final.c 115 KB
Newer Older
1
/* Convert RTL to assembler code and output it, for GNU compiler.
Jeff Law committed
2
   Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3
   1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4

5
This file is part of GCC.
6

7 8 9 10
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
11

12 13 14 15
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
16 17

You should have received a copy of the GNU General Public License
18 19 20
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

/* This is the final pass of the compiler.
   It looks at the rtl code for a function and outputs assembler code.

   Call `final_start_function' to output the assembler code for function entry,
   `final' to output assembler code for some RTL code,
   `final_end_function' to output assembler code for function exit.
   If a function is compiled in several pieces, each piece is
   output separately with `final'.

   Some optimizations are also done at this level.
   Move instructions that were made unnecessary by good register allocation
   are detected and omitted from the output.  (Though most of these
   are removed by the last jump pass.)

   Instructions to set the condition codes are omitted when it can be
   seen that the condition codes already had the desired values.

   In some cases it is sufficient if the inherited condition codes
   have related values, but this may require the following insn
   (the one that tests the condition codes) to be modified.

   The code for the function prologue and epilogue are generated
44 45
   directly in assembler by the target functions function_prologue and
   function_epilogue.  Those instructions never exist as rtl.  */
46 47

#include "config.h"
48
#include "system.h"
49 50 51

#include "tree.h"
#include "rtl.h"
52
#include "tm_p.h"
53 54 55 56 57 58 59 60 61
#include "regs.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "recog.h"
#include "conditions.h"
#include "flags.h"
#include "real.h"
#include "hard-reg-set.h"
#include "output.h"
Mike Stump committed
62
#include "except.h"
63
#include "function.h"
Robert Lipe committed
64
#include "toplev.h"
Kaveh R. Ghazi committed
65
#include "reload.h"
66
#include "intl.h"
67
#include "basic-block.h"
68
#include "target.h"
69
#include "debug.h"
70
#include "expr.h"
71

72 73 74 75 76
#ifdef XCOFF_DEBUGGING_INFO
#include "xcoffout.h"		/* Needed for external data
				   declarations for e.g. AIX 4.x.  */
#endif

77 78 79 80
#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
#include "dwarf2out.h"
#endif

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
/* If we aren't using cc0, CC_STATUS_INIT shouldn't exist.  So define a
   null default for it to save conditionalization later.  */
#ifndef CC_STATUS_INIT
#define CC_STATUS_INIT
#endif

/* How to start an assembler comment.  */
#ifndef ASM_COMMENT_START
#define ASM_COMMENT_START ";#"
#endif

/* Is the given character a logical line separator for the assembler?  */
#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
#endif

97 98 99 100
#ifndef JUMP_TABLES_IN_TEXT_SECTION
#define JUMP_TABLES_IN_TEXT_SECTION 0
#endif

101
/* Last insn processed by final_scan_insn.  */
102 103
static rtx debug_insn;
rtx current_output_insn;
104 105 106 107

/* Line number of last NOTE.  */
static int last_linenum;

108 109 110 111 112 113
/* Highest line number in current block.  */
static int high_block_linenum;

/* Likewise for function.  */
static int high_function_linenum;

114
/* Filename of last NOTE.  */
115
static const char *last_filename;
116 117 118 119 120

/* Number of basic blocks seen so far;
   used if profile_block_flag is set.  */
static int count_basic_blocks;

121
/* Number of instrumented arcs when profile_arc_flag is set.  */
122
extern int count_instrumented_edges;
123

124 125
extern int length_unit_log; /* This is defined in insn-attrtab.c.  */

126 127 128 129 130 131
/* Nonzero while outputting an `asm' with operands.
   This means that inconsistencies are the user's fault, so don't abort.
   The precise value is the insn being output, to pass to error_for_asm.  */
static rtx this_is_asm_operands;

/* Number of operands of this insn, for an `asm' with operands.  */
132
static unsigned int insn_noperands;
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

/* Compare optimization flag.  */

static rtx last_ignored_compare = 0;

/* Flag indicating this insn is the start of a new basic block.  */

static int new_block = 1;

/* Assign a unique number to each insn that is output.
   This can be used to generate unique local labels.  */

static int insn_counter = 0;

#ifdef HAVE_cc0
/* This variable contains machine-dependent flags (defined in tm.h)
   set and examined by output routines
   that describe how to interpret the condition codes properly.  */

CC_STATUS cc_status;

/* During output of an insn, this contains a copy of cc_status
   from before the insn.  */

CC_STATUS cc_prev_status;
#endif

/* Indexed by hardware reg number, is 1 if that register is ever
   used in the current function.

   In life_analysis, or in stupid_life_analysis, this is set
   up to record the hard regs used explicitly.  Reload adds
   in the hard regs used for holding pseudo regs.  Final uses
   it to generate the code in the function prologue and epilogue
   to save and restore registers as needed.  */

char regs_ever_live[FIRST_PSEUDO_REGISTER];

/* Nonzero means current function must be given a frame pointer.
   Set in stmt.c if anything is allocated on the stack there.
   Set in reload1.c if anything is allocated on the stack there.  */

int frame_pointer_needed;

177 178 179 180
/* Assign unique numbers to labels generated for profiling.  */

int profile_label_no;

181
/* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen.  */
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

static int block_depth;

/* Nonzero if have enabled APP processing of our assembler output.  */

static int app_on;

/* If we are outputting an insn sequence, this contains the sequence rtx.
   Zero otherwise.  */

rtx final_sequence;

#ifdef ASSEMBLER_DIALECT

/* Number of the assembler dialect to use, starting at 0.  */
static int dialect_number;
#endif

/* Indexed by line number, nonzero if there is a note for that line.  */

static char *line_note_exists;

204 205 206 207 208
#ifdef HAVE_conditional_execution
/* Nonnull if the insn currently being emitted was a COND_EXEC pattern.  */
rtx current_insn_predicate;
#endif

209 210
/* Linked list to hold line numbers for each basic block.  */

Kazu Hirata committed
211 212
struct bb_list
{
213 214 215 216 217 218 219 220 221 222 223 224 225
  struct bb_list *next;		/* pointer to next basic block */
  int line_num;			/* line number */
  int file_label_num;		/* LPBC<n> label # for stored filename */
  int func_label_num;		/* LPBC<n> label # for stored function name */
};

static struct bb_list *bb_head	= 0;		/* Head of basic block list */
static struct bb_list **bb_tail = &bb_head;	/* Ptr to store next bb ptr */
static int bb_file_label_num	= -1;		/* Current label # for file */
static int bb_func_label_num	= -1;		/* Current label # for func */

/* Linked list to hold the strings for each file and function name output.  */

Kazu Hirata committed
226 227
struct bb_str
{
228
  struct bb_str *next;		/* pointer to next string */
229
  const char *string;		/* string */
230 231 232 233 234 235 236 237
  int label_num;		/* label number */
  int length;			/* string length */
};

static struct bb_str *sbb_head	= 0;		/* Head of string list.  */
static struct bb_str **sbb_tail	= &sbb_head;	/* Ptr to store next bb str */
static int sbb_label_num	= 0;		/* Last label used */

238
#ifdef HAVE_ATTR_length
239 240 241 242 243 244
static int asm_insn_count	PARAMS ((rtx));
#endif
static void profile_function	PARAMS ((FILE *));
static void profile_after_prologue PARAMS ((FILE *));
static void add_bb		PARAMS ((FILE *));
static int add_bb_string	PARAMS ((const char *, int));
245
static void notice_source_line	PARAMS ((rtx));
246
static rtx walk_alter_subreg	PARAMS ((rtx *));
247
static void output_asm_name	PARAMS ((void));
248
static tree get_mem_expr_from_op	PARAMS ((rtx, int *));
249
static void output_asm_operand_names PARAMS ((rtx *, int *, int));
250
static void output_operand	PARAMS ((rtx, int));
251
#ifdef LEAF_REGISTERS
252
static void leaf_renumber_regs	PARAMS ((rtx));
253 254
#endif
#ifdef HAVE_cc0
255
static int alter_cond		PARAMS ((rtx));
256
#endif
257
#ifndef ADDR_VEC_ALIGN
258
static int final_addr_vec_align PARAMS ((rtx));
259
#endif
260
#ifdef HAVE_ATTR_length
261
static int align_fuzz		PARAMS ((rtx, rtx, int, unsigned));
262
#endif
263 264 265 266 267

/* Initialize data in final at the beginning of a compilation.  */

void
init_final (filename)
Kaveh R. Ghazi committed
268
     const char *filename ATTRIBUTE_UNUSED;
269 270 271 272 273 274 275 276 277 278 279 280 281 282
{
  app_on = 0;
  final_sequence = 0;

#ifdef ASSEMBLER_DIALECT
  dialect_number = ASSEMBLER_DIALECT;
#endif
}

/* Called at end of source file,
   to output the block-profiling table for this entire compilation.  */

void
end_final (filename)
Kazu Hirata committed
283
     const char *filename;
284 285 286
{
  int i;

287
  if (profile_block_flag || profile_arc_flag)
288 289 290
    {
      char name[20];
      int align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
291
      int size, rounded;
292 293
      struct bb_list *ptr;
      struct bb_str *sptr;
294
      int long_bytes = LONG_TYPE_SIZE / BITS_PER_UNIT;
295
      int gcov_type_bytes = GCOV_TYPE_SIZE / BITS_PER_UNIT;
296
      int pointer_bytes = POINTER_SIZE / BITS_PER_UNIT;
297
      unsigned int align2 = LONG_TYPE_SIZE;
298 299 300 301

      if (profile_block_flag)
	size = long_bytes * count_basic_blocks;
      else
302
	size = gcov_type_bytes * count_instrumented_edges;
303
      rounded = size;
304 305 306 307 308

      rounded += (BIGGEST_ALIGNMENT / BITS_PER_UNIT) - 1;
      rounded = (rounded / (BIGGEST_ALIGNMENT / BITS_PER_UNIT)
		 * (BIGGEST_ALIGNMENT / BITS_PER_UNIT));

309 310 311 312 313 314
      /* ??? This _really_ ought to be done with a structure layout
	 and with assemble_constructor.  If long_bytes != pointer_bytes
	 we'll be emitting unaligned data at some point.  */
      if (long_bytes != pointer_bytes)
	abort ();

315 316
      data_section ();

317 318
      /* Output the main header, of 11 words:
	 0:  1 if this file is initialized, else 0.
319 320 321 322 323 324 325 326 327 328 329
	 1:  address of file name (LPBX1).
	 2:  address of table of counts (LPBX2).
	 3:  number of counts in the table.
	 4:  always 0, for compatibility with Sun.

         The following are GNU extensions:

	 5:  address of table of start addrs of basic blocks (LPBX3).
	 6:  Number of bytes in this header.
	 7:  address of table of function names (LPBX4).
	 8:  address of table of line numbers (LPBX5) or 0.
330
	 9:  address of table of file names (LPBX6) or 0.
Mike Stump committed
331
	10:  space reserved for basic block profiling.  */
332 333 334 335 336

      ASM_OUTPUT_ALIGN (asm_out_file, align);

      ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 0);

337 338 339 340
      /* Zero word.  */
      assemble_integer (const0_rtx, long_bytes, align2, 1);

      /* Address of filename.  */
341
      ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 1);
342 343
      assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
			align2, 1);
344

345
      /* Address of count table.  */
346
      ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
347 348
      assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
			align2, 1);
349

350 351 352 353 354
      /* Count of the # of basic blocks or # of instrumented arcs.  */
      assemble_integer (GEN_INT (profile_block_flag
				 ? count_basic_blocks
				 : count_instrumented_edges),
			long_bytes, align2, 1);
355

356 357
      /* Zero word (link field).  */
      assemble_integer (const0_rtx, pointer_bytes, align2, 1);
358 359

      /* address of basic block start address table */
360 361 362
      if (profile_block_flag)
	{
	  ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
363 364
	  assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
			    pointer_bytes, align2, 1);
365 366
	}
      else
367
	assemble_integer (const0_rtx, pointer_bytes, align2, 1);
368

369 370
      /* Byte count for extended structure.  */
      assemble_integer (GEN_INT (11 * UNITS_PER_WORD), long_bytes, align2, 1);
371

372
      /* Address of function name table.  */
373 374 375
      if (profile_block_flag)
	{
	  ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 4);
376 377
	  assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
			    pointer_bytes, align2, 1);
378 379
	}
      else
380
	assemble_integer (const0_rtx, pointer_bytes, align2, 1);
381

382
      /* Address of line number and filename tables if debugging.  */
383
      if (write_symbols != NO_DEBUG && profile_block_flag)
384 385
	{
	  ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 5);
Jeff Law committed
386
	  assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
387
			    pointer_bytes, align2, 1);
388
	  ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 6);
Jeff Law committed
389
	  assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
390
			    pointer_bytes, align2, 1);
391 392 393
	}
      else
	{
394 395
	  assemble_integer (const0_rtx, pointer_bytes, align2, 1);
	  assemble_integer (const0_rtx, pointer_bytes, align2, 1);
396 397
	}

398 399
      /* Space for extension ptr (link field).  */
      assemble_integer (const0_rtx, UNITS_PER_WORD, align2, 1);
400

401 402
      /* Output the file name changing the suffix to .d for
	 Sun tcov compatibility.  */
403 404
      ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 1);
      {
405 406 407 408 409 410 411
	char *cwd = getpwd ();
	int len = strlen (filename) + strlen (cwd) + 1;
	char *data_file = (char *) alloca (len + 4);

	strcpy (data_file, cwd);
	strcat (data_file, "/");
	strcat (data_file, filename);
412
	strip_off_ending (data_file, len);
413 414 415 416
	if (profile_block_flag)
	  strcat (data_file, ".d");
	else
	  strcat (data_file, ".da");
417 418 419 420
	assemble_string (data_file, strlen (data_file) + 1);
      }

      /* Make space for the table of counts.  */
Jason Merrill committed
421
      if (size == 0)
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
	{
	  /* Realign data section.  */
	  ASM_OUTPUT_ALIGN (asm_out_file, align);
	  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 2);
	  if (size != 0)
	    assemble_zeros (size);
	}
      else
	{
	  ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
#ifdef ASM_OUTPUT_SHARED_LOCAL
	  if (flag_shared_data)
	    ASM_OUTPUT_SHARED_LOCAL (asm_out_file, name, size, rounded);
	  else
#endif
437
#ifdef ASM_OUTPUT_ALIGNED_DECL_LOCAL
Kazu Hirata committed
438 439
	    ASM_OUTPUT_ALIGNED_DECL_LOCAL (asm_out_file, NULL_TREE, name,
					   size, BIGGEST_ALIGNMENT);
440
#else
441 442 443 444 445 446
#ifdef ASM_OUTPUT_ALIGNED_LOCAL
	    ASM_OUTPUT_ALIGNED_LOCAL (asm_out_file, name, size,
				      BIGGEST_ALIGNMENT);
#else
	    ASM_OUTPUT_LOCAL (asm_out_file, name, size, rounded);
#endif
447
#endif
448 449 450
	}

      /* Output any basic block strings */
451
      if (profile_block_flag)
452
	{
453 454
	  readonly_data_section ();
	  if (sbb_head)
455
	    {
456 457 458 459 460 461 462
	      ASM_OUTPUT_ALIGN (asm_out_file, align);
	      for (sptr = sbb_head; sptr != 0; sptr = sptr->next)
		{
		  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBC",
					     sptr->label_num);
		  assemble_string (sptr->string, sptr->length);
		}
463 464 465 466
	    }
	}

      /* Output the table of addresses.  */
467
      if (profile_block_flag)
468
	{
469 470 471 472 473 474
	  /* Realign in new section */
	  ASM_OUTPUT_ALIGN (asm_out_file, align);
	  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 3);
	  for (i = 0; i < count_basic_blocks; i++)
	    {
	      ASM_GENERATE_INTERNAL_LABEL (name, "LPB", i);
475
	      assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
476
				pointer_bytes, align2, 1);
477
	    }
478 479 480
	}

      /* Output the table of function names.  */
481
      if (profile_block_flag)
482
	{
483 484
	  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 4);
	  for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
485
	    {
486 487 488 489
	      if (ptr->func_label_num >= 0)
		{
		  ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
					       ptr->func_label_num);
490
		  assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
491
				    pointer_bytes, align2, 1);
492 493
		}
	      else
494
		assemble_integer (const0_rtx, pointer_bytes, align2, 1);
495 496
	    }

Kazu Hirata committed
497
	  for (; i < count_basic_blocks; i++)
498
	    assemble_integer (const0_rtx, pointer_bytes, align2, 1);
499
	}
500

501
      if (write_symbols != NO_DEBUG && profile_block_flag)
502 503 504 505
	{
	  /* Output the table of line numbers.  */
	  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 5);
	  for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
506
	    assemble_integer (GEN_INT (ptr->line_num), long_bytes, align2, 1);
507

Kazu Hirata committed
508
	  for (; i < count_basic_blocks; i++)
509
	    assemble_integer (const0_rtx, long_bytes, align2, 1);
510 511 512 513 514 515 516

