Collections.java 239 KB
Newer Older
Tom Tromey committed
1
/* Collections.java -- Utility class with methods to operate on collections
2
   Copyright (C) 1998, 1999, 2000, 2001, 2002, 2004, 2005, 2006
Tom Tromey committed
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
   Free Software Foundation, Inc.

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.

Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from
or based on this library.  If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so.  If you do not wish to do so, delete this
exception statement from your version. */


package java.util;

42 43
import gnu.java.lang.CPStringBuilder;

Tom Tromey committed
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
import java.io.Serializable;

/**
 * Utility class consisting of static methods that operate on, or return
 * Collections. Contains methods to sort, search, reverse, fill and shuffle
 * Collections, methods to facilitate interoperability with legacy APIs that
 * are unaware of collections, a method to return a list which consists of
 * multiple copies of one element, and methods which "wrap" collections to give
 * them extra properties, such as thread-safety and unmodifiability.
 * <p>
 *
 * All methods which take a collection throw a {@link NullPointerException} if
 * that collection is null. Algorithms which can change a collection may, but
 * are not required, to throw the {@link UnsupportedOperationException} that
 * the underlying collection would throw during an attempt at modification.
 * For example,
 * <code>Collections.singleton("").addAll(Collections.EMPTY_SET)</code>
 * does not throw a exception, even though addAll is an unsupported operation
 * on a singleton; the reason for this is that addAll did not attempt to
 * modify the set.
 *
 * @author Original author unknown
 * @author Eric Blake (ebb9@email.byu.edu)
67 68
 * @author Tom Tromey (tromey@redhat.com)
 * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
Tom Tromey committed
69 70 71 72 73 74
 * @see Collection
 * @see Set
 * @see List
 * @see Map
 * @see Arrays
 * @since 1.2
75
 * @status updated to 1.5
Tom Tromey committed
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
 */
public class Collections
{
  /**
   * Constant used to decide cutoff for when a non-RandomAccess list should
   * be treated as sequential-access. Basically, quadratic behavior is
   * acceptable for small lists when the overhead is so small in the first
   * place. I arbitrarily set it to 16, so it may need some tuning.
   */
  private static final int LARGE_LIST_SIZE = 16;

  /**
   * Determines if a list should be treated as a sequential-access one.
   * Rather than the old method of JDK 1.3 of assuming only instanceof
   * AbstractSequentialList should be sequential, this uses the new method
   * of JDK 1.4 of assuming anything that does NOT implement RandomAccess
   * and exceeds a large (unspecified) size should be sequential.
   *
   * @param l the list to check
   * @return <code>true</code> if it should be treated as sequential-access
   */
97
  private static boolean isSequential(List<?> l)
Tom Tromey committed
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
  {
    return ! (l instanceof RandomAccess) && l.size() > LARGE_LIST_SIZE;
  }

  /**
   * This class is non-instantiable.
   */
  private Collections()
  {
  }

  /**
   * An immutable, serializable, empty Set.
   * @see Serializable
   */
  public static final Set EMPTY_SET = new EmptySet();

  /**
116 117 118 119 120 121 122 123 124 125 126 127 128 129
   * Returns an immutable, serializable parameterized empty set.
   * Unlike the constant <code>EMPTY_SET</code>, the set returned by
   * this method is type-safe.
   *
   * @return an empty parameterized set.
   * @since 1.5
   */
  public static final <T> Set<T> emptySet()
  {
    /* FIXME: Could this be optimized? */
    return new EmptySet<T>();
  }

  /**
Tom Tromey committed
130 131 132 133 134
   * The implementation of {@link #EMPTY_SET}. This class name is required
   * for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
135
  private static final class EmptySet<T> extends AbstractSet<T>
Tom Tromey committed
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    implements Serializable
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 1582296315990362920L;

    /**
     * A private constructor adds overhead.
     */
    EmptySet()
    {
    }

    /**
     * The size: always 0!
     * @return 0.
     */
    public int size()
    {
      return 0;
    }

    /**
     * Returns an iterator that does not iterate.
     * @return A non-iterating iterator.
     */
    // This is really cheating! I think it's perfectly valid, though.
164
    public Iterator<T> iterator()
Tom Tromey committed
165
    {
166
      return (Iterator<T>) EMPTY_LIST.iterator();
Tom Tromey committed
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    }

    // The remaining methods are optional, but provide a performance
    // advantage by not allocating unnecessary iterators in AbstractSet.
    /**
     * The empty set never contains anything.
     * @param o The object to search for.
     * @return <code>false</code>.
     */
    public boolean contains(Object o)
    {
      return false;
    }

    /**
     * This is true only if the given collection is also empty.
     * @param c The collection of objects which are to be compared
     *          against the members of this set.
     * @return <code>true</code> if c is empty.
     */
187
    public boolean containsAll(Collection<?> c)
Tom Tromey committed
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    {
      return c.isEmpty();
    }

    /**
     * Equal only if the other set is empty.
     * @param o The object to compare with this set.
     * @return <code>true</code> if o is an empty instance of <code>Set</code>.
     */
    public boolean equals(Object o)
    {
      return o instanceof Set && ((Set) o).isEmpty();
    }

    /**
     * The hashcode is always 0.
     * @return 0.
     */
    public int hashCode()
    {
      return 0;
    }

    /**
     * Always succeeds with a <code>false</code> result.
     * @param o The object to remove.
     * @return <code>false</code>.
     */
    public boolean remove(Object o)
    {
      return false;
    }

    /**
     * Always succeeds with a <code>false</code> result.
     * @param c The collection of objects which should
     *          all be removed from this set.
     * @return <code>false</code>.
     */
227
    public boolean removeAll(Collection<?> c)
Tom Tromey committed
228 229 230 231 232 233 234 235 236 237
    {
      return false;
    }

    /**
     * Always succeeds with a <code>false</code> result.
     * @param c The collection of objects which should
     *          all be retained within this set.
     * @return <code>false</code>.
     */
238
    public boolean retainAll(Collection<?> c)
Tom Tromey committed
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    {
      return false;
    }

    /**
     * The array is always empty.
     * @return A new array with a size of 0.
     */
    public Object[] toArray()
    {
      return new Object[0];
    }

    /**
     * We don't even need to use reflection!
     * @param a An existing array, which can be empty.
     * @return The original array with any existing
     *         initial element set to null.
     */
258
    public <E> E[] toArray(E[] a)
Tom Tromey committed
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    {
      if (a.length > 0)
        a[0] = null;
      return a;
    }

    /**
     * The string never changes.
     *
     * @return the string "[]".
     */
    public String toString()
    {
      return "[]";
    }
  } // class EmptySet

  /**
   * An immutable, serializable, empty List, which implements RandomAccess.
   * @see Serializable
   * @see RandomAccess
   */
  public static final List EMPTY_LIST = new EmptyList();

  /**
284 285 286 287 288 289 290 291 292 293 294 295 296 297
   * Returns an immutable, serializable parameterized empty list.
   * Unlike the constant <code>EMPTY_LIST</code>, the list returned by
   * this method is type-safe.
   *
   * @return an empty parameterized list.
   * @since 1.5
   */
  public static final <T> List<T> emptyList()
  {
    /* FIXME: Could this be optimized? */
    return new EmptyList<T>();
  }

  /**
Tom Tromey committed
298 299 300 301 302
   * The implementation of {@link #EMPTY_LIST}. This class name is required
   * for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
303
  private static final class EmptyList<T> extends AbstractList<T>
Tom Tromey committed
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
    implements Serializable, RandomAccess
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 8842843931221139166L;

    /**
     * A private constructor adds overhead.
     */
    EmptyList()
    {
    }

    /**
     * The size is always 0.
     * @return 0.
     */
    public int size()
    {
      return 0;
    }

    /**
     * No matter the index, it is out of bounds.  This
     * method never returns, throwing an exception instead.
     *
     * @param index The index of the element to retrieve.
     * @return the object at the specified index.
     * @throws IndexOutOfBoundsException as any given index
     *         is outside the bounds of an empty array.
     */
336
    public T get(int index)
Tom Tromey committed
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
    {
      throw new IndexOutOfBoundsException();
    }

    // The remaining methods are optional, but provide a performance
    // advantage by not allocating unnecessary iterators in AbstractList.
    /**
     * Never contains anything.
     * @param o The object to search for.
     * @return <code>false</code>.
     */
    public boolean contains(Object o)
    {
      return false;
    }

    /**
     * This is true only if the given collection is also empty.
     * @param c The collection of objects, which should be compared
     *          against the members of this list.
357
     * @return <code>true</code> if c is also empty.
Tom Tromey committed
358
     */
359
    public boolean containsAll(Collection<?> c)
Tom Tromey committed
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
    {
      return c.isEmpty();
    }

    /**
     * Equal only if the other list is empty.
     * @param o The object to compare against this list.
     * @return <code>true</code> if o is also an empty instance of
     *         <code>List</code>.
     */
    public boolean equals(Object o)
    {
      return o instanceof List && ((List) o).isEmpty();
    }

    /**
     * The hashcode is always 1.
     * @return 1.
     */
    public int hashCode()
    {
      return 1;
    }

    /**
     * Returns -1.
     * @param o The object to search for.
     * @return -1.
     */
    public int indexOf(Object o)
    {
      return -1;
    }

    /**
     * Returns -1.
     * @param o The object to search for.
     * @return -1.
     */
    public int lastIndexOf(Object o)
    {
      return -1;
    }

    /**
     * Always succeeds with <code>false</code> result.
     * @param o The object to remove.
     * @return -1.
     */
    public boolean remove(Object o)
    {
      return false;
    }

    /**
     * Always succeeds with <code>false</code> result.
     * @param c The collection of objects which should
     *          all be removed from this list.
     * @return <code>false</code>.
     */
420
    public boolean removeAll(Collection<?> c)
Tom Tromey committed
421 422 423 424 425 426 427 428 429 430
    {
      return false;
    }

    /**
     * Always succeeds with <code>false</code> result.
     * @param c The collection of objects which should
     *          all be retained within this list.
     * @return <code>false</code>.
     */
431
    public boolean retainAll(Collection<?> c)
Tom Tromey committed
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
    {
      return false;
    }

    /**
     * The array is always empty.
     * @return A new array with a size of 0.
     */
    public Object[] toArray()
    {
      return new Object[0];
    }

    /**
     * We don't even need to use reflection!
     * @param a An existing array, which can be empty.
     * @return The original array with any existing
     *         initial element set to null.
     */
451
    public <E> E[] toArray(E[] a)
Tom Tromey committed
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
    {
      if (a.length > 0)
        a[0] = null;
      return a;
    }

    /**
     * The string never changes.
     *
     * @return the string "[]".
     */
    public String toString()
    {
      return "[]";
    }
  } // class EmptyList

  /**
   * An immutable, serializable, empty Map.
   * @see Serializable
   */
  public static final Map EMPTY_MAP = new EmptyMap();

  /**
476 477 478 479 480 481 482 483 484 485 486 487 488 489
   * Returns an immutable, serializable parameterized empty map.
   * Unlike the constant <code>EMPTY_MAP</code>, the map returned by
   * this method is type-safe.
   *
   * @return an empty parameterized map.
   * @since 1.5
   */
  public static final <K,V> Map<K,V> emptyMap()
  {
    /* FIXME: Could this be optimized? */
    return new EmptyMap<K,V>();
  }

  /**
Tom Tromey committed
490 491 492 493 494
   * The implementation of {@link #EMPTY_MAP}. This class name is required
   * for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
495
  private static final class EmptyMap<K, V> extends AbstractMap<K, V>
Tom Tromey committed
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
    implements Serializable
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 6428348081105594320L;

    /**
     * A private constructor adds overhead.
     */
    EmptyMap()
    {
    }

    /**
     * There are no entries.
     * @return The empty set.
     */
514
    public Set<Map.Entry<K, V>> entrySet()
Tom Tromey committed
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
    {
      return EMPTY_SET;
    }

    // The remaining methods are optional, but provide a performance
    // advantage by not allocating unnecessary iterators in AbstractMap.
    /**
     * No entries!
     * @param key The key to search for.
     * @return <code>false</code>.
     */
    public boolean containsKey(Object key)
    {
      return false;
    }

    /**
     * No entries!
     * @param value The value to search for.
     * @return <code>false</code>.
     */
    public boolean containsValue(Object value)
    {
      return false;
    }

    /**
     * Equal to all empty maps.
     * @param o The object o to compare against this map.
     * @return <code>true</code> if o is also an empty instance of
     *         <code>Map</code>.
     */
    public boolean equals(Object o)
    {
      return o instanceof Map && ((Map) o).isEmpty();
    }

    /**
     * No mappings, so this returns null.
     * @param o The key of the object to retrieve.
555
     * @return null.
Tom Tromey committed
556
     */
557
    public V get(Object o)
Tom Tromey committed
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
    {
      return null;
    }

    /**
     * The hashcode is always 0.
     * @return 0.
     */
    public int hashCode()
    {
      return 0;
    }

    /**
     * No entries.
     * @return The empty set.
     */
575
    public Set<K> keySet()
Tom Tromey committed
576 577 578 579 580 581 582 583 584
    {
      return EMPTY_SET;
    }

    /**
     * Remove always succeeds, with null result.
     * @param o The key of the mapping to remove.
     * @return null, as there is never a mapping for o.
     */
585
    public V remove(Object o)
Tom Tromey committed
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
    {
      return null;
    }

    /**
     * Size is always 0.
     * @return 0.
     */
    public int size()
    {
      return 0;
    }

    /**
     * No entries. Technically, EMPTY_SET, while more specific than a general
     * Collection, will work. Besides, that's what the JDK uses!
     * @return The empty set.
     */
604
    public Collection<V> values()
Tom Tromey committed
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
    {
      return EMPTY_SET;
    }

    /**
     * The string never changes.
     *
     * @return the string "[]".
     */
    public String toString()
    {
      return "[]";
    }
  } // class EmptyMap

