vec.h 47.9 KB
Newer Older
1
/* Vector API for GNU compiler.
2
   Copyright (C) 2004-2014 Free Software Foundation, Inc.
3
   Contributed by Nathan Sidwell <nathan@codesourcery.com>
4
   Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
5 6 7 8 9

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11 12 13 14 15 16 17 18
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
19 20
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
21 22 23 24

#ifndef GCC_VEC_H
#define GCC_VEC_H

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
/* FIXME - When compiling some of the gen* binaries, we cannot enable GC
   support because the headers generated by gengtype are still not
   present.  In particular, the header file gtype-desc.h is missing,
   so compilation may fail if we try to include ggc.h.

   Since we use some of those declarations, we need to provide them
   (even if the GC-based templates are not used).  This is not a
   problem because the code that runs before gengtype is built will
   never need to use GC vectors.  But it does force us to declare
   these functions more than once.  */
#ifdef GENERATOR_FILE
#define VEC_GC_ENABLED	0
#else
#define VEC_GC_ENABLED	1
#endif	// GENERATOR_FILE

#include "statistics.h"		// For CXX_MEM_STAT_INFO.

#if VEC_GC_ENABLED
#include "ggc.h"
#else
# ifndef GCC_GGC_H
  /* Even if we think that GC is not enabled, the test that sets it is
     weak.  There are files compiled with -DGENERATOR_FILE that already
     include ggc.h.  We only need to provide these definitions if ggc.h
     has not been included.  Sigh.  */
51

52 53
  extern void ggc_free (void *);
  extern size_t ggc_round_alloc_size (size_t requested_size);
54
  extern void *ggc_realloc (void *, size_t CXX_MEM_STAT_INFO);
55 56
#  endif  // GCC_GGC_H
#endif	// VEC_GC_ENABLED
57

58 59 60 61 62 63 64 65 66 67 68
/* Templated vector type and associated interfaces.

   The interface functions are typesafe and use inline functions,
   sometimes backed by out-of-line generic functions.  The vectors are
   designed to interoperate with the GTY machinery.

   There are both 'index' and 'iterate' accessors.  The index accessor
   is implemented by operator[].  The iterator returns a boolean
   iteration condition and updates the iteration variable passed by
   reference.  Because the iterator will be inlined, the address-of
   can be optimized away.
69

70 71 72
   Each operation that increases the number of active elements is
   available in 'quick' and 'safe' variants.  The former presumes that
   there is sufficient allocated space for the operation to succeed
73
   (it dies if there is not).  The latter will reallocate the
74 75 76
   vector, if needed.  Reallocation causes an exponential increase in
   vector size.  If you know you will be adding N elements, it would
   be more efficient to use the reserve operation before adding the
77 78 79 80
   elements with the 'quick' operation.  This will ensure there are at
   least as many elements as you ask for, it will exponentially
   increase if there are too few spare slots.  If you want reserve a
   specific number of slots, but do not want the exponential increase
81 82
   (for instance, you know this is the last allocation), use the
   reserve_exact operation.  You can also create a vector of a
83
   specific size from the get go.
84 85

   You should prefer the push and pop operations, as they append and
86 87
   remove from the end of the vector. If you need to remove several
   items in one go, use the truncate operation.  The insert and remove
88 89 90 91
   operations allow you to change elements in the middle of the
   vector.  There are two remove operations, one which preserves the
   element ordering 'ordered_remove', and one which does not
   'unordered_remove'.  The latter function copies the end element
92 93
   into the removed slot, rather than invoke a memmove operation.  The
   'lower_bound' function will determine where to place an item in the
94
   array using insert that will maintain sorted order.
95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
   Vectors are template types with three arguments: the type of the
   elements in the vector, the allocation strategy, and the physical
   layout to use

   Four allocation strategies are supported:

	- Heap: allocation is done using malloc/free.  This is the
	  default allocation strategy.

  	- GC: allocation is done using ggc_alloc/ggc_free.

  	- GC atomic: same as GC with the exception that the elements
	  themselves are assumed to be of an atomic type that does
	  not need to be garbage collected.  This means that marking
	  routines do not need to traverse the array marking the
	  individual elements.  This increases the performance of
	  GC activities.

   Two physical layouts are supported:

	- Embedded: The vector is structured using the trailing array
	  idiom.  The last member of the structure is an array of size
	  1.  When the vector is initially allocated, a single memory
	  block is created to hold the vector's control data and the
	  array of elements.  These vectors cannot grow without
	  reallocation (see discussion on embeddable vectors below).

	- Space efficient: The vector is structured as a pointer to an
	  embedded vector.  This is the default layout.  It means that
	  vectors occupy a single word of storage before initial
	  allocation.  Vectors are allowed to grow (the internal
	  pointer is reallocated but the main vector instance does not
	  need to relocate).

   The type, allocation and layout are specified when the vector is
   declared.
H.J. Lu committed
132

133 134 135 136
   If you need to directly manipulate a vector, then the 'address'
   accessor will return the address of the start of the vector.  Also
   the 'space' predicate will tell you whether there is spare capacity
   in the vector.  You will not normally need to use these two functions.
H.J. Lu committed
137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
   Notes on the different layout strategies

   * Embeddable vectors (vec<T, A, vl_embed>)
   
     These vectors are suitable to be embedded in other data
     structures so that they can be pre-allocated in a contiguous
     memory block.

     Embeddable vectors are implemented using the trailing array
     idiom, thus they are not resizeable without changing the address
     of the vector object itself.  This means you cannot have
     variables or fields of embeddable vector type -- always use a
     pointer to a vector.  The one exception is the final field of a
     structure, which could be a vector type.

     You will have to use the embedded_size & embedded_init calls to
     create such objects, and they will not be resizeable (so the
     'safe' allocation variants are not available).

     Properties of embeddable vectors:

	  - The whole vector and control data are allocated in a single
	    contiguous block.  It uses the trailing-vector idiom, so
	    allocation must reserve enough space for all the elements
	    in the vector plus its control data.
	  - The vector cannot be re-allocated.
	  - The vector cannot grow nor shrink.
	  - No indirections needed for access/manipulation.
	  - It requires 2 words of storage (prior to vector allocation).


   * Space efficient vector (vec<T, A, vl_ptr>)

     These vectors can grow dynamically and are allocated together
     with their control data.  They are suited to be included in data
     structures.  Prior to initial allocation, they only take a single
     word of storage.

     These vectors are implemented as a pointer to embeddable vectors.
     The semantics allow for this pointer to be NULL to represent
     empty vectors.  This way, empty vectors occupy minimal space in
     the structure containing them.