	  /* Output the table of file names.  */
	  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 6);
	  for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
	    {
	      if (ptr->file_label_num >= 0)
		{
517 518
		  ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
					       ptr->file_label_num);
519
		  assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
520
				    pointer_bytes, align2, 1);
521 522
		}
	      else
523
		assemble_integer (const0_rtx, pointer_bytes, align2, 1);
524 525
	    }

Kazu Hirata committed
526
	  for (; i < count_basic_blocks; i++)
527
	    assemble_integer (const0_rtx, pointer_bytes, align2, 1);
528 529 530 531
	}

      /* End with the address of the table of addresses,
	 so we can find it easily, as the last word in the file's text.  */
532 533 534
      if (profile_block_flag)
	{
	  ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
535 536
	  assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
			    pointer_bytes, align2, 1);
537
	}
538 539 540
    }
}

541
/* Default target function prologue and epilogue assembler output.
542

543 544 545 546 547 548 549 550 551
   If not overridden for epilogue code, then the function body itself
   contains return instructions wherever needed.  */
void
default_function_pro_epilogue (file, size)
     FILE *file ATTRIBUTE_UNUSED;
     HOST_WIDE_INT size ATTRIBUTE_UNUSED;
{
}

552 553 554 555 556 557 558
/* Default target hook that outputs nothing to a stream.  */
void
no_asm_to_stream (file)
     FILE *file ATTRIBUTE_UNUSED;
{
}

559 560 561 562 563 564 565 566
/* Enable APP processing of subsequent output.
   Used before the output from an `asm' statement.  */

void
app_enable ()
{
  if (! app_on)
    {
Kaveh R. Ghazi committed
567
      fputs (ASM_APP_ON, asm_out_file);
568 569 570 571 572 573 574 575 576 577 578 579
      app_on = 1;
    }
}

/* Disable APP processing of subsequent output.
   Called from varasm.c before most kinds of output.  */

void
app_disable ()
{
  if (app_on)
    {
Kaveh R. Ghazi committed
580
      fputs (ASM_APP_OFF, asm_out_file);
581 582 583 584
      app_on = 0;
    }
}

Kazu Hirata committed
585
/* Return the number of slots filled in the current
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
   delayed branch sequence (we don't count the insn needing the
   delay slot).   Zero if not in a delayed branch sequence.  */

#ifdef DELAY_SLOTS
int
dbr_sequence_length ()
{
  if (final_sequence != 0)
    return XVECLEN (final_sequence, 0) - 1;
  else
    return 0;
}
#endif

/* The next two pages contain routines used to compute the length of an insn
   and to shorten branches.  */

/* Arrays for insn lengths, and addresses.  The latter is referenced by
   `insn_current_length'.  */

606
static int *insn_lengths;
607 608 609 610

#ifdef HAVE_ATTR_length
varray_type insn_addresses_;
#endif
611

612 613 614
/* Max uid for which the above arrays are valid.  */
static int insn_lengths_max_uid;

615 616 617
/* Address of insn being processed.  Used by `insn_current_length'.  */
int insn_current_address;

618 619 620 621 622 623
/* Address of insn being processed in previous iteration.  */
int insn_last_address;

/* konwn invariant alignment of insn being processed.  */
int insn_current_align;

624 625 626 627 628 629 630 631 632
/* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
   gives the next following alignment insn that increases the known
   alignment, or NULL_RTX if there is no such insn.
   For any alignment obtained this way, we can again index uid_align with
   its uid to obtain the next following align that in turn increases the
   alignment, till we reach NULL_RTX; the sequence obtained this way
   for each insn we'll call the alignment chain of this insn in the following
   comments.  */

Kazu Hirata committed
633 634
struct label_alignment
{
635 636 637 638 639 640 641
  short alignment;
  short max_skip;
};

static rtx *uid_align;
static int *uid_shuid;
static struct label_alignment *label_align;
642

643 644 645 646 647
/* Indicate that branch shortening hasn't yet been done.  */

void
init_insn_lengths ()
{
648 649 650 651 652 653 654 655 656
  if (uid_shuid)
    {
      free (uid_shuid);
      uid_shuid = 0;
    }
  if (insn_lengths)
    {
      free (insn_lengths);
      insn_lengths = 0;
657
      insn_lengths_max_uid = 0;
658
    }
659 660 661
#ifdef HAVE_ATTR_length
  INSN_ADDRESSES_FREE ();
#endif
662 663 664 665 666
  if (uid_align)
    {
      free (uid_align);
      uid_align = 0;
    }
667 668 669 670 671 672 673
}

/* Obtain the current length of an insn.  If branch shortening has been done,
   get its actual length.  Otherwise, get its maximum length.  */

int
get_attr_length (insn)
674
     rtx insn ATTRIBUTE_UNUSED;
675 676 677 678 679 680
{
#ifdef HAVE_ATTR_length
  rtx body;
  int i;
  int length = 0;

681
  if (insn_lengths_max_uid > INSN_UID (insn))
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
    return insn_lengths[INSN_UID (insn)];
  else
    switch (GET_CODE (insn))
      {
      case NOTE:
      case BARRIER:
      case CODE_LABEL:
	return 0;

      case CALL_INSN:
	length = insn_default_length (insn);
	break;

      case JUMP_INSN:
	body = PATTERN (insn);
        if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
	  {
699 700
	    /* Alignment is machine-dependent and should be handled by
	       ADDR_VEC_ALIGN.  */
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
	  }
	else
	  length = insn_default_length (insn);
	break;

      case INSN:
	body = PATTERN (insn);
	if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
	  return 0;

	else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
	  length = asm_insn_count (body) * insn_default_length (insn);
	else if (GET_CODE (body) == SEQUENCE)
	  for (i = 0; i < XVECLEN (body, 0); i++)
	    length += get_attr_length (XVECEXP (body, 0, i));
	else
	  length = insn_default_length (insn);
718 719 720 721
	break;

      default:
	break;
722 723 724 725 726 727 728 729 730 731 732
      }

#ifdef ADJUST_INSN_LENGTH
  ADJUST_INSN_LENGTH (insn, length);
#endif
  return length;
#else /* not HAVE_ATTR_length */
  return 0;
#endif /* not HAVE_ATTR_length */
}

733 734 735 736 737 738 739
/* Code to handle alignment inside shorten_branches.  */

/* Here is an explanation how the algorithm in align_fuzz can give
   proper results:

   Call a sequence of instructions beginning with alignment point X
   and continuing until the next alignment point `block X'.  When `X'
Kazu Hirata committed
740
   is used in an expression, it means the alignment value of the
741
   alignment point.
Kazu Hirata committed
742

743 744 745
   Call the distance between the start of the first insn of block X, and
   the end of the last insn of block X `IX', for the `inner size of X'.
   This is clearly the sum of the instruction lengths.
Kazu Hirata committed
746

747 748
   Likewise with the next alignment-delimited block following X, which we
   shall call block Y.
Kazu Hirata committed
749

750 751
   Call the distance between the start of the first insn of block X, and
   the start of the first insn of block Y `OX', for the `outer size of X'.
Kazu Hirata committed
752

753
   The estimated padding is then OX - IX.
Kazu Hirata committed
754

755
   OX can be safely estimated as
Kazu Hirata committed
756

757 758 759 760
           if (X >= Y)
                   OX = round_up(IX, Y)
           else
                   OX = round_up(IX, X) + Y - X
Kazu Hirata committed
761

762 763
   Clearly est(IX) >= real(IX), because that only depends on the
   instruction lengths, and those being overestimated is a given.
Kazu Hirata committed
764

765 766
   Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
   we needn't worry about that when thinking about OX.
Kazu Hirata committed
767

768 769 770 771 772 773 774
   When X >= Y, the alignment provided by Y adds no uncertainty factor
   for branch ranges starting before X, so we can just round what we have.
   But when X < Y, we don't know anything about the, so to speak,
   `middle bits', so we have to assume the worst when aligning up from an
   address mod X to one mod Y, which is Y - X.  */

#ifndef LABEL_ALIGN
775
#define LABEL_ALIGN(LABEL) align_labels_log
776 777
#endif

778
#ifndef LABEL_ALIGN_MAX_SKIP
779
#define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
780 781
#endif

782
#ifndef LOOP_ALIGN
783
#define LOOP_ALIGN(LABEL) align_loops_log
784 785
#endif

786
#ifndef LOOP_ALIGN_MAX_SKIP
787
#define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
788 789
#endif

790
#ifndef LABEL_ALIGN_AFTER_BARRIER
791
#define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
792 793
#endif

794
#ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
795 796 797 798 799 800 801 802
#define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
#endif

#ifndef JUMP_ALIGN
#define JUMP_ALIGN(LABEL) align_jumps_log
#endif

#ifndef JUMP_ALIGN_MAX_SKIP
803
#define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
804 805
#endif

806
#ifndef ADDR_VEC_ALIGN
807
static int
808 809 810
final_addr_vec_align (addr_vec)
     rtx addr_vec;
{
811
  int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
812 813 814

  if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
    align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
815
  return exact_log2 (align);
816 817

}
Kazu Hirata committed
818

819 820 821 822 823 824 825 826 827
#define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
#endif

#ifndef INSN_LENGTH_ALIGNMENT
#define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
#endif

#define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])

828
static int min_labelno, max_labelno;
829 830

#define LABEL_TO_ALIGNMENT(LABEL) \
831 832 833 834
  (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)

#define LABEL_TO_MAX_SKIP(LABEL) \
  (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
835 836

/* For the benefit of port specific code do this also as a function.  */
Kazu Hirata committed
837

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
int
label_to_alignment (label)
     rtx label;
{
  return LABEL_TO_ALIGNMENT (label);
}

#ifdef HAVE_ATTR_length
/* The differences in addresses
   between a branch and its target might grow or shrink depending on
   the alignment the start insn of the range (the branch for a forward
   branch or the label for a backward branch) starts out on; if these
   differences are used naively, they can even oscillate infinitely.
   We therefore want to compute a 'worst case' address difference that
   is independent of the alignment the start insn of the range end
   up on, and that is at least as large as the actual difference.
   The function align_fuzz calculates the amount we have to add to the
   naively computed difference, by traversing the part of the alignment
   chain of the start insn of the range that is in front of the end insn
   of the range, and considering for each alignment the maximum amount
   that it might contribute to a size increase.

   For casesi tables, we also want to know worst case minimum amounts of
   address difference, in case a machine description wants to introduce
   some common offset that is added to all offsets in a table.
   For this purpose, align_fuzz with a growth argument of 0 comuptes the
   appropriate adjustment.  */

/* Compute the maximum delta by which the difference of the addresses of
   START and END might grow / shrink due to a different address for start
   which changes the size of alignment insns between START and END.
   KNOWN_ALIGN_LOG is the alignment known for START.
   GROWTH should be ~0 if the objective is to compute potential code size
   increase, and 0 if the objective is to compute potential shrink.
   The return value is undefined for any other value of GROWTH.  */
Kazu Hirata committed
873

874
static int
J"orn Rennecke committed
875
align_fuzz (start, end, known_align_log, growth)
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
     rtx start, end;
     int known_align_log;
     unsigned growth;
{
  int uid = INSN_UID (start);
  rtx align_label;
  int known_align = 1 << known_align_log;
  int end_shuid = INSN_SHUID (end);
  int fuzz = 0;

  for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
    {
      int align_addr, new_align;

      uid = INSN_UID (align_label);
891
      align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
      if (uid_shuid[uid] > end_shuid)
	break;
      known_align_log = LABEL_TO_ALIGNMENT (align_label);
      new_align = 1 << known_align_log;
      if (new_align < known_align)
	continue;
      fuzz += (-align_addr ^ growth) & (new_align - known_align);
      known_align = new_align;
    }
  return fuzz;
}

/* Compute a worst-case reference address of a branch so that it
   can be safely used in the presence of aligned labels.  Since the
   size of the branch itself is unknown, the size of the branch is
   not included in the range.  I.e. for a forward branch, the reference
   address is the end address of the branch as known from the previous
   branch shortening pass, minus a value to account for possible size
   increase due to alignment.  For a backward branch, it is the start
   address of the branch as known from the current pass, plus a value
   to account for possible size increase due to alignment.
   NB.: Therefore, the maximum offset allowed for backward branches needs
   to exclude the branch size.  */
Kazu Hirata committed
915

916 917 918 919
int
insn_current_reference_address (branch)
     rtx branch;
{
920 921 922 923 924 925 926 927
  rtx dest, seq;
  int seq_uid;

  if (! INSN_ADDRESSES_SET_P ())
    return 0;

  seq = NEXT_INSN (PREV_INSN (branch));
  seq_uid = INSN_UID (seq);
928 929 930 931 932 933 934 935
  if (GET_CODE (branch) != JUMP_INSN)
    /* This can happen for example on the PA; the objective is to know the
       offset to address something in front of the start of the function.
       Thus, we can treat it like a backward branch.
       We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
       any alignment we'd encounter, so we skip the call to align_fuzz.  */
    return insn_current_address;
  dest = JUMP_LABEL (branch);
936

937
  /* BRANCH has no proper alignment chain set, so use SEQ.
938 939
     BRANCH also has no INSN_SHUID.  */
  if (INSN_SHUID (seq) < INSN_SHUID (dest))
940
    {
Kazu Hirata committed
941
      /* Forward branch.  */
942
      return (insn_last_address + insn_lengths[seq_uid]
943
	      - align_fuzz (seq, dest, length_unit_log, ~0));
944 945 946
    }
  else
    {
Kazu Hirata committed
947
      /* Backward branch.  */
948
      return (insn_current_address
Joern Rennecke committed
949
	      + align_fuzz (dest, seq, length_unit_log, ~0));
950 951 952 953
    }
}
#endif /* HAVE_ATTR_length */

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
void
compute_alignments ()
{
  int i;
  int log, max_skip, max_log;

  if (label_align)
    {
      free (label_align);
      label_align = 0;
    }

  max_labelno = max_label_num ();
  min_labelno = get_first_label_num ();
  label_align = (struct label_alignment *)
    xcalloc (max_labelno - min_labelno + 1, sizeof (struct label_alignment));

  /* If not optimizing or optimizing for size, don't assign any alignments.  */
972
  if (! optimize || optimize_size)
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
    return;

  for (i = 0; i < n_basic_blocks; i++)
    {
      basic_block bb = BASIC_BLOCK (i);
      rtx label = bb->head;
      int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
      edge e;

      if (GET_CODE (label) != CODE_LABEL)
	continue;
      max_log = LABEL_ALIGN (label);
      max_skip = LABEL_ALIGN_MAX_SKIP;

      for (e = bb->pred; e; e = e->pred_next)
	{
	  if (e->flags & EDGE_FALLTHRU)
	    has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
	  else
	    branch_frequency += EDGE_FREQUENCY (e);
	}

995
      /* There are two purposes to align block with no fallthru incoming edge:
996 997 998 999 1000 1001
	 1) to avoid fetch stalls when branch destination is near cache boundary
	 2) to improve cache effciency in case the previous block is not executed
	    (so it does not need to be in the cache).