620

Tom Tromey committed
621 622 623 624 625 626
  /**
   * Compare two objects with or without a Comparator. If c is null, uses the
   * natural ordering. Slightly slower than doing it inline if the JVM isn't
   * clever, but worth it for removing a duplicate of the search code.
   * Note: This code is also used in Arrays (for sort as well as search).
   */
627
  static final <T> int compare(T o1, T o2, Comparator<? super T> c)
Tom Tromey committed
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
  {
    return c == null ? ((Comparable) o1).compareTo(o2) : c.compare(o1, o2);
  }

  /**
   * Perform a binary search of a List for a key, using the natural ordering of
   * the elements. The list must be sorted (as by the sort() method) - if it is
   * not, the behavior of this method is undefined, and may be an infinite
   * loop. Further, the key must be comparable with every item in the list. If
   * the list contains the key more than once, any one of them may be found.
   * <p>
   *
   * This algorithm behaves in log(n) time for {@link RandomAccess} lists,
   * and uses a linear search with O(n) link traversals and log(n) comparisons
   * with {@link AbstractSequentialList} lists. Note: although the
   * specification allows for an infinite loop if the list is unsorted, it will
   * not happen in this (Classpath) implementation.
   *
   * @param l the list to search (must be sorted)
   * @param key the value to search for
   * @return the index at which the key was found, or -n-1 if it was not
   *         found, where n is the index of the first value higher than key or
   *         a.length if there is no such value
   * @throws ClassCastException if key could not be compared with one of the
   *         elements of l
   * @throws NullPointerException if a null element has compareTo called
   * @see #sort(List)
   */
656 657
  public static <T> int binarySearch(List<? extends Comparable<? super T>> l,
                                     T key)
Tom Tromey committed
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
  {
    return binarySearch(l, key, null);
  }

  /**
   * Perform a binary search of a List for a key, using a supplied Comparator.
   * The list must be sorted (as by the sort() method with the same Comparator)
   * - if it is not, the behavior of this method is undefined, and may be an
   * infinite loop. Further, the key must be comparable with every item in the
   * list. If the list contains the key more than once, any one of them may be
   * found. If the comparator is null, the elements' natural ordering is used.
   * <p>
   *
   * This algorithm behaves in log(n) time for {@link RandomAccess} lists,
   * and uses a linear search with O(n) link traversals and log(n) comparisons
   * with {@link AbstractSequentialList} lists. Note: although the
   * specification allows for an infinite loop if the list is unsorted, it will
   * not happen in this (Classpath) implementation.
   *
   * @param l the list to search (must be sorted)
   * @param key the value to search for
   * @param c the comparator by which the list is sorted
   * @return the index at which the key was found, or -n-1 if it was not
   *         found, where n is the index of the first value higher than key or
   *         a.length if there is no such value
   * @throws ClassCastException if key could not be compared with one of the
   *         elements of l
   * @throws NullPointerException if a null element is compared with natural
   *         ordering (only possible when c is null)
   * @see #sort(List, Comparator)
   */
689
  public static <T> int binarySearch(List<? extends T> l, T key,
690
                                     Comparator<? super T> c)
Tom Tromey committed
691 692 693 694 695 696 697 698 699
  {
    int pos = 0;
    int low = 0;
    int hi = l.size() - 1;

    // We use a linear search with log(n) comparisons using an iterator
    // if the list is sequential-access.
    if (isSequential(l))
      {
700
        ListIterator<T> itr = ((List<T>) l).listIterator();
Tom Tromey committed
701
        int i = 0;
702 703
        T o = itr.next(); // Assumes list is not empty (see isSequential)
        boolean forward = true;
Tom Tromey committed
704 705
        while (low <= hi)
          {
706
            pos = (low + hi) >>> 1;
Tom Tromey committed
707
            if (i < pos)
708 709 710 711
              {
                if (!forward)
                  itr.next(); // Changing direction first.
                for ( ; i != pos; i++, o = itr.next())
712
                  ;
713 714
                forward = true;
              }
Tom Tromey committed
715
            else
716 717 718 719
              {
                if (forward)
                  itr.previous(); // Changing direction first.
                for ( ; i != pos; i--, o = itr.previous())
720
                  ;
721 722 723 724
                forward = false;
              }
            final int d = compare(o, key, c);
            if (d == 0)
Tom Tromey committed
725
              return pos;
726
            else if (d > 0)
Tom Tromey committed
727
              hi = pos - 1;
728
            else
Tom Tromey committed
729 730 731 732 733 734
              // This gets the insertion point right on the last loop
              low = ++pos;
          }
      }
    else
      {
735 736 737 738 739
        while (low <= hi)
          {
            pos = (low + hi) >>> 1;
            final int d = compare(((List<T>) l).get(pos), key, c);
            if (d == 0)
Tom Tromey committed
740
              return pos;
741
            else if (d > 0)
Tom Tromey committed
742
              hi = pos - 1;
743
            else
Tom Tromey committed
744 745
              // This gets the insertion point right on the last loop
              low = ++pos;
746
          }
Tom Tromey committed
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
      }

    // If we failed to find it, we do the same whichever search we did.
    return -pos - 1;
  }

  /**
   * Copy one list to another. If the destination list is longer than the
   * source list, the remaining elements are unaffected. This method runs in
   * linear time.
   *
   * @param dest the destination list
   * @param source the source list
   * @throws IndexOutOfBoundsException if the destination list is shorter
   *         than the source list (the destination will be unmodified)
   * @throws UnsupportedOperationException if dest.listIterator() does not
   *         support the set operation
   */
765
  public static <T> void copy(List<? super T> dest, List<? extends T> source)
Tom Tromey committed
766 767 768 769 770
  {
    int pos = source.size();
    if (dest.size() < pos)
      throw new IndexOutOfBoundsException("Source does not fit in dest");

771 772
    Iterator<? extends T> i1 = source.iterator();
    ListIterator<? super T> i2 = dest.listIterator();
Tom Tromey committed
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787

    while (--pos >= 0)
      {
        i2.next();
        i2.set(i1.next());
      }
  }

  /**
   * Returns an Enumeration over a collection. This allows interoperability
   * with legacy APIs that require an Enumeration as input.
   *
   * @param c the Collection to iterate over
   * @return an Enumeration backed by an Iterator over c
   */
788
  public static <T> Enumeration<T> enumeration(Collection<T> c)
Tom Tromey committed
789
  {
790 791
    final Iterator<T> i = c.iterator();
    return new Enumeration<T>()
Tom Tromey committed
792 793 794 795 796 797 798 799 800 801
    {
      /**
       * Returns <code>true</code> if there are more elements to
       * be enumerated.
       *
       * @return The result of <code>hasNext()</code>
       *         called on the underlying iterator.
       */
      public final boolean hasMoreElements()
      {
802
        return i.hasNext();
Tom Tromey committed
803 804 805 806 807 808 809 810
      }

      /**
       * Returns the next element to be enumerated.
       *
       * @return The result of <code>next()</code>
       *         called on the underlying iterator.
       */
811
      public final T nextElement()
Tom Tromey committed
812
      {
813
        return i.next();
Tom Tromey committed
814 815 816 817 818 819 820 821 822 823 824 825 826
      }
    };
  }

  /**
   * Replace every element of a list with a given value. This method runs in
   * linear time.
   *
   * @param l the list to fill.
   * @param val the object to vill the list with.
   * @throws UnsupportedOperationException if l.listIterator() does not
   *         support the set operation.
   */
827
  public static <T> void fill(List<? super T> l, T val)
Tom Tromey committed
828
  {
829
    ListIterator<? super T> itr = l.listIterator();
Tom Tromey committed
830 831
    for (int i = l.size() - 1; i >= 0; --i)
      {
832 833
        itr.next();
        itr.set(val);
Tom Tromey committed
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
      }
  }

  /**
   * Returns the starting index where the specified sublist first occurs
   * in a larger list, or -1 if there is no matching position. If
   * <code>target.size() &gt; source.size()</code>, this returns -1,
   * otherwise this implementation uses brute force, checking for
   * <code>source.sublist(i, i + target.size()).equals(target)</code>
   * for all possible i.
   *
   * @param source the list to search
   * @param target the sublist to search for
   * @return the index where found, or -1
   * @since 1.4
   */
850
  public static int indexOfSubList(List<?> source, List<?> target)
Tom Tromey committed
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
  {
    int ssize = source.size();
    for (int i = 0, j = target.size(); j <= ssize; i++, j++)
      if (source.subList(i, j).equals(target))
        return i;
    return -1;
  }

  /**
   * Returns the starting index where the specified sublist last occurs
   * in a larger list, or -1 if there is no matching position. If
   * <code>target.size() &gt; source.size()</code>, this returns -1,
   * otherwise this implementation uses brute force, checking for
   * <code>source.sublist(i, i + target.size()).equals(target)</code>
   * for all possible i.
   *
   * @param source the list to search
   * @param target the sublist to search for
   * @return the index where found, or -1
   * @since 1.4
   */
872
  public static int lastIndexOfSubList(List<?> source, List<?> target)
Tom Tromey committed
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
  {
    int ssize = source.size();
    for (int i = ssize - target.size(), j = ssize; i >= 0; i--, j--)
      if (source.subList(i, j).equals(target))
        return i;
    return -1;
  }

  /**
   * Returns an ArrayList holding the elements visited by a given
   * Enumeration. This method exists for interoperability between legacy
   * APIs and the new Collection API.
   *
   * @param e the enumeration to put in a list
   * @return a list containing the enumeration elements
   * @see ArrayList
   * @since 1.4
   */
891
  public static <T> ArrayList<T> list(Enumeration<T> e)
Tom Tromey committed
892
  {
893
    ArrayList<T> l = new ArrayList<T>();
Tom Tromey committed
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
    while (e.hasMoreElements())
      l.add(e.nextElement());
    return l;
  }

  /**
   * Find the maximum element in a Collection, according to the natural
   * ordering of the elements. This implementation iterates over the
   * Collection, so it works in linear time.
   *
   * @param c the Collection to find the maximum element of
   * @return the maximum element of c
   * @exception NoSuchElementException if c is empty
   * @exception ClassCastException if elements in c are not mutually comparable
   * @exception NullPointerException if null.compareTo is called
   */
910 911
  public static <T extends Object & Comparable<? super T>>
  T max(Collection<? extends T> c)
Tom Tromey committed
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
  {
    return max(c, null);
  }

  /**
   * Find the maximum element in a Collection, according to a specified
   * Comparator. This implementation iterates over the Collection, so it
   * works in linear time.
   *
   * @param c the Collection to find the maximum element of
   * @param order the Comparator to order the elements by, or null for natural
   *        ordering
   * @return the maximum element of c
   * @throws NoSuchElementException if c is empty
   * @throws ClassCastException if elements in c are not mutually comparable
   * @throws NullPointerException if null is compared by natural ordering
   *        (only possible when order is null)
   */
930
  public static <T> T max(Collection<? extends T> c,
931
                          Comparator<? super T> order)
Tom Tromey committed
932
  {
933 934
    Iterator<? extends T> itr = c.iterator();
    T max = itr.next(); // throws NoSuchElementException
Tom Tromey committed
935 936 937
    int csize = c.size();
    for (int i = 1; i < csize; i++)
      {
938 939 940
        T o = itr.next();
        if (compare(max, o, order) < 0)
          max = o;
Tom Tromey committed
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
      }
    return max;
  }

  /**
   * Find the minimum element in a Collection, according to the natural
   * ordering of the elements. This implementation iterates over the
   * Collection, so it works in linear time.
   *
   * @param c the Collection to find the minimum element of
   * @return the minimum element of c
   * @throws NoSuchElementException if c is empty
   * @throws ClassCastException if elements in c are not mutually comparable
   * @throws NullPointerException if null.compareTo is called
   */
956 957
  public static <T extends Object & Comparable<? super T>>
  T min(Collection<? extends T> c)
Tom Tromey committed
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
  {
    return min(c, null);
  }

  /**
   * Find the minimum element in a Collection, according to a specified
   * Comparator. This implementation iterates over the Collection, so it
   * works in linear time.
   *
   * @param c the Collection to find the minimum element of
   * @param order the Comparator to order the elements by, or null for natural
   *        ordering
   * @return the minimum element of c
   * @throws NoSuchElementException if c is empty
   * @throws ClassCastException if elements in c are not mutually comparable
   * @throws NullPointerException if null is compared by natural ordering
   *        (only possible when order is null)
   */
976
  public static <T> T min(Collection<? extends T> c,
977
                          Comparator<? super T> order)
Tom Tromey committed
978
  {
979
    Iterator<? extends T> itr = c.iterator();
980
    T min = itr.next(); // throws NoSuchElementExcception
Tom Tromey committed
981 982 983
    int csize = c.size();
    for (int i = 1; i < csize; i++)
      {
984 985 986
        T o = itr.next();
        if (compare(min, o, order) > 0)
          min = o;
Tom Tromey committed
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
      }
    return min;
  }

  /**
   * Creates an immutable list consisting of the same object repeated n times.
   * The returned object is tiny, consisting of only a single reference to the
   * object and a count of the number of elements. It is Serializable, and
   * implements RandomAccess. You can use it in tandem with List.addAll for
   * fast list construction.
   *
   * @param n the number of times to repeat the object
   * @param o the object to repeat
   * @return a List consisting of n copies of o
   * @throws IllegalArgumentException if n &lt; 0
   * @see List#addAll(Collection)
   * @see Serializable
   * @see RandomAccess
   */
1006
  public static <T> List<T> nCopies(final int n, final T o)
Tom Tromey committed
1007
  {
1008
    return new CopiesList<T>(n, o);
Tom Tromey committed
1009 1010 1011 1012 1013 1014 1015 1016
  }

  /**
   * The implementation of {@link #nCopies(int, Object)}. This class name
   * is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
1017
  private static final class CopiesList<T> extends AbstractList<T>
Tom Tromey committed
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
    implements Serializable, RandomAccess
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 2739099268398711800L;

    /**
     * The count of elements in this list.
     * @serial the list size
     */
    private final int n;

    /**
     * The repeated list element.
     * @serial the list contents
     */
1035
    private final T element;
Tom Tromey committed
1036 1037 1038 1039 1040 1041 1042 1043