     Properties:

	- The whole vector and control data are allocated in a single
	  contiguous block.
  	- The whole vector may be re-allocated.
  	- Vector data may grow and shrink.
  	- Access and manipulation requires a pointer test and
	  indirection.
  	- It requires 1 word of storage (prior to vector allocation).
190 191 192 193

   An example of their use would be,

   struct my_struct {
194 195
     // A space-efficient vector of tree pointers in GC memory.
     vec<tree, va_gc, vl_ptr> v;
196 197 198 199
   };

   struct my_struct *s;

200 201 202
   if (s->v.length ()) { we have some contents }
   s->v.safe_push (decl); // append some decl onto the end
   for (ix = 0; s->v.iterate (ix, &elt); ix++)
203
     { do something with elt }
204 205
*/

206 207
/* Support function for statistics.  */
extern void dump_vec_loc_statistics (void);
208 209


210 211
/* Control data for vectors.  This contains the number of allocated
   and used slots inside a vector.  */
212

213
struct vec_prefix
214
{
215 216
  /* FIXME - These fields should be private, but we need to cater to
	     compilers that have stricter notions of PODness for types.  */
217

218
  /* Memory allocation support routines in vec.c.  */
219 220 221
  void register_overhead (size_t, const char *, int, const char *);
  void release_overhead (void);
  static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
222
  static unsigned calculate_allocation_1 (unsigned, unsigned);
223 224 225 226 227 228 229

  /* Note that vec_prefix should be a base class for vec, but we use
     offsetof() on vector fields of tree structures (e.g.,
     tree_binfo::base_binfos), and offsetof only supports base types.

     To compensate, we make vec_prefix a field inside vec and make
     vec a friend class of vec_prefix so it can access its fields.  */
230
  template <typename, typename, typename> friend struct vec;
231 232 233 234 235 236

  /* The allocator types also need access to our internals.  */
  friend struct va_gc;
  friend struct va_gc_atomic;
  friend struct va_heap;

237
  unsigned m_alloc : 31;
238
  unsigned m_using_auto_storage : 1;
239
  unsigned m_num;
240 241
};

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
/* Calculate the number of slots to reserve a vector, making sure that
   RESERVE slots are free.  If EXACT grow exactly, otherwise grow
   exponentially.  PFX is the control data for the vector.  */

inline unsigned
vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
				  bool exact)
{
  if (exact)
    return (pfx ? pfx->m_num : 0) + reserve;
  else if (!pfx)
    return MAX (4, reserve);
  return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
}

257
template<typename, typename, typename> struct vec;
258

259
/* Valid vector layouts
260

261 262 263 264 265
   vl_embed	- Embeddable vector that uses the trailing array idiom.
   vl_ptr	- Space efficient vector that uses a pointer to an
		  embeddable vector.  */
struct vl_embed { };
struct vl_ptr { };
266 267


268
/* Types of supported allocations
269

270 271 272
   va_heap	- Allocation uses malloc/free.
   va_gc	- Allocation uses ggc_alloc.
   va_gc_atomic	- Same as GC, but individual elements of the array
273
		  do not need to be marked during collection.  */
274

275 276 277 278 279 280
/* Allocator type for heap vectors.  */
struct va_heap
{
  /* Heap vectors are frequently regular instances, so use the vl_ptr
     layout for them.  */
  typedef vl_ptr default_layout;
281

282 283 284
  template<typename T>
  static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
		       CXX_MEM_STAT_INFO);
285

286 287 288
  template<typename T>
  static void release (vec<T, va_heap, vl_embed> *&);
};
289 290


291 292 293 294
/* Allocator for heap memory.  Ensure there are at least RESERVE free
   slots in V.  If EXACT is true, grow exactly, else grow
   exponentially.  As a special case, if the vector had not been
   allocated and and RESERVE is 0, no vector will be created.  */
295

296 297 298 299 300
template<typename T>
inline void
va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
		  MEM_STAT_DECL)
{
301
  unsigned alloc
302
    = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
303
  gcc_checking_assert (alloc);
304

305
  if (GATHER_STATISTICS && v)
306
    v->m_vecpfx.release_overhead ();
307

308 309 310 311
  size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
  unsigned nelem = v ? v->length () : 0;
  v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
  v->embedded_init (alloc, nelem);
312

313
  if (GATHER_STATISTICS)
314
    v->m_vecpfx.register_overhead (size FINAL_PASS_MEM_STAT);
315
}
316

317

318
/* Free the heap space allocated for vector V.  */
319 320 321

template<typename T>
void
322
va_heap::release (vec<T, va_heap, vl_embed> *&v)
323
{
324 325 326
  if (v == NULL)
    return;

327
  if (GATHER_STATISTICS)
328
    v->m_vecpfx.release_overhead ();
329 330
  ::free (v);
  v = NULL;
331 332 333
}


334 335
/* Allocator type for GC vectors.  Notice that we need the structure
   declaration even if GC is not enabled.  */
336

337
struct va_gc
338
{
339 340 341 342 343 344 345 346 347 348 349
  /* Use vl_embed as the default layout for GC vectors.  Due to GTY
     limitations, GC vectors must always be pointers, so it is more
     efficient to use a pointer to the vl_embed layout, rather than
     using a pointer to a pointer as would be the case with vl_ptr.  */
  typedef vl_embed default_layout;

  template<typename T, typename A>
  static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
		       CXX_MEM_STAT_INFO);

  template<typename T, typename A>
350
  static void release (vec<T, A, vl_embed> *&v);
351
};
352 353


354 355 356 357 358 359 360 361 362 363 364 365
/* Free GC memory used by V and reset V to NULL.  */

template<typename T, typename A>
inline void
va_gc::release (vec<T, A, vl_embed> *&v)
{
  if (v)
    ::ggc_free (v);
  v = NULL;
}


366 367 368 369 370 371
/* Allocator for GC memory.  Ensure there are at least RESERVE free
   slots in V.  If EXACT is true, grow exactly, else grow
   exponentially.  As a special case, if the vector had not been
   allocated and and RESERVE is 0, no vector will be created.  */

template<typename T, typename A>
372
void
373 374
va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
		MEM_STAT_DECL)
375
{
376
  unsigned alloc
377
    = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
378 379 380 381 382 383
  if (!alloc)
    {
      ::ggc_free (v);
      v = NULL;
      return;
    }
384

385 386
  /* Calculate the amount of space we want.  */
  size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
387

388
  /* Ask the allocator how much space it will really give us.  */
389
  size = ::ggc_round_alloc_size (size);
390