	 We to catch first case, we align frequently executed blocks.
	 To catch the second, we align blocks that are executed more frequently
1002
	 than the predecessor and the predecessor is likely to not be executed
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	 when function is called.  */

      if (!has_fallthru
	  && (branch_frequency > BB_FREQ_MAX / 10
	      || (bb->frequency > BASIC_BLOCK (i - 1)->frequency * 10
		  && (BASIC_BLOCK (i - 1)->frequency
		      <= ENTRY_BLOCK_PTR->frequency / 2))))
	{
	  log = JUMP_ALIGN (label);
	  if (max_log < log)
	    {
	      max_log = log;
	      max_skip = JUMP_ALIGN_MAX_SKIP;
	    }
	}
      /* In case block is frequent and reached mostly by non-fallthru edge,
	 align it.  It is most likely an first block of loop.  */
      if (has_fallthru
	  && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
	  && branch_frequency > fallthru_frequency * 5)
	{
	  log = LOOP_ALIGN (label);
	  if (max_log < log)
	    {
	      max_log = log;
	      max_skip = LOOP_ALIGN_MAX_SKIP;
	    }
	}
      LABEL_TO_ALIGNMENT (label) = max_log;
      LABEL_TO_MAX_SKIP (label) = max_skip;
    }
}

1036 1037 1038 1039 1040 1041 1042 1043 1044
/* Make a pass over all insns and compute their actual lengths by shortening
   any branches of variable length if possible.  */

/* Give a default value for the lowest address in a function.  */

#ifndef FIRST_INSN_ADDRESS
#define FIRST_INSN_ADDRESS 0
#endif

1045 1046 1047 1048 1049 1050 1051 1052
/* shorten_branches might be called multiple times:  for example, the SH
   port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
   In order to do this, it needs proper length information, which it obtains
   by calling shorten_branches.  This cannot be collapsed with
   shorten_branches itself into a single pass unless we also want to intergate
   reorg.c, since the branch splitting exposes new instructions with delay
   slots.  */

1053 1054
void
shorten_branches (first)
1055
     rtx first ATTRIBUTE_UNUSED;
1056 1057
{
  rtx insn;
1058 1059 1060
  int max_uid;
  int i;
  int max_log;
1061
  int max_skip;
1062 1063 1064
#ifdef HAVE_ATTR_length
#define MAX_CODE_ALIGN 16
  rtx seq;
1065 1066 1067 1068
  int something_changed = 1;
  char *varying_length;
  rtx body;
  int uid;
1069
  rtx align_tab[MAX_CODE_ALIGN];
1070

1071
#endif
1072

1073 1074
  /* Compute maximum UID and allocate label_align / uid_shuid.  */
  max_uid = get_max_uid ();
1075

1076
  uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
1077

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
  if (max_labelno != max_label_num ())
    {
      int old = max_labelno;
      int n_labels;
      int n_old_labels;

      max_labelno = max_label_num ();

      n_labels = max_labelno - min_labelno + 1;
      n_old_labels = old - min_labelno + 1;

      label_align = (struct label_alignment *) xrealloc
	(label_align, n_labels * sizeof (struct label_alignment));

      /* Range of labels grows monotonically in the function.  Abort here
         means that the initialization of array got lost.  */
      if (n_old_labels > n_labels)
	abort ();

      memset (label_align + n_old_labels, 0,
	      (n_labels - n_old_labels) * sizeof (struct label_alignment));
    }

1101 1102
  /* Initialize label_align and set up uid_shuid to be strictly
     monotonically rising with insn order.  */
1103 1104 1105
  /* We use max_log here to keep track of the maximum alignment we want to
     impose on the next CODE_LABEL (or the current one if we are processing
     the CODE_LABEL itself).  */
Kazu Hirata committed
1106

1107 1108 1109 1110
  max_log = 0;
  max_skip = 0;

  for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
1111 1112 1113 1114
    {
      int log;

      INSN_SHUID (insn) = i++;
1115
      if (INSN_P (insn))
1116 1117 1118 1119 1120 1121 1122
	{
	  /* reorg might make the first insn of a loop being run once only,
             and delete the label in front of it.  Then we want to apply
             the loop alignment to the new label created by reorg, which
             is separated by the former loop start insn from the
	     NOTE_INSN_LOOP_BEG.  */
	}
1123 1124 1125
      else if (GET_CODE (insn) == CODE_LABEL)
	{
	  rtx next;
1126 1127 1128 1129 1130 1131 1132 1133
	  
	  /* Merge in alignments computed by compute_alignments.  */
	  log = LABEL_TO_ALIGNMENT (insn);
	  if (max_log < log)
	    {
	      max_log = log;
	      max_skip = LABEL_TO_MAX_SKIP (insn);
	    }
1134 1135 1136

	  log = LABEL_ALIGN (insn);
	  if (max_log < log)
1137 1138 1139 1140
	    {
	      max_log = log;
	      max_skip = LABEL_ALIGN_MAX_SKIP;
	    }
1141
	  next = NEXT_INSN (insn);
1142 1143 1144 1145 1146
	  /* ADDR_VECs only take room if read-only data goes into the text
	     section.  */
	  if (JUMP_TABLES_IN_TEXT_SECTION
#if !defined(READONLY_DATA_SECTION)
	      || 1
1147
#endif
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	      )
	    if (next && GET_CODE (next) == JUMP_INSN)
	      {
		rtx nextbody = PATTERN (next);
		if (GET_CODE (nextbody) == ADDR_VEC
		    || GET_CODE (nextbody) == ADDR_DIFF_VEC)
		  {
		    log = ADDR_VEC_ALIGN (next);
		    if (max_log < log)
		      {
			max_log = log;
			max_skip = LABEL_ALIGN_MAX_SKIP;
		      }
		  }
	      }
1163
	  LABEL_TO_ALIGNMENT (insn) = max_log;
1164
	  LABEL_TO_MAX_SKIP (insn) = max_skip;
1165
	  max_log = 0;
1166
	  max_skip = 0;
1167 1168 1169 1170 1171
	}
      else if (GET_CODE (insn) == BARRIER)
	{
	  rtx label;

1172
	  for (label = insn; label && ! INSN_P (label);
1173 1174 1175 1176 1177
	       label = NEXT_INSN (label))
	    if (GET_CODE (label) == CODE_LABEL)
	      {
		log = LABEL_ALIGN_AFTER_BARRIER (insn);
		if (max_log < log)
1178 1179 1180 1181
		  {
		    max_log = log;
		    max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
		  }
1182 1183 1184 1185 1186 1187 1188
		break;
	      }
	}
    }
#ifdef HAVE_ATTR_length

  /* Allocate the rest of the arrays.  */
1189
  insn_lengths = (int *) xmalloc (max_uid * sizeof (*insn_lengths));
1190
  insn_lengths_max_uid = max_uid;
1191 1192
  /* Syntax errors can lead to labels being outside of the main insn stream.
     Initialize insn_addresses, so that we get reproducible results.  */
1193
  INSN_ADDRESSES_ALLOC (max_uid);
1194

1195
  varying_length = (char *) xcalloc (max_uid, sizeof (char));
1196 1197 1198 1199 1200 1201

  /* Initialize uid_align.  We scan instructions
     from end to start, and keep in align_tab[n] the last seen insn
     that does an alignment of at least n+1, i.e. the successor
     in the alignment chain for an insn that does / has a known
     alignment of n.  */
1202
  uid_align = (rtx *) xcalloc (max_uid, sizeof *uid_align);
1203

Kazu Hirata committed
1204
  for (i = MAX_CODE_ALIGN; --i >= 0;)
1205 1206
    align_tab[i] = NULL_RTX;
  seq = get_last_insn ();
1207
  for (; seq; seq = PREV_INSN (seq))
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
    {
      int uid = INSN_UID (seq);
      int log;
      log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
      uid_align[uid] = align_tab[0];
      if (log)
	{
	  /* Found an alignment label.  */
	  uid_align[uid] = align_tab[log];
	  for (i = log - 1; i >= 0; i--)
	    align_tab[i] = seq;
	}
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
    }
#ifdef CASE_VECTOR_SHORTEN_MODE
  if (optimize)
    {
      /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
         label fields.  */

      int min_shuid = INSN_SHUID (get_insns ()) - 1;
      int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
      int rel;

      for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1232
	{
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	  rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
	  int len, i, min, max, insn_shuid;
	  int min_align;
	  addr_diff_vec_flags flags;

	  if (GET_CODE (insn) != JUMP_INSN
	      || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
	    continue;
	  pat = PATTERN (insn);
	  len = XVECLEN (pat, 1);
	  if (len <= 0)
	    abort ();
	  min_align = MAX_CODE_ALIGN;
	  for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
	    {
	      rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
	      int shuid = INSN_SHUID (lab);
	      if (shuid < min)
		{
		  min = shuid;
		  min_lab = lab;
		}
	      if (shuid > max)
		{
		  max = shuid;
		  max_lab = lab;
		}
	      if (min_align > LABEL_TO_ALIGNMENT (lab))
		min_align = LABEL_TO_ALIGNMENT (lab);
	    }
	  XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
	  XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
	  insn_shuid = INSN_SHUID (insn);
	  rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
	  flags.min_align = min_align;
	  flags.base_after_vec = rel > insn_shuid;
	  flags.min_after_vec  = min > insn_shuid;
	  flags.max_after_vec  = max > insn_shuid;
	  flags.min_after_base = min > rel;
	  flags.max_after_base = max > rel;
	  ADDR_DIFF_VEC_FLAGS (pat) = flags;
1274 1275
	}
    }
1276
#endif /* CASE_VECTOR_SHORTEN_MODE */
1277 1278 1279 1280 1281 1282 1283

  /* Compute initial lengths, addresses, and varying flags for each insn.  */
  for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
       insn != 0;
       insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
    {
      uid = INSN_UID (insn);
1284

1285
      insn_lengths[uid] = 0;
1286 1287 1288 1289 1290 1291 1292

      if (GET_CODE (insn) == CODE_LABEL)
	{
	  int log = LABEL_TO_ALIGNMENT (insn);
	  if (log)
	    {
	      int align = 1 << log;
Kaveh R. Ghazi committed
1293
	      int new_address = (insn_current_address + align - 1) & -align;
1294 1295 1296 1297
	      insn_lengths[uid] = new_address - insn_current_address;
	    }
	}

1298
      INSN_ADDRESSES (uid) = insn_current_address;
Kazu Hirata committed
1299

1300 1301 1302
      if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
	  || GET_CODE (insn) == CODE_LABEL)
	continue;
1303 1304
      if (INSN_DELETED_P (insn))
	continue;
1305 1306 1307

      body = PATTERN (insn);
      if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1308 1309 1310
	{
	  /* This only takes room if read-only data goes into the text
	     section.  */
1311 1312 1313 1314 1315 1316 1317 1318
	  if (JUMP_TABLES_IN_TEXT_SECTION
#if !defined(READONLY_DATA_SECTION)
	      || 1
#endif
	      )
	    insn_lengths[uid] = (XVECLEN (body,
					  GET_CODE (body) == ADDR_DIFF_VEC)
				 * GET_MODE_SIZE (GET_MODE (body)));
1319 1320
	  /* Alignment is handled by ADDR_VEC_ALIGN.  */
	}
1321
      else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
      else if (GET_CODE (body) == SEQUENCE)
	{
	  int i;
	  int const_delay_slots;
#ifdef DELAY_SLOTS
	  const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
#else
	  const_delay_slots = 0;
#endif
	  /* Inside a delay slot sequence, we do not do any branch shortening
	     if the shortening could change the number of delay slots
Mike Stump committed
1334
	     of the branch.  */
1335 1336 1337 1338 1339 1340
	  for (i = 0; i < XVECLEN (body, 0); i++)
	    {
	      rtx inner_insn = XVECEXP (body, 0, i);
	      int inner_uid = INSN_UID (inner_insn);
	      int inner_length;

1341 1342
	      if (GET_CODE (body) == ASM_INPUT
		  || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1343 1344 1345 1346
		inner_length = (asm_insn_count (PATTERN (inner_insn))
				* insn_default_length (inner_insn));
	      else
		inner_length = insn_default_length (inner_insn);
Kazu Hirata committed
1347

1348 1349 1350 1351 1352 1353
	      insn_lengths[inner_uid] = inner_length;
	      if (const_delay_slots)
		{
		  if ((varying_length[inner_uid]
		       = insn_variable_length_p (inner_insn)) != 0)
		    varying_length[uid] = 1;
1354 1355
		  INSN_ADDRESSES (inner_uid) = (insn_current_address
						+ insn_lengths[uid]);
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
		}
	      else
		varying_length[inner_uid] = 0;
	      insn_lengths[uid] += inner_length;
	    }
	}
      else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
	{
	  insn_lengths[uid] = insn_default_length (insn);
	  varying_length[uid] = insn_variable_length_p (insn);
	}

      /* If needed, do any adjustment.  */
#ifdef ADJUST_INSN_LENGTH
      ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1371
      if (insn_lengths[uid] < 0)
1372
	fatal_insn ("negative insn length", insn);
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
#endif
    }

  /* Now loop over all the insns finding varying length insns.  For each,
     get the current insn length.  If it has changed, reflect the change.
     When nothing changes for a full pass, we are done.  */

  while (something_changed)
    {
      something_changed = 0;
1383
      insn_current_align = MAX_CODE_ALIGN - 1;
1384 1385 1386 1387 1388
      for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
	   insn != 0;
	   insn = NEXT_INSN (insn))
	{
	  int new_length;
1389
#ifdef ADJUST_INSN_LENGTH
1390
	  int tmp_length;
1391
#endif
1392
	  int length_align;
1393 1394

	  uid = INSN_UID (insn);
1395 1396 1397 1398 1399 1400 1401

	  if (GET_CODE (insn) == CODE_LABEL)
	    {
	      int log = LABEL_TO_ALIGNMENT (insn);
	      if (log > insn_current_align)
		{
		  int align = 1 << log;
Kaveh R. Ghazi committed
1402
		  int new_address= (insn_current_address + align - 1) & -align;
1403 1404 1405 1406 1407 1408
		  insn_lengths[uid] = new_address - insn_current_address;
		  insn_current_align = log;
		  insn_current_address = new_address;
		}
	      else
		insn_lengths[uid] = 0;
1409
	      INSN_ADDRESSES (uid) = insn_current_address;
1410 1411 1412 1413 1414 1415 1416
	      continue;
	    }

	  length_align = INSN_LENGTH_ALIGNMENT (insn);
	  if (length_align < insn_current_align)
	    insn_current_align = length_align;

1417 1418
	  insn_last_address = INSN_ADDRESSES (uid);
	  INSN_ADDRESSES (uid) = insn_current_address;
1419

1420
#ifdef CASE_VECTOR_SHORTEN_MODE
1421 1422 1423 1424 1425 1426 1427 1428
	  if (optimize && GET_CODE (insn) == JUMP_INSN
	      && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
	    {
	      rtx body = PATTERN (insn);
	      int old_length = insn_lengths[uid];
	      rtx rel_lab = XEXP (XEXP (body, 0), 0);
	      rtx min_lab = XEXP (XEXP (body, 2), 0);
	      rtx max_lab = XEXP (XEXP (body, 3), 0);
1429 1430 1431
	      int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
	      int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
	      int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1432 1433
	      rtx prev;
	      int rel_align = 0;
1434 1435 1436 1437
	      addr_diff_vec_flags flags;

	      /* Avoid automatic aggregate initialization.  */
	      flags = ADDR_DIFF_VEC_FLAGS (body);
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

	      /* Try to find a known alignment for rel_lab.  */
	      for (prev = rel_lab;
		   prev
		   && ! insn_lengths[INSN_UID (prev)]
		   && ! (varying_length[INSN_UID (prev)] & 1);
		   prev = PREV_INSN (prev))
		if (varying_length[INSN_UID (prev)] & 2)
		  {
		    rel_align = LABEL_TO_ALIGNMENT (prev);
		    break;
		  }

	      /* See the comment on addr_diff_vec_flags in rtl.h for the
		 meaning of the flags values.  base: REL_LAB   vec: INSN  */
	      /* Anything after INSN has still addresses from the last
		 pass; adjust these so that they reflect our current
		 estimate for this pass.  */
	      if (flags.base_after_vec)
		rel_addr += insn_current_address - insn_last_address;
	      if (flags.min_after_vec)
		min_addr += insn_current_address - insn_last_address;
	      if (flags.max_after_vec)
		max_addr += insn_current_address - insn_last_address;
	      /* We want to know the worst case, i.e. lowest possible value
		 for the offset of MIN_LAB.  If MIN_LAB is after REL_LAB,
		 its offset is positive, and we have to be wary of code shrink;
		 otherwise, it is negative, and we have to be vary of code
		 size increase.  */
	      if (flags.min_after_base)
		{
		  /* If INSN is between REL_LAB and MIN_LAB, the size
		     changes we are about to make can change the alignment
		     within the observed offset, therefore we have to break
		     it up into two parts that are independent.  */
		  if (! flags.base_after_vec && flags.min_after_vec)
		    {
		      min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
		      min_addr -= align_fuzz (insn, min_lab, 0, 0);
		    }
		  else
		    min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
		}
	      else
		{
		  if (flags.base_after_vec && ! flags.min_after_vec)
		    {
		      min_addr -= align_fuzz (min_lab, insn, 0, ~0);
		      min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
		    }
		  else
		    min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
		}
	      /* Likewise, determine the highest lowest possible value
		 for the offset of MAX_LAB.  */
	      if (flags.max_after_base)
		{
		  if (! flags.base_after_vec && flags.max_after_vec)
		    {
		      max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
		      max_addr += align_fuzz (insn, max_lab, 0, ~0);
		    }
		  else
		    max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
		}
	      else
		{
		  if (flags.base_after_vec && ! flags.max_after_vec)
		    {
		      max_addr += align_fuzz (max_lab, insn, 0, 0);
		      max_addr += align_fuzz (insn, rel_lab, 0, 0);
		    }
		  else
		    max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
		}
	      PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
							max_addr - rel_addr,
							body));
1516 1517 1518
	      if (JUMP_TABLES_IN_TEXT_SECTION
#if !defined(READONLY_DATA_SECTION)
		  || 1
1519
#endif
1520 1521 1522 1523 1524 1525 1526 1527 1528
		  )
		{
		  insn_lengths[uid]
		    = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
		  insn_current_address += insn_lengths[uid];
		  if (insn_lengths[uid] != old_length)
		    something_changed = 1;
		}

1529 1530
	      continue;
	    }
1531 1532 1533
#endif /* CASE_VECTOR_SHORTEN_MODE */

	  if (! (varying_length[uid]))
1534
	    {
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
	      if (GET_CODE (insn) == INSN
		  && GET_CODE (PATTERN (insn)) == SEQUENCE)
		{
		  int i;

		  body = PATTERN (insn);
		  for (i = 0; i < XVECLEN (body, 0); i++)
		    {
		      rtx inner_insn = XVECEXP (body, 0, i);
		      int inner_uid = INSN_UID (inner_insn);