    /**
     * Constructs the list.
     *
     * @param n the count
     * @param o the object
     * @throws IllegalArgumentException if n &lt; 0
     */
1044
    CopiesList(int n, T o)
Tom Tromey committed
1045 1046
    {
      if (n < 0)
1047
        throw new IllegalArgumentException();
Tom Tromey committed
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
      this.n = n;
      element = o;
    }

    /**
     * The size is fixed.
     * @return The size of the list.
     */
    public int size()
    {
      return n;
    }

    /**
     * The same element is returned.
     * @param index The index of the element to be returned (irrelevant
     *        as the list contains only copies of <code>element</code>).
     * @return The element used by this list.
     */
1067
    public T get(int index)
Tom Tromey committed
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
    {
      if (index < 0 || index >= n)
        throw new IndexOutOfBoundsException();
      return element;
    }

    // The remaining methods are optional, but provide a performance
    // advantage by not allocating unnecessary iterators in AbstractList.
    /**
     * This list only contains one element.
     * @param o The object to search for.
     * @return <code>true</code> if o is the element used by this list.
     */
    public boolean contains(Object o)
    {
      return n > 0 && equals(o, element);
    }

    /**
     * The index is either 0 or -1.
     * @param o The object to find the index of.
     * @return 0 if <code>o == element</code>, -1 if not.
     */
    public int indexOf(Object o)
    {
      return (n > 0 && equals(o, element)) ? 0 : -1;
    }

    /**
     * The index is either n-1 or -1.
     * @param o The object to find the last index of.
     * @return The last index in the list if <code>o == element</code>,
     *         -1 if not.
     */
    public int lastIndexOf(Object o)
    {
      return equals(o, element) ? n - 1 : -1;
    }

    /**
     * A subList is just another CopiesList.
     * @param from The starting bound of the sublist.
     * @param to The ending bound of the sublist.
     * @return A list of copies containing <code>from - to</code>
     *         elements, all of which are equal to the element
     *         used by this list.
     */
1115
    public List<T> subList(int from, int to)
Tom Tromey committed
1116 1117 1118
    {
      if (from < 0 || to > n)
        throw new IndexOutOfBoundsException();
1119
      return new CopiesList<T>(to - from, element);
Tom Tromey committed
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
    }

    /**
     * The array is easy.
     * @return An array of size n filled with copies of
     *         the element used by this list.
     */
    public Object[] toArray()
    {
      Object[] a = new Object[n];
      Arrays.fill(a, element);
      return a;
    }

    /**
     * The string is easy to generate.
     * @return A string representation of the list.
     */
    public String toString()
    {
1140
      CPStringBuilder r = new CPStringBuilder("{");
Tom Tromey committed
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
      for (int i = n - 1; --i > 0; )
        r.append(element).append(", ");
      r.append(element).append("}");
      return r.toString();
    }
  } // class CopiesList

  /**
   * Replace all instances of one object with another in the specified list.
   * The list does not change size. An element e is replaced if
   * <code>oldval == null ? e == null : oldval.equals(e)</code>.
   *
   * @param list the list to iterate over
   * @param oldval the element to replace
   * @param newval the new value for the element
   * @return <code>true</code> if a replacement occurred.
   * @throws UnsupportedOperationException if the list iterator does not allow
   *         for the set operation
   * @throws ClassCastException if newval is of a type which cannot be added
   *         to the list
   * @throws IllegalArgumentException if some other aspect of newval stops
   *         it being added to the list
   * @since 1.4
   */
1165
  public static <T> boolean replaceAll(List<T> list, T oldval, T newval)
Tom Tromey committed
1166
  {
1167
    ListIterator<T> itr = list.listIterator();
Tom Tromey committed
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
    boolean replace_occured = false;
    for (int i = list.size(); --i >= 0; )
      if (AbstractCollection.equals(oldval, itr.next()))
        {
          itr.set(newval);
          replace_occured = true;
        }
    return replace_occured;
  }

  /**
   * Reverse a given list. This method works in linear time.
   *
   * @param l the list to reverse
   * @throws UnsupportedOperationException if l.listIterator() does not
   *         support the set operation
   */
1185
  public static void reverse(List<?> l)
Tom Tromey committed
1186 1187 1188 1189 1190 1191 1192
  {
    ListIterator i1 = l.listIterator();
    int pos1 = 1;
    int pos2 = l.size();
    ListIterator i2 = l.listIterator(pos2);
    while (pos1 < pos2)
      {
1193
        Object o1 = i1.next();
1194
    Object o2 = i2.previous();
1195 1196 1197 1198
        i1.set(o2);
        i2.set(o1);
        ++pos1;
        --pos2;
Tom Tromey committed
1199 1200 1201 1202
      }
  }

  /**
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
   * Get a comparator that implements the reverse of the ordering
   * specified by the given Comparator. If the Comparator is null,
   * this is equivalent to {@link #reverseOrder()}.  The return value
   * of this method is Serializable, if the specified Comparator is
   * either Serializable or null.
   *
   * @param c the comparator to invert
   * @return a comparator that imposes reverse ordering
   * @see Comparable
   * @see Serializable
   *
   * @since 1.5
   */
  public static <T> Comparator<T> reverseOrder(final Comparator<T> c)
  {
    if (c == null)
      return (Comparator<T>) rcInstance;
    return new ReverseComparator<T> ()
    {
      public int compare(T a, T b)
      {
1224
        return - c.compare(a, b);
1225 1226 1227 1228 1229
      }
    };
  }

  /**
Tom Tromey committed
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
   * Get a comparator that implements the reverse of natural ordering. In
   * other words, this sorts Comparable objects opposite of how their
   * compareTo method would sort. This makes it easy to sort into reverse
   * order, by simply passing Collections.reverseOrder() to the sort method.
   * The return value of this method is Serializable.
   *
   * @return a comparator that imposes reverse natural ordering
   * @see Comparable
   * @see Serializable
   */
1240
  public static <T> Comparator<T> reverseOrder()
Tom Tromey committed
1241
  {
1242
    return (Comparator<T>) rcInstance;
Tom Tromey committed
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
  }

  /**
   * The object for {@link #reverseOrder()}.
   */
  private static final ReverseComparator rcInstance = new ReverseComparator();

  /**
   * The implementation of {@link #reverseOrder()}. This class name
   * is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
1256 1257
  private static class ReverseComparator<T>
    implements Comparator<T>, Serializable
Tom Tromey committed
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 7207038068494060240L;

    /**
     * A private constructor adds overhead.
     */
    ReverseComparator()
    {
    }

    /**
     * Compare two objects in reverse natural order.
     *
     * @param a the first object
     * @param b the second object
     * @return &lt;, ==, or &gt; 0 according to b.compareTo(a)
     */
1278
    public int compare(T a, T b)
Tom Tromey committed
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    {
      return ((Comparable) b).compareTo(a);
    }
  }

  /**
   * Rotate the elements in a list by a specified distance. After calling this
   * method, the element now at index <code>i</code> was formerly at index
   * <code>(i - distance) mod list.size()</code>. The list size is unchanged.
   * <p>
   *
   * For example, suppose a list contains <code>[t, a, n, k, s]</code>. After
   * either <code>Collections.rotate(l, 4)</code> or
   * <code>Collections.rotate(l, -1)</code>, the new contents are
   * <code>[s, t, a, n, k]</code>. This can be applied to sublists to rotate
   * just a portion of the list. For example, to move element <code>a</code>
   * forward two positions in the original example, use
   * <code>Collections.rotate(l.subList(1, 3+1), -1)</code>, which will
   * result in <code>[t, n, k, a, s]</code>.
   * <p>
   *
   * If the list is small or implements {@link RandomAccess}, the
   * implementation exchanges the first element to its destination, then the
   * displaced element, and so on until a circuit has been completed. The
   * process is repeated if needed on the second element, and so forth, until
   * all elements have been swapped.  For large non-random lists, the
   * implementation breaks the list into two sublists at index
   * <code>-distance mod size</code>, calls {@link #reverse(List)} on the
   * pieces, then reverses the overall list.
   *
   * @param list the list to rotate
   * @param distance the distance to rotate by; unrestricted in value
   * @throws UnsupportedOperationException if the list does not support set
   * @since 1.4
   */
1314
  public static void rotate(List<?> list, int distance)
Tom Tromey committed
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
  {
    int size = list.size();
    if (size == 0)
      return;
    distance %= size;
    if (distance == 0)
      return;
    if (distance < 0)
      distance += size;

    if (isSequential(list))
      {
        reverse(list);
        reverse(list.subList(0, distance));
        reverse(list.subList(distance, size));
      }
    else
      {
        // Determine the least common multiple of distance and size, as there
        // are (distance / LCM) loops to cycle through.
        int a = size;
        int lcm = distance;
        int b = a % lcm;
        while (b != 0)
          {
            a = lcm;
            lcm = b;
            b = a % lcm;
          }

        // Now, make the swaps. We must take the remainder every time through
        // the inner loop so that we don't overflow i to negative values.
1347
        List<Object> objList = (List<Object>) list;
Tom Tromey committed
1348 1349
        while (--lcm >= 0)
          {
1350
            Object o = objList.get(lcm);
Tom Tromey committed
1351
            for (int i = lcm + distance; i != lcm; i = (i + distance) % size)
1352 1353
              o = objList.set(i, o);
            objList.set(lcm, o);
Tom Tromey committed
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
          }
      }
  }

  /**
   * Shuffle a list according to a default source of randomness. The algorithm
   * used iterates backwards over the list, swapping each element with an
   * element randomly selected from the elements in positions less than or
   * equal to it (using r.nextInt(int)).
   * <p>
   *
   * This algorithm would result in a perfectly fair shuffle (that is, each
   * element would have an equal chance of ending up in any position) if r were
   * a perfect source of randomness. In practice the results are merely very
   * close to perfect.
   * <p>
   *
   * This method operates in linear time. To do this on large lists which do
   * not implement {@link RandomAccess}, a temporary array is used to acheive
   * this speed, since it would be quadratic access otherwise.
   *
   * @param l the list to shuffle
   * @throws UnsupportedOperationException if l.listIterator() does not
   *         support the set operation
   */
1379
  public static void shuffle(List<?> l)
Tom Tromey committed
1380 1381 1382 1383
  {
    if (defaultRandom == null)
      {
        synchronized (Collections.class)
1384 1385 1386 1387
          {
            if (defaultRandom == null)
              defaultRandom = new Random();
          }
Tom Tromey committed
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
      }
    shuffle(l, defaultRandom);
  }

  /**
   * Cache a single Random object for use by shuffle(List). This improves
   * performance as well as ensuring that sequential calls to shuffle() will
   * not result in the same shuffle order occurring: the resolution of
   * System.currentTimeMillis() is not sufficient to guarantee a unique seed.
   */
  private static Random defaultRandom = null;

  /**
   * Shuffle a list according to a given source of randomness. The algorithm
   * used iterates backwards over the list, swapping each element with an
   * element randomly selected from the elements in positions less than or
   * equal to it (using r.nextInt(int)).
   * <p>
   *
   * This algorithm would result in a perfectly fair shuffle (that is, each
   * element would have an equal chance of ending up in any position) if r were
   * a perfect source of randomness. In practise (eg if r = new Random()) the
   * results are merely very close to perfect.
   * <p>
   *
   * This method operates in linear time. To do this on large lists which do
   * not implement {@link RandomAccess}, a temporary array is used to acheive
   * this speed, since it would be quadratic access otherwise.
   *
   * @param l the list to shuffle
   * @param r the source of randomness to use for the shuffle
   * @throws UnsupportedOperationException if l.listIterator() does not
   *         support the set operation
   */
1422
  public static void shuffle(List<?> l, Random r)
Tom Tromey committed
1423 1424
  {
    int lsize = l.size();
1425 1426
    List<Object> list = (List<Object>) l;
    ListIterator<Object> i = list.listIterator(lsize);
Tom Tromey committed
1427 1428 1429 1430
    boolean sequential = isSequential(l);
    Object[] a = null; // stores a copy of the list for the sequential case

    if (sequential)
1431
      a = list.toArray();
Tom Tromey committed
1432 1433 1434

    for (int pos = lsize - 1; pos > 0; --pos)
      {
1435 1436 1437
        // Obtain a random position to swap with. pos + 1 is used so that the
        // range of the random number includes the current position.
        int swap = r.nextInt(pos + 1);
Tom Tromey committed
1438

1439 1440
        // Swap the desired element.
        Object o;
Tom Tromey committed
1441 1442 1443 1444 1445 1446
        if (sequential)
          {
            o = a[swap];
            a[swap] = i.previous();
          }
        else
1447
          o = list.set(swap, i.previous());
Tom Tromey committed
1448

1449
        i.set(o);
Tom Tromey committed
1450 1451 1452
      }
  }

1453 1454 1455 1456 1457
  /**
   * Returns the frequency of the specified object within the supplied
   * collection.  The frequency represents the number of occurrences of
   * elements within the collection which return <code>true</code> when
   * compared with the object using the <code>equals</code> method.
1458
   *
1459 1460 1461
   * @param c the collection to scan for occurrences of the object.
   * @param o the object to locate occurrances of within the collection.
   * @throws NullPointerException if the collection is <code>null</code>.
1462
   * @since 1.5
1463 1464 1465 1466
   */
  public static int frequency (Collection<?> c, Object o)
  {
    int result = 0;
1467 1468
    final Iterator<?> it = c.iterator();
    while (it.hasNext())
1469
      {
1470 1471 1472
        Object v = it.next();
        if (AbstractCollection.equals(o, v))
          ++result;
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
      }
    return result;
  }

