

     A store, S1, to address A, where A is not relative to the stack
     frame, can be eliminated if all paths from S1 to the end of the
136
     function contain another store to A before a read to A.
137 138

     If the address A is relative to the stack frame, a store S2 to A
139
     can be eliminated if there are no paths from S2 that reach the
140
     end of the function that read A before another store to A.  In
141
     this case S2 can be deleted if there are paths from S2 to the
142 143 144 145 146 147 148 149 150 151
     end of the function that have no reads or writes to A.  This
     second case allows stores to the stack frame to be deleted that
     would otherwise die when the function returns.  This cannot be
     done if stores_off_frame_dead_at_return is not true.  See the doc
     for that variable for when this variable is false.

     The global problem is formulated as a backwards set union
     dataflow problem where the stores are the gens and reads are the
     kills.  Set union problems are rare and require some special
     handling given our representation of bitmaps.  A straightforward
152
     implementation requires a lot of bitmaps filled with 1s.
153 154 155
     These are expensive and cumbersome in our bitmap formulation so
     care has been taken to avoid large vectors filled with 1s.  See
     the comments in bb_info and in the dataflow confluence functions
H.J. Lu committed
156
     for details.
157 158

   There are two places for further enhancements to this algorithm:
H.J. Lu committed
159

160 161 162 163 164 165 166
   1) The original dse which was embedded in a pass called flow also
   did local address forwarding.  For example in

   A <- r100
   ... <- A

   flow would replace the right hand side of the second insn with a
167
   reference to r100.  Most of the information is available to add this
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
   to this pass.  It has not done it because it is a lot of work in
   the case that either r100 is assigned to between the first and
   second insn and/or the second insn is a load of part of the value
   stored by the first insn.

   insn 5 in gcc.c-torture/compile/990203-1.c simple case.
   insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
   insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
   insn 44 in gcc.c-torture/execute/20010910-1.c simple case.

   2) The cleaning up of spill code is quite profitable.  It currently
   depends on reading tea leaves and chicken entrails left by reload.
   This pass depends on reload creating a singleton alias set for each
   spill slot and telling the next dse pass which of these alias sets
   are the singletons.  Rather than analyze the addresses of the
   spills, dse's spill processing just does analysis of the loads and
   stores that use those alias sets.  There are three cases where this
   falls short:

     a) Reload sometimes creates the slot for one mode of access, and
     then inserts loads and/or stores for a smaller mode.  In this
     case, the current code just punts on the slot.  The proper thing
     to do is to back out and use one bit vector position for each
     byte of the entity associated with the slot.  This depends on
     KNOWING that reload always generates the accesses for each of the
     bytes in some canonical (read that easy to understand several
     passes after reload happens) way.

     b) Reload sometimes decides that spill slot it allocated was not
     large enough for the mode and goes back and allocates more slots
     with the same mode and alias set.  The backout in this case is a
     little more graceful than (a).  In this case the slot is unmarked
     as being a spill slot and if final address comes out to be based
H.J. Lu committed
201
     off the frame pointer, the global algorithm handles this slot.
202 203 204 205

     c) For any pass that may prespill, there is currently no
     mechanism to tell the dse pass that the slot being used has the
     special properties that reload uses.  It may be that all that is
206
     required is to have those passes make the same calls that reload
207 208 209 210 211 212 213 214 215
     does, assuming that the alias sets can be manipulated in the same
     way.  */

/* There are limits to the size of constant offsets we model for the
   global problem.  There are certainly test cases, that exceed this
   limit, however, it is unlikely that there are important programs
   that really have constant offsets this size.  */
#define MAX_OFFSET (64 * 1024)

216 217 218 219 220 221 222 223 224 225 226 227 228
/* Obstack for the DSE dataflow bitmaps.  We don't want to put these
   on the default obstack because these bitmaps can grow quite large
   (~2GB for the small (!) test case of PR54146) and we'll hold on to
   all that memory until the end of the compiler run.
   As a bonus, delete_tree_live_info can destroy all the bitmaps by just
   releasing the whole obstack.  */
static bitmap_obstack dse_bitmap_obstack;

/* Obstack for other data.  As for above: Kinda nice to be able to
   throw it all away at the end in one big sweep.  */
static struct obstack dse_obstack;

/* Scratch bitmap for cselib's cselib_expand_value_rtx.  */
229
static bitmap scratch = NULL;
230

231
struct insn_info_type;
232 233

/* This structure holds information about a candidate store.  */
H.J. Lu committed
234
struct store_info
235 236 237 238 239
{

  /* False means this is a clobber.  */
  bool is_set;

240 241 242
  /* False if a single HOST_WIDE_INT bitmap is used for positions_needed.  */
  bool is_large;

243 244 245 246
  /* The id of the mem group of the base address.  If rtx_varies_p is
     true, this is -1.  Otherwise, it is the index into the group
     table.  */
  int group_id;
H.J. Lu committed
247

248 249 250 251 252 253
  /* This is the cselib value.  */
  cselib_val *cse_base;

  /* This canonized mem.  */
  rtx mem;

254
  /* Canonized MEM address for use by canon_true_dependence.  */
255 256 257
  rtx mem_addr;

  /* If this is non-zero, it is the alias set of a spill location.  */
258
  alias_set_type alias_set;
259 260 261

  /* The offset of the first and byte before the last byte associated
     with the operation.  */
262 263 264 265 266 267 268 269 270 271 272 273 274
  HOST_WIDE_INT begin, end;

  union
    {
      /* A bitmask as wide as the number of bytes in the word that
	 contains a 1 if the byte may be needed.  The store is unused if
	 all of the bits are 0.  This is used if IS_LARGE is false.  */
      unsigned HOST_WIDE_INT small_bitmask;

      struct
	{
	  /* A bitmap with one bit per byte.  Cleared bit means the position
	     is needed.  Used if IS_LARGE is false.  */
275
	  bitmap bmap;
276

277 278 279 280 281
	  /* Number of set bits (i.e. unneeded bytes) in BITMAP.  If it is
	     equal to END - BEGIN, the whole store is unused.  */
	  int count;
	} large;
    } positions_needed;
282 283 284 285 286 287 288

  /* The next store info for this insn.  */
  struct store_info *next;

  /* The right hand side of the store.  This is used if there is a
     subsequent reload of the mems address somewhere later in the
     basic block.  */
289 290 291 292 293 294 295 296 297
  rtx rhs;

  /* If rhs is or holds a constant, this contains that constant,
     otherwise NULL.  */
  rtx const_rhs;

  /* Set if this store stores the same constant value as REDUNDANT_REASON
     insn stored.  These aren't eliminated early, because doing that
     might prevent the earlier larger store to be eliminated.  */
298
  struct insn_info_type *redundant_reason;
299 300
};

301 302 303 304 305 306 307 308 309
/* Return a bitmask with the first N low bits set.  */

static unsigned HOST_WIDE_INT
lowpart_bitmask (int n)
{
  unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
  return mask >> (HOST_BITS_PER_WIDE_INT - n);
}

310
typedef struct store_info *store_info_t;
311
static object_allocator<store_info> cse_store_info_pool ("cse_store_info_pool",
312 313
						       100);

314
static object_allocator<store_info> rtx_store_info_pool ("rtx_store_info_pool",
315
						       100);
316 317 318

/* This structure holds information about a load.  These are only
   built for rtx bases.  */
319
struct read_info_type
320 321 322 323 324
{
  /* The id of the mem group of the base address.  */
  int group_id;

  /* If this is non-zero, it is the alias set of a spill location.  */
325
  alias_set_type alias_set;
326 327 328 329 330 331 332 333 334 335

  /* The offset of the first and byte after the last byte associated
     with the operation.  If begin == end == 0, the read did not have
     a constant offset.  */
  int begin, end;

  /* The mem being read.  */
  rtx mem;

  /* The next read_info for this insn.  */
336
  struct read_info_type *next;
337
};
338
typedef struct read_info_type *read_info_t;
339

340 341
static object_allocator<read_info_type> read_info_type_pool
  ("read_info_pool", 100);
342 343 344

/* One of these records is created for each insn.  */

345
struct insn_info_type
346 347 348 349 350 351 352 353 354 355 356 357 358
{
  /* Set true if the insn contains a store but the insn itself cannot
     be deleted.  This is set if the insn is a parallel and there is
     more than one non dead output or if the insn is in some way
     volatile.  */
  bool cannot_delete;

  /* This field is only used by the global algorithm.  It is set true
     if the insn contains any read of mem except for a (1).  This is
     also set if the insn is a call or has a clobber mem.  If the insn
     contains a wild read, the use_rec will be null.  */
  bool wild_read;

359 360 361 362 363
  /* This is true only for CALL instructions which could potentially read
     any non-frame memory location. This field is used by the global
     algorithm.  */
  bool non_frame_wild_read;

364 365
  /* This field is only used for the processing of const functions.
     These functions cannot read memory, but they can read the stack
366 367 368 369 370 371 372 373 374 375 376 377 378
     because that is where they may get their parms.  We need to be
     this conservative because, like the store motion pass, we don't
     consider CALL_INSN_FUNCTION_USAGE when processing call insns.
     Moreover, we need to distinguish two cases:
     1. Before reload (register elimination), the stores related to
	outgoing arguments are stack pointer based and thus deemed
	of non-constant base in this pass.  This requires special
	handling but also means that the frame pointer based stores
	need not be killed upon encountering a const function call.
     2. After reload, the stores related to outgoing arguments can be
	either stack pointer or hard frame pointer based.  This means
	that we have no other choice than also killing all the frame
	pointer based stores upon encountering a const function call.
379 380 381 382 383
     This field is set after reload for const function calls and before
     reload for const tail function calls on targets where arg pointer
     is the frame pointer.  Having this set is less severe than a wild
     read, it just means that all the frame related stores are killed
     rather than all the stores.  */
384 385 386 387
  bool frame_read;

  /* This field is only used for the processing of const functions.
     It is set if the insn may contain a stack pointer based store.  */
388
  bool stack_pointer_based;
389 390 391 392 393 394 395

  /* This is true if any of the sets within the store contains a
     cselib base.  Such stores can only be deleted by the local
     algorithm.  */
  bool contains_cselib_groups;

  /* The insn. */
David Malcolm committed
396
  rtx_insn *insn;
397 398 399 400 401

  /* The list of mem sets or mem clobbers that are contained in this
     insn.  If the insn is deletable, it contains only one mem set.
     But it could also contain clobbers.  Insns that contain more than
     one mem set are not deletable, but each of those mems are here in
402
     order to provide info to delete other insns.  */
403 404 405 406 407 408 409 410
  store_info_t store_rec;

  /* The linked list of mem uses in this insn.  Only the reads from
     rtx bases are listed here.  The reads to cselib bases are
     completely processed during the first scan and so are never
     created.  */
  read_info_t read_rec;

411 412 413 414 415 416 417
  /* The live fixed registers.  We assume only fixed registers can
     cause trouble by being clobbered from an expanded pattern;
     storing only the live fixed registers (rather than all registers)
     means less memory needs to be allocated / copied for the individual
     stores.  */
  regset fixed_regs_live;

418
  /* The prev insn in the basic block.  */
419
  struct insn_info_type * prev_insn;
420 421

  /* The linked list of insns that are in consideration for removal in
Joseph Myers committed
422
     the forwards pass through the basic block.  This pointer may be
423
     trash as it is not cleared when a wild read occurs.  The only
424
     time it is guaranteed to be correct is when the traversal starts
425
     at active_local_stores.  */
426
  struct insn_info_type * next_local_store;
427
};
428
typedef struct insn_info_type *insn_info_t;
429

430 431
static object_allocator<insn_info_type> insn_info_type_pool
  ("insn_info_pool", 100);
432 433

/* The linked list of stores that are under consideration in this
H.J. Lu committed
434
   basic block.  */
435
static insn_info_t active_local_stores;
436
static int active_local_stores_len;
437

438
struct dse_bb_info_type
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
{
  /* Pointer to the insn info for the last insn in the block.  These
     are linked so this is how all of the insns are reached.  During
     scanning this is the current insn being scanned.  */
  insn_info_t last_insn;

  /* The info for the global dataflow problem.  */


  /* This is set if the transfer function should and in the wild_read
     bitmap before applying the kill and gen sets.  That vector knocks
     out most of the bits in the bitmap and thus speeds up the
     operations.  */
  bool apply_wild_read;

454 455 456 457
  /* The following 4 bitvectors hold information about which positions
     of which stores are live or dead.  They are indexed by
     get_bitmap_index.  */

458 459
  /* The set of store positions that exist in this block before a wild read.  */
  bitmap gen;
H.J. Lu committed
460

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
  /* The set of load positions that exist in this block above the
     same position of a store.  */
  bitmap kill;

  /* The set of stores that reach the top of the block without being
     killed by a read.

     Do not represent the in if it is all ones.  Note that this is
     what the bitvector should logically be initialized to for a set
     intersection problem.  However, like the kill set, this is too
     expensive.  So initially, the in set will only be created for the
     exit block and any block that contains a wild read.  */
  bitmap in;

  /* The set of stores that reach the bottom of the block from it's
     successors.

     Do not represent the in if it is all ones.  Note that this is
     what the bitvector should logically be initialized to for a set
     intersection problem.  However, like the kill and in set, this is
     too expensive.  So what is done is that the confluence operator
     just initializes the vector from one of the out sets of the
     successors of the block.  */
  bitmap out;
485 486 487 488

  /* The following bitvector is indexed by the reg number.  It
     contains the set of regs that are live at the current instruction
     being processed.  While it contains info for all of the
489 490
     registers, only the hard registers are actually examined.  It is used
     to assure that shift and/or add sequences that are inserted do not
Joseph Myers committed
491
     accidentally clobber live hard regs.  */
492
  bitmap regs_live;
493 494
};

495
typedef struct dse_bb_info_type *bb_info_t;
496 497 498

static object_allocator<dse_bb_info_type> dse_bb_info_type_pool
  ("bb_info_pool", 100);
499 500 501 502 503 504 505 506

/* Table to hold all bb_infos.  */
static bb_info_t *bb_table;

/* There is a group_info for each rtx base that is used to reference
   memory.  There are also not many of the rtx bases because they are
   very limited in scope.  */

H.J. Lu committed
507
struct group_info
508 509 510 511 512 513 514 515
{
  /* The actual base of the address.  */
  rtx rtx_base;

  /* The sequential id of the base.  This allows us to have a
     canonical ordering of these that is not based on addresses.  */
  int id;

516 517 518 519 520 521 522 523
  /* True if there are any positions that are to be processed
     globally.  */
  bool process_globally;

  /* True if the base of this group is either the frame_pointer or
     hard_frame_pointer.  */
  bool frame_related;

524 525 526
  /* A mem wrapped around the base pointer for the group in order to do
     read dependency.  It must be given BLKmode in order to encompass all
     the possible offsets from the base.  */
527
  rtx base_mem;
H.J. Lu committed
528

529 530
  /* Canonized version of base_mem's address.  */
  rtx canon_base_addr;
531 532

  /* These two sets of two bitmaps are used to keep track of how many
533
     stores are actually referencing that position from this base.  We
534
     only do this for rtx bases as this will be used to assign
535
     positions in the bitmaps for the global problem.  Bit N is set in
536 537 538 539 540 541 542 543 544 545 546 547 548 549
     store1 on the first store for offset N.  Bit N is set in store2
     for the second store to offset N.  This is all we need since we
     only care about offsets that have two or more stores for them.