		      INSN_ADDRESSES (inner_uid) = insn_current_address;

		      insn_current_address += insn_lengths[inner_uid];
		    }
                }
	      else
		insn_current_address += insn_lengths[uid];

1554 1555
	      continue;
	    }
1556

1557 1558 1559
	  if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
	    {
	      int i;
Kazu Hirata committed
1560

1561 1562 1563 1564 1565 1566 1567 1568
	      body = PATTERN (insn);
	      new_length = 0;
	      for (i = 0; i < XVECLEN (body, 0); i++)
		{
		  rtx inner_insn = XVECEXP (body, 0, i);
		  int inner_uid = INSN_UID (inner_insn);
		  int inner_length;

1569
		  INSN_ADDRESSES (inner_uid) = insn_current_address;
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605

		  /* insn_current_length returns 0 for insns with a
		     non-varying length.  */
		  if (! varying_length[inner_uid])
		    inner_length = insn_lengths[inner_uid];
		  else
		    inner_length = insn_current_length (inner_insn);

		  if (inner_length != insn_lengths[inner_uid])
		    {
		      insn_lengths[inner_uid] = inner_length;
		      something_changed = 1;
		    }
		  insn_current_address += insn_lengths[inner_uid];
		  new_length += inner_length;
		}
	    }
	  else
	    {
	      new_length = insn_current_length (insn);
	      insn_current_address += new_length;
	    }

#ifdef ADJUST_INSN_LENGTH
	  /* If needed, do any adjustment.  */
	  tmp_length = new_length;
	  ADJUST_INSN_LENGTH (insn, new_length);
	  insn_current_address += (new_length - tmp_length);
#endif

	  if (new_length != insn_lengths[uid])
	    {
	      insn_lengths[uid] = new_length;
	      something_changed = 1;
	    }
	}
1606 1607 1608
      /* For a non-optimizing compile, do only a single pass.  */
      if (!optimize)
	break;
1609
    }
1610 1611 1612

  free (varying_length);

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
#endif /* HAVE_ATTR_length */
}

#ifdef HAVE_ATTR_length
/* Given the body of an INSN known to be generated by an ASM statement, return
   the number of machine instructions likely to be generated for this insn.
   This is used to compute its length.  */

static int
asm_insn_count (body)
     rtx body;
{
1625
  const char *template;
1626 1627
  int count = 1;

1628 1629 1630
  if (GET_CODE (body) == ASM_INPUT)
    template = XSTR (body, 0);
  else
1631
    template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1632

Kazu Hirata committed
1633 1634
  for (; *template; template++)
    if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
      count++;

  return count;
}
#endif

/* Output assembler code for the start of a function,
   and initialize some of the variables in this file
   for the new function.  The label for the function and associated
   assembler pseudo-ops have already been output in `assemble_start_function'.

   FIRST is the first insn of the rtl for the function being compiled.
   FILE is the file to write assembler code to.
   OPTIMIZE is nonzero if we should eliminate redundant
     test and compare insns.  */

void
final_start_function (first, file, optimize)
     rtx first;
     FILE *file;
Kaveh R. Ghazi committed
1655
     int optimize ATTRIBUTE_UNUSED;
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
{
  block_depth = 0;

  this_is_asm_operands = 0;

#ifdef NON_SAVING_SETJMP
  /* A function that calls setjmp should save and restore all the
     call-saved registers on a system where longjmp clobbers them.  */
  if (NON_SAVING_SETJMP && current_function_calls_setjmp)
    {
      int i;

      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1669
	if (!call_used_regs[i])
1670 1671 1672
	  regs_ever_live[i] = 1;
    }
#endif
Kazu Hirata committed
1673

1674
  if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1675 1676
    notice_source_line (first);
  high_block_linenum = high_function_linenum = last_linenum;
1677

1678
  (*debug_hooks->begin_prologue) (last_linenum, last_filename);
Jason Merrill committed
1679

1680
#if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1681
  if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1682
    dwarf2out_begin_prologue (0, NULL);
Kazu Hirata committed
1683
#endif
1684 1685

#ifdef LEAF_REG_REMAP
1686
  if (current_function_uses_only_leaf_regs)
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
    leaf_renumber_regs (first);
#endif

  /* The Sun386i and perhaps other machines don't work right
     if the profiling code comes after the prologue.  */
#ifdef PROFILE_BEFORE_PROLOGUE
  if (profile_flag)
    profile_function (file);
#endif /* PROFILE_BEFORE_PROLOGUE */

Jason Merrill committed
1697 1698 1699 1700 1701
#if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
  if (dwarf2out_do_frame ())
    dwarf2out_frame_debug (NULL_RTX);
#endif

1702 1703 1704 1705
  /* If debugging, assign block numbers to all of the blocks in this
     function.  */
  if (write_symbols)
    {
1706
      remove_unnecessary_notes ();
1707 1708
      reorder_blocks ();
      number_blocks (current_function_decl);
1709 1710 1711 1712 1713 1714
      /* We never actually put out begin/end notes for the top-level
	 block in the function.  But, conceptually, that block is
	 always needed.  */
      TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
    }

1715
  /* First output the function prologue: code to set up the stack frame.  */
1716
  (*targetm.asm_out.function_prologue) (file, get_frame_size ());
1717

1718 1719 1720 1721 1722 1723
#ifdef VMS_DEBUGGING_INFO
  /* Output label after the prologue of the function.  */
  if (write_symbols == VMS_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
    vmsdbgout_after_prologue ();
#endif

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
  /* If the machine represents the prologue as RTL, the profiling code must
     be emitted when NOTE_INSN_PROLOGUE_END is scanned.  */
#ifdef HAVE_prologue
  if (! HAVE_prologue)
#endif
    profile_after_prologue (file);

  profile_label_no++;

  /* If we are doing basic block profiling, remember a printable version
     of the function name.  */
  if (profile_block_flag)
    {
Kazu Hirata committed
1737 1738 1739
      bb_func_label_num =
	add_bb_string ((*decl_printable_name) (current_function_decl, 2),
		       FALSE);
1740 1741 1742 1743 1744
    }
}

static void
profile_after_prologue (file)
1745
     FILE *file ATTRIBUTE_UNUSED;
1746 1747 1748 1749
{
#ifdef FUNCTION_BLOCK_PROFILER
  if (profile_block_flag)
    {
1750
      FUNCTION_BLOCK_PROFILER (file, count_basic_blocks);
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
    }
#endif /* FUNCTION_BLOCK_PROFILER */

#ifndef PROFILE_BEFORE_PROLOGUE
  if (profile_flag)
    profile_function (file);
#endif /* not PROFILE_BEFORE_PROLOGUE */
}

static void
profile_function (file)
     FILE *file;
{
1764
#ifndef NO_PROFILE_COUNTERS
1765
  int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1766
#endif
1767 1768
#if defined(ASM_OUTPUT_REG_PUSH)
#if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1769
  int sval = current_function_returns_struct;
1770 1771
#endif
#if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1772
  int cxt = current_function_needs_context;
1773 1774
#endif
#endif /* ASM_OUTPUT_REG_PUSH */
1775

1776
#ifndef NO_PROFILE_COUNTERS
1777 1778 1779
  data_section ();
  ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
  ASM_OUTPUT_INTERNAL_LABEL (file, "LP", profile_label_no);
1780
  assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1781
#endif
1782

1783
  function_section (current_function_decl);
1784

1785
#if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1786 1787 1788
  if (sval)
    ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
#else
1789
#if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1790
  if (sval)
Kaveh R. Ghazi committed
1791 1792 1793
    {
      ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
    }
1794 1795 1796
#endif
#endif

1797
#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1798 1799 1800
  if (cxt)
    ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
#else
1801
#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1802
  if (cxt)
Kaveh R. Ghazi committed
1803 1804 1805
    {
      ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
    }
1806 1807 1808 1809 1810
#endif
#endif

  FUNCTION_PROFILER (file, profile_label_no);

1811
#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1812 1813 1814
  if (cxt)
    ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
#else
1815
#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1816
  if (cxt)
Kaveh R. Ghazi committed
1817 1818 1819
    {
      ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
    }
1820 1821 1822
#endif
#endif

1823
#if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1824 1825 1826
  if (sval)
    ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
#else
1827
#if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1828
  if (sval)
Kaveh R. Ghazi committed
1829 1830 1831
    {
      ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
    }
1832 1833 1834 1835 1836 1837 1838 1839 1840
#endif
#endif
}

/* Output assembler code for the end of a function.
   For clarity, args are same as those of `final_start_function'
   even though not all of them are needed.  */

void
1841
final_end_function ()
1842
{
1843
  app_disable ();
1844

1845
  (*debug_hooks->end_function) (high_function_linenum);
1846 1847 1848

  /* Finally, output the function epilogue:
     code to restore the stack frame and return to the caller.  */
1849
  (*targetm.asm_out.function_epilogue) (asm_out_file, get_frame_size ());
1850

1851 1852
  /* And debug output.  */
  (*debug_hooks->end_epilogue) ();
1853

1854
#if defined (DWARF2_UNWIND_INFO)
1855 1856
  if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
      && dwarf2out_do_frame ())
x  
Jason Merrill committed
1857 1858 1859
    dwarf2out_end_epilogue ();
#endif

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
  bb_func_label_num = -1;	/* not in function, nuke label # */
}

/* Add a block to the linked list that remembers the current line/file/function
   for basic block profiling.  Emit the label in front of the basic block and
   the instructions that increment the count field.  */

static void
add_bb (file)
     FILE *file;
{
Kazu Hirata committed
1871 1872
  struct bb_list *ptr =
    (struct bb_list *) permalloc (sizeof (struct bb_list));
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889

  /* Add basic block to linked list.  */
  ptr->next = 0;
  ptr->line_num = last_linenum;
  ptr->file_label_num = bb_file_label_num;
  ptr->func_label_num = bb_func_label_num;
  *bb_tail = ptr;
  bb_tail = &ptr->next;

  /* Enable the table of basic-block use counts
     to point at the code it applies to.  */
  ASM_OUTPUT_INTERNAL_LABEL (file, "LPB", count_basic_blocks);

  /* Before first insn of this basic block, increment the
     count of times it was entered.  */
#ifdef BLOCK_PROFILER
  BLOCK_PROFILER (file, count_basic_blocks);
1890 1891
#endif
#ifdef HAVE_cc0
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
  CC_STATUS_INIT;
#endif

  new_block = 0;
  count_basic_blocks++;
}

/* Add a string to be used for basic block profiling.  */

static int
add_bb_string (string, perm_p)
1903
     const char *string;
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
     int perm_p;
{
  int len;
  struct bb_str *ptr = 0;

  if (!string)
    {
      string = "<unknown>";
      perm_p = TRUE;
    }

  /* Allocate a new string if the current string isn't permanent.  If
     the string is permanent search for the same string in other
     allocations.  */

  len = strlen (string) + 1;
  if (!perm_p)
    {
      char *p = (char *) permalloc (len);
1923
      memcpy (p, string, len);
1924 1925 1926
      string = p;
    }
  else
Mike Stump committed
1927
    for (ptr = sbb_head; ptr != (struct bb_str *) 0; ptr = ptr->next)
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
      if (ptr->string == string)
	break;

  /* Allocate a new string block if we need to.  */
  if (!ptr)
    {
      ptr = (struct bb_str *) permalloc (sizeof (*ptr));
      ptr->next = 0;
      ptr->length = len;
      ptr->label_num = sbb_label_num++;
      ptr->string = string;
      *sbb_tail = ptr;
      sbb_tail = &ptr->next;
    }

  return ptr->label_num;
}

/* Output assembler code for some insns: all or part of a function.
   For description of args, see `final_start_function', above.

   PRESCAN is 1 if we are not really outputting,
     just scanning as if we were outputting.
   Prescanning deletes and rearranges insns just like ordinary output.
   PRESCAN is -2 if we are outputting after having prescanned.
   In this case, don't try to delete or rearrange insns
   because that has already been done.
   Prescanning is done only on certain machines.  */

void
final (first, file, optimize, prescan)
     rtx first;
     FILE *file;
     int optimize;
     int prescan;
{
1964
  rtx insn;
1965
  int max_line = 0;
1966
  int max_uid = 0;
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

  last_ignored_compare = 0;
  new_block = 1;

  /* Make a map indicating which line numbers appear in this function.
     When producing SDB debugging info, delete troublesome line number
     notes from inlined functions in other files as well as duplicate
     line number notes.  */
#ifdef SDB_DEBUGGING_INFO
  if (write_symbols == SDB_DEBUG)
    {
      rtx last = 0;
      for (insn = first; insn; insn = NEXT_INSN (insn))
	if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
	  {
	    if ((RTX_INTEGRATED_P (insn)
		 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
		 || (last != 0
		     && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
		     && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
	      {
1988
		delete_insn (insn);	/* Use delete_note.  */
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
		continue;
	      }
	    last = insn;
	    if (NOTE_LINE_NUMBER (insn) > max_line)
	      max_line = NOTE_LINE_NUMBER (insn);
	  }
    }
  else
#endif
    {
      for (insn = first; insn; insn = NEXT_INSN (insn))
	if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
	  max_line = NOTE_LINE_NUMBER (insn);
    }

2004
  line_note_exists = (char *) xcalloc (max_line + 1, sizeof (char));
2005 2006

  for (insn = first; insn; insn = NEXT_INSN (insn))
2007 2008
    {
      if (INSN_UID (insn) > max_uid)       /* find largest UID */
Kazu Hirata committed
2009
	max_uid = INSN_UID (insn);
2010
      if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
Kazu Hirata committed
2011
	line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
2012 2013 2014
#ifdef HAVE_cc0
      /* If CC tracking across branches is enabled, record the insn which
	 jumps to each branch only reached from one place.  */
2015
      if (optimize && GET_CODE (insn) == JUMP_INSN)
2016 2017 2018 2019 2020 2021 2022 2023
	{
	  rtx lab = JUMP_LABEL (insn);
	  if (lab && LABEL_NUSES (lab) == 1)
	    {
	      LABEL_REFS (lab) = insn;
	    }
	}
#endif
2024 2025
    }

2026 2027 2028 2029 2030 2031
  init_recog ();

  CC_STATUS_INIT;

  /* Output the insns.  */
  for (insn = NEXT_INSN (first); insn;)
2032 2033
    {
#ifdef HAVE_ATTR_length
2034
      if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
	{
#ifdef STACK_REGS
	  /* Irritatingly, the reg-stack pass is creating new instructions
	     and because of REG_DEAD note abuse it has to run after
	     shorten_branches.  Fake address of -1 then.  */
	  insn_current_address = -1;
#else
	  /* This can be triggered by bugs elsewhere in the compiler if
	     new insns are created after init_insn_lengths is called.  */
	  abort ();
2045
#endif
2046 2047
	}
      else
2048
	insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2049 2050
#endif /* HAVE_ATTR_length */

2051 2052
      insn = final_scan_insn (insn, file, optimize, prescan, 0);
    }
2053 2054 2055 2056 2057

  /* Do basic-block profiling here
     if the last insn was a conditional branch.  */
  if (profile_block_flag && new_block)
    add_bb (file);
2058

2059 2060
  free (line_note_exists);
  line_note_exists = NULL;
2061 2062
}

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
const char *
get_insn_template (code, insn)
     int code;
     rtx insn;
{
  const void *output = insn_data[code].output;
  switch (insn_data[code].output_format)
    {
    case INSN_OUTPUT_FORMAT_SINGLE:
      return (const char *) output;
    case INSN_OUTPUT_FORMAT_MULTI:
Kazu Hirata committed
2074
      return ((const char *const *) output)[which_alternative];
2075 2076 2077
    case INSN_OUTPUT_FORMAT_FUNCTION:
      if (insn == NULL)
	abort ();
Kazu Hirata committed
2078
      return (*(insn_output_fn) output) (recog_data.operand, insn);
2079 2080 2081 2082 2083

    default:
      abort ();
    }
}
Kazu Hirata committed
2084

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
/* The final scan for one insn, INSN.
   Args are same as in `final', except that INSN
   is the insn being scanned.
   Value returned is the next insn to be scanned.