  /**
   * Adds all the specified elements to the given collection, in a similar
   * way to the <code>addAll</code> method of the <code>Collection</code>.
   * However, this is a variable argument method which allows the new elements
   * to be specified individually or in array form, as opposed to the list
   * required by the collection's <code>addAll</code> method.  This has
   * benefits in both simplicity (multiple elements can be added without
   * having to be wrapped inside a grouping structure) and efficiency
   * (as a redundant list doesn't have to be created to add an individual
   * set of elements or an array).
   *
   * @param c the collection to which the elements should be added.
   * @param a the elements to be added to the collection.
   * @return true if the collection changed its contents as a result.
   * @throws UnsupportedOperationException if the collection does not support
   *                                       addition.
   * @throws NullPointerException if one or more elements in a are null,
   *                              and the collection does not allow null
   *                              elements.  This exception is also thrown
   *                              if either <code>c</code> or <code>a</code>
   *                              are null.
   * @throws IllegalArgumentException if the collection won't allow an element
   *                                  to be added for some other reason.
   * @since 1.5
   */
  public static <T> boolean addAll(Collection<? super T> c, T... a)
  {
    boolean overall = false;

    for (T element : a)
      {
1508 1509 1510
        boolean result = c.add(element);
        if (result)
          overall = true;
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
      }
    return overall;
  }

  /**
   * Returns true if the two specified collections have no elements in
   * common.  This method may give unusual results if one or both collections
   * use a non-standard equality test.  In the trivial case of comparing
   * a collection with itself, this method returns true if, and only if,
   * the collection is empty.
   *
   * @param c1 the first collection to compare.
   * @param c2 the second collection to compare.
   * @return true if the collections are disjoint.
   * @throws NullPointerException if either collection is null.
   * @since 1.5
   */
  public static boolean disjoint(Collection<?> c1, Collection<?> c2)
  {
    Collection<Object> oc1 = (Collection<Object>) c1;
1531 1532 1533
    final Iterator<Object> it = oc1.iterator();
    while (it.hasNext())
      if (c2.contains(it.next()))
1534
        return false;
1535 1536 1537
    return true;
  }

1538

Tom Tromey committed
1539 1540 1541 1542 1543 1544 1545 1546
  /**
   * Obtain an immutable Set consisting of a single element. The return value
   * of this method is Serializable.
   *
   * @param o the single element
   * @return an immutable Set containing only o
   * @see Serializable
   */
1547
  public static <T> Set<T> singleton(T o)
Tom Tromey committed
1548
  {
1549
    return new SingletonSet<T>(o);
Tom Tromey committed
1550 1551 1552 1553 1554 1555 1556 1557
  }

  /**
   * The implementation of {@link #singleton(Object)}. This class name
   * is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
1558
  private static final class SingletonSet<T> extends AbstractSet<T>
Tom Tromey committed
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
    implements Serializable
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 3193687207550431679L;


    /**
     * The single element; package visible for use in nested class.
     * @serial the singleton
     */
1571
    final T element;
Tom Tromey committed
1572 1573 1574 1575 1576

    /**
     * Construct a singleton.
     * @param o the element
     */
1577
    SingletonSet(T o)
Tom Tromey committed
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
    {
      element = o;
    }

    /**
     * The size: always 1!
     * @return 1.
     */
    public int size()
    {
      return 1;
    }

    /**
     * Returns an iterator over the lone element.
     */
1594
    public Iterator<T> iterator()
Tom Tromey committed
1595
    {
1596
      return new Iterator<T>()
Tom Tromey committed
1597
      {
1598 1599 1600 1601
        /**
         * Flag to indicate whether or not the element has
         * been retrieved.
         */
Tom Tromey committed
1602 1603
        private boolean hasNext = true;

1604 1605 1606 1607 1608 1609
        /**
         * Returns <code>true</code> if elements still remain to be
         * iterated through.
         *
         * @return <code>true</code> if the element has not yet been returned.
         */
Tom Tromey committed
1610 1611 1612 1613 1614
        public boolean hasNext()
        {
          return hasNext;
        }

1615 1616 1617 1618 1619 1620 1621
        /**
         * Returns the element.
         *
         * @return The element used by this singleton.
         * @throws NoSuchElementException if the object
         *         has already been retrieved.
         */
1622
        public T next()
Tom Tromey committed
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
        {
          if (hasNext)
          {
            hasNext = false;
            return element;
          }
          else
            throw new NoSuchElementException();
        }

1633 1634 1635 1636 1637 1638 1639 1640 1641
        /**
         * Removes the element from the singleton.
         * As this set is immutable, this will always
         * throw an exception.
         *
         * @throws UnsupportedOperationException as the
         *         singleton set doesn't support
         *         <code>remove()</code>.
         */
Tom Tromey committed
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
        public void remove()
        {
          throw new UnsupportedOperationException();
        }
      };
    }

    // The remaining methods are optional, but provide a performance
    // advantage by not allocating unnecessary iterators in AbstractSet.
    /**
     * The set only contains one element.
     *
     * @param o The object to search for.
     * @return <code>true</code> if o == the element of the singleton.
     */
    public boolean contains(Object o)
    {
      return equals(o, element);
    }

    /**
     * This is true if the other collection only contains the element.
     *
     * @param c A collection to compare against this singleton.
     * @return <code>true</code> if c only contains either no elements or
     *         elements equal to the element in this singleton.
     */
1669
    public boolean containsAll(Collection<?> c)
Tom Tromey committed
1670
    {
1671
      Iterator<?> i = c.iterator();
Tom Tromey committed
1672 1673 1674 1675 1676 1677 1678 1679 1680
      int pos = c.size();
      while (--pos >= 0)
        if (! equals(i.next(), element))
          return false;
      return true;
    }

    /**
     * The hash is just that of the element.
1681
     *
Tom Tromey committed
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
     * @return The hashcode of the element.
     */
    public int hashCode()
    {
      return hashCode(element);
    }

    /**
     * Returning an array is simple.
     *
     * @return An array containing the element.
     */
    public Object[] toArray()
    {
      return new Object[] {element};
    }

    /**
     * Obvious string.
     *
     * @return The string surrounded by enclosing
     *         square brackets.
     */
    public String toString()
    {
      return "[" + element + "]";
    }
  } // class SingletonSet

  /**
   * Obtain an immutable List consisting of a single element. The return value
   * of this method is Serializable, and implements RandomAccess.
   *
   * @param o the single element
   * @return an immutable List containing only o
   * @see Serializable
   * @see RandomAccess
   * @since 1.3
   */
1721
  public static <T> List<T> singletonList(T o)
Tom Tromey committed
1722
  {
1723
    return new SingletonList<T>(o);
Tom Tromey committed
1724 1725 1726 1727 1728 1729 1730 1731
  }

  /**
   * The implementation of {@link #singletonList(Object)}. This class name
   * is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
1732
  private static final class SingletonList<T> extends AbstractList<T>
Tom Tromey committed
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
    implements Serializable, RandomAccess
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 3093736618740652951L;

    /**
     * The single element.
     * @serial the singleton
     */
1744
    private final T element;
Tom Tromey committed
1745 1746 1747 1748 1749

    /**
     * Construct a singleton.
     * @param o the element
     */
1750
    SingletonList(T o)
Tom Tromey committed
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
    {
      element = o;
    }

    /**
     * The size: always 1!
     * @return 1.
     */
    public int size()
    {
      return 1;
    }

    /**
     * Only index 0 is valid.
     * @param index The index of the element
     *        to retrieve.
     * @return The singleton's element if the
     *         index is 0.
     * @throws IndexOutOfBoundsException if
     *         index is not 0.
     */
1773
    public T get(int index)
Tom Tromey committed
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
    {
      if (index == 0)
        return element;
      throw new IndexOutOfBoundsException();
    }

    // The remaining methods are optional, but provide a performance
    // advantage by not allocating unnecessary iterators in AbstractList.
    /**
     * The set only contains one element.
     *
     * @param o The object to search for.
     * @return <code>true</code> if o == the singleton element.
     */
    public boolean contains(Object o)
    {
      return equals(o, element);
    }

    /**
     * This is true if the other collection only contains the element.
     *
     * @param c A collection to compare against this singleton.
     * @return <code>true</code> if c only contains either no elements or
     *         elements equal to the element in this singleton.
     */
1800
    public boolean containsAll(Collection<?> c)
Tom Tromey committed
1801
    {
1802
      Iterator<?> i = c.iterator();
Tom Tromey committed
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
      int pos = c.size();
      while (--pos >= 0)
        if (! equals(i.next(), element))
          return false;
      return true;
    }

    /**
     * Speed up the hashcode computation.
     *
     * @return The hashcode of the list, based
     *         on the hashcode of the singleton element.
     */
    public int hashCode()
    {
      return 31 + hashCode(element);
    }

    /**
     * Either the list has it or not.
     *
     * @param o The object to find the first index of.
     * @return 0 if o is the singleton element, -1 if not.
     */
    public int indexOf(Object o)
    {
      return equals(o, element) ? 0 : -1;
    }

    /**
     * Either the list has it or not.
     *
     * @param o The object to find the last index of.
     * @return 0 if o is the singleton element, -1 if not.
     */
    public int lastIndexOf(Object o)
    {
      return equals(o, element) ? 0 : -1;
    }

    /**
     * Sublists are limited in scope.
1845
     *
Tom Tromey committed
1846 1847 1848 1849 1850 1851 1852 1853
     * @param from The starting bound for the sublist.
     * @param to The ending bound for the sublist.
     * @return Either an empty list if both bounds are
     *         0 or 1, or this list if the bounds are 0 and 1.
     * @throws IllegalArgumentException if <code>from > to</code>
     * @throws IndexOutOfBoundsException if either bound is greater
     *         than 1.
     */
1854
    public List<T> subList(int from, int to)
Tom Tromey committed
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
    {
      if (from == to && (to == 0 || to == 1))
        return EMPTY_LIST;
      if (from == 0 && to == 1)
        return this;
      if (from > to)
        throw new IllegalArgumentException();
      throw new IndexOutOfBoundsException();
    }

    /**
     * Returning an array is simple.
     *
     * @return An array containing the element.
     */
    public Object[] toArray()
    {
      return new Object[] {element};
    }

    /**
     * Obvious string.
     *
     * @return The string surrounded by enclosing
1879
     *         square brackets.
Tom Tromey committed
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
     */
    public String toString()
    {
      return "[" + element + "]";
    }
  } // class SingletonList

  /**
   * Obtain an immutable Map consisting of a single key-value pair.
   * The return value of this method is Serializable.
   *
   * @param key the single key
   * @param value the single value
   * @return an immutable Map containing only the single key-value pair
   * @see Serializable
   * @since 1.3
   */
1897
  public static <K, V> Map<K, V> singletonMap(K key, V value)
Tom Tromey committed
1898
  {
1899
    return new SingletonMap<K, V>(key, value);
Tom Tromey committed
1900 1901 1902
  }

  /**
1903 1904
   * The implementation of {@link #singletonMap(Object, Object)}. This class
   * name is required for compatibility with Sun's JDK serializability.
Tom Tromey committed
1905 1906 1907
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
1908
  private static final class SingletonMap<K, V> extends AbstractMap<K, V>
Tom Tromey committed
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
    implements Serializable
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = -6979724477215052911L;

    /**
     * The single key.
     * @serial the singleton key
     */
1920
    private final K k;
Tom Tromey committed
1921 1922 1923 1924 1925

    /**
     * The corresponding value.
     * @serial the singleton value
     */
1926
    private final V v;
Tom Tromey committed
1927 1928 1929 1930

    /**
     * Cache the entry set.
     */
1931
    private transient Set<Map.Entry<K, V>> entries;
Tom Tromey committed
1932 1933 1934 1935 1936 1937

    /**
     * Construct a singleton.
     * @param key the key
     * @param value the value
     */
1938
    SingletonMap(K key, V value)
Tom Tromey committed
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
    {
      k = key;
      v = value;
    }

    /**
     * There is a single immutable entry.
     *
     * @return A singleton containing the map entry.
     */
1949
    public Set<Map.Entry<K, V>> entrySet()
Tom Tromey committed
1950 1951
    {
      if (entries == null)
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
        {
          Map.Entry<K,V> entry = new AbstractMap.SimpleEntry<K, V>(k, v)
          {
            /**
             * Sets the value of the map entry to the supplied value.
             * An exception is always thrown, as the map is immutable.
             *
             * @param o The new value.
             * @return The old value.
             * @throws UnsupportedOperationException as setting the value
             *         is not supported.
             */
            public V setValue(V o)
            {
              throw new UnsupportedOperationException();
            }
          };
          entries = singleton(entry);
        }
Tom Tromey committed
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
      return entries;
    }

    // The remaining methods are optional, but provide a performance
    // advantage by not allocating unnecessary iterators in AbstractMap.
    /**
     * Single entry.
     *
     * @param key The key to look for.
     * @return <code>true</code> if the key is the same as the one used by
     *         this map.
     */
    public boolean containsKey(Object key)
    {
      return equals(key, k);
    }

    /**
     * Single entry.
     *
     * @param value The value to look for.
     * @return <code>true</code> if the value is the same as the one used by
     *         this map.
     */
    public boolean containsValue(Object value)
    {
      return equals(value, v);
    }

    /**
     * Single entry.
     *
     * @param key The key of the value to be retrieved.
     * @return The singleton value if the key is the same as the
     *         singleton key, null otherwise.
     */
2007
    public V get(Object key)
Tom Tromey committed
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
    {
      return equals(key, k) ? v : null;
    }

    /**
     * Calculate the hashcode directly.
     *
     * @return The hashcode computed from the singleton key
     *         and the singleton value.
     */
    public int hashCode()
    {
      return hashCode(k) ^ hashCode(v);
    }

    /**
     * Return the keyset.
     *
     * @return A singleton containing the key.
     */
2028
    public Set<K> keySet()
Tom Tromey committed
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
    {
      if (keys == null)
        keys = singleton(k);
      return keys;
    }

    /**
     * The size: always 1!
     *
     * @return 1.
     */
    public int size()
    {
      return 1;
    }

    /**
     * Return the values. Technically, a singleton, while more specific than
     * a general Collection, will work. Besides, that's what the JDK uses!
     *
     * @return A singleton containing the value.
     */
2051
    public Collection<V> values()
Tom Tromey committed
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
    {
      if (values == null)
        values = singleton(v);
      return values;
    }