     The "_n" suffix is for offsets less than 0 and the "_p" suffix is
     for 0 and greater offsets.

     There is one special case here, for stores into the stack frame,
     we will or store1 into store2 before deciding which stores look
     at globally.  This is because stores to the stack frame that have
     no other reads before the end of the function can also be
     deleted.  */
  bitmap store1_n, store1_p, store2_n, store2_p;

550 551 552 553 554
  /* These bitmaps keep track of offsets in this group escape this function.
     An offset escapes if it corresponds to a named variable whose
     addressable flag is set.  */
  bitmap escaped_n, escaped_p;

555
  /* The positions in this bitmap have the same assignments as the in,
556
     out, gen and kill bitmaps.  This bitmap is all zeros except for
557
     the positions that are occupied by stores for this group.  */
558 559 560
  bitmap group_kill;

  /* The offset_map is used to map the offsets from this base into
561
     positions in the global bitmaps.  It is only created after all of
562 563
     the all of stores have been scanned and we know which ones we
     care about.  */
H.J. Lu committed
564 565
  int *offset_map_n, *offset_map_p;
  int offset_map_size_n, offset_map_size_p;
566 567
};
typedef struct group_info *group_info_t;
568
typedef const struct group_info *const_group_info_t;
569

570 571
static object_allocator<group_info> group_info_pool
  ("rtx_group_info_pool", 100);
572 573 574 575 576

/* Index into the rtx_group_vec.  */
static int rtx_group_next_id;


577
static vec<group_info_t> rtx_group_vec;
578 579 580 581


/* This structure holds the set of changes that are being deferred
   when removing read operation.  See replace_read.  */
H.J. Lu committed
582
struct deferred_change
583 584 585 586 587 588 589 590 591 592 593 594
{

  /* The mem that is being replaced.  */
  rtx *loc;

  /* The reg it is being replaced with.  */
  rtx reg;

  struct deferred_change *next;
};

typedef struct deferred_change *deferred_change_t;
595

596
static object_allocator<deferred_change> deferred_change_pool
597
  ("deferred_change_pool", 10);
598 599 600 601 602 603 604 605 606 607 608 609

static deferred_change_t deferred_change_list = NULL;

/* The group that holds all of the clear_alias_sets.  */
static group_info_t clear_alias_group;

/* The modes of the clear_alias_sets.  */
static htab_t clear_alias_mode_table;

/* Hash table element to look up the mode for an alias set.  */
struct clear_alias_mode_holder
{
610
  alias_set_type alias_set;
611
  machine_mode mode;
612 613
};

614
/* This is true except if cfun->stdarg -- i.e. we cannot do
615
   this for vararg functions because they play games with the frame.  */
616 617 618
static bool stores_off_frame_dead_at_return;

/* Counter for stats.  */
H.J. Lu committed
619 620 621 622
static int globally_deleted;
static int locally_deleted;
static int spill_deleted;

623 624
static bitmap all_blocks;

625 626 627
/* Locations that are killed by calls in the global phase.  */
static bitmap kill_on_calls;

628 629 630 631 632 633
/* The number of bits used in the global bitmaps.  */
static unsigned int current_position;

/*----------------------------------------------------------------------------
   Zeroth step.

H.J. Lu committed
634
   Initialization.
635 636 637 638 639 640
----------------------------------------------------------------------------*/


/* Find the entry associated with ALIAS_SET.  */

static struct clear_alias_mode_holder *
641
clear_alias_set_lookup (alias_set_type alias_set)
642 643 644
{
  struct clear_alias_mode_holder tmp_holder;
  void **slot;
H.J. Lu committed
645

646 647 648
  tmp_holder.alias_set = alias_set;
  slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
  gcc_assert (*slot);
H.J. Lu committed
649

650
  return (struct clear_alias_mode_holder *) *slot;
651 652 653 654 655 656
}


/* Hashtable callbacks for maintaining the "bases" field of
   store_group_info, given that the addresses are function invariants.  */

657
struct invariant_group_base_hasher : nofree_ptr_hash <group_info>
658
{
659 660
  static inline hashval_t hash (const group_info *);
  static inline bool equal (const group_info *, const group_info *);
661 662 663
};

inline bool
664 665
invariant_group_base_hasher::equal (const group_info *gi1,
				    const group_info *gi2)
666 667 668 669
{
  return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
}

670
inline hashval_t
671
invariant_group_base_hasher::hash (const group_info *gi)
672 673 674 675 676
{
  int do_not_record;
  return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
}

677
/* Tables of group_info structures, hashed by base value.  */
678
static hash_table<invariant_group_base_hasher> *rtx_group_table;
679

680 681 682 683 684 685

/* Get the GROUP for BASE.  Add a new group if it is not there.  */

static group_info_t
get_group_info (rtx base)
{
H.J. Lu committed
686 687
  struct group_info tmp_gi;
  group_info_t gi;
688
  group_info **slot;
689 690 691 692 693 694

  if (base)
    {
      /* Find the store_base_info structure for BASE, creating a new one
	 if necessary.  */
      tmp_gi.rtx_base = base;
695
      slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
696 697 698 699 700 701
      gi = (group_info_t) *slot;
    }
  else
    {
      if (!clear_alias_group)
	{
702
	  clear_alias_group = gi = group_info_pool.allocate ();
703 704
	  memset (gi, 0, sizeof (struct group_info));
	  gi->id = rtx_group_next_id++;
705 706 707 708 709 710 711
	  gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
	  gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
	  gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
	  gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
	  gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
	  gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
	  gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
712 713 714 715 716
	  gi->process_globally = false;
	  gi->offset_map_size_n = 0;
	  gi->offset_map_size_p = 0;
	  gi->offset_map_n = NULL;
	  gi->offset_map_p = NULL;
717
	  rtx_group_vec.safe_push (gi);
718 719 720 721 722 723
	}
      return clear_alias_group;
    }

  if (gi == NULL)
    {
724
      *slot = gi = group_info_pool.allocate ();
725 726
      gi->rtx_base = base;
      gi->id = rtx_group_next_id++;
727
      gi->base_mem = gen_rtx_MEM (BLKmode, base);
728
      gi->canon_base_addr = canon_rtx (base);
729 730 731 732 733 734 735
      gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
      gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
      gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
      gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
      gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
      gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
      gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
736
      gi->process_globally = false;
H.J. Lu committed
737
      gi->frame_related =
738 739 740 741 742
	(base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
      gi->offset_map_size_n = 0;
      gi->offset_map_size_p = 0;
      gi->offset_map_n = NULL;
      gi->offset_map_p = NULL;
743
      rtx_group_vec.safe_push (gi);
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
    }

  return gi;
}


/* Initialization of data structures.  */

static void
dse_step0 (void)
{
  locally_deleted = 0;
  globally_deleted = 0;
  spill_deleted = 0;

759 760 761 762 763
  bitmap_obstack_initialize (&dse_bitmap_obstack);
  gcc_obstack_init (&dse_obstack);

  scratch = BITMAP_ALLOC (&reg_obstack);
  kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
764 765


766
  rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
767

768
  bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
769 770
  rtx_group_next_id = 0;

771
  stores_off_frame_dead_at_return = !cfun->stdarg;
772 773

  init_alias_analysis ();
H.J. Lu committed
774

775
  clear_alias_group = NULL;
776 777 778 779 780 781 782 783
}



/*----------------------------------------------------------------------------
   First step.

   Scan all of the insns.  Any random ordering of the blocks is fine.
784
   Each block is scanned in forward order to accommodate cselib which
785 786 787 788 789
   is used to remove stores with non-constant bases.
----------------------------------------------------------------------------*/

/* Delete all of the store_info recs from INSN_INFO.  */

H.J. Lu committed
790
static void
791 792 793 794 795 796
free_store_info (insn_info_t insn_info)
{
  store_info_t store_info = insn_info->store_rec;
  while (store_info)
    {
      store_info_t next = store_info->next;
797
      if (store_info->is_large)
798
	BITMAP_FREE (store_info->positions_needed.large.bmap);
799
      if (store_info->cse_base)
800
	cse_store_info_pool.remove (store_info);
801
      else
802
	rtx_store_info_pool.remove (store_info);
803 804 805 806 807 808 809 810
      store_info = next;
    }

  insn_info->cannot_delete = true;
  insn_info->contains_cselib_groups = false;
  insn_info->store_rec = NULL;
}

811 812
typedef struct
{
813
  rtx_insn *first, *current;
814 815 816 817 818 819 820 821 822 823
  regset fixed_regs_live;
  bool failure;
} note_add_store_info;

/* Callback for emit_inc_dec_insn_before via note_stores.
   Check if a register is clobbered which is live afterwards.  */

static void
note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
{
824
  rtx_insn *insn;
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
  note_add_store_info *info = (note_add_store_info *) data;

  if (!REG_P (loc))
    return;

  /* If this register is referenced by the current or an earlier insn,
     that's OK.  E.g. this applies to the register that is being incremented
     with this addition.  */
  for (insn = info->first;
       insn != NEXT_INSN (info->current);
       insn = NEXT_INSN (insn))
    if (reg_referenced_p (loc, PATTERN (insn)))
      return;

  /* If we come here, we have a clobber of a register that's only OK
     if that register is not live.  If we don't have liveness information
     available, fail now.  */
  if (!info->fixed_regs_live)
    {
844
      info->failure = true;
845 846 847
      return;
    }
  /* Now check if this is a live fixed register.  */
848 849 850 851
  unsigned int end_regno = END_REGNO (loc);
  for (unsigned int regno = REGNO (loc); regno < end_regno; ++regno)
    if (REGNO_REG_SET_P (info->fixed_regs_live, regno))
      info->failure = true;
852 853
}

854 855
/* Callback for for_each_inc_dec that emits an INSN that sets DEST to
   SRC + SRCOFF before insn ARG.  */
856 857

static int
858 859 860
emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
			  rtx op ATTRIBUTE_UNUSED,
			  rtx dest, rtx src, rtx srcoff, void *arg)
861
{
862
  insn_info_t insn_info = (insn_info_t) arg;
863
  rtx_insn *insn = insn_info->insn, *new_insn, *cur;
864
  note_add_store_info info;
H.J. Lu committed
865

866 867
  /* We can reuse all operands without copying, because we are about
     to delete the insn that contained it.  */
868
  if (srcoff)
869 870 871 872 873 874
    {
      start_sequence ();
      emit_insn (gen_add3_insn (dest, src, srcoff));
      new_insn = get_insns ();
      end_sequence ();
    }
875
  else
876
    new_insn = gen_move_insn (dest, src);
877 878 879 880 881 882 883 884
  info.first = new_insn;
  info.fixed_regs_live = insn_info->fixed_regs_live;
  info.failure = false;
  for (cur = new_insn; cur; cur = NEXT_INSN (cur))
    {
      info.current = cur;
      note_stores (PATTERN (cur), note_add_store, &info);
    }
885

886 887 888 889 890 891
  /* If a failure was flagged above, return 1 so that for_each_inc_dec will
     return it immediately, communicating the failure to its caller.  */
  if (info.failure)
    return 1;

  emit_insn_before (new_insn, insn);
892

893
  return 0;
894 895
}

896 897 898
/* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
   is there, is split into a separate insn.
   Return true on success (or if there was nothing to do), false on failure.  */
899

900 901
static bool
check_for_inc_dec_1 (insn_info_t insn_info)
902
{
David Malcolm committed
903
  rtx_insn *insn = insn_info->insn;
904 905
  rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
  if (note)
906 907
    return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
			     insn_info) == 0;
908
  return true;
909 910 911
}


912 913 914 915 916
/* Entry point for postreload.  If you work on reload_cse, or you need this
   anywhere else, consider if you can provide register liveness information
   and add a parameter to this function so that it can be passed down in
   insn_info.fixed_regs_live.  */
bool
David Malcolm committed
917
check_for_inc_dec (rtx_insn *insn)
918
{
919
  insn_info_type insn_info;
920 921 922 923 924 925
  rtx note;

  insn_info.insn = insn;
  insn_info.fixed_regs_live = NULL;
  note = find_reg_note (insn, REG_INC, NULL_RTX);
  if (note)
926 927
    return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
			     &insn_info) == 0;
928 929 930
  return true;
}

H.J. Lu committed
931
/* Delete the insn and free all of the fields inside INSN_INFO.  */
932 933 934 935 936 937 938 939 940

static void
delete_dead_store_insn (insn_info_t insn_info)
{
  read_info_t read_info;

  if (!dbg_cnt (dse))
    return;

941 942
  if (!check_for_inc_dec_1 (insn_info))
    return;
943
  if (dump_file && (dump_flags & TDF_DETAILS))
944
    {
H.J. Lu committed
945
      fprintf (dump_file, "Locally deleting insn %d ",
946 947
	       INSN_UID (insn_info->insn));
      if (insn_info->store_rec->alias_set)
H.J. Lu committed
948
	fprintf (dump_file, "alias set %d\n",
949
		 (int) insn_info->store_rec->alias_set);
950 951 952 953 954 955
      else
	fprintf (dump_file, "\n");
    }

  free_store_info (insn_info);
  read_info = insn_info->read_rec;
H.J. Lu committed
956

957 958 959
  while (read_info)
    {
      read_info_t next = read_info->next;
960
      read_info_type_pool.remove (read_info);
961 962 963 964 965 966 967 968 969 970 971
      read_info = next;
    }
  insn_info->read_rec = NULL;

  delete_insn (insn_info->insn);
  locally_deleted++;
  insn_info->insn = NULL;

  insn_info->wild_read = false;
}

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
/* Return whether DECL, a local variable, can possibly escape the current
   function scope.  */

static bool
local_variable_can_escape (tree decl)
{
  if (TREE_ADDRESSABLE (decl))
    return true;

  /* If this is a partitioned variable, we need to consider all the variables
     in the partition.  This is necessary because a store into one of them can
     be replaced with a store into another and this may not change the outcome
     of the escape analysis.  */
  if (cfun->gimple_df->decls_to_pointers != NULL)
    {
987
      tree *namep = cfun->gimple_df->decls_to_pointers->get (decl);
988
      if (namep)
989
	return TREE_ADDRESSABLE (*namep);
990 991 992 993 994 995 996
    }

  return false;
}

/* Return whether EXPR can possibly escape the current function scope.  */

997 998 999 1000 1001 1002 1003 1004
static bool
can_escape (tree expr)
{
  tree base;
  if (!expr)
    return true;
  base = get_base_address (expr);
  if (DECL_P (base)
1005 1006 1007 1008 1009
      && !may_be_aliased (base)
      && !(TREE_CODE (base) == VAR_DECL
	   && !DECL_EXTERNAL (base)
	   && !TREE_STATIC (base)
	   && local_variable_can_escape (base)))
1010 1011 1012
    return false;
  return true;
}
1013 1014 1015 1016 1017

/* Set the store* bitmaps offset_map_size* fields in GROUP based on
   OFFSET and WIDTH.  */

static void
1018 1019
set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width,
                tree expr)
1020 1021
{
  HOST_WIDE_INT i;
1022
  bool expr_escapes = can_escape (expr);
1023
  if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET)
1024 1025 1026 1027
    for (i=offset; i<offset+width; i++)
      {
	bitmap store1;
	bitmap store2;
1028
        bitmap escaped;
1029 1030 1031 1032 1033
	int ai;
	if (i < 0)
	  {
	    store1 = group->store1_n;
	    store2 = group->store2_n;
1034
	    escaped = group->escaped_n;
1035 1036 1037 1038 1039 1040
	    ai = -i;
	  }
	else
	  {
	    store1 = group->store1_p;
	    store2 = group->store2_p;
1041
	    escaped = group->escaped_p;
1042 1043
	    ai = i;
	  }
H.J. Lu committed
1044