391 392 393 394
  /* Adjust the number of slots accordingly.  */
  size_t vec_offset = sizeof (vec_prefix);
  size_t elt_size = sizeof (T);
  alloc = (size - vec_offset) / elt_size;
395

396 397
  /* And finally, recalculate the amount of space we ask for.  */
  size = vec_offset + alloc * elt_size;
398

399
  unsigned nelem = v ? v->length () : 0;
400
  v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
401
							       PASS_MEM_STAT));
402 403
  v->embedded_init (alloc, nelem);
}
404 405


406 407 408 409 410 411
/* Allocator type for GC vectors.  This is for vectors of types
   atomics w.r.t. collection, so allocation and deallocation is
   completely inherited from va_gc.  */
struct va_gc_atomic : va_gc
{
};
412

413

414 415
/* Generic vector template.  Default values for A and L indicate the
   most commonly used strategies.
416

417 418 419 420
   FIXME - Ideally, they would all be vl_ptr to encourage using regular
           instances for vectors, but the existing GTY machinery is limited
	   in that it can only deal with GC objects that are pointers
	   themselves.
421

422 423 424 425 426 427
	   This means that vector operations that need to deal with
	   potentially NULL pointers, must be provided as free
	   functions (see the vec_safe_* functions above).  */
template<typename T,
         typename A = va_heap,
         typename L = typename A::default_layout>
428
struct GTY((user)) vec
429 430
{
};
431

432 433 434 435 436 437 438 439 440 441 442
/* Type to provide NULL values for vec<T, A, L>.  This is used to
   provide nil initializers for vec instances.  Since vec must be
   a POD, we cannot have proper ctor/dtor for it.  To initialize
   a vec instance, you can assign it the value vNULL.  */
struct vnull
{
  template <typename T, typename A, typename L>
  operator vec<T, A, L> () { return vec<T, A, L>(); }
};
extern vnull vNULL;

443

444 445 446
/* Embeddable vector.  These vectors are suitable to be embedded
   in other data structures so that they can be pre-allocated in a
   contiguous memory block.
447

448 449 450 451 452 453
   Embeddable vectors are implemented using the trailing array idiom,
   thus they are not resizeable without changing the address of the
   vector object itself.  This means you cannot have variables or
   fields of embeddable vector type -- always use a pointer to a
   vector.  The one exception is the final field of a structure, which
   could be a vector type.
454

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
   You will have to use the embedded_size & embedded_init calls to
   create such objects, and they will not be resizeable (so the 'safe'
   allocation variants are not available).

   Properties:

	- The whole vector and control data are allocated in a single
	  contiguous block.  It uses the trailing-vector idiom, so
	  allocation must reserve enough space for all the elements
  	  in the vector plus its control data.
  	- The vector cannot be re-allocated.
  	- The vector cannot grow nor shrink.
  	- No indirections needed for access/manipulation.
  	- It requires 2 words of storage (prior to vector allocation).  */

template<typename T, typename A>
471
struct GTY((user)) vec<T, A, vl_embed>
472 473
{
public:
474 475 476 477 478
  unsigned allocated (void) const { return m_vecpfx.m_alloc; }
  unsigned length (void) const { return m_vecpfx.m_num; }
  bool is_empty (void) const { return m_vecpfx.m_num == 0; }
  T *address (void) { return m_vecdata; }
  const T *address (void) const { return m_vecdata; }
479 480 481 482 483 484
  const T &operator[] (unsigned) const;
  T &operator[] (unsigned);
  T &last (void);
  bool space (unsigned) const;
  bool iterate (unsigned, T *) const;
  bool iterate (unsigned, T **) const;
485
  vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
486 487 488 489 490 491 492 493 494 495
  void splice (vec &);
  void splice (vec *src);
  T *quick_push (const T &);
  T &pop (void);
  void truncate (unsigned);
  void quick_insert (unsigned, const T &);
  void ordered_remove (unsigned);
  void unordered_remove (unsigned);
  void block_remove (unsigned, unsigned);
  void qsort (int (*) (const void *, const void *));
496
  T *bsearch (const void *key, int (*compar)(const void *, const void *));
497 498
  unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
  static size_t embedded_size (unsigned);
499
  void embedded_init (unsigned, unsigned = 0, unsigned = 0);
500 501 502 503
  void quick_grow (unsigned len);
  void quick_grow_cleared (unsigned len);

  /* vec class can access our internal data and functions.  */
504
  template <typename, typename, typename> friend struct vec;
505 506 507 508 509 510

  /* The allocator types also need access to our internals.  */
  friend struct va_gc;
  friend struct va_gc_atomic;
  friend struct va_heap;

511 512
  /* FIXME - These fields should be private, but we need to cater to
	     compilers that have stricter notions of PODness for types.  */
513 514
  vec_prefix m_vecpfx;
  T m_vecdata[1];
515
};
516 517


518 519 520
/* Convenience wrapper functions to use when dealing with pointers to
   embedded vectors.  Some functionality for these vectors must be
   provided via free functions for these reasons:
521

522
	1- The pointer may be NULL (e.g., before initial allocation).
523

524 525
  	2- When the vector needs to grow, it must be reallocated, so
  	   the pointer will change its value.
526

527 528
   Because of limitations with the current GC machinery, all vectors
   in GC memory *must* be pointers.  */
529

530

531 532 533 534 535 536 537 538
/* If V contains no room for NELEMS elements, return false. Otherwise,
   return true.  */
template<typename T, typename A>
inline bool
vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
{
  return v ? v->space (nelems) : nelems == 0;
}
539

540

541 542
/* If V is NULL, return 0.  Otherwise, return V->length().  */
template<typename T, typename A>
543
inline unsigned
544
vec_safe_length (const vec<T, A, vl_embed> *v)
545
{
546
  return v ? v->length () : 0;
547
}
548 549


550 551 552 553 554 555 556 557
/* If V is NULL, return NULL.  Otherwise, return V->address().  */
template<typename T, typename A>
inline T *
vec_safe_address (vec<T, A, vl_embed> *v)
{
  return v ? v->address () : NULL;
}

558

559 560
/* If V is NULL, return true.  Otherwise, return V->is_empty().  */
template<typename T, typename A>
561
inline bool
562
vec_safe_is_empty (vec<T, A, vl_embed> *v)
563
{
564
  return v ? v->is_empty () : true;
565
}
566

567

568 569 570 571 572
/* If V does not have space for NELEMS elements, call
   V->reserve(NELEMS, EXACT).  */
template<typename T, typename A>
inline bool
vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
573
		  CXX_MEM_STAT_INFO)
574 575 576 577 578 579
{
  bool extend = nelems ? !vec_safe_space (v, nelems) : false;
  if (extend)
    A::reserve (v, nelems, exact PASS_MEM_STAT);
  return extend;
}
580