    /**
     * Obvious string.
     *
     * @return A string containing the string representations of the key
     *         and its associated value.
     */
    public String toString()
    {
      return "{" + k + "=" + v + "}";
    }
  } // class SingletonMap

  /**
   * Sort a list according to the natural ordering of its elements. The list
   * must be modifiable, but can be of fixed size. The sort algorithm is
   * precisely that used by Arrays.sort(Object[]), which offers guaranteed
   * nlog(n) performance. This implementation dumps the list into an array,
   * sorts the array, and then iterates over the list setting each element from
   * the array.
   *
2078
   * @param l the List to sort (<code>null</code> not permitted)
Tom Tromey committed
2079 2080
   * @throws ClassCastException if some items are not mutually comparable
   * @throws UnsupportedOperationException if the List is not modifiable
2081 2082
   * @throws NullPointerException if the list is <code>null</code>, or contains
   *     some element that is <code>null</code>.
Tom Tromey committed
2083 2084
   * @see Arrays#sort(Object[])
   */
2085
  public static <T extends Comparable<? super T>> void sort(List<T> l)
Tom Tromey committed
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
  {
    sort(l, null);
  }

  /**
   * Sort a list according to a specified Comparator. The list must be
   * modifiable, but can be of fixed size. The sort algorithm is precisely that
   * used by Arrays.sort(Object[], Comparator), which offers guaranteed
   * nlog(n) performance. This implementation dumps the list into an array,
   * sorts the array, and then iterates over the list setting each element from
   * the array.
   *
2098
   * @param l the List to sort (<code>null</code> not permitted)
Tom Tromey committed
2099
   * @param c the Comparator specifying the ordering for the elements, or
2100
   *        <code>null</code> for natural ordering
Tom Tromey committed
2101 2102
   * @throws ClassCastException if c will not compare some pair of items
   * @throws UnsupportedOperationException if the List is not modifiable
2103 2104
   * @throws NullPointerException if the List is <code>null</code> or
   *         <code>null</code> is compared by natural ordering (only possible
2105
   *         when c is <code>null</code>)
2106
   *
Tom Tromey committed
2107 2108
   * @see Arrays#sort(Object[], Comparator)
   */
2109
  public static <T> void sort(List<T> l, Comparator<? super T> c)
Tom Tromey committed
2110
  {
2111
    T[] a = (T[]) l.toArray();
Tom Tromey committed
2112
    Arrays.sort(a, c);
2113
    ListIterator<T> i = l.listIterator();
Tom Tromey committed
2114 2115
    for (int pos = 0, alen = a.length;  pos < alen;  pos++)
      {
2116 2117
        i.next();
        i.set(a[pos]);
Tom Tromey committed
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
      }
  }

  /**
   * Swaps the elements at the specified positions within the list. Equal
   * positions have no effect.
   *
   * @param l the list to work on
   * @param i the first index to swap
   * @param j the second index
   * @throws UnsupportedOperationException if list.set is not supported
   * @throws IndexOutOfBoundsException if either i or j is &lt; 0 or &gt;=
   *         list.size()
   * @since 1.4
   */
2133
  public static void swap(List<?> l, int i, int j)
Tom Tromey committed
2134
  {
2135 2136
    List<Object> list = (List<Object>) l;
    list.set(i, list.set(j, list.get(i)));
Tom Tromey committed
2137 2138
  }

2139

Tom Tromey committed
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
  /**
   * Returns a synchronized (thread-safe) collection wrapper backed by the
   * given collection. Notice that element access through the iterators
   * is thread-safe, but if the collection can be structurally modified
   * (adding or removing elements) then you should synchronize around the
   * iteration to avoid non-deterministic behavior:<br>
   * <pre>
   * Collection c = Collections.synchronizedCollection(new Collection(...));
   * ...
   * synchronized (c)
   *   {
   *     Iterator i = c.iterator();
   *     while (i.hasNext())
   *       foo(i.next());
   *   }
   * </pre><p>
   *
   * Since the collection might be a List or a Set, and those have incompatible
   * equals and hashCode requirements, this relies on Object's implementation
   * rather than passing those calls on to the wrapped collection. The returned
   * Collection implements Serializable, but can only be serialized if
   * the collection it wraps is likewise Serializable.
   *
   * @param c the collection to wrap
   * @return a synchronized view of the collection
   * @see Serializable
   */
2167
  public static <T> Collection<T> synchronizedCollection(Collection<T> c)
Tom Tromey committed
2168
  {
2169
    return new SynchronizedCollection<T>(c);
Tom Tromey committed
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
  }

  /**
   * The implementation of {@link #synchronizedCollection(Collection)}. This
   * class name is required for compatibility with Sun's JDK serializability.
   * Package visible, so that collections such as the one for
   * Hashtable.values() can specify which object to synchronize on.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
2180 2181
  static class SynchronizedCollection<T>
    implements Collection<T>, Serializable
Tom Tromey committed
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 3053995032091335093L;

    /**
     * The wrapped collection. Package visible for use by subclasses.
     * @serial the real collection
     */
2192
    final Collection<T> c;
Tom Tromey committed
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206

    /**
     * The object to synchronize on.  When an instance is created via public
     * methods, it will be this; but other uses like SynchronizedMap.values()
     * must specify another mutex. Package visible for use by subclasses.
     * @serial the lock
     */
    final Object mutex;

    /**
     * Wrap a given collection.
     * @param c the collection to wrap
     * @throws NullPointerException if c is null
     */
2207
    SynchronizedCollection(Collection<T> c)
Tom Tromey committed
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
    {
      this.c = c;
      mutex = this;
      if (c == null)
        throw new NullPointerException();
    }

    /**
     * Called only by trusted code to specify the mutex as well as the
     * collection.
     * @param sync the mutex
     * @param c the collection
     */
2221
    SynchronizedCollection(Object sync, Collection<T> c)
Tom Tromey committed
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
    {
      this.c = c;
      mutex = sync;
    }

    /**
     * Adds the object to the underlying collection, first
     * obtaining a lock on the mutex.
     *
     * @param o The object to add.
     * @return <code>true</code> if the collection was modified as a result
     *         of this action.
     * @throws UnsupportedOperationException if this collection does not
     *         support the add operation.
     * @throws ClassCastException if o cannot be added to this collection due
     *         to its type.
     * @throws NullPointerException if o is null and this collection doesn't
     *         support the addition of null values.
     * @throws IllegalArgumentException if o cannot be added to this
     *         collection for some other reason.
     */
2243
    public boolean add(T o)
Tom Tromey committed
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
    {
      synchronized (mutex)
        {
          return c.add(o);
        }
    }

    /**
     * Adds the objects in col to the underlying collection, first
     * obtaining a lock on the mutex.
     *
     * @param col The collection to take the new objects from.
     * @return <code>true</code> if the collection was modified as a result
     *          of this action.
     * @throws UnsupportedOperationException if this collection does not
     *         support the addAll operation.
     * @throws ClassCastException if some element of col cannot be added to this
     *         collection due to its type.
     * @throws NullPointerException if some element of col is null and this
     *         collection does not support the addition of null values.
     * @throws NullPointerException if col itself is null.
     * @throws IllegalArgumentException if some element of col cannot be added
     *         to this collection for some other reason.
     */
2268
    public boolean addAll(Collection<? extends T> col)
Tom Tromey committed
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
    {
      synchronized (mutex)
        {
          return c.addAll(col);
        }
    }

    /**
     * Removes all objects from the underlying collection,
     * first obtaining a lock on the mutex.
     *
     * @throws UnsupportedOperationException if this collection does not
     *         support the clear operation.
     */
    public void clear()
    {
      synchronized (mutex)
        {
          c.clear();
        }
    }

    /**
     * Checks for the existence of o within the underlying
     * collection, first obtaining a lock on the mutex.
     *
     * @param o the element to look for.
     * @return <code>true</code> if this collection contains at least one
     *         element e such that <code>o == null ? e == null : o.equals(e)</code>.
     * @throws ClassCastException if the type of o is not a valid type for this
     *         collection.
     * @throws NullPointerException if o is null and this collection doesn't
     *         support null values.
     */
    public boolean contains(Object o)
    {
      synchronized (mutex)
        {
          return c.contains(o);
        }
    }

    /**
     * Checks for the existence of each object in cl
     * within the underlying collection, first obtaining
     * a lock on the mutex.
     *
     * @param c1 the collection to test for.
     * @return <code>true</code> if for every element o in c, contains(o)
     *         would return <code>true</code>.
     * @throws ClassCastException if the type of any element in cl is not a valid
     *         type for this collection.
     * @throws NullPointerException if some element of cl is null and this
     *         collection does not support null values.
     * @throws NullPointerException if cl itself is null.
     */
2325
    public boolean containsAll(Collection<?> c1)
Tom Tromey committed
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
    {
      synchronized (mutex)
        {
          return c.containsAll(c1);
        }
    }

    /**
     * Returns <code>true</code> if there are no objects in the underlying
     * collection.  A lock on the mutex is obtained before the
     * check is performed.
     *
     * @return <code>true</code> if this collection contains no elements.
     */
    public boolean isEmpty()
    {
      synchronized (mutex)
        {
          return c.isEmpty();
        }
    }

    /**
     * Returns a synchronized iterator wrapper around the underlying
     * collection's iterator.  A lock on the mutex is obtained before
     * retrieving the collection's iterator.
     *
     * @return An iterator over the elements in the underlying collection,
     *         which returns each element in any order.
     */
2356
    public Iterator<T> iterator()
Tom Tromey committed
2357 2358 2359
    {
      synchronized (mutex)
        {
2360
          return new SynchronizedIterator<T>(mutex, c.iterator());
Tom Tromey committed
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
        }
    }

    /**
     * Removes the specified object from the underlying collection,
     * first obtaining a lock on the mutex.
     *
     * @param o The object to remove.
     * @return <code>true</code> if the collection changed as a result of this call, that is,
     *         if the collection contained at least one occurrence of o.
     * @throws UnsupportedOperationException if this collection does not
     *         support the remove operation.
     * @throws ClassCastException if the type of o is not a valid type
     *         for this collection.
     * @throws NullPointerException if o is null and the collection doesn't
     *         support null values.
     */
    public boolean remove(Object o)
    {
      synchronized (mutex)
        {
          return c.remove(o);
        }
    }

    /**
     * Removes all elements, e, of the underlying
     * collection for which <code>col.contains(e)</code>
     * returns <code>true</code>.  A lock on the mutex is obtained
     * before the operation proceeds.
     *
     * @param col The collection of objects to be removed.
     * @return <code>true</code> if this collection was modified as a result of this call.
     * @throws UnsupportedOperationException if this collection does not
     *   support the removeAll operation.
     * @throws ClassCastException if the type of any element in c is not a valid
     *   type for this collection.
     * @throws NullPointerException if some element of c is null and this
     *   collection does not support removing null values.
     * @throws NullPointerException if c itself is null.
     */
2402
    public boolean removeAll(Collection<?> col)
Tom Tromey committed
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
    {
      synchronized (mutex)
        {
          return c.removeAll(col);
        }
    }

    /**
     * Retains all elements, e, of the underlying
     * collection for which <code>col.contains(e)</code>
     * returns <code>true</code>.  That is, every element that doesn't
     * exist in col is removed.  A lock on the mutex is obtained
     * before the operation proceeds.
     *
     * @param col The collection of objects to be removed.
     * @return <code>true</code> if this collection was modified as a result of this call.
     * @throws UnsupportedOperationException if this collection does not
     *   support the removeAll operation.
     * @throws ClassCastException if the type of any element in c is not a valid
     *   type for this collection.
     * @throws NullPointerException if some element of c is null and this
     *   collection does not support removing null values.
     * @throws NullPointerException if c itself is null.
     */
2427
    public boolean retainAll(Collection<?> col)
Tom Tromey committed
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
    {
      synchronized (mutex)
        {
          return c.retainAll(col);
        }
    }

    /**
     * Retrieves the size of the underlying collection.
     * A lock on the mutex is obtained before the collection
     * is accessed.
     *
     * @return The size of the collection.
     */
    public int size()
    {
      synchronized (mutex)
        {
          return c.size();
        }
    }

    /**
     * Returns an array containing each object within the underlying
     * collection.  A lock is obtained on the mutex before the collection
     * is accessed.
     *
     * @return An array of objects, matching the collection in size.  The
     *         elements occur in any order.
     */
    public Object[] toArray()
    {
      synchronized (mutex)
        {
          return c.toArray();
        }
    }

    /**
     * Copies the elements in the underlying collection to the supplied
     * array.  If <code>a.length < size()</code>, a new array of the
     * same run-time type is created, with a size equal to that of
     * the collection.  If <code>a.length > size()</code>, then the
     * elements from 0 to <code>size() - 1</code> contain the elements
     * from this collection.  The following element is set to null
     * to indicate the end of the collection objects.  However, this
     * only makes a difference if null is not a permitted value within
     * the collection.
     * Before the copying takes place, a lock is obtained on the mutex.
     *
     * @param a An array to copy elements to.
     * @return An array containing the elements of the underlying collection.
     * @throws ArrayStoreException if the type of any element of the
     *         collection is not a subtype of the element type of a.
     */
2483
    public <T> T[] toArray(T[] a)
Tom Tromey committed
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
    {
      synchronized (mutex)
        {
          return c.toArray(a);
        }
    }

    /**
     * Returns a string representation of the underlying collection.
     * A lock is obtained on the mutex before the string is created.
     *
     * @return A string representation of the collection.
     */
    public String toString()
    {
      synchronized (mutex)
        {
          return c.toString();
        }
    }
  } // class SynchronizedCollection

  /**
   * The implementation of the various iterator methods in the
   * synchronized classes. These iterators must "sync" on the same object
   * as the collection they iterate over.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
2513
  private static class SynchronizedIterator<T> implements Iterator<T>
Tom Tromey committed
2514 2515 2516 2517 2518 2519 2520 2521 2522
  {
    /**
     * The object to synchronize on. Package visible for use by subclass.
     */
    final Object mutex;