1045
	if (!bitmap_set_bit (store1, ai))
1046
	  bitmap_set_bit (store2, ai);
H.J. Lu committed
1047
	else
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	  {
	    if (i < 0)
	      {
		if (group->offset_map_size_n < ai)
		  group->offset_map_size_n = ai;
	      }
	    else
	      {
		if (group->offset_map_size_p < ai)
		  group->offset_map_size_p = ai;
	      }
	  }
1060 1061
        if (expr_escapes)
          bitmap_set_bit (escaped, ai);
1062 1063 1064
      }
}

1065 1066 1067 1068 1069 1070
static void
reset_active_stores (void)
{
  active_local_stores = NULL;
  active_local_stores_len = 0;
}
1071

1072
/* Free all READ_REC of the LAST_INSN of BB_INFO.  */
1073 1074

static void
1075
free_read_records (bb_info_t bb_info)
1076 1077 1078 1079 1080 1081
{
  insn_info_t insn_info = bb_info->last_insn;
  read_info_t *ptr = &insn_info->read_rec;
  while (*ptr)
    {
      read_info_t next = (*ptr)->next;
1082
      if ((*ptr)->alias_set == 0)
1083
        {
1084
	  read_info_type_pool.remove (*ptr);
1085
          *ptr = next;
1086
        }
H.J. Lu committed
1087
      else
1088
        ptr = &(*ptr)->next;
1089
    }
1090 1091 1092 1093 1094 1095 1096 1097
}

/* Set the BB_INFO so that the last insn is marked as a wild read.  */

static void
add_wild_read (bb_info_t bb_info)
{
  insn_info_t insn_info = bb_info->last_insn;
1098
  insn_info->wild_read = true;
1099 1100
  free_read_records (bb_info);
  reset_active_stores ();
1101 1102
}

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
/* Set the BB_INFO so that the last insn is marked as a wild read of
   non-frame locations.  */

static void
add_non_frame_wild_read (bb_info_t bb_info)
{
  insn_info_t insn_info = bb_info->last_insn;
  insn_info->non_frame_wild_read = true;
  free_read_records (bb_info);
  reset_active_stores ();
}
1114

1115 1116 1117
/* Return true if X is a constant or one of the registers that behave
   as a constant over the life of a function.  This is equivalent to
   !rtx_varies_p for memory addresses.  */
1118 1119 1120 1121

static bool
const_or_frame_p (rtx x)
{
1122 1123 1124 1125
  if (CONSTANT_P (x))
    return true;

  if (GET_CODE (x) == REG)
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
    {
      /* Note that we have to test for the actual rtx used for the frame
	 and arg pointers and not just the register number in case we have
	 eliminated the frame and/or arg pointer and are using it
	 for pseudos.  */
      if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
	  /* The arg pointer varies if it is not a fixed register.  */
	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
	  || x == pic_offset_table_rtx)
	return true;
      return false;
    }
1138

1139
  return false;
1140 1141
}

H.J. Lu committed
1142 1143
/* Take all reasonable action to put the address of MEM into the form
   that we can do analysis on.
1144 1145 1146 1147 1148 1149 1150 1151 1152

   The gold standard is to get the address into the form: address +
   OFFSET where address is something that rtx_varies_p considers a
   constant.  When we can get the address in this form, we can do
   global analysis on it.  Note that for constant bases, address is
   not actually returned, only the group_id.  The address can be
   obtained from that.

   If that fails, we try cselib to get a value we can at least use
H.J. Lu committed
1153 1154
   locally.  If that fails we return false.

1155 1156 1157 1158 1159 1160 1161
   The GROUP_ID is set to -1 for cselib bases and the index of the
   group for non_varying bases.

   FOR_READ is true if this is a mem read and false if not.  */

static bool
canon_address (rtx mem,
1162
	       alias_set_type *alias_set_out,
1163
	       int *group_id,
H.J. Lu committed
1164
	       HOST_WIDE_INT *offset,
1165 1166
	       cselib_val **base)
{
1167
  machine_mode address_mode = get_address_mode (mem);
1168 1169
  rtx mem_address = XEXP (mem, 0);
  rtx expanded_address, address;
1170 1171
  int expanded;

1172 1173
  *alias_set_out = 0;

1174
  cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1175

1176
  if (dump_file && (dump_flags & TDF_DETAILS))
1177 1178 1179 1180 1181 1182
    {
      fprintf (dump_file, "  mem: ");
      print_inline_rtx (dump_file, mem_address, 0);
      fprintf (dump_file, "\n");
    }

1183 1184 1185 1186 1187 1188 1189 1190
  /* First see if just canon_rtx (mem_address) is const or frame,
     if not, try cselib_expand_value_rtx and call canon_rtx on that.  */
  address = NULL_RTX;
  for (expanded = 0; expanded < 2; expanded++)
    {
      if (expanded)
	{
	  /* Use cselib to replace all of the reg references with the full
H.J. Lu committed
1191
	     expression.  This will take care of the case where we have
1192

1193 1194
	     r_x = base + offset;
	     val = *r_x;
H.J. Lu committed
1195 1196

	     by making it into
1197

1198
	     val = *(base + offset);  */
1199

1200 1201
	  expanded_address = cselib_expand_value_rtx (mem_address,
						      scratch, 5);
1202

1203 1204 1205 1206 1207 1208 1209
	  /* If this fails, just go with the address from first
	     iteration.  */
	  if (!expanded_address)
	    break;
	}
      else
	expanded_address = mem_address;
1210

1211 1212
      /* Split the address into canonical BASE + OFFSET terms.  */
      address = canon_rtx (expanded_address);
1213

1214
      *offset = 0;
1215

1216
      if (dump_file && (dump_flags & TDF_DETAILS))
1217 1218 1219 1220 1221 1222 1223
	{
	  if (expanded)
	    {
	      fprintf (dump_file, "\n   after cselib_expand address: ");
	      print_inline_rtx (dump_file, expanded_address, 0);
	      fprintf (dump_file, "\n");
	    }
1224

1225 1226 1227 1228
	  fprintf (dump_file, "\n   after canon_rtx address: ");
	  print_inline_rtx (dump_file, address, 0);
	  fprintf (dump_file, "\n");
	}
1229

1230 1231
      if (GET_CODE (address) == CONST)
	address = XEXP (address, 0);
1232

1233 1234 1235 1236 1237 1238
      if (GET_CODE (address) == PLUS
	  && CONST_INT_P (XEXP (address, 1)))
	{
	  *offset = INTVAL (XEXP (address, 1));
	  address = XEXP (address, 0);
	}
1239

1240 1241
      if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
	  && const_or_frame_p (address))
1242
	{
1243 1244
	  group_info_t group = get_group_info (address);

1245
	  if (dump_file && (dump_flags & TDF_DETAILS))
1246 1247 1248 1249 1250
	    fprintf (dump_file, "  gid=%d offset=%d \n",
		     group->id, (int)*offset);
	  *base = NULL;
	  *group_id = group->id;
	  return true;
1251
	}
1252 1253
    }

1254
  *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1255 1256 1257 1258
  *group_id = -1;

  if (*base == NULL)
    {
1259
      if (dump_file && (dump_flags & TDF_DETAILS))
1260 1261
	fprintf (dump_file, " no cselib val - should be a wild read.\n");
      return false;
1262
    }
1263
  if (dump_file && (dump_flags & TDF_DETAILS))
1264 1265
    fprintf (dump_file, "  varying cselib base=%u:%u offset = %d\n",
	     (*base)->uid, (*base)->hash, (int)*offset);
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
  return true;
}


/* Clear the rhs field from the active_local_stores array.  */

static void
clear_rhs_from_active_local_stores (void)
{
  insn_info_t ptr = active_local_stores;

  while (ptr)
    {
      store_info_t store_info = ptr->store_rec;
      /* Skip the clobbers.  */
      while (!store_info->is_set)
	store_info = store_info->next;

      store_info->rhs = NULL;
1285
      store_info->const_rhs = NULL;
1286 1287 1288 1289 1290 1291

      ptr = ptr->next_local_store;
    }
}


1292 1293 1294 1295 1296 1297 1298
/* Mark byte POS bytes from the beginning of store S_INFO as unneeded.  */

static inline void
set_position_unneeded (store_info_t s_info, int pos)
{
  if (__builtin_expect (s_info->is_large, false))
    {
1299 1300
      if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
	s_info->positions_needed.large.count++;
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
    }
  else
    s_info->positions_needed.small_bitmask
      &= ~(((unsigned HOST_WIDE_INT) 1) << pos);
}

/* Mark the whole store S_INFO as unneeded.  */

static inline void
set_all_positions_unneeded (store_info_t s_info)
{
  if (__builtin_expect (s_info->is_large, false))
    {
      int pos, end = s_info->end - s_info->begin;
      for (pos = 0; pos < end; pos++)
1316
	bitmap_set_bit (s_info->positions_needed.large.bmap, pos);
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
      s_info->positions_needed.large.count = end;
    }
  else
    s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0;
}

/* Return TRUE if any bytes from S_INFO store are needed.  */

static inline bool
any_positions_needed_p (store_info_t s_info)
{
  if (__builtin_expect (s_info->is_large, false))
    return (s_info->positions_needed.large.count
	    < s_info->end - s_info->begin);
  else
    return (s_info->positions_needed.small_bitmask
	    != (unsigned HOST_WIDE_INT) 0);
}

/* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
   store are needed.  */

static inline bool
all_positions_needed_p (store_info_t s_info, int start, int width)
{
  if (__builtin_expect (s_info->is_large, false))
    {
      int end = start + width;
      while (start < end)
1346
	if (bitmap_bit_p (s_info->positions_needed.large.bmap, start++))
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	  return false;
      return true;
    }
  else
    {
      unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start;
      return (s_info->positions_needed.small_bitmask & mask) == mask;
    }
}


1358
static rtx get_stored_val (store_info_t, machine_mode, HOST_WIDE_INT,
1359 1360 1361
			   HOST_WIDE_INT, basic_block, bool);


1362 1363 1364 1365 1366 1367 1368
/* BODY is an instruction pattern that belongs to INSN.  Return 1 if
   there is a candidate store, after adding it to the appropriate
   local store group if so.  */

static int
record_store (rtx body, bb_info_t bb_info)
{
1369
  rtx mem, rhs, const_rhs, mem_addr;
1370 1371
  HOST_WIDE_INT offset = 0;
  HOST_WIDE_INT width = 0;
1372
  alias_set_type spill_alias_set;
1373 1374 1375 1376
  insn_info_t insn_info = bb_info->last_insn;
  store_info_t store_info = NULL;
  int group_id;
  cselib_val *base = NULL;
1377
  insn_info_t ptr, last, redundant_reason;
1378 1379 1380 1381 1382
  bool store_is_unused;

  if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
    return 0;

1383 1384
  mem = SET_DEST (body);

1385 1386 1387 1388
  /* If this is not used, then this cannot be used to keep the insn
     from being deleted.  On the other hand, it does provide something
     that can be used to prove that another store is dead.  */
  store_is_unused
1389
    = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405

  /* Check whether that value is a suitable memory location.  */
  if (!MEM_P (mem))
    {
      /* If the set or clobber is unused, then it does not effect our
	 ability to get rid of the entire insn.  */
      if (!store_is_unused)
	insn_info->cannot_delete = true;
      return 0;
    }

  /* At this point we know mem is a mem. */
  if (GET_MODE (mem) == BLKmode)
    {
      if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
	{
1406
	  if (dump_file && (dump_flags & TDF_DETAILS))
1407 1408 1409
	    fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
	  add_wild_read (bb_info);
	  insn_info->cannot_delete = true;
1410
	  return 0;
1411
	}
1412 1413
      /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
	 as memset (addr, 0, 36);  */
1414 1415 1416
      else if (!MEM_SIZE_KNOWN_P (mem)
	       || MEM_SIZE (mem) <= 0
	       || MEM_SIZE (mem) > MAX_OFFSET
1417 1418
	       || GET_CODE (body) != SET
	       || !CONST_INT_P (SET_SRC (body)))
1419
	{
1420 1421 1422 1423 1424 1425 1426 1427
	  if (!store_is_unused)
	    {
	      /* If the set or clobber is unused, then it does not effect our
		 ability to get rid of the entire insn.  */
	      insn_info->cannot_delete = true;
	      clear_rhs_from_active_local_stores ();
	    }
	  return 0;
1428 1429 1430 1431 1432
	}
    }

  /* We can still process a volatile mem, we just cannot delete it.  */
  if (MEM_VOLATILE_P (mem))
1433
    insn_info->cannot_delete = true;
1434 1435 1436 1437 1438 1439 1440

  if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
    {
      clear_rhs_from_active_local_stores ();
      return 0;
    }

1441
  if (GET_MODE (mem) == BLKmode)
1442
    width = MEM_SIZE (mem);
1443
  else
1444
    width = GET_MODE_SIZE (GET_MODE (mem));
1445 1446 1447 1448 1449

  if (spill_alias_set)
    {
      bitmap store1 = clear_alias_group->store1_p;
      bitmap store2 = clear_alias_group->store2_p;
1450 1451

      gcc_assert (GET_MODE (mem) != BLKmode);
H.J. Lu committed
1452

1453
      if (!bitmap_set_bit (store1, spill_alias_set))
1454
	bitmap_set_bit (store2, spill_alias_set);
H.J. Lu committed
1455

1456 1457
      if (clear_alias_group->offset_map_size_p < spill_alias_set)
	clear_alias_group->offset_map_size_p = spill_alias_set;
H.J. Lu committed
1458

1459
      store_info = rtx_store_info_pool.allocate ();
1460

1461
      if (dump_file && (dump_flags & TDF_DETAILS))
1462
	fprintf (dump_file, " processing spill store %d(%s)\n",
1463
		 (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
1464 1465 1466 1467 1468
    }
  else if (group_id >= 0)
    {
      /* In the restrictive case where the base is a constant or the
	 frame pointer we can do global analysis.  */
H.J. Lu committed
1469 1470

      group_info_t group
1471
	= rtx_group_vec[group_id];
1472
      tree expr = MEM_EXPR (mem);
H.J. Lu committed
1473

1474
      store_info = rtx_store_info_pool.allocate ();
1475
      set_usage_bits (group, offset, width, expr);
1476

1477
      if (dump_file && (dump_flags & TDF_DETAILS))
1478 1479 1480 1481 1482
	fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
		 group_id, (int)offset, (int)(offset+width));
    }
  else
    {
1483
      if (may_be_sp_based_p (XEXP (mem, 0)))
1484
	insn_info->stack_pointer_based = true;
1485
      insn_info->contains_cselib_groups = true;
1486

1487
      store_info = cse_store_info_pool.allocate ();
1488 1489
      group_id = -1;

1490
      if (dump_file && (dump_flags & TDF_DETAILS))
1491 1492 1493 1494
	fprintf (dump_file, " processing cselib store [%d..%d)\n",
		 (int)offset, (int)(offset+width));
    }