581 582
template<typename T, typename A>
inline bool
583 584
vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
			CXX_MEM_STAT_INFO)
585
{
586
  return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
587 588
}

589

590 591
/* Allocate GC memory for V with space for NELEMS slots.  If NELEMS
   is 0, V is initialized to NULL.  */
592

593 594
template<typename T, typename A>
inline void
595
vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
596
{
597
  v = NULL;
598
  vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
599
}
600

601

602
/* Free the GC memory allocated by vector V and set it to NULL.  */
603

604 605 606
template<typename T, typename A>
inline void
vec_free (vec<T, A, vl_embed> *&v)
607
{
608
  A::release (v);
609 610
}

611 612 613 614

/* Grow V to length LEN.  Allocate it, if necessary.  */
template<typename T, typename A>
inline void
615
vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
616
{
617 618 619
  unsigned oldlen = vec_safe_length (v);
  gcc_checking_assert (len >= oldlen);
  vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
620
  v->quick_grow (len);
621
}
622

623

624 625 626
/* If V is NULL, allocate it.  Call V->safe_grow_cleared(LEN).  */
template<typename T, typename A>
inline void
627
vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
628 629 630
{
  unsigned oldlen = vec_safe_length (v);
  vec_safe_grow (v, len PASS_MEM_STAT);
631
  memset (&(v->address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
632
}
633

634

635 636 637 638
/* If V is NULL return false, otherwise return V->iterate(IX, PTR).  */
template<typename T, typename A>
inline bool
vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
639
{
640 641
  if (v)
    return v->iterate (ix, ptr);
642 643 644 645 646 647 648
  else
    {
      *ptr = 0;
      return false;
    }
}

649 650 651
template<typename T, typename A>
inline bool
vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
652
{
653 654
  if (v)
    return v->iterate (ix, ptr);
655 656 657 658 659 660
  else
    {
      *ptr = 0;
      return false;
    }
}
661

662

663 664 665 666
/* If V has no room for one more element, reallocate it.  Then call
   V->quick_push(OBJ).  */
template<typename T, typename A>
inline T *
667
vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
668 669
{
  vec_safe_reserve (v, 1, false PASS_MEM_STAT);
670
  return v->quick_push (obj);
671
}
672 673


674 675 676 677 678
/* if V has no room for one more element, reallocate it.  Then call
   V->quick_insert(IX, OBJ).  */
template<typename T, typename A>
inline void
vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
679
		 CXX_MEM_STAT_INFO)
680 681 682 683
{
  vec_safe_reserve (v, 1, false PASS_MEM_STAT);
  v->quick_insert (ix, obj);
}
684 685


686 687 688 689 690 691 692 693
/* If V is NULL, do nothing.  Otherwise, call V->truncate(SIZE).  */
template<typename T, typename A>
inline void
vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
{
  if (v)
    v->truncate (size);
}
694 695


696 697 698
/* If SRC is not NULL, return a pointer to a copy of it.  */
template<typename T, typename A>
inline vec<T, A, vl_embed> *
699
vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
700
{
701
  return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
702
}
703

704 705 706 707 708
/* Copy the elements from SRC to the end of DST as if by memcpy.
   Reallocate DST, if necessary.  */
template<typename T, typename A>
inline void
vec_safe_splice (vec<T, A, vl_embed> *&dst, vec<T, A, vl_embed> *src
709
		 CXX_MEM_STAT_INFO)
710 711 712 713
{
  unsigned src_len = vec_safe_length (src);
  if (src_len)
    {
714 715
      vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
			      PASS_MEM_STAT);
716 717 718
      dst->splice (*src);
    }
}
719 720


721 722
/* Index into vector.  Return the IX'th element.  IX must be in the
   domain of the vector.  */
723

724 725 726 727
template<typename T, typename A>
inline const T &
vec<T, A, vl_embed>::operator[] (unsigned ix) const
{
728 729
  gcc_checking_assert (ix < m_vecpfx.m_num);
  return m_vecdata[ix];
730
}
731

732 733 734
template<typename T, typename A>
inline T &
vec<T, A, vl_embed>::operator[] (unsigned ix)
735
{
736 737
  gcc_checking_assert (ix < m_vecpfx.m_num);
  return m_vecdata[ix];
738 739
}

740

741
/* Get the final element of the vector, which must not be empty.  */
742

743 744 745
template<typename T, typename A>
inline T &
vec<T, A, vl_embed>::last (void)
746
{
747 748
  gcc_checking_assert (m_vecpfx.m_num > 0);
  return (*this)[m_vecpfx.m_num - 1];
749 750 751
}


752 753 754 755 756
/* If this vector has space for NELEMS additional entries, return
   true.  You usually only need to use this if you are doing your
   own vector reallocation, for instance on an embedded vector.  This
   returns true in exactly the same circumstances that vec::reserve
   will.  */
757

758 759 760 761
template<typename T, typename A>
inline bool
vec<T, A, vl_embed>::space (unsigned nelems) const
{
762
  return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
763
}
764 765


766 767 768
/* Return iteration condition and update PTR to point to the IX'th
   element of this vector.  Use this to iterate over the elements of a
   vector as follows,
769

770
     for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
771
       continue;  */
772

773 774 775
template<typename T, typename A>
inline bool
vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
776
{
777
  if (ix < m_vecpfx.m_num)
778
    {
779
      *ptr = m_vecdata[ix];
780 781 782 783 784 785 786
      return true;
    }
  else
    {
      *ptr = 0;
      return false;
    }
787 788
}

789

790 791 792
/* Return iteration condition and update *PTR to point to the
   IX'th element of this vector.  Use this to iterate over the
   elements of a vector as follows,
793

794
     for (ix = 0; v->iterate (ix, &ptr); ix++)
795
       continue;
796

797 798 799 800 801
   This variant is for vectors of objects.  */

template<typename T, typename A>
inline bool
vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
802
{
803
  if (ix < m_vecpfx.m_num)
804
    {
805
      *ptr = CONST_CAST (T *, &m_vecdata[ix]);
806 807 808
      return true;
    }
  else
809
    {
810 811
      *ptr = 0;
      return false;
812 813
    }
}
814 815


816
/* Return a pointer to a copy of this vector.  */
817

818 819 820
template<typename T, typename A>
inline vec<T, A, vl_embed> *
vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
821
{
822 823
  vec<T, A, vl_embed> *new_vec = NULL;
  unsigned len = length ();
824
  if (len)
825
    {
826
      vec_alloc (new_vec, len PASS_MEM_STAT);
827
      new_vec->embedded_init (len, len);
828
      memcpy (new_vec->address (), m_vecdata, sizeof (T) * len);
829
    }
830 831
  return new_vec;
}
H.J. Lu committed
832