    /**
     * The wrapped iterator.
     */
2523
    private final Iterator<T> i;
Tom Tromey committed
2524 2525 2526 2527 2528 2529

    /**
     * Only trusted code creates a wrapper, with the specified sync.
     * @param sync the mutex
     * @param i the wrapped iterator
     */
2530
    SynchronizedIterator(Object sync, Iterator<T> i)
Tom Tromey committed
2531 2532 2533 2534 2535 2536 2537 2538
    {
      this.i = i;
      mutex = sync;
    }

    /**
     * Retrieves the next object in the underlying collection.
     * A lock is obtained on the mutex before the collection is accessed.
2539
     *
Tom Tromey committed
2540 2541 2542
     * @return The next object in the collection.
     * @throws NoSuchElementException if there are no more elements
     */
2543
    public T next()
Tom Tromey committed
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
    {
      synchronized (mutex)
        {
          return i.next();
        }
    }

    /**
     * Returns <code>true</code> if objects can still be retrieved from the iterator
     * using <code>next()</code>.  A lock is obtained on the mutex before
     * the collection is accessed.
     *
     * @return <code>true</code> if at least one element is still to be returned by
     *         <code>next()</code>.
     */
    public boolean hasNext()
    {
      synchronized (mutex)
        {
          return i.hasNext();
        }
    }

    /**
     * Removes the object that was last returned by <code>next()</code>
     * from the underlying collection.  Only one call to this method is
     * allowed per call to the <code>next()</code> method, and it does
     * not affect the value that will be returned by <code>next()</code>.
     * Thus, if element n was retrieved from the collection by
     * <code>next()</code>, it is this element that gets removed.
     * Regardless of whether this takes place or not, element n+1 is
     * still returned on the subsequent <code>next()</code> call.
     *
     * @throws IllegalStateException if next has not yet been called or remove
     *         has already been called since the last call to next.
     * @throws UnsupportedOperationException if this Iterator does not support
     *         the remove operation.
     */
    public void remove()
    {
      synchronized (mutex)
        {
          i.remove();
        }
    }
  } // class SynchronizedIterator

  /**
   * Returns a synchronized (thread-safe) list wrapper backed by the
   * given list. Notice that element access through the iterators
   * is thread-safe, but if the list can be structurally modified
   * (adding or removing elements) then you should synchronize around the
   * iteration to avoid non-deterministic behavior:<br>
   * <pre>
   * List l = Collections.synchronizedList(new List(...));
   * ...
   * synchronized (l)
   *   {
   *     Iterator i = l.iterator();
   *     while (i.hasNext())
   *       foo(i.next());
   *   }
   * </pre><p>
   *
   * The returned List implements Serializable, but can only be serialized if
   * the list it wraps is likewise Serializable. In addition, if the wrapped
   * list implements RandomAccess, this does too.
   *
   * @param l the list to wrap
   * @return a synchronized view of the list
   * @see Serializable
   * @see RandomAccess
   */
2617
  public static <T> List<T> synchronizedList(List<T> l)
Tom Tromey committed
2618 2619
  {
    if (l instanceof RandomAccess)
2620 2621
      return new SynchronizedRandomAccessList<T>(l);
    return new SynchronizedList<T>(l);
Tom Tromey committed
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
  }

  /**
   * The implementation of {@link #synchronizedList(List)} for sequential
   * lists. This class name is required for compatibility with Sun's JDK
   * serializability. Package visible, so that lists such as Vector.subList()
   * can specify which object to synchronize on.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
2632 2633
  static class SynchronizedList<T> extends SynchronizedCollection<T>
    implements List<T>
Tom Tromey committed
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = -7754090372962971524L;

    /**
     * The wrapped list; stored both here and in the superclass to avoid
     * excessive casting. Package visible for use by subclass.
     * @serial the wrapped list
     */
2645
    final List<T> list;
Tom Tromey committed
2646 2647 2648 2649 2650 2651

    /**
     * Wrap a given list.
     * @param l the list to wrap
     * @throws NullPointerException if l is null
     */
2652
    SynchronizedList(List<T> l)
Tom Tromey committed
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
    {
      super(l);
      list = l;
    }

    /**
     * Called only by trusted code to specify the mutex as well as the list.
     * @param sync the mutex
     * @param l the list
     */
2663
    SynchronizedList(Object sync, List<T> l)
Tom Tromey committed
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
    {
      super(sync, l);
      list = l;
    }

  /**
   * Insert an element into the underlying list at a given position (optional
   * operation).  This shifts all existing elements from that position to the
   * end one index to the right. This version of add has no return, since it is
   * assumed to always succeed if there is no exception.  Before the
   * addition takes place, a lock is obtained on the mutex.
   *
   * @param index the location to insert the item
   * @param o the object to insert
   * @throws UnsupportedOperationException if this list does not support the
   *         add operation
   * @throws IndexOutOfBoundsException if index &lt; 0 || index &gt; size()
   * @throws ClassCastException if o cannot be added to this list due to its
   *         type
   * @throws IllegalArgumentException if o cannot be added to this list for
   *         some other reason
   * @throws NullPointerException if o is null and this list doesn't support
   *         the addition of null values.
   */
2688
    public void add(int index, T o)
Tom Tromey committed
2689 2690 2691 2692 2693 2694 2695 2696
    {
      synchronized (mutex)
        {
          list.add(index, o);
        }
    }

  /**
2697
   * Add the contents of a collection to the underlying list at the given
2698
   * index (optional operation).  If the list imposes restraints on what
2699 2700
   * can be inserted, such as no null elements, this should be documented.
   * A lock is obtained on the mutex before any of the elements are added.
Tom Tromey committed
2701
   *
2702 2703
   * @param index the index at which to insert
   * @param c the collection to add
Tom Tromey committed
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
   * @return <code>true</code>, as defined by Collection for a modified list
   * @throws UnsupportedOperationException if this list does not support the
   *         add operation
   * @throws ClassCastException if o cannot be added to this list due to its
   *         type
   * @throws IllegalArgumentException if o cannot be added to this list for
   *         some other reason
   * @throws NullPointerException if o is null and this list doesn't support
   *         the addition of null values.
   */
2714
    public boolean addAll(int index, Collection<? extends T> c)
Tom Tromey committed
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
    {
      synchronized (mutex)
        {
          return list.addAll(index, c);
        }
    }

   /**
    * Tests whether the underlying list is equal to the supplied object.
    * The object is deemed to be equal if it is also a <code>List</code>
    * of equal size and with the same elements (i.e. each element, e1,
    * in list, l1, and each element, e2, in l2, must return <code>true</code> for
    * <code>e1 == null ? e2 == null : e1.equals(e2)</code>.  Before the
    * comparison is made, a lock is obtained on the mutex.
    *
    * @param o The object to test for equality with the underlying list.
    * @return <code>true</code> if o is equal to the underlying list under the above
    *         definition.
    */
    public boolean equals(Object o)
    {
      synchronized (mutex)
        {
          return list.equals(o);
        }
    }

    /**
     * Retrieves the object at the specified index.  A lock
     * is obtained on the mutex before the list is accessed.
     *
     * @param index the index of the element to be returned
     * @return the element at index index in this list
     * @throws IndexOutOfBoundsException if index &lt; 0 || index &gt;= size()
     */
2750
    public T get(int index)
Tom Tromey committed
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
    {
      synchronized (mutex)
        {
          return list.get(index);
        }
    }

    /**
     * Obtains a hashcode for the underlying list, first obtaining
     * a lock on the mutex.  The calculation of the hashcode is
     * detailed in the documentation for the <code>List</code>
     * interface.
     *
     * @return The hashcode of the underlying list.
     * @see List#hashCode()
     */
    public int hashCode()
    {
      synchronized (mutex)
        {
          return list.hashCode();
        }
    }

    /**
     * Obtain the first index at which a given object is to be found in the
     * underlying list.  A lock is obtained on the mutex before the list is
     * accessed.
     *
     * @param o the object to search for
     * @return the least integer n such that <code>o == null ? get(n) == null :
     *         o.equals(get(n))</code>, or -1 if there is no such index.
     * @throws ClassCastException if the type of o is not a valid
     *         type for this list.
     * @throws NullPointerException if o is null and this
     *         list does not support null values.
     */

    public int indexOf(Object o)
    {
      synchronized (mutex)
        {
          return list.indexOf(o);
        }
    }

    /**
     * Obtain the last index at which a given object is to be found in this
     * underlying list.  A lock is obtained on the mutex before the list
     * is accessed.
     *
     * @return the greatest integer n such that <code>o == null ? get(n) == null
     *         : o.equals(get(n))</code>, or -1 if there is no such index.
     * @throws ClassCastException if the type of o is not a valid
     *         type for this list.
     * @throws NullPointerException if o is null and this
     *         list does not support null values.
     */
    public int lastIndexOf(Object o)
    {
      synchronized (mutex)
        {
          return list.lastIndexOf(o);
        }
    }

    /**
     * Retrieves a synchronized wrapper around the underlying list's
     * list iterator.  A lock is obtained on the mutex before the
     * list iterator is retrieved.
     *
     * @return A list iterator over the elements in the underlying list.
     *         The list iterator allows additional list-specific operations
     *         to be performed, in addition to those supplied by the
     *         standard iterator.
     */
2827
    public ListIterator<T> listIterator()
Tom Tromey committed
2828 2829 2830
    {
      synchronized (mutex)
        {
2831
          return new SynchronizedListIterator<T>(mutex, list.listIterator());
Tom Tromey committed
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
        }
    }

    /**
     * Retrieves a synchronized wrapper around the underlying list's
     * list iterator.  A lock is obtained on the mutex before the
     * list iterator is retrieved.  The iterator starts at the
     * index supplied, leading to the element at that index being
     * the first one returned by <code>next()</code>.  Calling
     * <code>previous()</code> from this initial position returns
     * index - 1.
     *
     * @param index the position, between 0 and size() inclusive, to begin the
     *        iteration from
     * @return A list iterator over the elements in the underlying list.
     *         The list iterator allows additional list-specific operations
     *         to be performed, in addition to those supplied by the
     *         standard iterator.
     * @throws IndexOutOfBoundsException if index &lt; 0 || index &gt; size()
     */
2852
    public ListIterator<T> listIterator(int index)
Tom Tromey committed
2853 2854 2855
    {
      synchronized (mutex)
        {
2856
          return new SynchronizedListIterator<T>(mutex,
2857
                                                 list.listIterator(index));
Tom Tromey committed
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
        }
    }

    /**
     * Remove the element at a given position in the underlying list (optional
     * operation).  All remaining elements are shifted to the left to fill the gap.
     * A lock on the mutex is obtained before the element is removed.
     *
     * @param index the position within the list of the object to remove
     * @return the object that was removed
     * @throws UnsupportedOperationException if this list does not support the
     *         remove operation
     * @throws IndexOutOfBoundsException if index &lt; 0 || index &gt;= size()
     */
2872
    public T remove(int index)
Tom Tromey committed
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
    {
      synchronized (mutex)
        {
          return list.remove(index);
        }
    }

  /**
   * Replace an element of the underlying list with another object (optional
   * operation).  A lock is obtained on the mutex before the element is
   * replaced.
   *
   * @param index the position within this list of the element to be replaced
   * @param o the object to replace it with
   * @return the object that was replaced
   * @throws UnsupportedOperationException if this list does not support the
   *         set operation.
   * @throws IndexOutOfBoundsException if index &lt; 0 || index &gt;= size()
   * @throws ClassCastException if o cannot be added to this list due to its
   *         type
   * @throws IllegalArgumentException if o cannot be added to this list for
   *         some other reason
   * @throws NullPointerException if o is null and this
   *         list does not support null values.
   */
2898
    public T set(int index, T o)
Tom Tromey committed
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
    {
      synchronized (mutex)
        {
          return list.set(index, o);
        }
    }

    /**
     * Obtain a List view of a subsection of the underlying list, from fromIndex
     * (inclusive) to toIndex (exclusive). If the two indices are equal, the
     * sublist is empty. The returned list should be modifiable if and only
     * if this list is modifiable. Changes to the returned list should be
     * reflected in this list. If this list is structurally modified in
     * any way other than through the returned list, the result of any subsequent
     * operations on the returned list is undefined.  A lock is obtained
     * on the mutex before the creation of the sublist.  The returned list
     * is also synchronized, using the same mutex.
     *
     * @param fromIndex the index that the returned list should start from
     *        (inclusive)
     * @param toIndex the index that the returned list should go to (exclusive)
     * @return a List backed by a subsection of this list
     * @throws IndexOutOfBoundsException if fromIndex &lt; 0
     *         || toIndex &gt; size() || fromIndex &gt; toIndex
     */
2924
    public List<T> subList(int fromIndex, int toIndex)
Tom Tromey committed
2925 2926 2927
    {
      synchronized (mutex)
        {
2928
          return new SynchronizedList<T>(mutex,
2929
                                         list.subList(fromIndex, toIndex));
Tom Tromey committed
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
        }
    }
  } // class SynchronizedList

  /**
   * The implementation of {@link #synchronizedList(List)} for random-access
   * lists. This class name is required for compatibility with Sun's JDK
   * serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
2941 2942
  private static final class SynchronizedRandomAccessList<T>
    extends SynchronizedList<T> implements RandomAccess
Tom Tromey committed
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 1530674583602358482L;

    /**
     * Wrap a given list.
     * @param l the list to wrap
     * @throws NullPointerException if l is null
     */
2954
    SynchronizedRandomAccessList(List<T> l)
Tom Tromey committed
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
    {
      super(l);
    }

    /**
     * Called only by trusted code to specify the mutex as well as the
     * collection.
     * @param sync the mutex
     * @param l the list
     */
2965
    SynchronizedRandomAccessList(Object sync, List<T> l)
Tom Tromey committed
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
    {
      super(sync, l);
    }