   NOPEEPHOLES is the flag to disallow peephole processing (currently
   used for within delayed branch sequence output).  */

rtx
final_scan_insn (insn, file, optimize, prescan, nopeepholes)
     rtx insn;
     FILE *file;
2097
     int optimize ATTRIBUTE_UNUSED;
2098
     int prescan;
2099
     int nopeepholes ATTRIBUTE_UNUSED;
2100
{
2101 2102 2103 2104
#ifdef HAVE_cc0
  rtx set;
#endif

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
  insn_counter++;

  /* Ignore deleted insns.  These can occur when we split insns (due to a
     template of "#") while not optimizing.  */
  if (INSN_DELETED_P (insn))
    return NEXT_INSN (insn);

  switch (GET_CODE (insn))
    {
    case NOTE:
      if (prescan > 0)
	break;

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
      switch (NOTE_LINE_NUMBER (insn))
	{
	case NOTE_INSN_DELETED:
	case NOTE_INSN_LOOP_BEG:
	case NOTE_INSN_LOOP_END:
	case NOTE_INSN_LOOP_CONT:
	case NOTE_INSN_LOOP_VTOP:
	case NOTE_INSN_FUNCTION_END:
	case NOTE_INSN_REPEATED_LINE_NUMBER:
	case NOTE_INSN_RANGE_BEG:
	case NOTE_INSN_RANGE_END:
	case NOTE_INSN_LIVE:
	case NOTE_INSN_EXPECTED_VALUE:
	  break;
2132

2133
	case NOTE_INSN_BASIC_BLOCK:
2134 2135 2136
#ifdef IA64_UNWIND_INFO
	  IA64_UNWIND_EMIT (asm_out_file, insn);
#endif
2137 2138 2139 2140
	  if (flag_debug_asm)
	    fprintf (asm_out_file, "\t%s basic block %d\n",
		     ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
	  break;
2141

2142
	case NOTE_INSN_EH_REGION_BEG:
2143 2144
	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
				  NOTE_EH_HANDLER (insn));
Mike Stump committed
2145 2146
	  break;

2147
	case NOTE_INSN_EH_REGION_END:
2148 2149
	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
				  NOTE_EH_HANDLER (insn));
Mike Stump committed
2150 2151
	  break;

2152
	case NOTE_INSN_PROLOGUE_END:
2153
	  (*targetm.asm_out.function_end_prologue) (file);
2154 2155 2156
	  profile_after_prologue (file);
	  break;

2157
	case NOTE_INSN_EPILOGUE_BEG:
2158
	  (*targetm.asm_out.function_begin_epilogue) (file);
2159
	  break;
2160

2161
	case NOTE_INSN_FUNCTION_BEG:
2162 2163
	  app_disable ();
	  (*debug_hooks->end_prologue) (last_linenum);
2164
	  break;
2165 2166 2167

	case NOTE_INSN_BLOCK_BEG:
	  if (debug_info_level == DINFO_LEVEL_NORMAL
2168 2169
	      || debug_info_level == DINFO_LEVEL_VERBOSE
	      || write_symbols == DWARF_DEBUG
2170 2171 2172
	      || write_symbols == DWARF2_DEBUG
	      || write_symbols == VMS_AND_DWARF2_DEBUG
	      || write_symbols == VMS_DEBUG)
2173 2174
	    {
	      int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2175

2176 2177 2178
	      app_disable ();
	      ++block_depth;
	      high_block_linenum = last_linenum;
2179

2180
	      /* Output debugging info about the symbol-block beginning.  */
2181
	      (*debug_hooks->begin_block) (last_linenum, n);
2182

2183 2184 2185 2186
	      /* Mark this block as output.  */
	      TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
	    }
	  break;
2187

2188 2189 2190 2191
	case NOTE_INSN_BLOCK_END:
	  if (debug_info_level == DINFO_LEVEL_NORMAL
	      || debug_info_level == DINFO_LEVEL_VERBOSE
	      || write_symbols == DWARF_DEBUG
2192 2193 2194
	      || write_symbols == DWARF2_DEBUG
	      || write_symbols == VMS_AND_DWARF2_DEBUG
	      || write_symbols == VMS_DEBUG)
2195 2196
	    {
	      int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2197

2198 2199 2200 2201 2202 2203
	      app_disable ();

	      /* End of a symbol-block.  */
	      --block_depth;
	      if (block_depth < 0)
		abort ();
2204

2205
	      (*debug_hooks->end_block) (high_block_linenum, n);
2206 2207 2208 2209 2210 2211 2212
	    }
	  break;

	case NOTE_INSN_DELETED_LABEL:
	  /* Emit the label.  We may have deleted the CODE_LABEL because
	     the label could be proved to be unreachable, though still
	     referenced (in the form of having its address taken.  */
2213
	  ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2214
	  break;
2215

2216 2217 2218
	case 0:
	  break;

2219 2220 2221
	default:
	  if (NOTE_LINE_NUMBER (insn) <= 0)
	    abort ();
2222

2223 2224
	  /* This note is a line-number.  */
	  {
2225
	    rtx note;
2226 2227
	    int note_after = 0;

Kazu Hirata committed
2228
	    /* If there is anything real after this note, output it.
2229 2230 2231 2232
	       If another line note follows, omit this one.  */
	    for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
	      {
		if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
2233 2234
		  break;

2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
		/* These types of notes can be significant
		   so make sure the preceding line number stays.  */
		else if (GET_CODE (note) == NOTE
			 && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
			     || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
			     || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
		  break;
		else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
		  {
		    /* Another line note follows; we can delete this note
		       if no intervening line numbers have notes elsewhere.  */
		    int num;
		    for (num = NOTE_LINE_NUMBER (insn) + 1;
		         num < NOTE_LINE_NUMBER (note);
		         num++)
		      if (line_note_exists[num])
			break;

		    if (num >= NOTE_LINE_NUMBER (note))
		      note_after = 1;
		    break;
		  }
	      }

	    /* Output this line note if it is the first or the last line
	       note in a row.  */
	    if (!note_after)
2262 2263 2264 2265
	      {
		notice_source_line (insn);
		(*debug_hooks->source_line) (last_linenum, last_filename);
	      }
2266
	  }
Kazu Hirata committed
2267
	  break;
2268 2269 2270 2271
	}
      break;

    case BARRIER:
2272
#if defined (DWARF2_UNWIND_INFO)
2273
      if (dwarf2out_do_frame ())
2274
	dwarf2out_frame_debug (insn);
2275
#endif
2276 2277 2278
      break;

    case CODE_LABEL:
2279 2280
      /* The target port might emit labels in the output function for
	 some insn, e.g. sh.c output_branchy_insn.  */
2281 2282 2283
      if (CODE_LABEL_NUMBER (insn) <= max_labelno)
	{
	  int align = LABEL_TO_ALIGNMENT (insn);
Kaveh R. Ghazi committed
2284
#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2285
	  int max_skip = LABEL_TO_MAX_SKIP (insn);
Kaveh R. Ghazi committed
2286
#endif
2287

2288
	  if (align && NEXT_INSN (insn))
2289
	    {
2290
#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2291
	      ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2292
#else
2293
	      ASM_OUTPUT_ALIGN (file, align);
2294
#endif
2295
	    }
2296
	}
2297
#ifdef HAVE_cc0
2298
      CC_STATUS_INIT;
2299 2300
      /* If this label is reached from only one place, set the condition
	 codes from the instruction just before the branch.  */
2301 2302 2303 2304

      /* Disabled because some insns set cc_status in the C output code
	 and NOTICE_UPDATE_CC alone can set incorrect status.  */
      if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
	{
	  rtx jump = LABEL_REFS (insn);
	  rtx barrier = prev_nonnote_insn (insn);
	  rtx prev;
	  /* If the LABEL_REFS field of this label has been set to point
	     at a branch, the predecessor of the branch is a regular
	     insn, and that branch is the only way to reach this label,
	     set the condition codes based on the branch and its
	     predecessor.  */
	  if (barrier && GET_CODE (barrier) == BARRIER
	      && jump && GET_CODE (jump) == JUMP_INSN
	      && (prev = prev_nonnote_insn (jump))
	      && GET_CODE (prev) == INSN)
	    {
	      NOTICE_UPDATE_CC (PATTERN (prev), prev);
	      NOTICE_UPDATE_CC (PATTERN (jump), jump);
	    }
	}
#endif
2324 2325 2326
      if (prescan > 0)
	break;
      new_block = 1;
2327 2328

#ifdef FINAL_PRESCAN_LABEL
2329
      FINAL_PRESCAN_INSN (insn, NULL, 0);
2330 2331
#endif

2332 2333 2334
      if (LABEL_NAME (insn))
	(*debug_hooks->label) (insn);

2335 2336
      if (app_on)
	{
Kaveh R. Ghazi committed
2337
	  fputs (ASM_APP_OFF, file);
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
	  app_on = 0;
	}
      if (NEXT_INSN (insn) != 0
	  && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
	{
	  rtx nextbody = PATTERN (NEXT_INSN (insn));

	  /* If this label is followed by a jump-table,
	     make sure we put the label in the read-only section.  Also
	     possibly write the label and jump table together.  */

	  if (GET_CODE (nextbody) == ADDR_VEC
	      || GET_CODE (nextbody) == ADDR_DIFF_VEC)
	    {
2352 2353 2354 2355 2356
#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
	      /* In this case, the case vector is being moved by the
		 target, so don't output the label at all.  Leave that
		 to the back end macros.  */
#else
2357 2358
	      if (! JUMP_TABLES_IN_TEXT_SECTION)
		{
2359 2360
		  int log_align;

2361
		  readonly_data_section ();
2362 2363

#ifdef ADDR_VEC_ALIGN
2364
		  log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
2365 2366 2367 2368
#else
		  log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
#endif
		  ASM_OUTPUT_ALIGN (file, log_align);
2369 2370 2371 2372
		}
	      else
		function_section (current_function_decl);

2373 2374 2375 2376
#ifdef ASM_OUTPUT_CASE_LABEL
	      ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
				     NEXT_INSN (insn));
#else
Kazu Hirata committed
2377 2378 2379 2380
	      if (LABEL_ALTERNATE_NAME (insn))
		ASM_OUTPUT_ALTERNATE_LABEL_NAME (file, insn);
	      else
		ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2381
#endif
2382
#endif
2383 2384 2385
	      break;
	    }
	}
2386
      if (LABEL_ALTERNATE_NAME (insn))
Kazu Hirata committed
2387
	ASM_OUTPUT_ALTERNATE_LABEL_NAME (file, insn);
2388
      else
Kazu Hirata committed
2389
	ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2390 2391 2392 2393
      break;

    default:
      {
2394
	rtx body = PATTERN (insn);
2395
	int insn_code_number;
2396
	const char *template;
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
	rtx note;

	/* An INSN, JUMP_INSN or CALL_INSN.
	   First check for special kinds that recog doesn't recognize.  */

	if (GET_CODE (body) == USE /* These are just declarations */
	    || GET_CODE (body) == CLOBBER)
	  break;

#ifdef HAVE_cc0
	/* If there is a REG_CC_SETTER note on this insn, it means that
	   the setting of the condition code was done in the delay slot
	   of the insn that branched here.  So recover the cc status
	   from the insn that set it.  */

	note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
	if (note)
	  {
	    NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
	    cc_prev_status = cc_status;
	  }
#endif

	/* Detect insns that are really jump-tables
	   and output them as such.  */

	if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
	  {
Kaveh R. Ghazi committed
2425
#if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2426
	    int vlen, idx;
Kaveh R. Ghazi committed
2427
#endif
2428 2429 2430 2431 2432 2433

	    if (prescan > 0)
	      break;

	    if (app_on)
	      {
Kaveh R. Ghazi committed
2434
		fputs (ASM_APP_OFF, file);
2435 2436 2437
		app_on = 0;
	      }

2438 2439 2440 2441 2442 2443
#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
	    if (GET_CODE (body) == ADDR_VEC)
	      {
#ifdef ASM_OUTPUT_ADDR_VEC
		ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
#else
Kazu Hirata committed
2444
		abort ();
2445 2446 2447 2448 2449 2450 2451
#endif
	      }
	    else
	      {
#ifdef ASM_OUTPUT_ADDR_DIFF_VEC
		ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
#else
Kazu Hirata committed
2452
		abort ();
2453 2454 2455
#endif
	      }
#else
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
	    vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
	    for (idx = 0; idx < vlen; idx++)
	      {
		if (GET_CODE (body) == ADDR_VEC)
		  {
#ifdef ASM_OUTPUT_ADDR_VEC_ELT
		    ASM_OUTPUT_ADDR_VEC_ELT
		      (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
#else
		    abort ();
#endif
		  }
		else
		  {
#ifdef ASM_OUTPUT_ADDR_DIFF_ELT
		    ASM_OUTPUT_ADDR_DIFF_ELT
		      (file,
2473
		       body,
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
		       CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
		       CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
#else
		    abort ();
#endif
		  }
	      }
#ifdef ASM_OUTPUT_CASE_END
	    ASM_OUTPUT_CASE_END (file,
				 CODE_LABEL_NUMBER (PREV_INSN (insn)),
				 insn);
#endif
2486
#endif
2487

2488
	    function_section (current_function_decl);
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499

	    break;
	  }

	/* Do basic-block profiling when we reach a new block.
	   Done here to avoid jump tables.  */
	if (profile_block_flag && new_block)
	  add_bb (file);

	if (GET_CODE (body) == ASM_INPUT)
	  {
2500 2501
	    const char *string = XSTR (body, 0);

2502 2503 2504 2505
	    /* There's no telling what that did to the condition codes.  */
	    CC_STATUS_INIT;
	    if (prescan > 0)
	      break;
2506 2507

	    if (string[0])
2508
	      {
2509 2510 2511 2512 2513 2514
		if (! app_on)
		  {
		    fputs (ASM_APP_ON, file);
		    app_on = 1;
		  }
		fprintf (asm_out_file, "\t%s\n", string);
2515 2516 2517 2518 2519 2520 2521
	      }
	    break;
	  }

	/* Detect `asm' construct with operands.  */
	if (asm_noperands (body) >= 0)
	  {
2522
	    unsigned int noperands = asm_noperands (body);
2523
	    rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
2524
	    const char *string;
2525 2526 2527 2528 2529 2530 2531

	    /* There's no telling what that did to the condition codes.  */
	    CC_STATUS_INIT;
	    if (prescan > 0)
	      break;

	    /* Get out the operand values.  */
2532
	    string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2533 2534 2535 2536 2537
	    /* Inhibit aborts on what would otherwise be compiler bugs.  */
	    insn_noperands = noperands;
	    this_is_asm_operands = insn;

	    /* Output the insn using them.  */
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
	    if (string[0])
	      {
		if (! app_on)
		  {
		    fputs (ASM_APP_ON, file);
		    app_on = 1;
		  }
	        output_asm_insn (string, ops);
	      }

2548 2549 2550 2551 2552 2553
	    this_is_asm_operands = 0;
	    break;
	  }

	if (prescan <= 0 && app_on)
	  {
Kaveh R. Ghazi committed
2554
	    fputs (ASM_APP_OFF, file);
2555 2556 2557 2558 2559 2560
	    app_on = 0;
	  }

	if (GET_CODE (body) == SEQUENCE)
	  {
	    /* A delayed-branch sequence */
2561
	    int i;
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
	    rtx next;

	    if (prescan > 0)
	      break;
	    final_sequence = body;

	    /* The first insn in this SEQUENCE might be a JUMP_INSN that will
	       force the restoration of a comparison that was previously
	       thought unnecessary.  If that happens, cancel this sequence
	       and cause that insn to be restored.  */

	    next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
	    if (next != XVECEXP (body, 0, 1))
	      {
		final_sequence = 0;
		return next;
	      }

	    for (i = 1; i < XVECLEN (body, 0); i++)
2581 2582 2583 2584 2585 2586 2587 2588 2589
	      {
		rtx insn = XVECEXP (body, 0, i);
		rtx next = NEXT_INSN (insn);
		/* We loop in case any instruction in a delay slot gets
		   split.  */
		do
		  insn = final_scan_insn (insn, file, 0, prescan, 1);
		while (insn != next);
	      }
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
#ifdef DBR_OUTPUT_SEQEND
	    DBR_OUTPUT_SEQEND (file);
#endif
	    final_sequence = 0;

	    /* If the insn requiring the delay slot was a CALL_INSN, the
	       insns in the delay slot are actually executed before the
	       called function.  Hence we don't preserve any CC-setting
	       actions in these insns and the CC must be marked as being
	       clobbered by the function.  */
	    if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2601 2602 2603
	      {
		CC_STATUS_INIT;
	      }
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627

	    /* Following a conditional branch sequence, we have a new basic
	       block.  */
	    if (profile_block_flag)
	      {
		rtx insn = XVECEXP (body, 0, 0);
		rtx body = PATTERN (insn);

		if ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
		     && GET_CODE (SET_SRC (body)) != LABEL_REF)
		    || (GET_CODE (insn) == JUMP_INSN
			&& GET_CODE (body) == PARALLEL
			&& GET_CODE (XVECEXP (body, 0, 0)) == SET
			&& GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF))
		  new_block = 1;
	      }
	    break;
	  }

	/* We have a real machine instruction as rtl.  */

	body = PATTERN (insn);

#ifdef HAVE_cc0
Kazu Hirata committed
2628
	set = single_set (insn);
2629

2630 2631 2632 2633 2634 2635 2636 2637
	/* Check for redundant test and compare instructions
	   (when the condition codes are already set up as desired).
	   This is done only when optimizing; if not optimizing,
	   it should be possible for the user to alter a variable
	   with the debugger in between statements
	   and the next statement should reexamine the variable
	   to compute the condition codes.  */