833

834 835
/* Copy the elements from SRC to the end of this vector as if by memcpy.
   The vector must have sufficient headroom available.  */
836

837 838 839 840
template<typename T, typename A>
inline void
vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> &src)
{
841
  unsigned len = src.length ();
842 843 844
  if (len)
    {
      gcc_checking_assert (space (len));
845
      memcpy (address () + length (), src.address (), len * sizeof (T));
846
      m_vecpfx.m_num += len;
847 848 849 850 851 852
    }
}

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> *src)
853
{
854 855
  if (src)
    splice (*src);
856 857
}

858

859 860 861
/* Push OBJ (a new element) onto the end of the vector.  There must be
   sufficient space in the vector.  Return a pointer to the slot
   where OBJ was inserted.  */
862

863 864 865
template<typename T, typename A>
inline T *
vec<T, A, vl_embed>::quick_push (const T &obj)
866
{
867
  gcc_checking_assert (space (1));
868
  T *slot = &m_vecdata[m_vecpfx.m_num++];
869 870
  *slot = obj;
  return slot;
871 872
}

873

874
/* Pop and return the last element off the end of the vector.  */
875

876 877 878
template<typename T, typename A>
inline T &
vec<T, A, vl_embed>::pop (void)
879
{
880
  gcc_checking_assert (length () > 0);
881
  return m_vecdata[--m_vecpfx.m_num];
882
}
883 884


885 886 887 888 889 890 891 892
/* Set the length of the vector to SIZE.  The new length must be less
   than or equal to the current length.  This is an O(1) operation.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::truncate (unsigned size)
{
  gcc_checking_assert (length () >= size);
893
  m_vecpfx.m_num = size;
894 895
}

896

897 898
/* Insert an element, OBJ, at the IXth position of this vector.  There
   must be sufficient space.  */
899

900 901 902
template<typename T, typename A>
inline void
vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
903
{
904 905
  gcc_checking_assert (length () < allocated ());
  gcc_checking_assert (ix <= length ());
906 907
  T *slot = &m_vecdata[ix];
  memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
908
  *slot = obj;
909 910
}

911

912 913 914
/* Remove an element from the IXth position of this vector.  Ordering of
   remaining elements is preserved.  This is an O(N) operation due to
   memmove.  */
915

916 917 918
template<typename T, typename A>
inline void
vec<T, A, vl_embed>::ordered_remove (unsigned ix)
919
{
920
  gcc_checking_assert (ix < length ());
921 922
  T *slot = &m_vecdata[ix];
  memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
923 924 925 926 927 928 929 930 931 932
}


/* Remove an element from the IXth position of this vector.  Ordering of
   remaining elements is destroyed.  This is an O(1) operation.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::unordered_remove (unsigned ix)
{
933
  gcc_checking_assert (ix < length ());
934
  m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
935 936 937 938 939 940 941 942 943 944
}


/* Remove LEN elements starting at the IXth.  Ordering is retained.
   This is an O(N) operation due to memmove.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
{
945
  gcc_checking_assert (ix + len <= length ());
946 947 948
  T *slot = &m_vecdata[ix];
  m_vecpfx.m_num -= len;
  memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
949 950 951 952 953 954 955 956 957 958
}


/* Sort the contents of this vector with qsort.  CMP is the comparison
   function to pass to qsort.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
{
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
  if (length () > 1)
    ::qsort (address (), length (), sizeof (T), cmp);
}


/* Search the contents of the sorted vector with a binary search.
   CMP is the comparison function to pass to bsearch.  */

template<typename T, typename A>
inline T *
vec<T, A, vl_embed>::bsearch (const void *key,
			      int (*compar) (const void *, const void *))
{
  const void *base = this->address ();
  size_t nmemb = this->length ();
  size_t size = sizeof (T);
  /* The following is a copy of glibc stdlib-bsearch.h.  */
  size_t l, u, idx;
  const void *p;
  int comparison;

  l = 0;
  u = nmemb;
  while (l < u)
    {
      idx = (l + u) / 2;
      p = (const void *) (((const char *) base) + (idx * size));
      comparison = (*compar) (key, p);
      if (comparison < 0)
	u = idx;
      else if (comparison > 0)
	l = idx + 1;
      else
	return (T *)const_cast<void *>(p);
    }

  return NULL;
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
}


/* Find and return the first position in which OBJ could be inserted
   without changing the ordering of this vector.  LESSTHAN is a
   function that returns true if the first argument is strictly less
   than the second.  */

template<typename T, typename A>
unsigned
vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
  const
{
  unsigned int len = length ();
  unsigned int half, middle;
  unsigned int first = 0;
  while (len > 0)
1013
    {
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
      half = len / 2;
      middle = first;
      middle += half;
      T middle_elem = (*this)[middle];
      if (lessthan (middle_elem, obj))
	{
	  first = middle;
	  ++first;
	  len = len - half - 1;
	}
      else
	len = half;
1026
    }
1027
  return first;
1028 1029 1030
}


1031 1032
/* Return the number of bytes needed to embed an instance of an
   embeddable vec inside another data structure.
1033

1034 1035 1036 1037 1038
   Use these methods to determine the required size and initialization
   of a vector V of type T embedded within another structure (as the
   final member):

   size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
1039
   void v->embedded_init (unsigned alloc, unsigned num);
1040 1041 1042 1043 1044 1045

   These allow the caller to perform the memory allocation.  */

template<typename T, typename A>
inline size_t
vec<T, A, vl_embed>::embedded_size (unsigned alloc)
1046
{
1047
  typedef vec<T, A, vl_embed> vec_embedded;
1048
  return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
1049 1050
}

1051

1052 1053
/* Initialize the vector to contain room for ALLOC elements and
   NUM active elements.  */
1054

1055 1056
template<typename T, typename A>
inline void
1057
vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
1058
{
1059
  m_vecpfx.m_alloc = alloc;
1060
  m_vecpfx.m_using_auto_storage = aut;
1061
  m_vecpfx.m_num = num;
1062 1063
}

1064

1065 1066
/* Grow the vector to a specific length.  LEN must be as long or longer than
   the current length.  The new elements are uninitialized.  */
1067

1068 1069 1070
template<typename T, typename A>
inline void
vec<T, A, vl_embed>::quick_grow (unsigned len)
1071
{
1072 1073
  gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
  m_vecpfx.m_num = len;
1074 1075
}