    /**
     * Obtain a List view of a subsection of the underlying list, from fromIndex
     * (inclusive) to toIndex (exclusive). If the two indices are equal, the
     * sublist is empty. The returned list should be modifiable if and only
     * if this list is modifiable. Changes to the returned list should be
     * reflected in this list. If this list is structurally modified in
     * any way other than through the returned list, the result of any subsequent
     * operations on the returned list is undefined.    A lock is obtained
     * on the mutex before the creation of the sublist.  The returned list
     * is also synchronized, using the same mutex.  Random accessibility
     * is also extended to the new list.
     *
     * @param fromIndex the index that the returned list should start from
     *        (inclusive)
     * @param toIndex the index that the returned list should go to (exclusive)
     * @return a List backed by a subsection of this list
     * @throws IndexOutOfBoundsException if fromIndex &lt; 0
     *         || toIndex &gt; size() || fromIndex &gt; toIndex
     */
2989
    public List<T> subList(int fromIndex, int toIndex)
Tom Tromey committed
2990 2991 2992
    {
      synchronized (mutex)
        {
2993
          return new SynchronizedRandomAccessList<T>(mutex,
2994 2995
                                                     list.subList(fromIndex,
                                                                  toIndex));
Tom Tromey committed
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
        }
    }
  } // class SynchronizedRandomAccessList

  /**
   * The implementation of {@link SynchronizedList#listIterator()}. This
   * iterator must "sync" on the same object as the list it iterates over.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
3006 3007
  private static final class SynchronizedListIterator<T>
    extends SynchronizedIterator<T> implements ListIterator<T>
Tom Tromey committed
3008 3009 3010 3011 3012
  {
    /**
     * The wrapped iterator, stored both here and in the superclass to
     * avoid excessive casting.
     */
3013
    private final ListIterator<T> li;
Tom Tromey committed
3014 3015 3016 3017 3018 3019

    /**
     * Only trusted code creates a wrapper, with the specified sync.
     * @param sync the mutex
     * @param li the wrapped iterator
     */
3020
    SynchronizedListIterator(Object sync, ListIterator<T> li)
Tom Tromey committed
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
    {
      super(sync, li);
      this.li = li;
    }

    /**
     * Insert an element into the underlying list at the current position of
     * the iterator (optional operation). The element is inserted in between
     * the element that would be returned by <code>previous()</code> and the
     * element that would be returned by <code>next()</code>. After the
     * insertion, a subsequent call to next is unaffected, but
     * a call to previous returns the item that was added. The values returned
     * by nextIndex() and previousIndex() are incremented.  A lock is obtained
     * on the mutex before the addition takes place.
     *
     * @param o the object to insert into the list
     * @throws ClassCastException if the object is of a type which cannot be added
     *         to this list.
     * @throws IllegalArgumentException if some other aspect of the object stops
     *         it being added to this list.
     * @throws UnsupportedOperationException if this ListIterator does not
     *         support the add operation.
     */
3044
    public void add(T o)
Tom Tromey committed
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
    {
      synchronized (mutex)
        {
          li.add(o);
        }
    }

    /**
     * Tests whether there are elements remaining in the underlying list
     * in the reverse direction. In other words, <code>previous()</code>
     * will not fail with a NoSuchElementException.  A lock is obtained
     * on the mutex before the check takes place.
     *
     * @return <code>true</code> if the list continues in the reverse direction
     */
    public boolean hasPrevious()
    {
      synchronized (mutex)
        {
          return li.hasPrevious();
        }
    }

    /**
      * Find the index of the element that would be returned by a call to
      * <code>next()</code>.  If hasNext() returns <code>false</code>, this
      * returns the list size.  A lock is obtained on the mutex before the
      * query takes place.
      *
      * @return the index of the element that would be returned by next()
      */
    public int nextIndex()
    {
      synchronized (mutex)
        {
          return li.nextIndex();
        }
    }

    /**
     * Obtain the previous element from the underlying list. Repeated
     * calls to previous may be used to iterate backwards over the entire list,
     * or calls to next and previous may be used together to go forwards and
     * backwards. Alternating calls to next and previous will return the same
     * element.  A lock is obtained on the mutex before the object is retrieved.
     *
     * @return the next element in the list in the reverse direction
     * @throws NoSuchElementException if there are no more elements
     */
3094
    public T previous()
Tom Tromey committed
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
    {
      synchronized (mutex)
        {
          return li.previous();
        }
    }

    /**
     * Find the index of the element that would be returned by a call to
     * previous. If hasPrevious() returns <code>false</code>, this returns -1.
     * A lock is obtained on the mutex before the query takes place.
     *
     * @return the index of the element that would be returned by previous()
     */
    public int previousIndex()
    {
      synchronized (mutex)
        {
          return li.previousIndex();
        }
    }

    /**
     * Replace the element last returned by a call to <code>next()</code> or
     * <code>previous()</code> with a given object (optional operation).  This
     * method may only be called if neither <code>add()</code> nor
     * <code>remove()</code> have been called since the last call to
     * <code>next()</code> or <code>previous</code>.  A lock is obtained
     * on the mutex before the list is modified.
     *
     * @param o the object to replace the element with
     * @throws ClassCastException the object is of a type which cannot be added
     *         to this list
     * @throws IllegalArgumentException some other aspect of the object stops
     *         it being added to this list
     * @throws IllegalStateException if neither next or previous have been
     *         called, or if add or remove has been called since the last call
     *         to next or previous
     * @throws UnsupportedOperationException if this ListIterator does not
     *         support the set operation
     */
3136
    public void set(T o)
Tom Tromey committed
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
    {
      synchronized (mutex)
        {
          li.set(o);
        }
    }
  } // class SynchronizedListIterator

  /**
   * Returns a synchronized (thread-safe) map wrapper backed by the given
   * map. Notice that element access through the collection views and their
   * iterators are thread-safe, but if the map can be structurally modified
   * (adding or removing elements) then you should synchronize around the
   * iteration to avoid non-deterministic behavior:<br>
   * <pre>
   * Map m = Collections.synchronizedMap(new Map(...));
   * ...
   * Set s = m.keySet(); // safe outside a synchronized block
   * synchronized (m) // synch on m, not s
   *   {
   *     Iterator i = s.iterator();
   *     while (i.hasNext())
   *       foo(i.next());
   *   }
   * </pre><p>
   *
   * The returned Map implements Serializable, but can only be serialized if
   * the map it wraps is likewise Serializable.
   *
   * @param m the map to wrap
   * @return a synchronized view of the map
   * @see Serializable
   */
3170
  public static <K, V> Map<K, V> synchronizedMap(Map<K, V> m)
Tom Tromey committed
3171
  {
3172
    return new SynchronizedMap<K, V>(m);
Tom Tromey committed
3173 3174 3175 3176 3177 3178 3179 3180
  }

  /**
   * The implementation of {@link #synchronizedMap(Map)}. This
   * class name is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
3181
  private static class SynchronizedMap<K, V> implements Map<K, V>, Serializable
Tom Tromey committed
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 1978198479659022715L;

    /**
     * The wrapped map.
     * @serial the real map
     */
3192
    private final Map<K, V> m;
Tom Tromey committed
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205

    /**
     * The object to synchronize on.  When an instance is created via public
     * methods, it will be this; but other uses like
     * SynchronizedSortedMap.subMap() must specify another mutex. Package
     * visible for use by subclass.
     * @serial the lock
     */
    final Object mutex;

    /**
     * Cache the entry set.
     */
3206
    private transient Set<Map.Entry<K, V>> entries;
Tom Tromey committed
3207 3208 3209 3210

    /**
     * Cache the key set.
     */
3211
    private transient Set<K> keys;
Tom Tromey committed
3212 3213 3214 3215

    /**
     * Cache the value collection.
     */
3216
    private transient Collection<V> values;
Tom Tromey committed
3217 3218 3219 3220 3221 3222

    /**
     * Wrap a given map.
     * @param m the map to wrap
     * @throws NullPointerException if m is null
     */
3223
    SynchronizedMap(Map<K, V> m)
Tom Tromey committed
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
    {
      this.m = m;
      mutex = this;
      if (m == null)
        throw new NullPointerException();
    }

    /**
     * Called only by trusted code to specify the mutex as well as the map.
     * @param sync the mutex
     * @param m the map
     */
3236
    SynchronizedMap(Object sync, Map<K, V> m)
Tom Tromey committed
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
    {
      this.m = m;
      mutex = sync;
    }

    /**
     * Clears all the entries from the underlying map.  A lock is obtained
     * on the mutex before the map is cleared.
     *
     * @throws UnsupportedOperationException if clear is not supported
     */
    public void clear()
    {
      synchronized (mutex)
        {
          m.clear();
        }
    }

    /**
     * Returns <code>true</code> if the underlying map contains a entry for the given key.
     * A lock is obtained on the mutex before the map is queried.
     *
     * @param key the key to search for.
     * @return <code>true</code> if the underlying map contains the key.
     * @throws ClassCastException if the key is of an inappropriate type.
     * @throws NullPointerException if key is <code>null</code> but the map
     *         does not permit null keys.
     */
    public boolean containsKey(Object key)
    {
      synchronized (mutex)
        {
          return m.containsKey(key);
        }
    }

  /**
   * Returns <code>true</code> if the underlying map contains at least one entry with the
   * given value.  In other words, returns <code>true</code> if a value v exists where
   * <code>(value == null ? v == null : value.equals(v))</code>. This usually
   * requires linear time.  A lock is obtained on the mutex before the map
   * is queried.
   *
   * @param value the value to search for
   * @return <code>true</code> if the map contains the value
   * @throws ClassCastException if the type of the value is not a valid type
   *         for this map.
   * @throws NullPointerException if the value is null and the map doesn't
   *         support null values.
   */
    public boolean containsValue(Object value)
    {
      synchronized (mutex)
        {
          return m.containsValue(value);
        }
    }

    // This is one of the ickiest cases of nesting I've ever seen. It just
    // means "return a SynchronizedSet, except that the iterator() method
    // returns an SynchronizedIterator whose next() method returns a
    // synchronized wrapper around its normal return value".
3300
    public Set<Map.Entry<K, V>> entrySet()
Tom Tromey committed
3301 3302
    {
      // Define this here to spare some nesting.
3303
      class SynchronizedMapEntry<K, V> implements Map.Entry<K, V>
Tom Tromey committed
3304
      {
3305 3306
        final Map.Entry<K, V> e;
        SynchronizedMapEntry(Map.Entry<K, V> o)
Tom Tromey committed
3307
        {
3308
          e = o;
Tom Tromey committed
3309 3310
        }

3311 3312 3313 3314 3315 3316 3317 3318
        /**
         * Returns <code>true</code> if the object, o, implements <code>Map.Entry</code>
         * with the same key and value as the underlying entry.  A lock is
         * obtained on the mutex before the comparison takes place.
         *
         * @param o The object to compare with this entry.
         * @return <code>true</code> if o is equivalent to the underlying map entry.
         */
Tom Tromey committed
3319 3320 3321 3322 3323 3324 3325 3326
        public boolean equals(Object o)
        {
          synchronized (mutex)
            {
              return e.equals(o);
            }
        }

3327 3328 3329 3330 3331 3332
        /**
         * Returns the key used in the underlying map entry.  A lock is obtained
         * on the mutex before the key is retrieved.
         *
         * @return The key of the underlying map entry.
         */
3333
        public K getKey()
Tom Tromey committed
3334 3335 3336 3337 3338 3339 3340
        {
          synchronized (mutex)
            {
              return e.getKey();
            }
        }

3341 3342 3343 3344 3345 3346
        /**
         * Returns the value used in the underlying map entry.  A lock is obtained
         * on the mutex before the value is retrieved.
         *
         * @return The value of the underlying map entry.
         */
3347
        public V getValue()
Tom Tromey committed
3348 3349 3350 3351 3352 3353 3354
        {
          synchronized (mutex)
            {
              return e.getValue();
            }
        }

3355 3356 3357 3358 3359 3360 3361 3362 3363
        /**
         * Computes the hash code for the underlying map entry.
         * This computation is described in the documentation for the
         * <code>Map</code> interface.  A lock is obtained on the mutex
         * before the underlying map is accessed.
         *
         * @return The hash code of the underlying map entry.
         * @see Map#hashCode()
         */
Tom Tromey committed
3364 3365 3366 3367 3368 3369 3370 3371
        public int hashCode()
        {
          synchronized (mutex)
            {
              return e.hashCode();
            }
        }

3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
        /**
         * Replaces the value in the underlying map entry with the specified
         * object (optional operation).  A lock is obtained on the mutex
         * before the map is altered.  The map entry, in turn, will alter
         * the underlying map object.  The operation is undefined if the
         * <code>remove()</code> method of the iterator has been called
         * beforehand.
         *
         * @param value the new value to store
         * @return the old value
         * @throws UnsupportedOperationException if the operation is not supported.
         * @throws ClassCastException if the value is of the wrong type.
         * @throws IllegalArgumentException if something about the value
         *         prevents it from existing in this map.
         * @throws NullPointerException if the map forbids null values.
         */
3388
        public V setValue(V value)
Tom Tromey committed
3389 3390 3391 3392 3393 3394 3395
        {
          synchronized (mutex)
            {
              return e.setValue(value);
            }
        }

3396 3397 3398 3399 3400 3401
        /**
         * Returns a textual representation of the underlying map entry.
         * A lock is obtained on the mutex before the entry is accessed.
         *
         * @return The contents of the map entry in <code>String</code> form.
         */
Tom Tromey committed
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
        public String toString()
        {
          synchronized (mutex)
            {
              return e.toString();
            }
        }
      } // class SynchronizedMapEntry