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
  const_rhs = rhs = NULL_RTX;
  if (GET_CODE (body) == SET
      /* No place to keep the value after ra.  */
      && !reload_completed
      && (REG_P (SET_SRC (body))
	  || GET_CODE (SET_SRC (body)) == SUBREG
	  || CONSTANT_P (SET_SRC (body)))
      && !MEM_VOLATILE_P (mem)
      /* Sometimes the store and reload is used for truncation and
	 rounding.  */
      && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
    {
      rhs = SET_SRC (body);
      if (CONSTANT_P (rhs))
	const_rhs = rhs;
      else if (body == PATTERN (insn_info->insn))
	{
	  rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
	  if (tem && CONSTANT_P (XEXP (tem, 0)))
	    const_rhs = XEXP (tem, 0);
	}
      if (const_rhs == NULL_RTX && REG_P (rhs))
	{
	  rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);

	  if (tem && CONSTANT_P (tem))
	    const_rhs = tem;
	}
    }

1525 1526 1527 1528
  /* Check to see if this stores causes some other stores to be
     dead.  */
  ptr = active_local_stores;
  last = NULL;
1529
  redundant_reason = NULL;
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
  mem = canon_rtx (mem);
  /* For alias_set != 0 canon_true_dependence should be never called.  */
  if (spill_alias_set)
    mem_addr = NULL_RTX;
  else
    {
      if (group_id < 0)
	mem_addr = base->val_rtx;
      else
	{
	  group_info_t group
1541
	    = rtx_group_vec[group_id];
1542 1543
	  mem_addr = group->canon_base_addr;
	}
1544 1545 1546 1547
      /* get_addr can only handle VALUE but cannot handle expr like:
	 VALUE + OFFSET, so call get_addr to get original addr for
	 mem_addr before plus_constant.  */
      mem_addr = get_addr (mem_addr);
1548
      if (offset)
1549
	mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1550
    }
1551 1552 1553 1554 1555

  while (ptr)
    {
      insn_info_t next = ptr->next_local_store;
      store_info_t s_info = ptr->store_rec;
1556
      bool del = true;
1557 1558

      /* Skip the clobbers. We delete the active insn if this insn
1559
	 shadows the set.  To have been put on the active list, it
1560 1561 1562 1563 1564
	 has exactly on set. */
      while (!s_info->is_set)
	s_info = s_info->next;

      if (s_info->alias_set != spill_alias_set)
1565
	del = false;
1566 1567
      else if (s_info->alias_set)
	{
H.J. Lu committed
1568
	  struct clear_alias_mode_holder *entry
1569 1570 1571 1572 1573 1574 1575 1576 1577
	    = clear_alias_set_lookup (s_info->alias_set);
	  /* Generally, spills cannot be processed if and of the
	     references to the slot have a different mode.  But if
	     we are in the same block and mode is exactly the same
	     between this store and one before in the same block,
	     we can still delete it.  */
	  if ((GET_MODE (mem) == GET_MODE (s_info->mem))
	      && (GET_MODE (mem) == entry->mode))
	    {
1578
	      del = true;
1579
	      set_all_positions_unneeded (s_info);
1580
	    }
1581
	  if (dump_file && (dump_flags & TDF_DETAILS))
1582
	    fprintf (dump_file, "    trying spill store in insn=%d alias_set=%d\n",
1583
		     INSN_UID (ptr->insn), (int) s_info->alias_set);
1584
	}
H.J. Lu committed
1585
      else if ((s_info->group_id == group_id)
1586 1587 1588
	       && (s_info->cse_base == base))
	{
	  HOST_WIDE_INT i;
1589
	  if (dump_file && (dump_flags & TDF_DETAILS))
1590
	    fprintf (dump_file, "    trying store in insn=%d gid=%d[%d..%d)\n",
H.J. Lu committed
1591
		     INSN_UID (ptr->insn), s_info->group_id,
1592
		     (int)s_info->begin, (int)s_info->end);
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632

	  /* Even if PTR won't be eliminated as unneeded, if both
	     PTR and this insn store the same constant value, we might
	     eliminate this insn instead.  */
	  if (s_info->const_rhs
	      && const_rhs
	      && offset >= s_info->begin
	      && offset + width <= s_info->end
	      && all_positions_needed_p (s_info, offset - s_info->begin,
					 width))
	    {
	      if (GET_MODE (mem) == BLKmode)
		{
		  if (GET_MODE (s_info->mem) == BLKmode
		      && s_info->const_rhs == const_rhs)
		    redundant_reason = ptr;
		}
	      else if (s_info->const_rhs == const0_rtx
		       && const_rhs == const0_rtx)
		redundant_reason = ptr;
	      else
		{
		  rtx val;
		  start_sequence ();
		  val = get_stored_val (s_info, GET_MODE (mem),
					offset, offset + width,
					BLOCK_FOR_INSN (insn_info->insn),
					true);
		  if (get_insns () != NULL)
		    val = NULL_RTX;
		  end_sequence ();
		  if (val && rtx_equal_p (val, const_rhs))
		    redundant_reason = ptr;
		}
	    }

	  for (i = MAX (offset, s_info->begin);
	       i < offset + width && i < s_info->end;
	       i++)
	    set_position_unneeded (s_info, i - s_info->begin);
1633 1634 1635 1636 1637 1638
	}
      else if (s_info->rhs)
	/* Need to see if it is possible for this store to overwrite
	   the value of store_info.  If it is, set the rhs to NULL to
	   keep it from being used to remove a load.  */
	{
H.J. Lu committed
1639
	  if (canon_true_dependence (s_info->mem,
1640 1641
				     GET_MODE (s_info->mem),
				     s_info->mem_addr,
1642
				     mem, mem_addr))
1643 1644 1645 1646
	    {
	      s_info->rhs = NULL;
	      s_info->const_rhs = NULL;
	    }
1647
	}
1648

1649 1650
      /* An insn can be deleted if every position of every one of
	 its s_infos is zero.  */
1651
      if (any_positions_needed_p (s_info))
1652
	del = false;
1653

1654
      if (del)
1655 1656
	{
	  insn_info_t insn_to_delete = ptr;
H.J. Lu committed
1657

1658
	  active_local_stores_len--;
1659 1660 1661 1662
	  if (last)
	    last->next_local_store = ptr->next_local_store;
	  else
	    active_local_stores = ptr->next_local_store;
H.J. Lu committed
1663

1664 1665
	  if (!insn_to_delete->cannot_delete)
	    delete_dead_store_insn (insn_to_delete);
1666 1667 1668
	}
      else
	last = ptr;
H.J. Lu committed
1669

1670 1671
      ptr = next;
    }
H.J. Lu committed
1672

1673 1674 1675
  /* Finish filling in the store_info.  */
  store_info->next = insn_info->store_rec;
  insn_info->store_rec = store_info;
1676
  store_info->mem = mem;
1677
  store_info->alias_set = spill_alias_set;
1678
  store_info->mem_addr = mem_addr;
1679
  store_info->cse_base = base;
1680 1681 1682 1683
  if (width > HOST_BITS_PER_WIDE_INT)
    {
      store_info->is_large = true;
      store_info->positions_needed.large.count = 0;
1684
      store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
1685 1686 1687 1688 1689 1690
    }
  else
    {
      store_info->is_large = false;
      store_info->positions_needed.small_bitmask = lowpart_bitmask (width);
    }
1691 1692 1693 1694
  store_info->group_id = group_id;
  store_info->begin = offset;
  store_info->end = offset + width;
  store_info->is_set = GET_CODE (body) == SET;
1695 1696 1697
  store_info->rhs = rhs;
  store_info->const_rhs = const_rhs;
  store_info->redundant_reason = redundant_reason;
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708

  /* If this is a clobber, we return 0.  We will only be able to
     delete this insn if there is only one store USED store, but we
     can use the clobber to delete other stores earlier.  */
  return store_info->is_set ? 1 : 0;
}


static void
dump_insn_info (const char * start, insn_info_t insn_info)
{
H.J. Lu committed
1709
  fprintf (dump_file, "%s insn=%d %s\n", start,
1710 1711 1712 1713 1714
	   INSN_UID (insn_info->insn),
	   insn_info->store_rec ? "has store" : "naked");
}


1715 1716 1717 1718 1719 1720 1721 1722 1723
/* If the modes are different and the value's source and target do not
   line up, we need to extract the value from lower part of the rhs of
   the store, shift it, and then put it into a form that can be shoved
   into the read_insn.  This function generates a right SHIFT of a
   value that is at least ACCESS_SIZE bytes wide of READ_MODE.  The
   shift sequence is returned or NULL if we failed to find a
   shift.  */

static rtx
1724
find_shift_sequence (int access_size,
1725
		     store_info_t store_info,
1726
		     machine_mode read_mode,
1727
		     int shift, bool speed, bool require_cst)
1728
{
1729 1730
  machine_mode store_mode = GET_MODE (store_info->mem);
  machine_mode new_mode;
1731
  rtx read_reg = NULL;
1732 1733 1734 1735 1736 1737 1738 1739

  /* Some machines like the x86 have shift insns for each size of
     operand.  Other machines like the ppc or the ia-64 may only have
     shift insns that shift values within 32 or 64 bit registers.
     This loop tries to find the smallest shift insn that will right
     justify the value we want to read but is available in one insn on
     the machine.  */

1740 1741 1742 1743
  for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
					  MODE_INT);
       GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
       new_mode = GET_MODE_WIDER_MODE (new_mode))
1744
    {
1745 1746
      rtx target, new_reg, new_lhs;
      rtx_insn *shift_seq, *insn;
1747
      int cost;
1748

1749 1750 1751
      /* If a constant was stored into memory, try to simplify it here,
	 otherwise the cost of the shift might preclude this optimization
	 e.g. at -Os, even when no actual shift will be needed.  */
1752
      if (store_info->const_rhs)
1753 1754
	{
	  unsigned int byte = subreg_lowpart_offset (new_mode, store_mode);
1755 1756
	  rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
				     store_mode, byte);
1757 1758 1759 1760 1761 1762 1763 1764 1765
	  if (ret && CONSTANT_P (ret))
	    {
	      ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
						     ret, GEN_INT (shift));
	      if (ret && CONSTANT_P (ret))
		{
		  byte = subreg_lowpart_offset (read_mode, new_mode);
		  ret = simplify_subreg (read_mode, ret, new_mode, byte);
		  if (ret && CONSTANT_P (ret)
1766 1767
		      && (set_src_cost (ret, read_mode, speed)
			  <= COSTS_N_INSNS (1)))
1768 1769 1770 1771 1772
		    return ret;
		}
	    }
	}

1773 1774 1775
      if (require_cst)
	return NULL_RTX;

1776 1777 1778
      /* Try a wider mode if truncating the store mode to NEW_MODE
	 requires a real instruction.  */
      if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1779
	  && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1780 1781
	continue;

1782 1783 1784 1785 1786 1787
      /* Also try a wider mode if the necessary punning is either not
	 desirable or not possible.  */
      if (!CONSTANT_P (store_info->rhs)
	  && !MODES_TIEABLE_P (new_mode, store_mode))
	continue;

1788
      new_reg = gen_reg_rtx (new_mode);
1789 1790 1791 1792 1793 1794 1795 1796 1797

      start_sequence ();

      /* In theory we could also check for an ashr.  Ian Taylor knows
	 of one dsp where the cost of these two was not the same.  But
	 this really is a rare case anyway.  */
      target = expand_binop (new_mode, lshr_optab, new_reg,
			     GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);

1798 1799
      shift_seq = get_insns ();
      end_sequence ();
1800

1801 1802 1803 1804 1805 1806
      if (target != new_reg || shift_seq == NULL)
	continue;

      cost = 0;
      for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
	if (INSN_P (insn))
1807
	  cost += insn_rtx_cost (PATTERN (insn), speed);
1808 1809 1810 1811 1812

      /* The computation up to here is essentially independent
	 of the arguments and could be precomputed.  It may
	 not be worth doing so.  We could precompute if
	 worthwhile or at least cache the results.  The result
1813 1814
	 technically depends on both SHIFT and ACCESS_SIZE,
	 but in practice the answer will depend only on ACCESS_SIZE.  */
1815 1816 1817 1818

      if (cost > COSTS_N_INSNS (1))
	continue;

1819 1820 1821 1822 1823
      new_lhs = extract_low_bits (new_mode, store_mode,
				  copy_rtx (store_info->rhs));
      if (new_lhs == NULL_RTX)
	continue;

1824 1825 1826 1827
      /* We found an acceptable shift.  Generate a move to
	 take the value from the store and put it into the
	 shift pseudo, then shift it, then generate another
	 move to put in into the target of the read.  */
1828
      emit_move_insn (new_reg, new_lhs);
1829
      emit_insn (shift_seq);
1830
      read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1831
      break;
1832 1833
    }

1834
  return read_reg;
1835 1836 1837
}


1838 1839 1840 1841 1842 1843 1844 1845 1846
/* Call back for note_stores to find the hard regs set or clobbered by
   insn.  Data is a bitmap of the hardregs set so far.  */

static void
look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
{
  bitmap regs_set = (bitmap) data;

  if (REG_P (x)
1847
      && HARD_REGISTER_P (x))
1848
    bitmap_set_range (regs_set, REGNO (x), REG_NREGS (x));
1849 1850
}

1851 1852 1853 1854 1855 1856
/* Helper function for replace_read and record_store.
   Attempt to return a value stored in STORE_INFO, from READ_BEGIN
   to one before READ_END bytes read in READ_MODE.  Return NULL
   if not successful.  If REQUIRE_CST is true, return always constant.  */

static rtx
1857
get_stored_val (store_info_t store_info, machine_mode read_mode,
1858 1859 1860
		HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end,
		basic_block bb, bool require_cst)
{
1861
  machine_mode store_mode = GET_MODE (store_info->mem);
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
  int shift;
  int access_size; /* In bytes.  */
  rtx read_reg;

  /* To get here the read is within the boundaries of the write so
     shift will never be negative.  Start out with the shift being in
     bytes.  */
  if (store_mode == BLKmode)
    shift = 0;
  else if (BYTES_BIG_ENDIAN)
    shift = store_info->end - read_end;
  else
    shift = read_begin - store_info->begin;

  access_size = shift + GET_MODE_SIZE (read_mode);

  /* From now on it is bits.  */
  shift *= BITS_PER_UNIT;

  if (shift)
    read_reg = find_shift_sequence (access_size, store_info, read_mode, shift,
    				    optimize_bb_for_speed_p (bb),
				    require_cst);
  else if (store_mode == BLKmode)
    {
      /* The store is a memset (addr, const_val, const_size).  */
      gcc_assert (CONST_INT_P (store_info->rhs));
      store_mode = int_mode_for_mode (read_mode);
      if (store_mode == BLKmode)
	read_reg = NULL_RTX;
      else if (store_info->rhs == const0_rtx)
	read_reg = extract_low_bits (read_mode, store_mode, const0_rtx);
      else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT
	       || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
	read_reg = NULL_RTX;
      else
	{
	  unsigned HOST_WIDE_INT c
	    = INTVAL (store_info->rhs)
	      & (((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1);
	  int shift = BITS_PER_UNIT;
	  while (shift < HOST_BITS_PER_WIDE_INT)
	    {
	      c |= (c << shift);
	      shift <<= 1;
	    }
1908
	  read_reg = gen_int_mode (c, store_mode);
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
	  read_reg = extract_low_bits (read_mode, store_mode, read_reg);
	}
    }
  else if (store_info->const_rhs
	   && (require_cst
	       || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
    read_reg = extract_low_bits (read_mode, store_mode,
				 copy_rtx (store_info->const_rhs));
  else
    read_reg = extract_low_bits (read_mode, store_mode,
				 copy_rtx (store_info->rhs));
  if (require_cst && read_reg && !CONSTANT_P (read_reg))
    read_reg = NULL_RTX;
  return read_reg;
}
1924

1925 1926 1927 1928 1929
/* Take a sequence of:
     A <- r1
     ...
     ... <- A

H.J. Lu committed
1930
   and change it into
1931 1932 1933 1934 1935
   r2 <- r1
   A <- r1
   ...
   ... <- r2

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
   or

   r3 <- extract (r1)
   r3 <- r3 >> shift
   r2 <- extract (r3)
   ... <- r2

   or

   r2 <- extract (r1)
   ... <- r2

   Depending on the alignment and the mode of the store and
   subsequent load.