1076

1077 1078
/* Grow the vector to a specific length.  LEN must be as long or longer than
   the current length.  The new elements are initialized to zero.  */
1079

1080 1081 1082
template<typename T, typename A>
inline void
vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
1083
{
1084 1085
  unsigned oldlen = length ();
  quick_grow (len);
1086
  memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
1087 1088
}

1089

1090
/* Garbage collection support for vec<T, A, vl_embed>.  */
1091

1092 1093
template<typename T>
void
1094
gt_ggc_mx (vec<T, va_gc> *v)
1095
{
1096 1097 1098
  extern void gt_ggc_mx (T &);
  for (unsigned i = 0; i < v->length (); i++)
    gt_ggc_mx ((*v)[i]);
1099 1100
}

1101 1102
template<typename T>
void
1103
gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
1104
{
1105 1106
  /* Nothing to do.  Vectors of atomic types wrt GC do not need to
     be traversed.  */
1107 1108
}

1109

1110
/* PCH support for vec<T, A, vl_embed>.  */
1111

1112
template<typename T, typename A>
1113
void
1114
gt_pch_nx (vec<T, A, vl_embed> *v)
1115
{
1116 1117 1118
  extern void gt_pch_nx (T &);
  for (unsigned i = 0; i < v->length (); i++)
    gt_pch_nx ((*v)[i]);
1119 1120
}

1121 1122 1123 1124 1125 1126 1127
template<typename T, typename A>
void
gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
{
  for (unsigned i = 0; i < v->length (); i++)
    op (&((*v)[i]), cookie);
}
1128

1129
template<typename T, typename A>
1130
void
1131
gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1132
{
1133 1134 1135
  extern void gt_pch_nx (T *, gt_pointer_operator, void *);
  for (unsigned i = 0; i < v->length (); i++)
    gt_pch_nx (&((*v)[i]), op, cookie);
1136
}
1137

1138

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
/* Space efficient vector.  These vectors can grow dynamically and are
   allocated together with their control data.  They are suited to be
   included in data structures.  Prior to initial allocation, they
   only take a single word of storage.

   These vectors are implemented as a pointer to an embeddable vector.
   The semantics allow for this pointer to be NULL to represent empty
   vectors.  This way, empty vectors occupy minimal space in the
   structure containing them.

   Properties:

	- The whole vector and control data are allocated in a single
	  contiguous block.
  	- The whole vector may be re-allocated.
  	- Vector data may grow and shrink.
  	- Access and manipulation requires a pointer test and
	  indirection.
	- It requires 1 word of storage (prior to vector allocation).


   Limitations:

   These vectors must be PODs because they are stored in unions.
   (http://en.wikipedia.org/wiki/Plain_old_data_structures).
   As long as we use C++03, we cannot have constructors nor
   destructors in classes that are stored in unions.  */

1167 1168
template<typename T>
struct vec<T, va_heap, vl_ptr>
1169 1170 1171 1172 1173 1174 1175 1176 1177
{
public:
  /* Memory allocation and deallocation for the embedded vector.
     Needed because we cannot have proper ctors/dtors defined.  */
  void create (unsigned nelems CXX_MEM_STAT_INFO);
  void release (void);

  /* Vector operations.  */
  bool exists (void) const
1178
  { return m_vec != NULL; }
1179 1180

  bool is_empty (void) const
1181
  { return m_vec ? m_vec->is_empty () : true; }
1182 1183

  unsigned length (void) const
1184
  { return m_vec ? m_vec->length () : 0; }
1185 1186

  T *address (void)
1187
  { return m_vec ? m_vec->m_vecdata : NULL; }
1188 1189

  const T *address (void) const
1190
  { return m_vec ? m_vec->m_vecdata : NULL; }
1191 1192

  const T &operator[] (unsigned ix) const
1193
  { return (*m_vec)[ix]; }
1194 1195 1196 1197 1198

  bool operator!=(const vec &other) const
  { return !(*this == other); }

  bool operator==(const vec &other) const
1199
  { return address () == other.address (); }
1200 1201

  T &operator[] (unsigned ix)
1202
  { return (*m_vec)[ix]; }
1203 1204

  T &last (void)
1205
  { return m_vec->last (); }
1206 1207

  bool space (int nelems) const
1208
  { return m_vec ? m_vec->space (nelems) : nelems == 0; }
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

  bool iterate (unsigned ix, T *p) const;
  bool iterate (unsigned ix, T **p) const;
  vec copy (ALONE_CXX_MEM_STAT_INFO) const;
  bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
  bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
  void splice (vec &);
  void safe_splice (vec & CXX_MEM_STAT_INFO);
  T *quick_push (const T &);
  T *safe_push (const T &CXX_MEM_STAT_INFO);
  T &pop (void);
  void truncate (unsigned);
  void safe_grow (unsigned CXX_MEM_STAT_INFO);
  void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
  void quick_grow (unsigned);
  void quick_grow_cleared (unsigned);
  void quick_insert (unsigned, const T &);
  void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
  void ordered_remove (unsigned);
  void unordered_remove (unsigned);
  void block_remove (unsigned, unsigned);
  void qsort (int (*) (const void *, const void *));
1231
  T *bsearch (const void *key, int (*compar)(const void *, const void *));
1232 1233
  unsigned lower_bound (T, bool (*)(const T &, const T &)) const;

1234
  bool using_auto_storage () const;
1235

1236 1237
  /* FIXME - This field should be private, but we need to cater to
	     compilers that have stricter notions of PODness for types.  */
1238
  vec<T, va_heap, vl_embed> *m_vec;
1239 1240 1241
};


1242 1243 1244 1245 1246 1247 1248
/* auto_vec is a subclass of vec that automatically manages creating and
   releasing the internal vector. If N is non zero then it has N elements of
   internal storage.  The default is no internal storage, and you probably only
   want to ask for internal storage for vectors on the stack because if the
   size of the vector is larger than the internal storage that space is wasted.
   */
template<typename T, size_t N = 0>
Trevor Saunders committed
1249 1250 1251
class auto_vec : public vec<T, va_heap>
{
public:
1252
  auto_vec ()
1253
  {
1254 1255
    m_auto.embedded_init (MAX (N, 2), 0, 1);
    this->m_vec = &m_auto;
1256 1257
  }

1258
  ~auto_vec ()
1259 1260 1261 1262 1263
  {
    this->release ();
  }

private:
1264 1265
  vec<T, va_heap, vl_embed> m_auto;
  T m_data[MAX (N - 1, 1)];
1266
};
1267