2638
	if (optimize)
2639
	  {
2640
#if 0
Kazu Hirata committed
2641
	    rtx set = single_set (insn);
2642
#endif
2643 2644 2645 2646

	    if (set
		&& GET_CODE (SET_DEST (set)) == CC0
		&& insn != last_ignored_compare)
2647
	      {
2648
		if (GET_CODE (SET_SRC (set)) == SUBREG)
2649
		  SET_SRC (set) = alter_subreg (&SET_SRC (set));
2650 2651 2652 2653
		else if (GET_CODE (SET_SRC (set)) == COMPARE)
		  {
		    if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
		      XEXP (SET_SRC (set), 0)
2654
			= alter_subreg (&XEXP (SET_SRC (set), 0));
2655 2656
		    if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
		      XEXP (SET_SRC (set), 1)
2657
			= alter_subreg (&XEXP (SET_SRC (set), 1));
2658 2659 2660 2661 2662
		  }
		if ((cc_status.value1 != 0
		     && rtx_equal_p (SET_SRC (set), cc_status.value1))
		    || (cc_status.value2 != 0
			&& rtx_equal_p (SET_SRC (set), cc_status.value2)))
2663
		  {
2664 2665 2666 2667 2668 2669 2670 2671 2672
		    /* Don't delete insn if it has an addressing side-effect.  */
		    if (! FIND_REG_INC_NOTE (insn, 0)
			/* or if anything in it is volatile.  */
			&& ! volatile_refs_p (PATTERN (insn)))
		      {
			/* We don't really delete the insn; just ignore it.  */
			last_ignored_compare = insn;
			break;
		      }
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
		  }
	      }
	  }
#endif

	/* Following a conditional branch, we have a new basic block.
	   But if we are inside a sequence, the new block starts after the
	   last insn of the sequence.  */
	if (profile_block_flag && final_sequence == 0
	    && ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
		 && GET_CODE (SET_SRC (body)) != LABEL_REF)
		|| (GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == PARALLEL
		    && GET_CODE (XVECEXP (body, 0, 0)) == SET
		    && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF)))
	  new_block = 1;

#ifndef STACK_REGS
	/* Don't bother outputting obvious no-ops, even without -O.
	   This optimization is fast and doesn't interfere with debugging.
	   Don't do this if the insn is in a delay slot, since this
	   will cause an improper number of delay insns to be written.  */
	if (final_sequence == 0
	    && prescan >= 0
	    && GET_CODE (insn) == INSN && GET_CODE (body) == SET
	    && GET_CODE (SET_SRC (body)) == REG
	    && GET_CODE (SET_DEST (body)) == REG
	    && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
	  break;
#endif

#ifdef HAVE_cc0
	/* If this is a conditional branch, maybe modify it
	   if the cc's are in a nonstandard state
	   so that it accomplishes the same thing that it would
	   do straightforwardly if the cc's were set up normally.  */

	if (cc_status.flags != 0
	    && GET_CODE (insn) == JUMP_INSN
	    && GET_CODE (body) == SET
	    && SET_DEST (body) == pc_rtx
	    && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2714
	    && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2715
	    && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2716 2717 2718 2719 2720 2721 2722 2723 2724
	    /* This is done during prescan; it is not done again
	       in final scan when prescan has been done.  */
	    && prescan >= 0)
	  {
	    /* This function may alter the contents of its argument
	       and clear some of the cc_status.flags bits.
	       It may also return 1 meaning condition now always true
	       or -1 meaning condition now always false
	       or 2 meaning condition nontrivial but altered.  */
2725
	    int result = alter_cond (XEXP (SET_SRC (body), 0));
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
	    /* If condition now has fixed value, replace the IF_THEN_ELSE
	       with its then-operand or its else-operand.  */
	    if (result == 1)
	      SET_SRC (body) = XEXP (SET_SRC (body), 1);
	    if (result == -1)
	      SET_SRC (body) = XEXP (SET_SRC (body), 2);

	    /* The jump is now either unconditional or a no-op.
	       If it has become a no-op, don't try to output it.
	       (It would not be recognized.)  */
	    if (SET_SRC (body) == pc_rtx)
	      {
2738
	        delete_insn (insn);
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
		break;
	      }
	    else if (GET_CODE (SET_SRC (body)) == RETURN)
	      /* Replace (set (pc) (return)) with (return).  */
	      PATTERN (insn) = body = SET_SRC (body);

	    /* Rerecognize the instruction if it has changed.  */
	    if (result != 0)
	      INSN_CODE (insn) = -1;
	  }

	/* Make same adjustments to instructions that examine the
2751 2752
	   condition codes without jumping and instructions that
	   handle conditional moves (if this machine has either one).  */
2753 2754

	if (cc_status.flags != 0
2755
	    && set != 0)
2756
	  {
2757
	    rtx cond_rtx, then_rtx, else_rtx;
Kazu Hirata committed
2758

2759
	    if (GET_CODE (insn) != JUMP_INSN
2760
		&& GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2761
	      {
2762 2763 2764
		cond_rtx = XEXP (SET_SRC (set), 0);
		then_rtx = XEXP (SET_SRC (set), 1);
		else_rtx = XEXP (SET_SRC (set), 2);
2765 2766 2767
	      }
	    else
	      {
2768
		cond_rtx = SET_SRC (set);
2769 2770 2771
		then_rtx = const_true_rtx;
		else_rtx = const0_rtx;
	      }
Kazu Hirata committed
2772

2773
	    switch (GET_CODE (cond_rtx))
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
	      {
	      case GTU:
	      case GT:
	      case LTU:
	      case LT:
	      case GEU:
	      case GE:
	      case LEU:
	      case LE:
	      case EQ:
	      case NE:
		{
2786
		  int result;
2787
		  if (XEXP (cond_rtx, 0) != cc0_rtx)
2788
		    break;
2789
		  result = alter_cond (cond_rtx);
2790
		  if (result == 1)
2791
		    validate_change (insn, &SET_SRC (set), then_rtx, 0);
2792
		  else if (result == -1)
2793
		    validate_change (insn, &SET_SRC (set), else_rtx, 0);
2794 2795
		  else if (result == 2)
		    INSN_CODE (insn) = -1;
2796
		  if (SET_DEST (set) == SET_SRC (set))
2797
		    delete_insn (insn);
2798
		}
2799 2800 2801 2802
		break;

	      default:
		break;
2803 2804
	      }
	  }
2805

2806 2807
#endif

2808
#ifdef HAVE_peephole
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
	/* Do machine-specific peephole optimizations if desired.  */

	if (optimize && !flag_no_peephole && !nopeepholes)
	  {
	    rtx next = peephole (insn);
	    /* When peepholing, if there were notes within the peephole,
	       emit them before the peephole.  */
	    if (next != 0 && next != NEXT_INSN (insn))
	      {
		rtx prev = PREV_INSN (insn);

		for (note = NEXT_INSN (insn); note != next;
		     note = NEXT_INSN (note))
		  final_scan_insn (note, file, optimize, prescan, nopeepholes);

		/* In case this is prescan, put the notes
		   in proper position for later rescan.  */
		note = NEXT_INSN (insn);
		PREV_INSN (note) = prev;
		NEXT_INSN (prev) = note;
		NEXT_INSN (PREV_INSN (next)) = insn;
		PREV_INSN (insn) = PREV_INSN (next);
		NEXT_INSN (insn) = next;
		PREV_INSN (next) = insn;
	      }

	    /* PEEPHOLE might have changed this.  */
	    body = PATTERN (insn);
	  }
2838
#endif
2839 2840 2841 2842 2843 2844 2845

	/* Try to recognize the instruction.
	   If successful, verify that the operands satisfy the
	   constraints for the instruction.  Crash if they don't,
	   since `reload' should have changed them so that they do.  */

	insn_code_number = recog_memoized (insn);
2846
	cleanup_subreg_operands (insn);
2847

2848 2849 2850 2851 2852 2853 2854
       /* Dump the insn in the assembly for debugging.  */
       if (flag_dump_rtl_in_asm)
         {
           print_rtx_head = ASM_COMMENT_START;
           print_rtl_single (asm_out_file, insn);
           print_rtx_head = "";
         }
2855

2856
	if (! constrain_operands_cached (1))
2857 2858 2859 2860 2861 2862
	  fatal_insn_not_found (insn);

	/* Some target machines need to prescan each insn before
	   it is output.  */

#ifdef FINAL_PRESCAN_INSN
2863
	FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2864 2865
#endif

2866 2867 2868 2869 2870 2871 2872
#ifdef HAVE_conditional_execution
	if (GET_CODE (PATTERN (insn)) == COND_EXEC)
	  current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
	else
	  current_insn_predicate = NULL_RTX;
#endif

2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
#ifdef HAVE_cc0
	cc_prev_status = cc_status;

	/* Update `cc_status' for this instruction.
	   The instruction's output routine may change it further.
	   If the output routine for a jump insn needs to depend
	   on the cc status, it should look at cc_prev_status.  */

	NOTICE_UPDATE_CC (body, insn);
#endif

2884
	current_output_insn = debug_insn = insn;
2885

2886
#if defined (DWARF2_UNWIND_INFO)
2887
	if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2888 2889 2890
	  dwarf2out_frame_debug (insn);
#endif

2891 2892
	/* Find the proper template for this insn.  */
	template = get_insn_template (insn_code_number, insn);
2893

2894 2895 2896
	/* If the C code returns 0, it means that it is a jump insn
	   which follows a deleted test insn, and that test insn
	   needs to be reinserted.  */
2897 2898
	if (template == 0)
	  {
2899 2900
	    rtx prev;

2901 2902 2903
	    if (prev_nonnote_insn (insn) != last_ignored_compare)
	      abort ();
	    new_block = 0;
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913

	    /* We have already processed the notes between the setter and
	       the user.  Make sure we don't process them again, this is
	       particularly important if one of the notes is a block
	       scope note or an EH note.  */
	    for (prev = insn;
		 prev != last_ignored_compare;
		 prev = PREV_INSN (prev))
	      {
		if (GET_CODE (prev) == NOTE)
2914
		  delete_insn (prev);	/* Use delete_note.  */
2915 2916 2917
	      }

	    return prev;
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
	  }

	/* If the template is the string "#", it means that this insn must
	   be split.  */
	if (template[0] == '#' && template[1] == '\0')
	  {
	    rtx new = try_split (body, insn, 0);

	    /* If we didn't split the insn, go away.  */
	    if (new == insn && PATTERN (new) == body)
2928
	      fatal_insn ("could not split insn", insn);
Kazu Hirata committed
2929

2930 2931 2932 2933 2934 2935 2936
#ifdef HAVE_ATTR_length
	    /* This instruction should have been split in shorten_branches,
	       to ensure that we would have valid length info for the
	       splitees.  */
	    abort ();
#endif

2937 2938 2939
	    new_block = 0;
	    return new;
	  }
Kazu Hirata committed
2940

2941 2942 2943
	if (prescan > 0)
	  break;

2944 2945 2946
#ifdef IA64_UNWIND_INFO
	IA64_UNWIND_EMIT (asm_out_file, insn);
#endif
2947 2948
	/* Output assembler code from the template.  */

2949
	output_asm_insn (template, recog_data.operand);
2950

Jason Merrill committed
2951 2952
#if defined (DWARF2_UNWIND_INFO)
#if defined (HAVE_prologue)
2953 2954 2955 2956 2957 2958 2959
	if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
	  dwarf2out_frame_debug (insn);
#else
	if (!ACCUMULATE_OUTGOING_ARGS
	    && GET_CODE (insn) == INSN
	    && dwarf2out_do_frame ())
	  dwarf2out_frame_debug (insn);
Jason Merrill committed
2960 2961
#endif
#endif
x  
Jason Merrill committed
2962

2963 2964 2965 2966 2967 2968 2969 2970 2971
#if 0
	/* It's not at all clear why we did this and doing so interferes
	   with tests we'd like to do to use REG_WAS_0 notes, so let's try
	   with this out.  */

	/* Mark this insn as having been output.  */
	INSN_DELETED_P (insn) = 1;
#endif

2972 2973 2974 2975 2976 2977
	/* Emit information for vtable gc.  */
	note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
	if (note)
	  assemble_vtable_entry (XEXP (XEXP (note, 0), 0),
				 INTVAL (XEXP (XEXP (note, 0), 1)));

2978
	current_output_insn = debug_insn = 0;
2979 2980 2981 2982 2983 2984 2985 2986 2987
      }
    }
  return NEXT_INSN (insn);
}

/* Output debugging info to the assembler file FILE
   based on the NOTE-insn INSN, assumed to be a line number.  */

static void
2988
notice_source_line (insn)
2989 2990
     rtx insn;
{
2991
  const char *filename = NOTE_SOURCE_FILE (insn);
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002

  /* Remember filename for basic block profiling.
     Filenames are allocated on the permanent obstack
     or are passed in ARGV, so we don't have to save
     the string.  */

  if (profile_block_flag && last_filename != filename)
    bb_file_label_num = add_bb_string (filename, TRUE);

  last_filename = filename;
  last_linenum = NOTE_LINE_NUMBER (insn);
3003 3004
  high_block_linenum = MAX (last_linenum, high_block_linenum);
  high_function_linenum = MAX (last_linenum, high_function_linenum);
3005 3006
}

3007 3008
/* For each operand in INSN, simplify (subreg (reg)) so that it refers
   directly to the desired hard register.  */
Kazu Hirata committed
3009

3010 3011 3012 3013
void
cleanup_subreg_operands (insn)
     rtx insn;
{
3014
  int i;
3015
  extract_insn_cached (insn);
3016
  for (i = 0; i < recog_data.n_operands; i++)
3017
    {
3018
      if (GET_CODE (recog_data.operand[i]) == SUBREG)
3019
	recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
3020
      else if (GET_CODE (recog_data.operand[i]) == PLUS
3021 3022
	       || GET_CODE (recog_data.operand[i]) == MULT
	       || GET_CODE (recog_data.operand[i]) == MEM)
3023
	recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
3024 3025
    }

3026
  for (i = 0; i < recog_data.n_dups; i++)
3027
    {
3028
      if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3029
	*recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
3030
      else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3031 3032
	       || GET_CODE (*recog_data.dup_loc[i]) == MULT
	       || GET_CODE (*recog_data.dup_loc[i]) == MEM)
3033
	*recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
3034 3035 3036
    }
}

3037 3038 3039 3040
/* If X is a SUBREG, replace it with a REG or a MEM,
   based on the thing it is a subreg of.  */

rtx
3041 3042
alter_subreg (xp)
     rtx *xp;
3043
{
3044
  rtx x = *xp;
3045
  rtx y = SUBREG_REG (x);
3046

3047 3048 3049 3050 3051
  /* simplify_subreg does not remove subreg from volatile references.
     We are required to.  */
  if (GET_CODE (y) == MEM)
    *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
  else
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
    {
      rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
				 SUBREG_BYTE (x));

      if (new != 0)
	*xp = new;
      /* Simplify_subreg can't handle some REG cases, but we have to.  */
      else if (GET_CODE (y) == REG)
	{
	  REGNO (x) = subreg_hard_regno (x, 1);
	  PUT_CODE (x, REG);
	  ORIGINAL_REGNO (x) = ORIGINAL_REGNO (y);
	  /* This field has a different meaning for REGs and SUBREGs.  Make
	     sure to clear it!  */
	  x->used = 0;
	}
      else
	abort ();
    }

3072
  return *xp;
3073 3074 3075 3076 3077
}

/* Do alter_subreg on all the SUBREGs contained in X.  */

static rtx
3078 3079
walk_alter_subreg (xp)
     rtx *xp;
3080
{
3081
  rtx x = *xp;
3082 3083 3084 3085
  switch (GET_CODE (x))
    {
    case PLUS:
    case MULT:
3086 3087
      XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
      XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
3088 3089 3090
      break;

    case MEM:
3091
      XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
3092 3093 3094
      break;

    case SUBREG:
3095
      return alter_subreg (xp);
Kazu Hirata committed
3096

3097 3098
    default:
      break;
3099 3100
    }

3101
  return *xp;
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
}

#ifdef HAVE_cc0

/* Given BODY, the body of a jump instruction, alter the jump condition
   as required by the bits that are set in cc_status.flags.
   Not all of the bits there can be handled at this level in all cases.