   The STORE_INFO and STORE_INSN are for the store and READ_INFO
1953 1954 1955 1956
   and READ_INSN are for the read.  Return true if the replacement
   went ok.  */

static bool
H.J. Lu committed
1957
replace_read (store_info_t store_info, insn_info_t store_insn,
1958 1959
	      read_info_t read_info, insn_info_t read_insn, rtx *loc,
	      bitmap regs_live)
1960
{
1961 1962
  machine_mode store_mode = GET_MODE (store_info->mem);
  machine_mode read_mode = GET_MODE (read_info->mem);
1963 1964
  rtx_insn *insns, *this_insn;
  rtx read_reg;
1965
  basic_block bb;
1966

1967 1968 1969
  if (!dbg_cnt (dse))
    return false;

1970 1971 1972 1973 1974
  /* Create a sequence of instructions to set up the read register.
     This sequence goes immediately before the store and its result
     is read by the load.

     We need to keep this in perspective.  We are replacing a read
1975 1976 1977 1978
     with a sequence of insns, but the read will almost certainly be
     in cache, so it is not going to be an expensive one.  Thus, we
     are not willing to do a multi insn shift or worse a subroutine
     call to get rid of the read.  */
1979
  if (dump_file && (dump_flags & TDF_DETAILS))
1980 1981 1982 1983 1984
    fprintf (dump_file, "trying to replace %smode load in insn %d"
	     " from %smode store in insn %d\n",
	     GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
	     GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
  start_sequence ();
1985 1986 1987 1988
  bb = BLOCK_FOR_INSN (read_insn->insn);
  read_reg = get_stored_val (store_info,
			     read_mode, read_info->begin, read_info->end,
			     bb, false);
1989
  if (read_reg == NULL_RTX)
1990
    {
1991
      end_sequence ();
1992
      if (dump_file && (dump_flags & TDF_DETAILS))
1993 1994
	fprintf (dump_file, " -- could not extract bits of stored value\n");
      return false;
1995
    }
1996 1997 1998 1999 2000
  /* Force the value into a new register so that it won't be clobbered
     between the store and the load.  */
  read_reg = copy_to_mode_reg (read_mode, read_reg);
  insns = get_insns ();
  end_sequence ();
2001

2002 2003 2004 2005 2006 2007 2008
  if (insns != NULL_RTX)
    {
      /* Now we have to scan the set of new instructions to see if the
	 sequence contains and sets of hardregs that happened to be
	 live at this point.  For instance, this can happen if one of
	 the insns sets the CC and the CC happened to be live at that
	 point.  This does occasionally happen, see PR 37922.  */
2009
      bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
2010 2011 2012

      for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
	note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
H.J. Lu committed
2013

2014 2015 2016
      bitmap_and_into (regs_set, regs_live);
      if (!bitmap_empty_p (regs_set))
	{
2017
	  if (dump_file && (dump_flags & TDF_DETAILS))
2018
	    {
H.J. Lu committed
2019
	      fprintf (dump_file,
2020 2021 2022
		       "abandoning replacement because sequence clobbers live hardregs:");
	      df_print_regset (dump_file, regs_set);
	    }
H.J. Lu committed
2023

2024 2025 2026 2027 2028 2029
	  BITMAP_FREE (regs_set);
	  return false;
	}
      BITMAP_FREE (regs_set);
    }

2030
  if (validate_change (read_insn->insn, loc, read_reg, 0))
2031
    {
2032
      deferred_change_t change = deferred_change_pool.allocate ();
H.J. Lu committed
2033

2034 2035 2036
      /* Insert this right before the store insn where it will be safe
	 from later insns that might change it before the read.  */
      emit_insn_before (insns, store_insn->insn);
H.J. Lu committed
2037

2038 2039
      /* And now for the kludge part: cselib croaks if you just
	 return at this point.  There are two reasons for this:
H.J. Lu committed
2040

2041 2042
	 1) Cselib has an idea of how many pseudos there are and
	 that does not include the new ones we just added.
H.J. Lu committed
2043

2044 2045 2046
	 2) Cselib does not know about the move insn we added
	 above the store_info, and there is no way to tell it
	 about it, because it has "moved on".
H.J. Lu committed
2047

2048 2049 2050
	 Problem (1) is fixable with a certain amount of engineering.
	 Problem (2) is requires starting the bb from scratch.  This
	 could be expensive.
H.J. Lu committed
2051

2052 2053 2054 2055 2056 2057 2058 2059
	 So we are just going to have to lie.  The move/extraction
	 insns are not really an issue, cselib did not see them.  But
	 the use of the new pseudo read_insn is a real problem because
	 cselib has not scanned this insn.  The way that we solve this
	 problem is that we are just going to put the mem back for now
	 and when we are finished with the block, we undo this.  We
	 keep a table of mems to get rid of.  At the end of the basic
	 block we can put them back.  */
H.J. Lu committed
2060

2061
      *loc = read_info->mem;
2062 2063 2064 2065
      change->next = deferred_change_list;
      deferred_change_list = change;
      change->loc = loc;
      change->reg = read_reg;
H.J. Lu committed
2066

2067 2068 2069
      /* Get rid of the read_info, from the point of view of the
	 rest of dse, play like this read never happened.  */
      read_insn->read_rec = read_info->next;
2070
      read_info_type_pool.remove (read_info);
2071
      if (dump_file && (dump_flags & TDF_DETAILS))
2072 2073 2074 2075 2076
	{
	  fprintf (dump_file, " -- replaced the loaded MEM with ");
	  print_simple_rtl (dump_file, read_reg);
	  fprintf (dump_file, "\n");
	}
2077
      return true;
2078
    }
H.J. Lu committed
2079
  else
2080
    {
2081
      if (dump_file && (dump_flags & TDF_DETAILS))
2082 2083 2084 2085 2086
	{
	  fprintf (dump_file, " -- replacing the loaded MEM with ");
	  print_simple_rtl (dump_file, read_reg);
	  fprintf (dump_file, " led to an invalid instruction\n");
	}
2087 2088 2089 2090
      return false;
    }
}

2091 2092
/* Check the address of MEM *LOC and kill any appropriate stores that may
   be active.  */
2093

2094 2095
static void
check_mem_read_rtx (rtx *loc, bb_info_t bb_info)
2096
{
2097
  rtx mem = *loc, mem_addr;
2098 2099 2100
  insn_info_t insn_info;
  HOST_WIDE_INT offset = 0;
  HOST_WIDE_INT width = 0;
2101
  alias_set_type spill_alias_set = 0;
H.J. Lu committed
2102
  cselib_val *base = NULL;
2103 2104 2105 2106 2107 2108 2109 2110
  int group_id;
  read_info_t read_info;

  insn_info = bb_info->last_insn;

  if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
      || (MEM_VOLATILE_P (mem)))
    {
2111
      if (dump_file && (dump_flags & TDF_DETAILS))
2112 2113 2114
	fprintf (dump_file, " adding wild read, volatile or barrier.\n");
      add_wild_read (bb_info);
      insn_info->cannot_delete = true;
2115
      return;
2116 2117 2118 2119 2120
    }

  /* If it is reading readonly mem, then there can be no conflict with
     another write. */
  if (MEM_READONLY_P (mem))
2121
    return;
2122 2123 2124

  if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
    {
2125
      if (dump_file && (dump_flags & TDF_DETAILS))
2126 2127
	fprintf (dump_file, " adding wild read, canon_address failure.\n");
      add_wild_read (bb_info);
2128
      return;
2129 2130 2131 2132 2133 2134 2135
    }

  if (GET_MODE (mem) == BLKmode)
    width = -1;
  else
    width = GET_MODE_SIZE (GET_MODE (mem));

2136
  read_info = read_info_type_pool.allocate ();
2137 2138 2139 2140 2141 2142 2143
  read_info->group_id = group_id;
  read_info->mem = mem;
  read_info->alias_set = spill_alias_set;
  read_info->begin = offset;
  read_info->end = offset + width;
  read_info->next = insn_info->read_rec;
  insn_info->read_rec = read_info;
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
  /* For alias_set != 0 canon_true_dependence should be never called.  */
  if (spill_alias_set)
    mem_addr = NULL_RTX;
  else
    {
      if (group_id < 0)
	mem_addr = base->val_rtx;
      else
	{
	  group_info_t group
2154
	    = rtx_group_vec[group_id];
2155 2156
	  mem_addr = group->canon_base_addr;
	}
2157 2158 2159 2160
      /* get_addr can only handle VALUE but cannot handle expr like:
	 VALUE + OFFSET, so call get_addr to get original addr for
	 mem_addr before plus_constant.  */
      mem_addr = get_addr (mem_addr);
2161
      if (offset)
2162
	mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
2163
    }
2164

2165
  /* We ignore the clobbers in store_info.  The is mildly aggressive,
2166 2167 2168 2169 2170 2171 2172
     but there really should not be a clobber followed by a read.  */

  if (spill_alias_set)
    {
      insn_info_t i_ptr = active_local_stores;
      insn_info_t last = NULL;

2173
      if (dump_file && (dump_flags & TDF_DETAILS))
2174
	fprintf (dump_file, " processing spill load %d\n",
2175
		 (int) spill_alias_set);
2176 2177 2178 2179 2180 2181 2182 2183

      while (i_ptr)
	{
	  store_info_t store_info = i_ptr->store_rec;

	  /* Skip the clobbers.  */
	  while (!store_info->is_set)
	    store_info = store_info->next;
H.J. Lu committed
2184

2185 2186
	  if (store_info->alias_set == spill_alias_set)
	    {
2187
	      if (dump_file && (dump_flags & TDF_DETAILS))
2188 2189
		dump_insn_info ("removing from active", i_ptr);

2190
	      active_local_stores_len--;
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
	      if (last)
		last->next_local_store = i_ptr->next_local_store;
	      else
		active_local_stores = i_ptr->next_local_store;
	    }
	  else
	    last = i_ptr;
	  i_ptr = i_ptr->next_local_store;
	}
    }
  else if (group_id >= 0)
    {
      /* This is the restricted case where the base is a constant or
	 the frame pointer and offset is a constant.  */
      insn_info_t i_ptr = active_local_stores;
      insn_info_t last = NULL;
H.J. Lu committed
2207

2208
      if (dump_file && (dump_flags & TDF_DETAILS))
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	{
	  if (width == -1)
	    fprintf (dump_file, " processing const load gid=%d[BLK]\n",
		     group_id);
	  else
	    fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
		     group_id, (int)offset, (int)(offset+width));
	}

      while (i_ptr)
	{
	  bool remove = false;
	  store_info_t store_info = i_ptr->store_rec;
H.J. Lu committed
2222

2223 2224 2225
	  /* Skip the clobbers.  */
	  while (!store_info->is_set)
	    store_info = store_info->next;
H.J. Lu committed
2226

2227 2228 2229 2230
	  /* There are three cases here.  */
	  if (store_info->group_id < 0)
	    /* We have a cselib store followed by a read from a
	       const base. */
H.J. Lu committed
2231 2232
	    remove
	      = canon_true_dependence (store_info->mem,
2233 2234
				       GET_MODE (store_info->mem),
				       store_info->mem_addr,
2235
				       mem, mem_addr);
H.J. Lu committed
2236

2237 2238 2239 2240 2241
	  else if (group_id == store_info->group_id)
	    {
	      /* This is a block mode load.  We may get lucky and
		 canon_true_dependence may save the day.  */
	      if (width == -1)
H.J. Lu committed
2242 2243
		remove
		  = canon_true_dependence (store_info->mem,
2244 2245
					   GET_MODE (store_info->mem),
					   store_info->mem_addr,
2246
					   mem, mem_addr);
H.J. Lu committed
2247

2248 2249
	      /* If this read is just reading back something that we just
		 stored, rewrite the read.  */
H.J. Lu committed
2250
	      else
2251 2252
		{
		  if (store_info->rhs
2253 2254 2255 2256 2257 2258 2259
		      && offset >= store_info->begin
		      && offset + width <= store_info->end
		      && all_positions_needed_p (store_info,
						 offset - store_info->begin,
						 width)
		      && replace_read (store_info, i_ptr, read_info,
				       insn_info, loc, bb_info->regs_live))
2260
		    return;
2261

2262 2263
		  /* The bases are the same, just see if the offsets
		     overlap.  */
H.J. Lu committed
2264
		  if ((offset < store_info->end)
2265 2266 2267 2268
		      && (offset + width > store_info->begin))
		    remove = true;
		}
	    }
H.J. Lu committed
2269 2270

	  /* else
2271 2272 2273
	     The else case that is missing here is that the
	     bases are constant but different.  There is nothing
	     to do here because there is no overlap.  */
H.J. Lu committed
2274

2275 2276
	  if (remove)
	    {
2277
	      if (dump_file && (dump_flags & TDF_DETAILS))
2278 2279
		dump_insn_info ("removing from active", i_ptr);

2280
	      active_local_stores_len--;
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
	      if (last)
		last->next_local_store = i_ptr->next_local_store;
	      else
		active_local_stores = i_ptr->next_local_store;
	    }
	  else
	    last = i_ptr;
	  i_ptr = i_ptr->next_local_store;
	}
    }
H.J. Lu committed
2291
  else
2292 2293 2294
    {
      insn_info_t i_ptr = active_local_stores;
      insn_info_t last = NULL;
2295
      if (dump_file && (dump_flags & TDF_DETAILS))
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
	{
	  fprintf (dump_file, " processing cselib load mem:");
	  print_inline_rtx (dump_file, mem, 0);
	  fprintf (dump_file, "\n");
	}

      while (i_ptr)
	{
	  bool remove = false;
	  store_info_t store_info = i_ptr->store_rec;
H.J. Lu committed
2306

2307
	  if (dump_file && (dump_flags & TDF_DETAILS))
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
	    fprintf (dump_file, " processing cselib load against insn %d\n",
		     INSN_UID (i_ptr->insn));

	  /* Skip the clobbers.  */
	  while (!store_info->is_set)
	    store_info = store_info->next;