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
/* auto_vec is a sub class of vec whose storage is released when it is
  destroyed. */
template<typename T>
class auto_vec<T, 0> : public vec<T, va_heap>
{
public:
  auto_vec () { this->m_vec = NULL; }
  auto_vec (size_t n) { this->create (n); }
  ~auto_vec () { this->release (); }
};

1279

1280 1281 1282
/* Allocate heap memory for pointer V and create the internal vector
   with space for NELEMS elements.  If NELEMS is 0, the internal
   vector is initialized to empty.  */
1283

1284
template<typename T>
1285
inline void
1286
vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
1287
{
1288 1289
  v = new vec<T>;
  v->create (nelems PASS_MEM_STAT);
1290 1291
}

1292

1293
/* Conditionally allocate heap memory for VEC and its internal vector.  */
1294

1295
template<typename T>
1296
inline void
1297
vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
1298
{
1299 1300
  if (!vec)
    vec_alloc (vec, nelems PASS_MEM_STAT);
1301 1302
}

1303

1304
/* Free the heap memory allocated by vector V and set it to NULL.  */
1305

1306
template<typename T>
1307 1308
inline void
vec_free (vec<T> *&v)
1309
{
1310 1311 1312 1313 1314 1315
  if (v == NULL)
    return;

  v->release ();
  delete v;
  v = NULL;
1316
}
1317

1318

1319 1320 1321 1322
/* Return iteration condition and update PTR to point to the IX'th
   element of this vector.  Use this to iterate over the elements of a
   vector as follows,

1323
     for (ix = 0; v.iterate (ix, &ptr); ix++)
1324 1325
       continue;  */

1326
template<typename T>
1327
inline bool
1328
vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
1329
{
1330 1331
  if (m_vec)
    return m_vec->iterate (ix, ptr);
1332
  else
1333
    {
1334 1335
      *ptr = 0;
      return false;
1336
    }
1337 1338
}

1339

1340 1341 1342 1343
/* Return iteration condition and update *PTR to point to the
   IX'th element of this vector.  Use this to iterate over the
   elements of a vector as follows,

1344
     for (ix = 0; v->iterate (ix, &ptr); ix++)
1345
       continue;
1346

1347
   This variant is for vectors of objects.  */
1348

1349
template<typename T>
1350
inline bool
1351
vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
1352
{
1353 1354
  if (m_vec)
    return m_vec->iterate (ix, ptr);
1355
  else
1356
    {
1357 1358
      *ptr = 0;
      return false;
1359
    }
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
}


/* Convenience macro for forward iteration.  */
#define FOR_EACH_VEC_ELT(V, I, P)			\
  for (I = 0; (V).iterate ((I), &(P)); ++(I))

#define FOR_EACH_VEC_SAFE_ELT(V, I, P)			\
  for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))

/* Likewise, but start from FROM rather than 0.  */
#define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM)		\
  for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1373

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
/* Convenience macro for reverse iteration.  */
#define FOR_EACH_VEC_ELT_REVERSE(V, I, P)		\
  for (I = (V).length () - 1;				\
       (V).iterate ((I), &(P));				\
       (I)--)

#define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P)		\
  for (I = vec_safe_length (V) - 1;			\
       vec_safe_iterate ((V), (I), &(P));	\
       (I)--)


/* Return a copy of this vector.  */

1388 1389 1390
template<typename T>
inline vec<T, va_heap, vl_ptr>
vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
1391
{
1392
  vec<T, va_heap, vl_ptr> new_vec = vNULL;
1393
  if (length ())
1394
    new_vec.m_vec = m_vec->copy ();
1395
  return new_vec;
1396 1397 1398
}


1399 1400 1401
/* Ensure that the vector has at least RESERVE slots available (if
   EXACT is false), or exactly RESERVE slots available (if EXACT is
   true).
1402

1403 1404 1405 1406 1407
   This may create additional headroom if EXACT is false.

   Note that this can cause the embedded vector to be reallocated.
   Returns true iff reallocation actually occurred.  */

1408
template<typename T>
1409
inline bool
1410 1411
vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
{
1412
  if (space (nelems))
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
    return false;

  /* For now play a game with va_heap::reserve to hide our auto storage if any,
     this is necessary because it doesn't have enough information to know the
     embedded vector is in auto storage, and so should not be freed.  */
  vec<T, va_heap, vl_embed> *oldvec = m_vec;
  unsigned int oldsize = 0;
  bool handle_auto_vec = m_vec && using_auto_storage ();
  if (handle_auto_vec)
    {
      m_vec = NULL;
      oldsize = oldvec->length ();
      nelems += oldsize;
    }

  va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
  if (handle_auto_vec)
    {
      memcpy (m_vec->address (), oldvec->address (), sizeof (T) * oldsize);
      m_vec->m_vecpfx.m_num = oldsize;
    }

  return true;
1436 1437
}

1438

1439 1440 1441 1442
/* Ensure that this vector has exactly NELEMS slots available.  This
   will not create additional headroom.  Note this can cause the
   embedded vector to be reallocated.  Returns true iff reallocation
   actually occurred.  */
1443

1444
template<typename T>
1445
inline bool
1446
vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
{
  return reserve (nelems, true PASS_MEM_STAT);
}


/* Create the internal vector and reserve NELEMS for it.  This is
   exactly like vec::reserve, but the internal vector is
   unconditionally allocated from scratch.  The old one, if it
   existed, is lost.  */

1457
template<typename T>
1458
inline void
1459
vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1460
{
1461
  m_vec = NULL;
1462 1463 1464 1465 1466 1467 1468
  if (nelems > 0)
    reserve_exact (nelems PASS_MEM_STAT);
}


/* Free the memory occupied by the embedded vector.  */

1469
template<typename T>
1470
inline void
1471
vec<T, va_heap, vl_ptr>::release (void)
1472
{
1473 1474
  if (!m_vec)
    return;
1475

1476 1477
  if (using_auto_storage ())
    {
1478
      m_vec->m_vecpfx.m_num = 0;
1479 1480 1481 1482 1483
      return;
    }

  va_heap::release (m_vec);
}
1484 1485 1486 1487 1488 1489

/* Copy the elements from SRC to the end of this vector as if by memcpy.
   SRC and this vector must be allocated with the same memory
   allocation mechanism. This vector is assumed to have sufficient
   headroom available.  */

1490
template<typename T>
1491
inline void
1492
vec<T, va_heap, vl_ptr>::splice (vec<T, va_heap, vl_ptr> &src)
1493
{
1494 1495
  if (src.m_vec)
    m_vec->splice (*(src.m_vec));
1496 1497 1498 1499 1500 1501 1502 1503
}