   The value is normally 0.
   1 means that the condition has become always true.
   -1 means that the condition has become always false.
   2 means that COND has been altered.  */

static int
alter_cond (cond)
3117
     rtx cond;
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
{
  int value = 0;

  if (cc_status.flags & CC_REVERSED)
    {
      value = 2;
      PUT_CODE (cond, swap_condition (GET_CODE (cond)));
    }

  if (cc_status.flags & CC_INVERTED)
    {
      value = 2;
      PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
    }

  if (cc_status.flags & CC_NOT_POSITIVE)
    switch (GET_CODE (cond))
      {
      case LE:
      case LEU:
      case GEU:
	/* Jump becomes unconditional.  */
	return 1;

      case GT:
      case GTU:
      case LTU:
	/* Jump becomes no-op.  */
	return -1;

      case GE:
	PUT_CODE (cond, EQ);
	value = 2;
	break;

      case LT:
	PUT_CODE (cond, NE);
	value = 2;
	break;
Kazu Hirata committed
3157

3158 3159
      default:
	break;
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
      }

  if (cc_status.flags & CC_NOT_NEGATIVE)
    switch (GET_CODE (cond))
      {
      case GE:
      case GEU:
	/* Jump becomes unconditional.  */
	return 1;

      case LT:
      case LTU:
	/* Jump becomes no-op.  */
	return -1;

      case LE:
      case LEU:
	PUT_CODE (cond, EQ);
	value = 2;
	break;

      case GT:
      case GTU:
	PUT_CODE (cond, NE);
	value = 2;
	break;
Kazu Hirata committed
3186

3187 3188
      default:
	break;
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
      }

  if (cc_status.flags & CC_NO_OVERFLOW)
    switch (GET_CODE (cond))
      {
      case GEU:
	/* Jump becomes unconditional.  */
	return 1;

      case LEU:
	PUT_CODE (cond, EQ);
	value = 2;
	break;

      case GTU:
	PUT_CODE (cond, NE);
	value = 2;
	break;

      case LTU:
	/* Jump becomes no-op.  */
	return -1;
Kazu Hirata committed
3211

3212 3213
      default:
	break;
3214 3215 3216 3217 3218
      }

  if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
    switch (GET_CODE (cond))
      {
3219
      default:
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
	abort ();

      case NE:
	PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
	value = 2;
	break;

      case EQ:
	PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
	value = 2;
	break;
      }

  if (cc_status.flags & CC_NOT_SIGNED)
    /* The flags are valid if signed condition operators are converted
       to unsigned.  */
    switch (GET_CODE (cond))
      {
      case LE:
	PUT_CODE (cond, LEU);
	value = 2;
	break;

      case LT:
	PUT_CODE (cond, LTU);
	value = 2;
	break;

      case GT:
	PUT_CODE (cond, GTU);
	value = 2;
	break;

      case GE:
	PUT_CODE (cond, GEU);
	value = 2;
	break;
3257 3258 3259

      default:
	break;
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
      }

  return value;
}
#endif

/* Report inconsistency between the assembler template and the operands.
   In an `asm', it's the user's fault; otherwise, the compiler's fault.  */

void
3270 3271
output_operand_lossage (msgid)
     const char *msgid;
3272 3273
{
  if (this_is_asm_operands)
3274
    error_for_asm (this_is_asm_operands, "invalid `asm': %s", _(msgid));
3275
  else
3276
    internal_error ("output_operand: %s", _(msgid));
3277 3278 3279 3280
}

/* Output of assembler code from a template, and its subroutines.  */

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
/* Annotate the assembly with a comment describing the pattern and
   alternative used.  */

static void
output_asm_name ()
{
  if (debug_insn)
    {
      int num = INSN_CODE (debug_insn);
      fprintf (asm_out_file, "\t%s %d\t%s",
	       ASM_COMMENT_START, INSN_UID (debug_insn),
	       insn_data[num].name);
      if (insn_data[num].n_alternatives > 1)
	fprintf (asm_out_file, "/%d", which_alternative + 1);
#ifdef HAVE_ATTR_length
      fprintf (asm_out_file, "\t[length = %d]",
	       get_attr_length (debug_insn));
#endif
      /* Clear this so only the first assembler insn
	 of any rtl insn will get the special comment for -dp.  */
      debug_insn = 0;
    }
}

3305 3306
/* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
   or its address, return that expr .  Set *PADDRESSP to 1 if the expr
3307 3308 3309
   corresponds to the address of the object and 0 if to the object.  */

static tree
3310
get_mem_expr_from_op (op, paddressp)
3311 3312 3313
     rtx op;
     int *paddressp;
{
3314
  tree expr;
3315 3316 3317 3318
  int inner_addressp;

  *paddressp = 0;

3319
  if (GET_CODE (op) == REG && ORIGINAL_REGNO (op) >= FIRST_PSEUDO_REGISTER)
3320 3321 3322 3323
    return REGNO_DECL (ORIGINAL_REGNO (op));
  else if (GET_CODE (op) != MEM)
    return 0;

3324 3325
  if (MEM_EXPR (op) != 0)
    return MEM_EXPR (op);
3326 3327 3328 3329 3330 3331 3332 3333

  /* Otherwise we have an address, so indicate it and look at the address.  */
  *paddressp = 1;
  op = XEXP (op, 0);

  /* First check if we have a decl for the address, then look at the right side
     if it is a PLUS.  Otherwise, strip off arithmetic and keep looking.
     But don't allow the address to itself be indirect.  */
3334 3335
  if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
    return expr;
3336
  else if (GET_CODE (op) == PLUS
3337 3338
	   && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
    return expr;
3339 3340 3341 3342 3343

  while (GET_RTX_CLASS (GET_CODE (op)) == '1'
	 || GET_RTX_CLASS (GET_CODE (op)) == '2')
    op = XEXP (op, 0);

3344 3345
  expr = get_mem_expr_from_op (op, &inner_addressp);
  return inner_addressp ? 0 : expr;
3346 3347
}
  
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
/* Output operand names for assembler instructions.  OPERANDS is the
   operand vector, OPORDER is the order to write the operands, and NOPS
   is the number of operands to write.  */

static void
output_asm_operand_names (operands, oporder, nops)
     rtx *operands;
     int *oporder;
     int nops;
{
  int wrote = 0;
  int i;

  for (i = 0; i < nops; i++)
    {
      int addressp;
3364
      tree expr = get_mem_expr_from_op (operands[oporder[i]], &addressp);
3365

3366
      if (expr)
3367
	{
3368
	  fprintf (asm_out_file, "%c%s %s",
3369
		   wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START,
3370 3371
		   addressp ? "*" : "");
	  print_mem_expr (asm_out_file, expr);
3372 3373 3374 3375 3376
	  wrote = 1;
	}
    }
}

3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
/* Output text from TEMPLATE to the assembler output file,
   obeying %-directions to substitute operands taken from
   the vector OPERANDS.

   %N (for N a digit) means print operand N in usual manner.
   %lN means require operand N to be a CODE_LABEL or LABEL_REF
      and print the label name with no punctuation.
   %cN means require operand N to be a constant
      and print the constant expression with no punctuation.
   %aN means expect operand N to be a memory address
      (not a memory reference!) and print a reference
      to that address.
   %nN means expect operand N to be a constant
      and print a constant expression for minus the value
      of the operand, with no other punctuation.  */

void
output_asm_insn (template, operands)
3395
     const char *template;
3396 3397
     rtx *operands;
{
3398 3399
  const char *p;
  int c;
3400 3401 3402
#ifdef ASSEMBLER_DIALECT
  int dialect = 0;
#endif
3403
  int oporder[MAX_RECOG_OPERANDS];
3404
  char opoutput[MAX_RECOG_OPERANDS];
3405
  int ops = 0;
3406 3407 3408 3409 3410 3411

  /* An insn may return a null string template
     in a case where no assembler code is needed.  */
  if (*template == 0)
    return;

3412
  memset (opoutput, 0, sizeof opoutput);
3413 3414 3415 3416 3417 3418 3419
  p = template;
  putc ('\t', asm_out_file);

#ifdef ASM_OUTPUT_OPCODE
  ASM_OUTPUT_OPCODE (asm_out_file, p);
#endif

3420
  while ((c = *p++))
3421 3422 3423
    switch (c)
      {
      case '\n':
3424 3425
	if (flag_verbose_asm)
	  output_asm_operand_names (operands, oporder, ops);
3426 3427 3428
	if (flag_print_asm_name)
	  output_asm_name ();

3429 3430 3431
	ops = 0;
	memset (opoutput, 0, sizeof opoutput);

3432
	putc (c, asm_out_file);
3433
#ifdef ASM_OUTPUT_OPCODE
3434 3435 3436 3437 3438 3439 3440
	while ((c = *p) == '\t')
	  {
	    putc (c, asm_out_file);
	    p++;
	  }
	ASM_OUTPUT_OPCODE (asm_out_file, p);
#endif
3441
	break;
3442 3443 3444

#ifdef ASSEMBLER_DIALECT
      case '{':
3445
	{
3446
	  int i;
Kazu Hirata committed
3447

3448 3449 3450 3451 3452
	  if (dialect)
	    output_operand_lossage ("nested assembly dialect alternatives");
	  else
	    dialect = 1;

3453 3454 3455 3456
	  /* If we want the first dialect, do nothing.  Otherwise, skip
	     DIALECT_NUMBER of strings ending with '|'.  */
	  for (i = 0; i < dialect_number; i++)
	    {
3457
	      while (*p && *p != '}' && *p++ != '|')
3458
		;
3459 3460
	      if (*p == '}')
		break;
3461 3462 3463
	      if (*p == '|')
		p++;
	    }
3464 3465 3466

	  if (*p == '\0')
	    output_operand_lossage ("unterminated assembly dialect alternative");
3467
	}
3468 3469 3470
	break;

      case '|':
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
	if (dialect)
	  {
	    /* Skip to close brace.  */
	    do
	      {
		if (*p == '\0')
		  {
		    output_operand_lossage ("unterminated assembly dialect alternative");
		    break;
		  }
	      }	  
	    while (*p++ != '}');
	    dialect = 0;
	  }
	else
	  putc (c, asm_out_file);
3487 3488 3489
	break;

      case '}':
3490 3491 3492
	if (! dialect)
	  putc (c, asm_out_file);
	dialect = 0;
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
	break;
#endif

      case '%':
	/* %% outputs a single %.  */
	if (*p == '%')
	  {
	    p++;
	    putc (c, asm_out_file);
	  }
	/* %= outputs a number which is unique to each insn in the entire
	   compilation.  This is useful for making local labels that are
	   referred to more than once in a given insn.  */
	else if (*p == '=')
	  {
	    p++;
	    fprintf (asm_out_file, "%d", insn_counter);
	  }
	/* % followed by a letter and some digits
	   outputs an operand in a special way depending on the letter.
	   Letters `acln' are implemented directly.
	   Other letters are passed to `output_operand' so that
	   the PRINT_OPERAND macro can define them.  */
3516
	else if (ISALPHA (*p))
3517 3518 3519 3520
	  {
	    int letter = *p++;
	    c = atoi (p);

3521
	    if (! ISDIGIT (*p))
3522
	      output_operand_lossage ("operand number missing after %-letter");
3523 3524
	    else if (this_is_asm_operands
		     && (c < 0 || (unsigned int) c >= insn_noperands))
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
	      output_operand_lossage ("operand number out of range");
	    else if (letter == 'l')
	      output_asm_label (operands[c]);
	    else if (letter == 'a')
	      output_address (operands[c]);
	    else if (letter == 'c')
	      {
		if (CONSTANT_ADDRESS_P (operands[c]))
		  output_addr_const (asm_out_file, operands[c]);
		else
		  output_operand (operands[c], 'c');
	      }
	    else if (letter == 'n')
	      {
		if (GET_CODE (operands[c]) == CONST_INT)
3540
		  fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3541 3542 3543 3544 3545 3546 3547 3548 3549
			   - INTVAL (operands[c]));
		else
		  {
		    putc ('-', asm_out_file);
		    output_addr_const (asm_out_file, operands[c]);
		  }
	      }
	    else
	      output_operand (operands[c], letter);
Kazu Hirata committed
3550

3551 3552 3553
	    if (!opoutput[c])
	      oporder[ops++] = c;
	    opoutput[c] = 1;
3554

3555
	    while (ISDIGIT (c = *p))
Kazu Hirata committed
3556
	      p++;
3557 3558
	  }
	/* % followed by a digit outputs an operand the default way.  */
3559
	else if (ISDIGIT (*p))
3560 3561
	  {
	    c = atoi (p);
Kazu Hirata committed
3562 3563
	    if (this_is_asm_operands
		&& (c < 0 || (unsigned int) c >= insn_noperands))
3564 3565 3566
	      output_operand_lossage ("operand number out of range");
	    else
	      output_operand (operands[c], 0);
3567

3568 3569 3570 3571
	    if (!opoutput[c])
	      oporder[ops++] = c;
	    opoutput[c] = 1;

3572
	    while (ISDIGIT (c = *p))
Kazu Hirata committed
3573
	      p++;
3574 3575 3576 3577 3578
	  }
	/* % followed by punctuation: output something for that
	   punctuation character alone, with no operand.
	   The PRINT_OPERAND macro decides what is actually done.  */
#ifdef PRINT_OPERAND_PUNCT_VALID_P
Kazu Hirata committed
3579
	else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
	  output_operand (NULL_RTX, *p++);
#endif
	else
	  output_operand_lossage ("invalid %%-code");
	break;

      default:
	putc (c, asm_out_file);
      }

3590 3591
  /* Write out the variable names for operands, if we know them.  */
  if (flag_verbose_asm)
3592
    output_asm_operand_names (operands, oporder, ops);
3593 3594
  if (flag_print_asm_name)
    output_asm_name ();
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607

  putc ('\n', asm_out_file);
}

/* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol.  */

void
output_asm_label (x)
     rtx x;
{
  char buf[256];

  if (GET_CODE (x) == LABEL_REF)
3608 3609 3610 3611
    x = XEXP (x, 0);
  if (GET_CODE (x) == CODE_LABEL
      || (GET_CODE (x) == NOTE
	  && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
    ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
  else
    output_operand_lossage ("`%l' operand isn't a label");

  assemble_name (asm_out_file, buf);
}

/* Print operand X using machine-dependent assembler syntax.
   The macro PRINT_OPERAND is defined just to control this function.
   CODE is a non-digit that preceded the operand-number in the % spec,
   such as 'z' if the spec was `%z3'.  CODE is 0 if there was no char
   between the % and the digits.
   When CODE is a non-letter, X is 0.

   The meanings of the letters are machine-dependent and controlled
   by PRINT_OPERAND.  */

static void
output_operand (x, code)
     rtx x;
3632
     int code ATTRIBUTE_UNUSED;
3633 3634
{
  if (x && GET_CODE (x) == SUBREG)
3635
    x = alter_subreg (&x);
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653

  /* If X is a pseudo-register, abort now rather than writing trash to the
     assembler file.  */

  if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
    abort ();

  PRINT_OPERAND (asm_out_file, x, code);
}

/* Print a memory reference operand for address X
   using machine-dependent assembler syntax.
   The macro PRINT_OPERAND_ADDRESS exists just to control this function.  */

void
output_address (x)
     rtx x;
{
3654
  walk_alter_subreg (&x);
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
  PRINT_OPERAND_ADDRESS (asm_out_file, x);
}

/* Print an integer constant expression in assembler syntax.
   Addition and subtraction are the only arithmetic
   that may appear in these expressions.  */

void
output_addr_const (file, x)
     FILE *file;
     rtx x;
{
  char buf[256];

 restart:
  switch (GET_CODE (x))
    {
    case PC:
3673
      putc ('.', file);
3674 3675 3676
      break;

    case SYMBOL_REF:
3677 3678 3679
#ifdef ASM_OUTPUT_SYMBOL_REF
      ASM_OUTPUT_SYMBOL_REF (file, x);
#else
3680
      assemble_name (file, XSTR (x, 0));
3681
#endif
3682 3683 3684
      break;

    case LABEL_REF:
3685 3686
      x = XEXP (x, 0);
      /* Fall through.  */
3687 3688
    case CODE_LABEL:
      ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3689 3690 3691
#ifdef ASM_OUTPUT_LABEL_REF
      ASM_OUTPUT_LABEL_REF (file, buf);
#else
3692
      assemble_name (file, buf);
3693
#endif
3694 3695 3696
      break;

    case CONST_INT:
3697
      fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
      break;

    case CONST:
      /* This used to output parentheses around the expression,
	 but that does not work on the 386 (either ATT or BSD assembler).  */
      output_addr_const (file, XEXP (x, 0));
      break;

    case CONST_DOUBLE:
      if (GET_MODE (x) == VOIDmode)
	{
	  /* We can use %d if the number is one word and positive.  */
	  if (CONST_DOUBLE_HIGH (x))
3711
	    fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3712
		     CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
Kazu Hirata committed
3713
	  else if (CONST_DOUBLE_LOW (x) < 0)
3714
	    fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3715
	  else
3716
	    fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
	}
      else
	/* We can't handle floating point constants;
	   PRINT_OPERAND must handle them.  */
	output_operand_lossage ("floating constant misused");
      break;

    case PLUS:
      /* Some assemblers need integer constants to appear last (eg masm).  */
      if (GET_CODE (XEXP (x, 0)) == CONST_INT)
	{
	  output_addr_const (file, XEXP (x, 1));
	  if (INTVAL (XEXP (x, 0)) >= 0)
	    fprintf (file, "+");
	  output_addr_const (file, XEXP (x, 0));
	}
      else
	{
	  output_addr_const (file, XEXP (x, 0));
3736 3737
	  if (GET_CODE (XEXP (x, 1)) != CONST_INT
	      || INTVAL (XEXP (x, 1)) >= 0)
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
	    fprintf (file, "+");
	  output_addr_const (file, XEXP (x, 1));
	}
      break;

    case MINUS:
      /* Avoid outputting things like x-x or x+5-x,
	 since some assemblers can't handle that.  */
      x = simplify_subtraction (x);
      if (GET_CODE (x) != MINUS)
	goto restart;

      output_addr_const (file, XEXP (x, 0));
      fprintf (file, "-");
3752 3753 3754
      if ((GET_CODE (XEXP (x, 1)) == CONST_INT
	   && INTVAL (XEXP (x, 1)) < 0)
	  || GET_CODE (XEXP (x, 1)) != CONST_INT)
3755
	{
3756
	  fputs (targetm.asm_out.open_paren, file);
3757
	  output_addr_const (file, XEXP (x, 1));
3758
	  fputs (targetm.asm_out.close_paren, file);
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
	}
      else
	output_addr_const (file, XEXP (x, 1));
      break;

    case ZERO_EXTEND:
    case SIGN_EXTEND:
      output_addr_const (file, XEXP (x, 0));
      break;

    default:
3770 3771 3772 3773 3774 3775
#ifdef OUTPUT_ADDR_CONST_EXTRA
      OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
      break;

    fail:
#endif
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
      output_operand_lossage ("invalid expression as operand");
    }
}

/* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
   %R prints the value of REGISTER_PREFIX.
   %L prints the value of LOCAL_LABEL_PREFIX.
   %U prints the value of USER_LABEL_PREFIX.
   %I prints the value of IMMEDIATE_PREFIX.
   %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
   Also supported are %d, %x, %s, %e, %f, %g and %%.