	  /* If this read is just reading back something that we just
	     stored, rewrite the read.  */
	  if (store_info->rhs
	      && store_info->group_id == -1
	      && store_info->cse_base == base
2320
	      && width != -1
2321 2322 2323 2324 2325 2326
	      && offset >= store_info->begin
	      && offset + width <= store_info->end
	      && all_positions_needed_p (store_info,
					 offset - store_info->begin, width)
	      && replace_read (store_info, i_ptr,  read_info, insn_info, loc,
			       bb_info->regs_live))
2327
	    return;
2328 2329

	  if (!store_info->alias_set)
H.J. Lu committed
2330
	    remove = canon_true_dependence (store_info->mem,
2331 2332
					    GET_MODE (store_info->mem),
					    store_info->mem_addr,
2333
					    mem, mem_addr);
H.J. Lu committed
2334

2335 2336
	  if (remove)
	    {
2337
	      if (dump_file && (dump_flags & TDF_DETAILS))
2338
		dump_insn_info ("removing from active", i_ptr);
H.J. Lu committed
2339

2340
	      active_local_stores_len--;
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
	      if (last)
		last->next_local_store = i_ptr->next_local_store;
	      else
		active_local_stores = i_ptr->next_local_store;
	    }
	  else
	    last = i_ptr;
	  i_ptr = i_ptr->next_local_store;
	}
    }
}

2353
/* A note_uses callback in which DATA points the INSN_INFO for
2354 2355 2356 2357 2358 2359
   as check_mem_read_rtx.  Nullify the pointer if i_m_r_m_r returns
   true for any part of *LOC.  */

static void
check_mem_read_use (rtx *loc, void *data)
{
2360 2361 2362 2363 2364 2365 2366
  subrtx_ptr_iterator::array_type array;
  FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
    {
      rtx *loc = *iter;
      if (MEM_P (*loc))
	check_mem_read_rtx (loc, (bb_info_t) data);
    }
2367 2368
}

2369 2370 2371 2372 2373 2374 2375

/* Get arguments passed to CALL_INSN.  Return TRUE if successful.
   So far it only handles arguments passed in registers.  */

static bool
get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
{
2376 2377
  CUMULATIVE_ARGS args_so_far_v;
  cumulative_args_t args_so_far;
2378 2379 2380
  tree arg;
  int idx;

2381 2382
  INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
  args_so_far = pack_cumulative_args (&args_so_far_v);
2383 2384 2385 2386 2387 2388

  arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
  for (idx = 0;
       arg != void_list_node && idx < nargs;
       arg = TREE_CHAIN (arg), idx++)
    {
2389
      machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2390
      rtx reg, link, tmp;
2391
      reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true);
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
      if (!reg || !REG_P (reg) || GET_MODE (reg) != mode
	  || GET_MODE_CLASS (mode) != MODE_INT)
	return false;

      for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
	   link;
	   link = XEXP (link, 1))
	if (GET_CODE (XEXP (link, 0)) == USE)
	  {
	    args[idx] = XEXP (XEXP (link, 0), 0);
	    if (REG_P (args[idx])
		&& REGNO (args[idx]) == REGNO (reg)
		&& (GET_MODE (args[idx]) == mode
		    || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT
			&& (GET_MODE_SIZE (GET_MODE (args[idx]))
			    <= UNITS_PER_WORD)
			&& (GET_MODE_SIZE (GET_MODE (args[idx]))
			    > GET_MODE_SIZE (mode)))))
	      break;
	  }
      if (!link)
	return false;

      tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
      if (GET_MODE (args[idx]) != mode)
	{
	  if (!tmp || !CONST_INT_P (tmp))
	    return false;
2420
	  tmp = gen_int_mode (INTVAL (tmp), mode);
2421 2422 2423 2424
	}
      if (tmp)
	args[idx] = tmp;

2425
      targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true);
2426 2427 2428 2429 2430 2431
    }
  if (arg != void_list_node || idx != nargs)
    return false;
  return true;
}

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
/* Return a bitmap of the fixed registers contained in IN.  */

static bitmap
copy_fixed_regs (const_bitmap in)
{
  bitmap ret;

  ret = ALLOC_REG_SET (NULL);
  bitmap_and (ret, in, fixed_reg_set_regset);
  return ret;
}
2443

2444 2445 2446 2447 2448
/* Apply record_store to all candidate stores in INSN.  Mark INSN
   if some part of it is not a candidate store and assigns to a
   non-register target.  */

static void
David Malcolm committed
2449
scan_insn (bb_info_t bb_info, rtx_insn *insn)
2450 2451
{
  rtx body;
2452
  insn_info_type *insn_info = insn_info_type_pool.allocate ();
2453
  int mems_found = 0;
2454
  memset (insn_info, 0, sizeof (struct insn_info_type));
2455

2456
  if (dump_file && (dump_flags & TDF_DETAILS))
2457 2458 2459 2460 2461 2462
    fprintf (dump_file, "\n**scanning insn=%d\n",
	     INSN_UID (insn));

  insn_info->prev_insn = bb_info->last_insn;
  insn_info->insn = insn;
  bb_info->last_insn = insn_info;
H.J. Lu committed
2463

2464 2465 2466 2467 2468
  if (DEBUG_INSN_P (insn))
    {
      insn_info->cannot_delete = true;
      return;
    }
2469 2470 2471 2472 2473 2474

  /* Look at all of the uses in the insn.  */
  note_uses (&PATTERN (insn), check_mem_read_use, bb_info);

  if (CALL_P (insn))
    {
2475 2476 2477
      bool const_call;
      tree memset_call = NULL_TREE;

2478
      insn_info->cannot_delete = true;
2479

2480
      /* Const functions cannot do anything bad i.e. read memory,
2481
	 however, they can read their parameters which may have
2482 2483 2484 2485 2486
	 been pushed onto the stack.
	 memset and bzero don't read memory either.  */
      const_call = RTL_CONST_CALL_P (insn);
      if (!const_call)
	{
2487 2488
	  rtx call = get_call_rtx_from (insn);
	  if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
	    {
	      rtx symbol = XEXP (XEXP (call, 0), 0);
	      if (SYMBOL_REF_DECL (symbol)
		  && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
		{
		  if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
		       == BUILT_IN_NORMAL
		       && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
			   == BUILT_IN_MEMSET))
		      || SYMBOL_REF_DECL (symbol) == block_clear_fn)
		    memset_call = SYMBOL_REF_DECL (symbol);
		}
	    }
	}
      if (const_call || memset_call)
2504 2505 2506 2507
	{
	  insn_info_t i_ptr = active_local_stores;
	  insn_info_t last = NULL;

2508
	  if (dump_file && (dump_flags & TDF_DETAILS))
2509 2510
	    fprintf (dump_file, "%s call %d\n",
		     const_call ? "const" : "memset", INSN_UID (insn));
2511

2512
	  /* See the head comment of the frame_read field.  */
2513 2514 2515 2516 2517 2518 2519
	  if (reload_completed
	      /* Tail calls are storing their arguments using
		 arg pointer.  If it is a frame pointer on the target,
		 even before reload we need to kill frame pointer based
		 stores.  */
	      || (SIBLING_CALL_P (insn)
		  && HARD_FRAME_POINTER_IS_ARG_POINTER))
2520 2521 2522 2523
	    insn_info->frame_read = true;

	  /* Loop over the active stores and remove those which are
	     killed by the const function call.  */
2524 2525
	  while (i_ptr)
	    {
2526 2527 2528
	      bool remove_store = false;

	      /* The stack pointer based stores are always killed.  */
2529
	      if (i_ptr->stack_pointer_based)
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
	        remove_store = true;

	      /* If the frame is read, the frame related stores are killed.  */
	      else if (insn_info->frame_read)
		{
		  store_info_t store_info = i_ptr->store_rec;

		  /* Skip the clobbers.  */
		  while (!store_info->is_set)
		    store_info = store_info->next;

		  if (store_info->group_id >= 0
2542
		      && rtx_group_vec[store_info->group_id]->frame_related)
2543 2544 2545 2546
		    remove_store = true;
		}

	      if (remove_store)
2547
		{
2548
		  if (dump_file && (dump_flags & TDF_DETAILS))
2549
		    dump_insn_info ("removing from active", i_ptr);
H.J. Lu committed
2550

2551
		  active_local_stores_len--;
2552 2553 2554 2555 2556 2557 2558
		  if (last)
		    last->next_local_store = i_ptr->next_local_store;
		  else
		    active_local_stores = i_ptr->next_local_store;
		}
	      else
		last = i_ptr;
2559

2560 2561
	      i_ptr = i_ptr->next_local_store;
	    }
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571

	  if (memset_call)
	    {
	      rtx args[3];
	      if (get_call_args (insn, memset_call, args, 3)
		  && CONST_INT_P (args[1])
		  && CONST_INT_P (args[2])
		  && INTVAL (args[2]) > 0)
		{
		  rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2572
		  set_mem_size (mem, INTVAL (args[2]));
2573
		  body = gen_rtx_SET (mem, args[1]);
2574
		  mems_found += record_store (body, bb_info);
2575
		  if (dump_file && (dump_flags & TDF_DETAILS))
2576 2577 2578
		    fprintf (dump_file, "handling memset as BLKmode store\n");
		  if (mems_found == 1)
		    {
2579 2580 2581 2582 2583 2584
		      if (active_local_stores_len++
			  >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
			{
			  active_local_stores_len = 1;
			  active_local_stores = NULL;
			}
2585 2586
		      insn_info->fixed_regs_live
			= copy_fixed_regs (bb_info->regs_live);
2587 2588 2589 2590 2591
		      insn_info->next_local_store = active_local_stores;
		      active_local_stores = insn_info;
		    }
		}
	    }
2592
	}
2593 2594 2595 2596 2597
      else if (SIBLING_CALL_P (insn) && reload_completed)
	/* Arguments for a sibling call that are pushed to memory are passed
	   using the incoming argument pointer of the current function.  After
	   reload that might be (and likely is) frame pointer based.  */
	add_wild_read (bb_info);
2598
      else
2599 2600 2601
	/* Every other call, including pure functions, may read any memory
           that is not relative to the frame.  */
        add_non_frame_wild_read (bb_info);
2602

2603 2604 2605 2606 2607 2608
      return;
    }

  /* Assuming that there are sets in these insns, we cannot delete
     them.  */
  if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2609
      || volatile_refs_p (PATTERN (insn))
2610
      || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2611 2612 2613
      || (RTX_FRAME_RELATED_P (insn))
      || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
    insn_info->cannot_delete = true;
H.J. Lu committed
2614

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
  body = PATTERN (insn);
  if (GET_CODE (body) == PARALLEL)
    {
      int i;
      for (i = 0; i < XVECLEN (body, 0); i++)
	mems_found += record_store (XVECEXP (body, 0, i), bb_info);
    }
  else
    mems_found += record_store (body, bb_info);

2625
  if (dump_file && (dump_flags & TDF_DETAILS))
H.J. Lu committed
2626
    fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2627 2628
	     mems_found, insn_info->cannot_delete ? "true" : "false");

2629 2630 2631 2632 2633
  /* If we found some sets of mems, add it into the active_local_stores so
     that it can be locally deleted if found dead or used for
     replace_read and redundant constant store elimination.  Otherwise mark
     it as cannot delete.  This simplifies the processing later.  */
  if (mems_found == 1)
2634
    {
2635 2636 2637 2638 2639 2640
      if (active_local_stores_len++
	  >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
	{
	  active_local_stores_len = 1;
	  active_local_stores = NULL;
	}
2641
      insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
      insn_info->next_local_store = active_local_stores;
      active_local_stores = insn_info;
    }
  else
    insn_info->cannot_delete = true;
}


/* Remove BASE from the set of active_local_stores.  This is a
   callback from cselib that is used to get rid of the stores in
   active_local_stores.  */

static void
remove_useless_values (cselib_val *base)
{
  insn_info_t insn_info = active_local_stores;
  insn_info_t last = NULL;

  while (insn_info)
    {
      store_info_t store_info = insn_info->store_rec;
2663
      bool del = false;
2664 2665 2666 2667 2668

      /* If ANY of the store_infos match the cselib group that is
	 being deleted, then the insn can not be deleted.  */
      while (store_info)
	{
H.J. Lu committed
2669
	  if ((store_info->group_id == -1)
2670 2671
	      && (store_info->cse_base == base))
	    {
2672
	      del = true;
2673 2674 2675 2676 2677
	      break;
	    }
	  store_info = store_info->next;
	}

2678
      if (del)
2679
	{
2680
	  active_local_stores_len--;
2681 2682 2683 2684 2685 2686 2687 2688
	  if (last)
	    last->next_local_store = insn_info->next_local_store;
	  else
	    active_local_stores = insn_info->next_local_store;
	  free_store_info (insn_info);
	}
      else
	last = insn_info;
H.J. Lu committed
2689

2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
      insn_info = insn_info->next_local_store;
    }
}


/* Do all of step 1.  */

static void
dse_step1 (void)
{
  basic_block bb;
2701
  bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
H.J. Lu committed
2702

2703
  cselib_init (0);
2704 2705 2706 2707
  all_blocks = BITMAP_ALLOC (NULL);
  bitmap_set_bit (all_blocks, ENTRY_BLOCK);
  bitmap_set_bit (all_blocks, EXIT_BLOCK);

2708
  FOR_ALL_BB_FN (bb, cfun)
2709 2710
    {
      insn_info_t ptr;
2711
      bb_info_t bb_info = dse_bb_info_type_pool.allocate ();
2712

2713
      memset (bb_info, 0, sizeof (dse_bb_info_type));
2714
      bitmap_set_bit (all_blocks, bb->index);
2715 2716 2717 2718
      bb_info->regs_live = regs_live;

      bitmap_copy (regs_live, DF_LR_IN (bb));
      df_simulate_initialize_forwards (bb, regs_live);
2719 2720 2721 2722 2723 2724

      bb_table[bb->index] = bb_info;
      cselib_discard_hook = remove_useless_values;

      if (bb->index >= NUM_FIXED_BLOCKS)
	{
David Malcolm committed
2725
	  rtx_insn *insn;
2726 2727

	  active_local_stores = NULL;
2728
	  active_local_stores_len = 0;
2729
	  cselib_clear_table ();
H.J. Lu committed
2730

2731 2732 2733 2734 2735 2736
	  /* Scan the insns.  */
	  FOR_BB_INSNS (bb, insn)
	    {
	      if (INSN_P (insn))
		scan_insn (bb_info, insn);
	      cselib_process_insn (insn);
2737 2738
	      if (INSN_P (insn))
		df_simulate_one_insn_forwards (bb, insn, regs_live);
2739
	    }
H.J. Lu committed
2740

2741 2742 2743 2744 2745 2746
	  /* This is something of a hack, because the global algorithm
	     is supposed to take care of the case where stores go dead
	     at the end of the function.  However, the global
	     algorithm must take a more conservative view of block
	     mode reads than the local alg does.  So to get the case
	     where you have a store to the frame followed by a non
2747
	     overlapping block more read, we look at the active local
2748 2749 2750 2751 2752
	     stores at the end of the function and delete all of the
	     frame and spill based ones.  */
	  if (stores_off_frame_dead_at_return
	      && (EDGE_COUNT (bb->succs) == 0
		  || (single_succ_p (bb)
2753
		      && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
2754
		      && ! crtl->calls_eh_return)))
2755 2756 2757 2758 2759 2760 2761 2762 2763
	    {
	      insn_info_t i_ptr = active_local_stores;
	      while (i_ptr)
		{
		  store_info_t store_info = i_ptr->store_rec;