/* Copy the elements in SRC to the end of this vector as if by memcpy.
   SRC and this vector must be allocated with the same mechanism.
   If there is not enough headroom in this vector, it will be reallocated
   as needed.  */

1504
template<typename T>
1505
inline void
1506 1507
vec<T, va_heap, vl_ptr>::safe_splice (vec<T, va_heap, vl_ptr> &src
				      MEM_STAT_DECL)
1508
{
1509
  if (src.length ())
1510
    {
1511
      reserve_exact (src.length ());
1512
      splice (src);
1513
    }
1514 1515 1516 1517 1518 1519 1520
}


/* Push OBJ (a new element) onto the end of the vector.  There must be
   sufficient space in the vector.  Return a pointer to the slot
   where OBJ was inserted.  */

1521
template<typename T>
1522
inline T *
1523
vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
1524
{
1525
  return m_vec->quick_push (obj);
1526 1527 1528 1529 1530 1531 1532
}


/* Push a new element OBJ onto the end of this vector.  Reallocates
   the embedded vector, if needed.  Return a pointer to the slot where
   OBJ was inserted.  */

1533
template<typename T>
1534
inline T *
1535
vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1536 1537 1538 1539 1540
{
  reserve (1, false PASS_MEM_STAT);
  return quick_push (obj);
}

1541

1542 1543
/* Pop and return the last element off the end of the vector.  */

1544
template<typename T>
1545
inline T &
1546
vec<T, va_heap, vl_ptr>::pop (void)
1547
{
1548
  return m_vec->pop ();
1549 1550 1551 1552 1553 1554
}


/* Set the length of the vector to LEN.  The new length must be less
   than or equal to the current length.  This is an O(1) operation.  */

1555
template<typename T>
1556
inline void
1557
vec<T, va_heap, vl_ptr>::truncate (unsigned size)
1558
{
1559 1560
  if (m_vec)
    m_vec->truncate (size);
1561 1562 1563 1564 1565 1566 1567 1568 1569
  else
    gcc_checking_assert (size == 0);
}


/* Grow the vector to a specific length.  LEN must be as long or
   longer than the current length.  The new elements are
   uninitialized.  Reallocate the internal vector, if needed.  */

1570
template<typename T>
1571
inline void
1572
vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
1573 1574 1575 1576
{
  unsigned oldlen = length ();
  gcc_checking_assert (oldlen <= len);
  reserve_exact (len - oldlen PASS_MEM_STAT);
1577
  m_vec->quick_grow (len);
1578 1579 1580 1581 1582 1583 1584
}


/* Grow the embedded vector to a specific length.  LEN must be as
   long or longer than the current length.  The new elements are
   initialized to zero.  Reallocate the internal vector, if needed.  */

1585
template<typename T>
1586
inline void
1587
vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
1588 1589 1590
{
  unsigned oldlen = length ();
  safe_grow (len PASS_MEM_STAT);
1591
  memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
1592 1593 1594 1595 1596 1597
}


/* Same as vec::safe_grow but without reallocation of the internal vector.
   If the vector cannot be extended, a runtime assertion will be triggered.  */

1598
template<typename T>
1599
inline void
1600
vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
1601
{
1602 1603
  gcc_checking_assert (m_vec);
  m_vec->quick_grow (len);
1604 1605 1606 1607 1608 1609 1610
}


/* Same as vec::quick_grow_cleared but without reallocation of the
   internal vector. If the vector cannot be extended, a runtime
   assertion will be triggered.  */

1611
template<typename T>
1612
inline void
1613
vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
1614
{
1615 1616
  gcc_checking_assert (m_vec);
  m_vec->quick_grow_cleared (len);
1617 1618 1619 1620 1621 1622
}


/* Insert an element, OBJ, at the IXth position of this vector.  There
   must be sufficient space.  */

1623
template<typename T>
1624
inline void
1625
vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
1626
{
1627
  m_vec->quick_insert (ix, obj);
1628 1629 1630 1631 1632 1633
}


/* Insert an element, OBJ, at the IXth position of the vector.
   Reallocate the embedded vector, if necessary.  */

1634
template<typename T>
1635
inline void
1636
vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
{
  reserve (1, false PASS_MEM_STAT);
  quick_insert (ix, obj);
}


/* Remove an element from the IXth position of this vector.  Ordering of
   remaining elements is preserved.  This is an O(N) operation due to
   a memmove.  */

1647
template<typename T>
1648
inline void
1649
vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
1650
{
1651
  m_vec->ordered_remove (ix);
1652 1653 1654 1655 1656 1657
}


/* Remove an element from the IXth position of this vector.  Ordering
   of remaining elements is destroyed.  This is an O(1) operation.  */

1658
template<typename T>
1659
inline void
1660
vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
1661
{
1662
  m_vec->unordered_remove (ix);
1663 1664 1665 1666 1667 1668
}


/* Remove LEN elements starting at the IXth.  Ordering is retained.
   This is an O(N) operation due to memmove.  */

1669
template<typename T>
1670
inline void
1671
vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
1672
{
1673
  m_vec->block_remove (ix, len);
1674 1675 1676 1677 1678 1679
}


/* Sort the contents of this vector with qsort.  CMP is the comparison
   function to pass to qsort.  */

1680
template<typename T>
1681
inline void
1682
vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
1683
{
1684 1685
  if (m_vec)
    m_vec->qsort (cmp);
1686 1687 1688
}


1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
/* Search the contents of the sorted vector with a binary search.
   CMP is the comparison function to pass to bsearch.  */

template<typename T>
inline T *
vec<T, va_heap, vl_ptr>::bsearch (const void *key,
				  int (*cmp) (const void *, const void *))
{
  if (m_vec)
    return m_vec->bsearch (key, cmp);
  return NULL;
}


1703 1704 1705 1706 1707
/* Find and return the first position in which OBJ could be inserted
   without changing the ordering of this vector.  LESSTHAN is a
   function that returns true if the first argument is strictly less
   than the second.  */

1708
template<typename T>
1709
inline unsigned
1710 1711
vec<T, va_heap, vl_ptr>::lower_bound (T obj,
				      bool (*lessthan)(const T &, const T &))
1712
    const
1713
{
1714
  return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
1715 1716
}

1717 1718 1719 1720
template<typename T>
inline bool
vec<T, va_heap, vl_ptr>::using_auto_storage () const
{
1721
  return m_vec->m_vecpfx.m_using_auto_storage;
1722 1723
}

1724
#if (GCC_VERSION >= 3000)
1725
# pragma GCC poison m_vec m_vecpfx m_vecdata
1726 1727
#endif

1728
#endif // GCC_VEC_H