   We handle alternate assembler dialects here, just like output_asm_insn.  */

void
3791
asm_fprintf VPARAMS ((FILE *file, const char *p, ...))
3792 3793 3794 3795
{
  char buf[10];
  char *q, c;

3796 3797 3798
  VA_OPEN (argptr, p);
  VA_FIXEDARG (argptr, FILE *, file);
  VA_FIXEDARG (argptr, const char *, p);
3799 3800 3801

  buf[0] = '%';

3802
  while ((c = *p++))
3803 3804 3805 3806
    switch (c)
      {
#ifdef ASSEMBLER_DIALECT
      case '{':
3807 3808
	{
	  int i;
3809

3810 3811 3812 3813 3814 3815 3816 3817 3818
	  /* If we want the first dialect, do nothing.  Otherwise, skip
	     DIALECT_NUMBER of strings ending with '|'.  */
	  for (i = 0; i < dialect_number; i++)
	    {
	      while (*p && *p++ != '|')
		;

	      if (*p == '|')
		p++;
Kazu Hirata committed
3819
	    }
3820
	}
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
	break;

      case '|':
	/* Skip to close brace.  */
	while (*p && *p++ != '}')
	  ;
	break;

      case '}':
	break;
#endif

      case '%':
	c = *p++;
	q = &buf[1];
3836
	while (ISDIGIT (c) || c == '.')
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
	  {
	    *q++ = c;
	    c = *p++;
	  }
	switch (c)
	  {
	  case '%':
	    fprintf (file, "%%");
	    break;

	  case 'd':  case 'i':  case 'u':
	  case 'x':  case 'p':  case 'X':
	  case 'o':
	    *q++ = c;
	    *q = 0;
	    fprintf (file, buf, va_arg (argptr, int));
	    break;

	  case 'w':
	    /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
	       but we do not check for those cases.  It means that the value
	       is a HOST_WIDE_INT, which may be either `int' or `long'.  */

3860 3861 3862 3863 3864 3865
#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
#else
#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
	    *q++ = 'l';
#else
	    *q++ = 'l';
3866 3867
	    *q++ = 'l';
#endif
3868
#endif
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920

	    *q++ = *p++;
	    *q = 0;
	    fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
	    break;

	  case 'l':
	    *q++ = c;
	    *q++ = *p++;
	    *q = 0;
	    fprintf (file, buf, va_arg (argptr, long));
	    break;

	  case 'e':
	  case 'f':
	  case 'g':
	    *q++ = c;
	    *q = 0;
	    fprintf (file, buf, va_arg (argptr, double));
	    break;

	  case 's':
	    *q++ = c;
	    *q = 0;
	    fprintf (file, buf, va_arg (argptr, char *));
	    break;

	  case 'O':
#ifdef ASM_OUTPUT_OPCODE
	    ASM_OUTPUT_OPCODE (asm_out_file, p);
#endif
	    break;

	  case 'R':
#ifdef REGISTER_PREFIX
	    fprintf (file, "%s", REGISTER_PREFIX);
#endif
	    break;

	  case 'I':
#ifdef IMMEDIATE_PREFIX
	    fprintf (file, "%s", IMMEDIATE_PREFIX);
#endif
	    break;

	  case 'L':
#ifdef LOCAL_LABEL_PREFIX
	    fprintf (file, "%s", LOCAL_LABEL_PREFIX);
#endif
	    break;

	  case 'U':
3921
	    fputs (user_label_prefix, file);
3922 3923
	    break;

3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
#ifdef ASM_FPRINTF_EXTENSIONS
	    /* Upper case letters are reserved for general use by asm_fprintf
	       and so are not available to target specific code.  In order to
	       prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
	       they are defined here.  As they get turned into real extensions
	       to asm_fprintf they should be removed from this list.  */
	  case 'A': case 'B': case 'C': case 'D': case 'E':
	  case 'F': case 'G': case 'H': case 'J': case 'K':
	  case 'M': case 'N': case 'P': case 'Q': case 'S':
	  case 'T': case 'V': case 'W': case 'Y': case 'Z':
	    break;
Kazu Hirata committed
3935

3936 3937
	  ASM_FPRINTF_EXTENSIONS (file, argptr, p)
#endif
3938 3939 3940 3941 3942 3943 3944 3945
	  default:
	    abort ();
	  }
	break;

      default:
	fputc (c, file);
      }
3946
  VA_CLOSE (argptr);
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
}

/* Split up a CONST_DOUBLE or integer constant rtx
   into two rtx's for single words,
   storing in *FIRST the word that comes first in memory in the target
   and in *SECOND the other.  */

void
split_double (value, first, second)
     rtx value;
     rtx *first, *second;
{
  if (GET_CODE (value) == CONST_INT)
    {
3961
      if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3962
	{
3963
	  /* In this case the CONST_INT holds both target words.
3964 3965
	     Extract the bits from it into two word-sized pieces.
	     Sign extend each half to HOST_WIDE_INT.  */
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
	  unsigned HOST_WIDE_INT low, high;
	  unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;

	  /* Set sign_bit to the most significant bit of a word.  */
	  sign_bit = 1;
	  sign_bit <<= BITS_PER_WORD - 1;

	  /* Set mask so that all bits of the word are set.  We could
	     have used 1 << BITS_PER_WORD instead of basing the
	     calculation on sign_bit.  However, on machines where
	     HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
	     compiler warning, even though the code would never be
	     executed.  */
	  mask = sign_bit << 1;
	  mask--;

	  /* Set sign_extend as any remaining bits.  */
	  sign_extend = ~mask;
Kazu Hirata committed
3984

3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
	  /* Pick the lower word and sign-extend it.  */
	  low = INTVAL (value);
	  low &= mask;
	  if (low & sign_bit)
	    low |= sign_extend;

	  /* Pick the higher word, shifted to the least significant
	     bits, and sign-extend it.  */
	  high = INTVAL (value);
	  high >>= BITS_PER_WORD - 1;
	  high >>= 1;
	  high &= mask;
	  if (high & sign_bit)
	    high |= sign_extend;

	  /* Store the words in the target machine order.  */
4001 4002
	  if (WORDS_BIG_ENDIAN)
	    {
4003 4004
	      *first = GEN_INT (high);
	      *second = GEN_INT (low);
4005 4006 4007
	    }
	  else
	    {
4008 4009
	      *first = GEN_INT (low);
	      *second = GEN_INT (high);
4010
	    }
4011 4012 4013
	}
      else
	{
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
	  /* The rule for using CONST_INT for a wider mode
	     is that we regard the value as signed.
	     So sign-extend it.  */
	  rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
	  if (WORDS_BIG_ENDIAN)
	    {
	      *first = high;
	      *second = value;
	    }
	  else
	    {
	      *first = value;
	      *second = high;
	    }
4028
	}
4029 4030 4031
    }
  else if (GET_CODE (value) != CONST_DOUBLE)
    {
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
      if (WORDS_BIG_ENDIAN)
	{
	  *first = const0_rtx;
	  *second = value;
	}
      else
	{
	  *first = value;
	  *second = const0_rtx;
	}
4042 4043 4044 4045 4046 4047 4048
    }
  else if (GET_MODE (value) == VOIDmode
	   /* This is the old way we did CONST_DOUBLE integers.  */
	   || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
    {
      /* In an integer, the words are defined as most and least significant.
	 So order them by the target's convention.  */
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
      if (WORDS_BIG_ENDIAN)
	{
	  *first = GEN_INT (CONST_DOUBLE_HIGH (value));
	  *second = GEN_INT (CONST_DOUBLE_LOW (value));
	}
      else
	{
	  *first = GEN_INT (CONST_DOUBLE_LOW (value));
	  *second = GEN_INT (CONST_DOUBLE_HIGH (value));
	}
4059 4060 4061 4062
    }
  else
    {
#ifdef REAL_ARITHMETIC
Kazu Hirata committed
4063 4064
      REAL_VALUE_TYPE r;
      long l[2];
4065 4066 4067 4068 4069
      REAL_VALUE_FROM_CONST_DOUBLE (r, value);

      /* Note, this converts the REAL_VALUE_TYPE to the target's
	 format, splits up the floating point double and outputs
	 exactly 32 bits of it into each of l[0] and l[1] --
Mike Stump committed
4070
	 not necessarily BITS_PER_WORD bits.  */
4071 4072
      REAL_VALUE_TO_TARGET_DOUBLE (r, l);

4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
      /* If 32 bits is an entire word for the target, but not for the host,
	 then sign-extend on the host so that the number will look the same
	 way on the host that it would on the target.  See for instance
	 simplify_unary_operation.  The #if is needed to avoid compiler
	 warnings.  */

#if HOST_BITS_PER_LONG > 32
      if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
	{
	  if (l[0] & ((long) 1 << 31))
	    l[0] |= ((long) (-1) << 32);
	  if (l[1] & ((long) 1 << 31))
	    l[1] |= ((long) (-1) << 32);
	}
#endif

4089 4090 4091 4092 4093 4094
      *first = GEN_INT ((HOST_WIDE_INT) l[0]);
      *second = GEN_INT ((HOST_WIDE_INT) l[1]);
#else
      if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
	   || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
	  && ! flag_pretend_float)
4095
	abort ();
4096

4097 4098 4099
      if (
#ifdef HOST_WORDS_BIG_ENDIAN
	  WORDS_BIG_ENDIAN
4100
#else
4101
	  ! WORDS_BIG_ENDIAN
4102
#endif
4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
	  )
	{
	  /* Host and target agree => no need to swap.  */
	  *first = GEN_INT (CONST_DOUBLE_LOW (value));
	  *second = GEN_INT (CONST_DOUBLE_HIGH (value));
	}
      else
	{
	  *second = GEN_INT (CONST_DOUBLE_LOW (value));
	  *first = GEN_INT (CONST_DOUBLE_HIGH (value));
	}
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
#endif /* no REAL_ARITHMETIC */
    }
}

/* Return nonzero if this function has no function calls.  */

int
leaf_function_p ()
{
  rtx insn;
4124
  rtx link;
4125

4126
  if (profile_flag || profile_block_flag || profile_arc_flag)
4127 4128 4129 4130
    return 0;

  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
4131 4132
      if (GET_CODE (insn) == CALL_INSN
	  && ! SIBLING_CALL_P (insn))
4133 4134 4135
	return 0;
      if (GET_CODE (insn) == INSN
	  && GET_CODE (PATTERN (insn)) == SEQUENCE
4136 4137
	  && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
	  && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4138 4139
	return 0;
    }
4140 4141 4142
  for (link = current_function_epilogue_delay_list;
       link;
       link = XEXP (link, 1))
4143
    {
4144 4145 4146
      insn = XEXP (link, 0);

      if (GET_CODE (insn) == CALL_INSN
4147
	  && ! SIBLING_CALL_P (insn))
4148
	return 0;
4149 4150 4151 4152
      if (GET_CODE (insn) == INSN
	  && GET_CODE (PATTERN (insn)) == SEQUENCE
	  && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
	  && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4153 4154 4155 4156 4157 4158
	return 0;
    }

  return 1;
}

4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
/* Return 1 if branch is an forward branch.
   Uses insn_shuid array, so it works only in the final pass.  May be used by
   output templates to customary add branch prediction hints.
 */
int
final_forward_branch_p (insn)
     rtx insn;
{
  int insn_id, label_id;
  if (!uid_shuid)
    abort ();
  insn_id = INSN_SHUID (insn);
  label_id = INSN_SHUID (JUMP_LABEL (insn));
  /* We've hit some insns that does not have id information available.  */
  if (!insn_id || !label_id)
    abort ();
  return insn_id < label_id;
}

4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
/* On some machines, a function with no call insns
   can run faster if it doesn't create its own register window.
   When output, the leaf function should use only the "output"
   registers.  Ordinarily, the function would be compiled to use
   the "input" registers to find its arguments; it is a candidate
   for leaf treatment if it uses only the "input" registers.
   Leaf function treatment means renumbering so the function
   uses the "output" registers instead.  */

#ifdef LEAF_REGISTERS

/* Return 1 if this function uses only the registers that can be
   safely renumbered.  */

int
only_leaf_regs_used ()
{
  int i;
4196
  char *permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4197 4198

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
    if ((regs_ever_live[i] || global_regs[i])
	&& ! permitted_reg_in_leaf_functions[i])
      return 0;

  if (current_function_uses_pic_offset_table
      && pic_offset_table_rtx != 0
      && GET_CODE (pic_offset_table_rtx) == REG
      && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
    return 0;

4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
  return 1;
}

/* Scan all instructions and renumber all registers into those
   available in leaf functions.  */

static void
leaf_renumber_regs (first)
     rtx first;
{
  rtx insn;

  /* Renumber only the actual patterns.
     The reg-notes can contain frame pointer refs,
     and renumbering them could crash, and should not be needed.  */
  for (insn = first; insn; insn = NEXT_INSN (insn))
4225
    if (INSN_P (insn))
4226
      leaf_renumber_regs_insn (PATTERN (insn));
Kazu Hirata committed
4227 4228 4229
  for (insn = current_function_epilogue_delay_list;
       insn;
       insn = XEXP (insn, 1))
4230
    if (INSN_P (XEXP (insn, 0)))
4231 4232 4233 4234 4235 4236 4237 4238
      leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
}

/* Scan IN_RTX and its subexpressions, and renumber all regs into those
   available in leaf functions.  */

void
leaf_renumber_regs_insn (in_rtx)
4239
     rtx in_rtx;
4240
{
4241 4242
  int i, j;
  const char *format_ptr;
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275

  if (in_rtx == 0)
    return;

  /* Renumber all input-registers into output-registers.
     renumbered_regs would be 1 for an output-register;
     they  */

  if (GET_CODE (in_rtx) == REG)
    {
      int newreg;

      /* Don't renumber the same reg twice.  */
      if (in_rtx->used)
	return;

      newreg = REGNO (in_rtx);
      /* Don't try to renumber pseudo regs.  It is possible for a pseudo reg
	 to reach here as part of a REG_NOTE.  */
      if (newreg >= FIRST_PSEUDO_REGISTER)
	{
	  in_rtx->used = 1;
	  return;
	}
      newreg = LEAF_REG_REMAP (newreg);
      if (newreg < 0)
	abort ();
      regs_ever_live[REGNO (in_rtx)] = 0;
      regs_ever_live[newreg] = 1;
      REGNO (in_rtx) = newreg;
      in_rtx->used = 1;
    }

4276
  if (INSN_P (in_rtx))
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
    {
      /* Inside a SEQUENCE, we find insns.
	 Renumber just the patterns of these insns,
	 just as we do for the top-level insns.  */
      leaf_renumber_regs_insn (PATTERN (in_rtx));
      return;
    }

  format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));

  for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
    switch (*format_ptr++)
      {
      case 'e':
	leaf_renumber_regs_insn (XEXP (in_rtx, i));
	break;

      case 'E':
	if (NULL != XVEC (in_rtx, i))
	  {
	    for (j = 0; j < XVECLEN (in_rtx, i); j++)
	      leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
	  }
	break;

      case 'S':
      case 's':
      case '0':
      case 'i':
      case 'w':
      case 'n':
      case 'u':
	break;

      default:
	abort ();
      }
}
#endif