		  /* Skip the clobbers.  */
		  while (!store_info->is_set)
		    store_info = store_info->next;
2764
		  if (store_info->alias_set && !i_ptr->cannot_delete)
2765
		    delete_dead_store_insn (i_ptr);
H.J. Lu committed
2766
		  else
2767 2768
		    if (store_info->group_id >= 0)
		      {
H.J. Lu committed
2769
			group_info_t group
2770
			  = rtx_group_vec[store_info->group_id];
2771
			if (group->frame_related && !i_ptr->cannot_delete)
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
			  delete_dead_store_insn (i_ptr);
		      }

		  i_ptr = i_ptr->next_local_store;
		}
	    }

	  /* Get rid of the loads that were discovered in
	     replace_read.  Cselib is finished with this block.  */
	  while (deferred_change_list)
	    {
	      deferred_change_t next = deferred_change_list->next;

	      /* There is no reason to validate this change.  That was
		 done earlier.  */
	      *deferred_change_list->loc = deferred_change_list->reg;
2788
	      deferred_change_pool.remove (deferred_change_list);
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
	      deferred_change_list = next;
	    }

	  /* Get rid of all of the cselib based store_infos in this
	     block and mark the containing insns as not being
	     deletable.  */
	  ptr = bb_info->last_insn;
	  while (ptr)
	    {
	      if (ptr->contains_cselib_groups)
2799 2800 2801 2802 2803 2804 2805 2806 2807
		{
		  store_info_t s_info = ptr->store_rec;
		  while (s_info && !s_info->is_set)
		    s_info = s_info->next;
		  if (s_info
		      && s_info->redundant_reason
		      && s_info->redundant_reason->insn
		      && !ptr->cannot_delete)
		    {
2808
		      if (dump_file && (dump_flags & TDF_DETAILS))
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
			fprintf (dump_file, "Locally deleting insn %d "
					    "because insn %d stores the "
					    "same value and couldn't be "
					    "eliminated\n",
				 INSN_UID (ptr->insn),
				 INSN_UID (s_info->redundant_reason->insn));
		      delete_dead_store_insn (ptr);
		    }
		  free_store_info (ptr);
		}
	      else
		{
		  store_info_t s_info;

		  /* Free at least positions_needed bitmaps.  */
		  for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
		    if (s_info->is_large)
		      {
2827
			BITMAP_FREE (s_info->positions_needed.large.bmap);
2828 2829 2830
			s_info->is_large = false;
		      }
		}
2831 2832 2833
	      ptr = ptr->prev_insn;
	    }

2834
	  cse_store_info_pool.release ();
2835
	}
2836
      bb_info->regs_live = NULL;
2837 2838
    }

2839
  BITMAP_FREE (regs_live);
2840
  cselib_finish ();
2841
  rtx_group_table->empty ();
2842 2843 2844 2845 2846 2847 2848 2849
}


/*----------------------------------------------------------------------------
   Second step.

   Assign each byte position in the stores that we are going to
   analyze globally to a position in the bitmaps.  Returns true if
2850
   there are any bit positions assigned.
2851 2852 2853 2854 2855 2856 2857 2858
----------------------------------------------------------------------------*/

static void
dse_step2_init (void)
{
  unsigned int i;
  group_info_t group;

2859
  FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2860 2861 2862 2863 2864 2865 2866 2867 2868
    {
      /* For all non stack related bases, we only consider a store to
	 be deletable if there are two or more stores for that
	 position.  This is because it takes one store to make the
	 other store redundant.  However, for the stores that are
	 stack related, we consider them if there is only one store
	 for the position.  We do this because the stack related
	 stores can be deleted if their is no read between them and
	 the end of the function.
H.J. Lu committed
2869

2870 2871 2872 2873 2874 2875 2876 2877 2878
	 To make this work in the current framework, we take the stack
	 related bases add all of the bits from store1 into store2.
	 This has the effect of making the eligible even if there is
	 only one store.   */

      if (stores_off_frame_dead_at_return && group->frame_related)
	{
	  bitmap_ior_into (group->store2_n, group->store1_n);
	  bitmap_ior_into (group->store2_p, group->store1_p);
2879
	  if (dump_file && (dump_flags & TDF_DETAILS))
H.J. Lu committed
2880
	    fprintf (dump_file, "group %d is frame related ", i);
2881 2882 2883
	}

      group->offset_map_size_n++;
2884 2885
      group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
				       group->offset_map_size_n);
2886
      group->offset_map_size_p++;
2887 2888
      group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
				       group->offset_map_size_p);
2889
      group->process_globally = false;
2890
      if (dump_file && (dump_flags & TDF_DETAILS))
2891
	{
H.J. Lu committed
2892
	  fprintf (dump_file, "group %d(%d+%d): ", i,
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
		   (int)bitmap_count_bits (group->store2_n),
		   (int)bitmap_count_bits (group->store2_p));
	  bitmap_print (dump_file, group->store2_n, "n ", " ");
	  bitmap_print (dump_file, group->store2_p, "p ", "\n");
	}
    }
}


/* Init the offset tables for the normal case.  */

static bool
dse_step2_nospill (void)
{
  unsigned int i;
  group_info_t group;
  /* Position 0 is unused because 0 is used in the maps to mean
     unused.  */
  current_position = 1;
2912
  FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2913 2914 2915 2916 2917 2918 2919
    {
      bitmap_iterator bi;
      unsigned int j;

      if (group == clear_alias_group)
	continue;

2920 2921
      memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
      memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
2922 2923 2924 2925 2926
      bitmap_clear (group->group_kill);

      EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
	{
	  bitmap_set_bit (group->group_kill, current_position);
2927 2928
          if (bitmap_bit_p (group->escaped_n, j))
	    bitmap_set_bit (kill_on_calls, current_position);
2929 2930 2931 2932 2933
	  group->offset_map_n[j] = current_position++;
	  group->process_globally = true;
	}
      EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
	{
H.J. Lu committed
2934
	  bitmap_set_bit (group->group_kill, current_position);
2935 2936
          if (bitmap_bit_p (group->escaped_p, j))
	    bitmap_set_bit (kill_on_calls, current_position);
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
	  group->offset_map_p[j] = current_position++;
	  group->process_globally = true;
	}
    }
  return current_position != 1;
}



/*----------------------------------------------------------------------------
  Third step.
H.J. Lu committed
2948

2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
  Build the bit vectors for the transfer functions.
----------------------------------------------------------------------------*/


/* Look up the bitmap index for OFFSET in GROUP_INFO.  If it is not
   there, return 0.  */

static int
get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
{
  if (offset < 0)
    {
      HOST_WIDE_INT offset_p = -offset;
      if (offset_p >= group_info->offset_map_size_n)
	return 0;
      return group_info->offset_map_n[offset_p];
    }
  else
    {
      if (offset >= group_info->offset_map_size_p)
	return 0;
      return group_info->offset_map_p[offset];
    }
}


/* Process the STORE_INFOs into the bitmaps into GEN and KILL.  KILL
   may be NULL. */

H.J. Lu committed
2978
static void
2979 2980 2981 2982 2983
scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
{
  while (store_info)
    {
      HOST_WIDE_INT i;
H.J. Lu committed
2984
      group_info_t group_info
2985
	= rtx_group_vec[store_info->group_id];
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
      if (group_info->process_globally)
	for (i = store_info->begin; i < store_info->end; i++)
	  {
	    int index = get_bitmap_index (group_info, i);
	    if (index != 0)
	      {
		bitmap_set_bit (gen, index);
		if (kill)
		  bitmap_clear_bit (kill, index);
	      }
	  }
      store_info = store_info->next;
    }
}


/* Process the STORE_INFOs into the bitmaps into GEN and KILL.  KILL
   may be NULL. */

H.J. Lu committed
3005
static void
3006 3007 3008 3009 3010 3011
scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
{
  while (store_info)
    {
      if (store_info->alias_set)
	{
H.J. Lu committed
3012
	  int index = get_bitmap_index (clear_alias_group,
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
					store_info->alias_set);
	  if (index != 0)
	    {
	      bitmap_set_bit (gen, index);
	      if (kill)
		bitmap_clear_bit (kill, index);
	    }
	}
      store_info = store_info->next;
    }
}


/* Process the READ_INFOs into the bitmaps into GEN and KILL.  KILL
   may be NULL.  */

static void
scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
{
  read_info_t read_info = insn_info->read_rec;
  int i;
  group_info_t group;

3036 3037 3038
  /* If this insn reads the frame, kill all the frame related stores.  */
  if (insn_info->frame_read)
    {
3039
      FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3040 3041 3042 3043
	if (group->process_globally && group->frame_related)
	  {
	    if (kill)
	      bitmap_ior_into (kill, group->group_kill);
H.J. Lu committed
3044
	    bitmap_and_compl_into (gen, group->group_kill);
3045 3046
	  }
    }
3047 3048 3049 3050 3051 3052 3053
  if (insn_info->non_frame_wild_read)
    {
      /* Kill all non-frame related stores.  Kill all stores of variables that
         escape.  */
      if (kill)
        bitmap_ior_into (kill, kill_on_calls);
      bitmap_and_compl_into (gen, kill_on_calls);
3054
      FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3055 3056 3057 3058 3059 3060 3061
	if (group->process_globally && !group->frame_related)
	  {
	    if (kill)
	      bitmap_ior_into (kill, group->group_kill);
	    bitmap_and_compl_into (gen, group->group_kill);
	  }
    }
3062 3063
  while (read_info)
    {
3064
      FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
	{
	  if (group->process_globally)
	    {
	      if (i == read_info->group_id)
		{
		  if (read_info->begin > read_info->end)
		    {
		      /* Begin > end for block mode reads.  */
		      if (kill)
			bitmap_ior_into (kill, group->group_kill);
		      bitmap_and_compl_into (gen, group->group_kill);
		    }
		  else
		    {
		      /* The groups are the same, just process the
			 offsets.  */
		      HOST_WIDE_INT j;
		      for (j = read_info->begin; j < read_info->end; j++)
			{
			  int index = get_bitmap_index (group, j);
			  if (index != 0)
			    {
			      if (kill)
				bitmap_set_bit (kill, index);
			      bitmap_clear_bit (gen, index);
			    }
			}
		    }
		}
	      else
		{
		  /* The groups are different, if the alias sets
		     conflict, clear the entire group.  We only need
		     to apply this test if the read_info is a cselib
		     read.  Anything with a constant base cannot alias
		     something else with a different constant
		     base.  */
		  if ((read_info->group_id < 0)
H.J. Lu committed
3103
		      && canon_true_dependence (group->base_mem,
3104
						GET_MODE (group->base_mem),
3105
						group->canon_base_addr,
3106
						read_info->mem, NULL_RTX))
3107 3108 3109 3110 3111 3112 3113 3114
		    {
		      if (kill)
			bitmap_ior_into (kill, group->group_kill);
		      bitmap_and_compl_into (gen, group->group_kill);
		    }
		}
	    }
	}
H.J. Lu committed
3115

3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
      read_info = read_info->next;
    }
}

/* Process the READ_INFOs into the bitmaps into GEN and KILL.  KILL
   may be NULL.  */

static void
scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
{
  while (read_info)
    {
      if (read_info->alias_set)
	{
H.J. Lu committed
3130
	  int index = get_bitmap_index (clear_alias_group,
3131 3132 3133 3134 3135 3136 3137 3138
					read_info->alias_set);
	  if (index != 0)
	    {
	      if (kill)
		bitmap_set_bit (kill, index);
	      bitmap_clear_bit (gen, index);
	    }
	}
H.J. Lu committed
3139

3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
      read_info = read_info->next;
    }
}


/* Return the insn in BB_INFO before the first wild read or if there
   are no wild reads in the block, return the last insn.  */

static insn_info_t
find_insn_before_first_wild_read (bb_info_t bb_info)
{
  insn_info_t insn_info = bb_info->last_insn;
  insn_info_t last_wild_read = NULL;

  while (insn_info)
    {
      if (insn_info->wild_read)
	{
	  last_wild_read = insn_info->prev_insn;
	  /* Block starts with wild read.  */
	  if (!last_wild_read)
	    return NULL;
	}

      insn_info = insn_info->prev_insn;
    }

  if (last_wild_read)
    return last_wild_read;
  else
    return bb_info->last_insn;
}


/* Scan the insns in BB_INFO starting at PTR and going to the top of
   the block in order to build the gen and kill sets for the block.
   We start at ptr which may be the last insn in the block or may be
   the first insn with a wild read.  In the latter case we are able to
   skip the rest of the block because it just does not matter:
   anything that happens is hidden by the wild read.  */

static void
dse_step3_scan (bool for_spills, basic_block bb)
{
  bb_info_t bb_info = bb_table[bb->index];
  insn_info_t insn_info;

  if (for_spills)
    /* There are no wild reads in the spill case.  */
    insn_info = bb_info->last_insn;
  else
    insn_info = find_insn_before_first_wild_read (bb_info);
H.J. Lu committed
3192

3193 3194 3195 3196 3197 3198 3199
  /* In the spill case or in the no_spill case if there is no wild
     read in the block, we will need a kill set.  */
  if (insn_info == bb_info->last_insn)
    {
      if (bb_info->kill)
	bitmap_clear (bb_info->kill);
      else
3200
	bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
3201
    }
H.J. Lu committed
3202
  else
3203 3204 3205 3206 3207 3208 3209 3210 3211
    if (bb_info->kill)
      BITMAP_FREE (bb_info->kill);

  while (insn_info)
    {
      /* There may have been code deleted by the dce pass run before
	 this phase.  */
      if (insn_info->insn && INSN_P (insn_info->insn))
	{
H.J. Lu committed
3212
	  /* Process the read(s) last.  */
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
	  if (for_spills)
	    {
	      scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
	      scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
	    }
	  else
	    {
	      scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
	      scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
	    }
H.J. Lu committed
3223
	}
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237

      insn_info = insn_info->prev_insn;
    }
}


/* Set the gen set of the exit block, and also any block with no
   successors that does not have a wild read.  */

static void
dse_step3_exit_block_scan (bb_info_t bb_info)
{
  /* The gen set is all 0's for the exit block except for the
     frame_pointer_group.  */
H.J. Lu committed
3238

3239 3240 3241 3242
  if (stores_off_frame_dead_at_return)
    {
      unsigned int i;
      group_info_t group;
H.J. Lu committed
3243

3244
      FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
	{
	  if (group->process_globally && group->frame_related)
	    bitmap_ior_into (bb_info->gen, group->group_kill);
	}
    }
}


/* Find all of the blocks that are not backwards reachable from the
   exit block or any block with no successors (BB).  These are the
   infinite loops or infinite self loops.  These blocks will still
   have their bits set in UNREACHABLE_BLOCKS.  */

static void
mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
{
  edge e;
  edge_iterator ei;

3264
  if (bitmap_bit_p (unreachable_blocks, bb->index))
3265
    {
3266
      bitmap_clear_bit (unreachable_blocks, bb->index);
3267
      FOR_EACH_EDGE (e, ei, bb->preds)
H.J. Lu committed
3268
	{
3269
	  mark_reachable_blocks (unreachable_blocks, e->src);
H.J. Lu committed
3270
	}
3271 3272 3273 3274 3275 3276 3277 3278 3279
    }
}

/* Build the transfer functions for the function.  */

static void
dse_step3 (bool for_spills)
{
  basic_block bb;
3280
  sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
3281 3282 3283
  sbitmap_iterator sbi;
  bitmap all_ones = NULL;
  unsigned int i;
H.J. Lu committed
3284

3285
  bitmap_ones (unreachable_blocks);
3286

3287
  FOR_ALL_BB_FN (bb, cfun)
3288 3289 3290 3291 3292
    {
      bb_info_t bb_info = bb_table[bb->index];
      if (bb_info->gen)
	bitmap_clear (bb_info->gen);
      else
3293
	bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314

      if (bb->index == ENTRY_BLOCK)
	;
      else if (bb->index == EXIT_BLOCK)
	dse_step3_exit_block_scan (bb_info);
      else
	dse_step3_scan (for_spills, bb);
      if (EDGE_COUNT (bb->succs) == 0)
	mark_reachable_blocks (unreachable_blocks, bb);

      /* If this is the second time dataflow is run, delete the old
	 sets.  */
      if (bb_info->in)
	BITMAP_FREE (bb_info->in);
      if (bb_info->out)
	BITMAP_FREE (bb_info->out);
    }

  /* For any block in an infinite loop, we must initialize the out set
     to all ones.  This could be expensive, but almost never occurs in
     practice. However, it is common in regression tests.  */
3315
  EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
3316 3317 3318 3319 3320 3321 3322 3323 3324
    {
      if (bitmap_bit_p (all_blocks, i))
	{
	  bb_info_t bb_info = bb_table[i];
	  if (!all_ones)
	    {
	      unsigned int j;
	      group_info_t group;

3325
	      all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
3326
	      FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
3327 3328 3329 3330
		bitmap_ior_into (all_ones, group->group_kill);
	    }
	  if (!bb_info->out)
	    {
3331
	      bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
	      bitmap_copy (bb_info->out, all_ones);
	    }
	}
    }

  if (all_ones)
    BITMAP_FREE (all_ones);
  sbitmap_free (unreachable_blocks);
}



/*----------------------------------------------------------------------------
   Fourth step.

   Solve the bitvector equations.
----------------------------------------------------------------------------*/


/* Confluence function for blocks with no successors.  Create an out
   set from the gen set of the exit block.  This block logically has
   the exit block as a successor.  */



static void
dse_confluence_0 (basic_block bb)
{
  bb_info_t bb_info = bb_table[bb->index];

  if (bb->index == EXIT_BLOCK)
    return;

  if (!bb_info->out)
    {
3367
      bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3368 3369 3370 3371 3372 3373 3374 3375
      bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
    }
}

/* Propagate the information from the in set of the dest of E to the
   out set of the src of E.  If the various in or out sets are not
   there, that means they are all ones.  */

3376
static bool
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
dse_confluence_n (edge e)
{
  bb_info_t src_info = bb_table[e->src->index];
  bb_info_t dest_info = bb_table[e->dest->index];

  if (dest_info->in)
    {
      if (src_info->out)
	bitmap_and_into (src_info->out, dest_info->in);
      else
	{
3388
	  src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3389 3390 3391
	  bitmap_copy (src_info->out, dest_info->in);
	}
    }
3392
  return true;
3393 3394 3395 3396
}


/* Propagate the info from the out to the in set of BB_INDEX's basic
H.J. Lu committed
3397
   block.  There are three cases:
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422

   1) The block has no kill set.  In this case the kill set is all
   ones.  It does not matter what the out set of the block is, none of
   the info can reach the top.  The only thing that reaches the top is
   the gen set and we just copy the set.

   2) There is a kill set but no out set and bb has successors.  In
   this case we just return. Eventually an out set will be created and
   it is better to wait than to create a set of ones.

   3) There is both a kill and out set.  We apply the obvious transfer
   function.
*/

static bool
dse_transfer_function (int bb_index)
{
  bb_info_t bb_info = bb_table[bb_index];

  if (bb_info->kill)
    {
      if (bb_info->out)
	{
	  /* Case 3 above.  */
	  if (bb_info->in)
H.J. Lu committed
3423
	    return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3424 3425 3426
					 bb_info->out, bb_info->kill);
	  else
	    {
3427
	      bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
H.J. Lu committed
3428
	      bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
				    bb_info->out, bb_info->kill);
	      return true;
	    }
	}
      else
	/* Case 2 above.  */
	return false;
    }
  else
    {
      /* Case 1 above.  If there is already an in set, nothing
	 happens.  */
      if (bb_info->in)
	return false;
      else
	{
3445
	  bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
	  bitmap_copy (bb_info->in, bb_info->gen);
	  return true;
	}
    }
}

/* Solve the dataflow equations.  */

static void
dse_step4 (void)
{
H.J. Lu committed
3457 3458 3459
  df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
		      dse_confluence_n, dse_transfer_function,
	   	      all_blocks, df_get_postorder (DF_BACKWARD),
3460
		      df_get_n_blocks (DF_BACKWARD));
3461
  if (dump_file && (dump_flags & TDF_DETAILS))
3462 3463 3464 3465
    {
      basic_block bb;

      fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3466
      FOR_ALL_BB_FN (bb, cfun)
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
	{
	  bb_info_t bb_info = bb_table[bb->index];

	  df_print_bb_index (bb, dump_file);
	  if (bb_info->in)
	    bitmap_print (dump_file, bb_info->in, "  in:   ", "\n");
	  else
	    fprintf (dump_file, "  in:   *MISSING*\n");
	  if (bb_info->gen)
	    bitmap_print (dump_file, bb_info->gen, "  gen:  ", "\n");
	  else
	    fprintf (dump_file, "  gen:  *MISSING*\n");
	  if (bb_info->kill)
	    bitmap_print (dump_file, bb_info->kill, "  kill: ", "\n");
	  else
	    fprintf (dump_file, "  kill: *MISSING*\n");
	  if (bb_info->out)
	    bitmap_print (dump_file, bb_info->out, "  out:  ", "\n");
	  else
	    fprintf (dump_file, "  out:  *MISSING*\n\n");
	}
    }
}



/*----------------------------------------------------------------------------
   Fifth step.

3496
   Delete the stores that can only be deleted using the global information.
3497 3498 3499 3500 3501 3502 3503
----------------------------------------------------------------------------*/


static void
dse_step5_nospill (void)
{
  basic_block bb;
3504
  FOR_EACH_BB_FN (bb, cfun)
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
    {
      bb_info_t bb_info = bb_table[bb->index];
      insn_info_t insn_info = bb_info->last_insn;
      bitmap v = bb_info->out;

      while (insn_info)
	{
	  bool deleted = false;
	  if (dump_file && insn_info->insn)
	    {
	      fprintf (dump_file, "starting to process insn %d\n",
		       INSN_UID (insn_info->insn));
	      bitmap_print (dump_file, v, "  v:  ", "\n");
	    }

	  /* There may have been code deleted by the dce pass run before
	     this phase.  */
H.J. Lu committed
3522
	  if (insn_info->insn
3523 3524 3525 3526 3527 3528 3529 3530
	      && INSN_P (insn_info->insn)
	      && (!insn_info->cannot_delete)
	      && (!bitmap_empty_p (v)))
	    {
	      store_info_t store_info = insn_info->store_rec;

	      /* Try to delete the current insn.  */
	      deleted = true;
H.J. Lu committed
3531

3532 3533 3534 3535 3536 3537 3538 3539 3540
	      /* Skip the clobbers.  */
	      while (!store_info->is_set)
		store_info = store_info->next;

	      if (store_info->alias_set)
		deleted = false;
	      else
		{
		  HOST_WIDE_INT i;
H.J. Lu committed
3541
		  group_info_t group_info
3542
		    = rtx_group_vec[store_info->group_id];
H.J. Lu committed
3543

3544 3545 3546
		  for (i = store_info->begin; i < store_info->end; i++)
		    {
		      int index = get_bitmap_index (group_info, i);
H.J. Lu committed
3547

3548
		      if (dump_file && (dump_flags & TDF_DETAILS))
H.J. Lu committed
3549
			fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
3550 3551
		      if (index == 0 || !bitmap_bit_p (v, index))
			{
3552
			  if (dump_file && (dump_flags & TDF_DETAILS))
H.J. Lu committed
3553
			    fprintf (dump_file, "failing at i = %d\n", (int)i);
3554 3555 3556 3557 3558 3559 3560
			  deleted = false;
			  break;
			}
		    }
		}
	      if (deleted)
		{
3561 3562
		  if (dbg_cnt (dse)
		      && check_for_inc_dec_1 (insn_info))
3563 3564 3565 3566 3567 3568 3569 3570
		    {
		      delete_insn (insn_info->insn);
		      insn_info->insn = NULL;
		      globally_deleted++;
		    }
		}
	    }
	  /* We do want to process the local info if the insn was
3571
	     deleted.  For instance, if the insn did a wild read, we
3572
	     no longer need to trash the info.  */
H.J. Lu committed
3573
	  if (insn_info->insn
3574 3575 3576 3577 3578 3579
	      && INSN_P (insn_info->insn)
	      && (!deleted))
	    {
	      scan_stores_nospill (insn_info->store_rec, v, NULL);
	      if (insn_info->wild_read)
		{
3580
		  if (dump_file && (dump_flags & TDF_DETAILS))
3581 3582 3583
		    fprintf (dump_file, "wild read\n");
		  bitmap_clear (v);
		}
3584 3585
	      else if (insn_info->read_rec
                       || insn_info->non_frame_wild_read)
3586
		{
3587
		  if (dump_file && !insn_info->non_frame_wild_read)
3588
		    fprintf (dump_file, "regular read\n");
3589
                  else if (dump_file && (dump_flags & TDF_DETAILS))
3590
		    fprintf (dump_file, "non-frame wild read\n");
3591 3592 3593
		  scan_reads_nospill (insn_info, v, NULL);
		}
	    }
H.J. Lu committed
3594

3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
	  insn_info = insn_info->prev_insn;
	}
    }
}



/*----------------------------------------------------------------------------
   Sixth step.

3605 3606 3607 3608 3609 3610 3611 3612 3613
   Delete stores made redundant by earlier stores (which store the same
   value) that couldn't be eliminated.
----------------------------------------------------------------------------*/

static void
dse_step6 (void)
{
  basic_block bb;

3614
  FOR_ALL_BB_FN (bb, cfun)
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
    {
      bb_info_t bb_info = bb_table[bb->index];
      insn_info_t insn_info = bb_info->last_insn;

      while (insn_info)
	{
	  /* There may have been code deleted by the dce pass run before
	     this phase.  */
	  if (insn_info->insn
	      && INSN_P (insn_info->insn)
	      && !insn_info->cannot_delete)
	    {
	      store_info_t s_info = insn_info->store_rec;

	      while (s_info && !s_info->is_set)
		s_info = s_info->next;
	      if (s_info
		  && s_info->redundant_reason
		  && s_info->redundant_reason->insn
		  && INSN_P (s_info->redundant_reason->insn))
		{
David Malcolm committed
3636
		  rtx_insn *rinsn = s_info->redundant_reason->insn;
3637
		  if (dump_file && (dump_flags & TDF_DETAILS))
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
		    fprintf (dump_file, "Locally deleting insn %d "
					"because insn %d stores the "
					"same value and couldn't be "
					"eliminated\n",
					INSN_UID (insn_info->insn),
					INSN_UID (rinsn));
		  delete_dead_store_insn (insn_info);
		}
	    }
	  insn_info = insn_info->prev_insn;
	}
    }
}

/*----------------------------------------------------------------------------
   Seventh step.

H.J. Lu committed
3655
   Destroy everything left standing.
3656 3657
----------------------------------------------------------------------------*/

H.J. Lu committed
3658
static void
3659
dse_step7 (void)
3660
{
3661 3662
  bitmap_obstack_release (&dse_bitmap_obstack);
  obstack_free (&dse_obstack, NULL);
3663

3664 3665
  end_alias_analysis ();
  free (bb_table);
3666 3667
  delete rtx_group_table;
  rtx_group_table = NULL;
3668
  rtx_group_vec.release ();
3669 3670 3671
  BITMAP_FREE (all_blocks);
  BITMAP_FREE (scratch);

3672
  rtx_store_info_pool.release ();
3673 3674 3675 3676 3677
  read_info_type_pool.release ();
  insn_info_type_pool.release ();
  dse_bb_info_type_pool.release ();
  group_info_pool.release ();
  deferred_change_pool.release ();
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
}


/* -------------------------------------------------------------------------
   DSE
   ------------------------------------------------------------------------- */

/* Callback for running pass_rtl_dse.  */

static unsigned int
rest_of_handle_dse (void)
{
  df_set_flags (DF_DEFER_INSN_RESCAN);

3692 3693 3694 3695 3696
  /* Need the notes since we must track live hardregs in the forwards
     direction.  */
  df_note_add_problem ();
  df_analyze ();

3697 3698 3699 3700 3701 3702 3703
  dse_step0 ();
  dse_step1 ();
  dse_step2_init ();
  if (dse_step2_nospill ())
    {
      df_set_flags (DF_LR_RUN_DCE);
      df_analyze ();
3704
      if (dump_file && (dump_flags & TDF_DETAILS))
3705 3706 3707 3708 3709 3710
	fprintf (dump_file, "doing global processing\n");
      dse_step3 (false);
      dse_step4 ();
      dse_step5_nospill ();
    }

3711
  dse_step6 ();
3712
  dse_step7 ();
3713 3714 3715 3716

  if (dump_file)
    fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
	     locally_deleted, globally_deleted, spill_deleted);
3717 3718 3719 3720 3721 3722 3723 3724

  /* DSE can eliminate potentially-trapping MEMs.
     Remove any EH edges associated with them.  */
  if ((locally_deleted || globally_deleted)
      && cfun->can_throw_non_call_exceptions
      && purge_all_dead_edges ())
    cleanup_cfg (0);

3725 3726 3727
  return 0;
}

3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
namespace {

const pass_data pass_data_rtl_dse1 =
{
  RTL_PASS, /* type */
  "dse1", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_DSE1, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
3740
  TODO_df_finish, /* todo_flags_finish */
3741 3742
};

3743 3744 3745
class pass_rtl_dse1 : public rtl_opt_pass
{
public:
3746 3747
  pass_rtl_dse1 (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
3748 3749 3750
  {}

  /* opt_pass methods: */
3751 3752 3753 3754 3755
  virtual bool gate (function *)
    {
      return optimize > 0 && flag_dse && dbg_cnt (dse1);
    }

3756
  virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779

}; // class pass_rtl_dse1

} // anon namespace

rtl_opt_pass *
make_pass_rtl_dse1 (gcc::context *ctxt)
{
  return new pass_rtl_dse1 (ctxt);
}

namespace {

const pass_data pass_data_rtl_dse2 =
{
  RTL_PASS, /* type */
  "dse2", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_DSE2, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
3780
  TODO_df_finish, /* todo_flags_finish */
3781
};
3782 3783 3784 3785

class pass_rtl_dse2 : public rtl_opt_pass
{
public:
3786 3787
  pass_rtl_dse2 (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
3788 3789 3790
  {}

  /* opt_pass methods: */
3791 3792 3793 3794 3795
  virtual bool gate (function *)
    {
      return optimize > 0 && flag_dse && dbg_cnt (dse2);
    }

3796
  virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806

}; // class pass_rtl_dse2

} // anon namespace

rtl_opt_pass *
make_pass_rtl_dse2 (gcc::context *ctxt)
{
  return new pass_rtl_dse2 (ctxt);
}