      // Now the actual code.
      if (entries == null)
        synchronized (mutex)
          {
3415
            entries = new SynchronizedSet<Map.Entry<K, V>>(mutex, m.entrySet())
Tom Tromey committed
3416
            {
3417 3418 3419 3420 3421 3422 3423 3424
              /**
               * Returns an iterator over the set.  The iterator has no specific order,
               * unless further specified.  A lock is obtained on the set's mutex
               * before the iterator is created.  The created iterator is also
               * thread-safe.
               *
               * @return A synchronized set iterator.
               */
3425
              public Iterator<Map.Entry<K, V>> iterator()
Tom Tromey committed
3426 3427 3428
              {
                synchronized (super.mutex)
                  {
3429
                    return new SynchronizedIterator<Map.Entry<K, V>>(super.mutex,
3430
                                                                     c.iterator())
Tom Tromey committed
3431
                    {
3432 3433 3434 3435 3436 3437 3438 3439
                      /**
                       * Retrieves the next map entry from the iterator.
                       * A lock is obtained on the iterator's mutex before
                       * the entry is created.  The new map entry is enclosed in
                       * a thread-safe wrapper.
                       *
                       * @return A synchronized map entry.
                       */
3440
                      public Map.Entry<K, V> next()
Tom Tromey committed
3441 3442 3443
                      {
                        synchronized (super.mutex)
                          {
3444
                            return new SynchronizedMapEntry<K, V>(super.next());
Tom Tromey committed
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
                          }
                      }
                    };
                  }
              }
            };
          }
      return entries;
    }

    /**
     * Returns <code>true</code> if the object, o, is also an instance
     * of <code>Map</code> and contains an equivalent
     * entry set to that of the underlying map.  A lock
     * is obtained on the mutex before the objects are
     * compared.
     *
     * @param o The object to compare.
     * @return <code>true</code> if o and the underlying map are equivalent.
     */
    public boolean equals(Object o)
    {
      synchronized (mutex)
        {
          return m.equals(o);
        }
    }

    /**
     * Returns the value associated with the given key, or null
     * if no such mapping exists.  An ambiguity exists with maps
     * that accept null values as a return value of null could
     * be due to a non-existent mapping or simply a null value
     * for that key.  To resolve this, <code>containsKey</code>
     * should be used.  A lock is obtained on the mutex before
     * the value is retrieved from the underlying map.
     *
     * @param key The key of the required mapping.
     * @return The value associated with the given key, or
     *         null if no such mapping exists.
     * @throws ClassCastException if the key is an inappropriate type.
     * @throws NullPointerException if this map does not accept null keys.
     */
3488
    public V get(Object key)
Tom Tromey committed
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
    {
      synchronized (mutex)
        {
          return m.get(key);
        }
    }

    /**
     * Calculates the hash code of the underlying map as the
     * sum of the hash codes of all entries.  A lock is obtained
     * on the mutex before the hash code is computed.
     *
     * @return The hash code of the underlying map.
     */
    public int hashCode()
    {
      synchronized (mutex)
        {
          return m.hashCode();
        }
    }

    /**
     * Returns <code>true</code> if the underlying map contains no entries.
     * A lock is obtained on the mutex before the map is examined.
     *
     * @return <code>true</code> if the map is empty.
     */
    public boolean isEmpty()
    {
      synchronized (mutex)
        {
          return m.isEmpty();
        }
    }

    /**
     * Returns a thread-safe set view of the keys in the underlying map.  The
     * set is backed by the map, so that changes in one show up in the other.
     * Modifications made while an iterator is in progress cause undefined
     * behavior.  If the set supports removal, these methods remove the
     * underlying mapping from the map: <code>Iterator.remove</code>,
     * <code>Set.remove</code>, <code>removeAll</code>, <code>retainAll</code>,
     * and <code>clear</code>.  Element addition, via <code>add</code> or
     * <code>addAll</code>, is not supported via this set.  A lock is obtained
     * on the mutex before the set is created.
     *
     * @return A synchronized set containing the keys of the underlying map.
     */
3538
    public Set<K> keySet()
Tom Tromey committed
3539 3540 3541 3542
    {
      if (keys == null)
        synchronized (mutex)
          {
3543
            keys = new SynchronizedSet<K>(mutex, m.keySet());
Tom Tromey committed
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
          }
      return keys;
    }

    /**
     * Associates the given key to the given value (optional operation). If the
     * underlying map already contains the key, its value is replaced. Be aware
     * that in a map that permits <code>null</code> values, a null return does not
     * always imply that the mapping was created.  A lock is obtained on the mutex
     * before the modification is made.
     *
     * @param key the key to map.
     * @param value the value to be mapped.
     * @return the previous value of the key, or null if there was no mapping
     * @throws UnsupportedOperationException if the operation is not supported
     * @throws ClassCastException if the key or value is of the wrong type
     * @throws IllegalArgumentException if something about this key or value
     *         prevents it from existing in this map
     * @throws NullPointerException if either the key or the value is null,
     *         and the map forbids null keys or values
     * @see #containsKey(Object)
     */
3566
    public V put(K key, V value)
Tom Tromey committed
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
    {
      synchronized (mutex)
        {
          return m.put(key, value);
        }
    }

    /**
     * Copies all entries of the given map to the underlying one (optional
     * operation). If the map already contains a key, its value is replaced.
     * A lock is obtained on the mutex before the operation proceeds.
     *
     * @param map the mapping to load into this map
     * @throws UnsupportedOperationException if the operation is not supported
     * @throws ClassCastException if a key or value is of the wrong type
     * @throws IllegalArgumentException if something about a key or value
     *         prevents it from existing in this map
     * @throws NullPointerException if the map forbids null keys or values, or
     *         if <code>m</code> is null.
     * @see #put(Object, Object)
     */
3588
    public void putAll(Map<? extends K, ? extends V> map)
Tom Tromey committed
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
    {
      synchronized (mutex)
        {
          m.putAll(map);
        }
    }

    /**
     * Removes the mapping for the key, o, if present (optional operation). If
     * the key is not present, this returns null. Note that maps which permit
     * null values may also return null if the key was removed.  A prior
     * <code>containsKey()</code> check is required to avoid this ambiguity.
     * Before the mapping is removed, a lock is obtained on the mutex.
     *
     * @param o the key to remove
     * @return the value the key mapped to, or null if not present
     * @throws UnsupportedOperationException if deletion is unsupported
     * @throws NullPointerException if the key is null and this map doesn't
     *         support null keys.
     * @throws ClassCastException if the type of the key is not a valid type
     *         for this map.
     */
3611
    public V remove(Object o)
Tom Tromey committed
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
    {
      synchronized (mutex)
        {
          return m.remove(o);
        }
    }

    /**
     * Retrieves the size of the underlying map.  A lock
     * is obtained on the mutex before access takes place.
     * Maps with a size greater than <code>Integer.MAX_VALUE</code>
     * return <code>Integer.MAX_VALUE</code> instead.
     *
     * @return The size of the underlying map.
     */
    public int size()
    {
      synchronized (mutex)
        {
          return m.size();
        }
    }

    /**
     * Returns a textual representation of the underlying
     * map.  A lock is obtained on the mutex before the map
     * is accessed.
     *
     * @return The map in <code>String</code> form.
     */
    public String toString()
    {
      synchronized (mutex)
        {
          return m.toString();
        }
    }

    /**
     * Returns a synchronized collection view of the values in the underlying
     * map.  The collection is backed by the map, so that changes in one show up in
     * the other.  Modifications made while an iterator is in progress cause
     * undefined behavior.  If the collection supports removal, these methods
     * remove the underlying mapping from the map: <code>Iterator.remove</code>,
     * <code>Collection.remove</code>, <code>removeAll</code>,
     * <code>retainAll</code>, and <code>clear</code>. Element addition, via
     * <code>add</code> or <code>addAll</code>, is not supported via this
     * collection.  A lock is obtained on the mutex before the collection
     * is created.
3661
     *
Tom Tromey committed
3662 3663
     * @return the collection of all values in the underlying map.
     */
3664
    public Collection<V> values()
Tom Tromey committed
3665 3666 3667 3668
    {
      if (values == null)
        synchronized (mutex)
          {
3669
            values = new SynchronizedCollection<V>(mutex, m.values());
Tom Tromey committed
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
          }
      return values;
    }
  } // class SynchronizedMap

  /**
   * Returns a synchronized (thread-safe) set wrapper backed by the given
   * set. Notice that element access through the iterator is thread-safe, but
   * if the set can be structurally modified (adding or removing elements)
   * then you should synchronize around the iteration to avoid
   * non-deterministic behavior:<br>
   * <pre>
   * Set s = Collections.synchronizedSet(new Set(...));
   * ...
   * synchronized (s)
   *   {
   *     Iterator i = s.iterator();
   *     while (i.hasNext())
   *       foo(i.next());
   *   }
   * </pre><p>
   *
   * The returned Set implements Serializable, but can only be serialized if
   * the set it wraps is likewise Serializable.
   *
   * @param s the set to wrap
   * @return a synchronized view of the set
   * @see Serializable
   */
3699
  public static <T> Set<T> synchronizedSet(Set<T> s)
Tom Tromey committed
3700
  {
3701
    return new SynchronizedSet<T>(s);
Tom Tromey committed
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
  }

  /**
   * The implementation of {@link #synchronizedSet(Set)}. This class
   * name is required for compatibility with Sun's JDK serializability.
   * Package visible, so that sets such as Hashtable.keySet()
   * can specify which object to synchronize on.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
3712 3713
  static class SynchronizedSet<T> extends SynchronizedCollection<T>
    implements Set<T>
Tom Tromey committed
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 487447009682186044L;

    /**
     * Wrap a given set.
     * @param s the set to wrap
     * @throws NullPointerException if s is null
     */
3725
    SynchronizedSet(Set<T> s)
Tom Tromey committed
3726 3727 3728 3729 3730 3731 3732 3733 3734
    {
      super(s);
    }

    /**
     * Called only by trusted code to specify the mutex as well as the set.
     * @param sync the mutex
     * @param s the set
     */
3735
    SynchronizedSet(Object sync, Set<T> s)
Tom Tromey committed
3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
    {
      super(sync, s);
    }

    /**
     * Returns <code>true</code> if the object, o, is a <code>Set</code>
     * of the same size as the underlying set, and contains
     * each element, e, which occurs in the underlying set.
     * A lock is obtained on the mutex before the comparison
     * takes place.
     *
     * @param o The object to compare against.
     * @return <code>true</code> if o is an equivalent set.
     */
    public boolean equals(Object o)
    {
      synchronized (mutex)
        {
          return c.equals(o);
        }
    }

    /**
     * Computes the hash code for the underlying set as the
     * sum of the hash code of all elements within the set.
     * A lock is obtained on the mutex before the computation
     * occurs.
     *
     * @return The hash code for the underlying set.
     */
    public int hashCode()
    {
      synchronized (mutex)
        {
          return c.hashCode();
        }
    }
  } // class SynchronizedSet

  /**
   * Returns a synchronized (thread-safe) sorted map wrapper backed by the
   * given map. Notice that element access through the collection views,
   * subviews, and their iterators are thread-safe, but if the map can be
   * structurally modified (adding or removing elements) then you should
   * synchronize around the iteration to avoid non-deterministic behavior:<br>
   * <pre>
   * SortedMap m = Collections.synchronizedSortedMap(new SortedMap(...));
   * ...
   * Set s = m.keySet(); // safe outside a synchronized block
   * SortedMap m2 = m.headMap(foo); // safe outside a synchronized block
   * Set s2 = m2.keySet(); // safe outside a synchronized block
   * synchronized (m) // synch on m, not m2, s or s2
   *   {
   *     Iterator i = s.iterator();
   *     while (i.hasNext())
   *       foo(i.next());
   *     i = s2.iterator();
   *     while (i.hasNext())
   *       bar(i.next());
   *   }
   * </pre><p>
   *
   * The returned SortedMap implements Serializable, but can only be
   * serialized if the map it wraps is likewise Serializable.
   *
   * @param m the sorted map to wrap
   * @return a synchronized view of the sorted map
   * @see Serializable
   */
3805
  public static <K, V> SortedMap<K, V> synchronizedSortedMap(SortedMap<K, V> m)
Tom Tromey committed
3806
  {
3807
    return new SynchronizedSortedMap<K, V>(m);
Tom Tromey committed
3808 3809 3810 3811 3812 3813 3814 3815
  }

  /**
   * The implementation of {@link #synchronizedSortedMap(SortedMap)}. This
   * class name is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
3816 3817 3818
  private static final class SynchronizedSortedMap<K, V>
    extends SynchronizedMap<K, V>
    implements SortedMap<K, V>
Tom Tromey committed
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = -8798146769416483793L;

    /**
     * The wrapped map; stored both here and in the superclass to avoid
     * excessive casting.
     * @serial the wrapped map
     */
3830
    private final SortedMap<K, V> sm;
Tom Tromey committed
3831 3832 3833 3834 3835 3836

    /**
     * Wrap a given map.
     * @param sm the map to wrap
     * @throws NullPointerException if sm is null
     */
3837
    SynchronizedSortedMap(SortedMap<K, V> sm)
Tom Tromey committed
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
    {
      super(sm);
      this.sm = sm;
    }

    /**
     * Called only by trusted code to specify the mutex as well as the map.
     * @param sync the mutex
     * @param sm the map
     */
3848
    SynchronizedSortedMap(Object sync, SortedMap<K, V> sm)
Tom Tromey committed
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
    {
      super(sync, sm);
      this.sm = sm;
    }

    /**
     * Returns the comparator used in sorting the underlying map, or null if
     * it is the keys' natural ordering.  A lock is obtained on the mutex
     * before the comparator is retrieved.
     *
     * @return the sorting comparator.
     */
3861
    public Comparator<? super K> comparator()
Tom Tromey committed
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
    {
      synchronized (mutex)
        {
          return sm.comparator();
        }
    }

    /**
     * Returns the first, lowest sorted, key from the underlying map.
     * A lock is obtained on the mutex before the map is accessed.
     *
     * @return the first key.
     * @throws NoSuchElementException if this map is empty.
     */
3876
    public K firstKey()
Tom Tromey committed
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
    {
      synchronized (mutex)
        {
          return sm.firstKey();
        }
    }

    /**
     * Returns a submap containing the keys from the first
     * key (as returned by <code>firstKey()</code>) to
     * the key before that specified.  The submap supports all
     * operations supported by the underlying map and all actions
     * taking place on the submap are also reflected in the underlying
     * map.  A lock is obtained on the mutex prior to submap creation.
     * This operation is equivalent to <code>subMap(firstKey(), toKey)</code>.
     * The submap retains the thread-safe status of this map.
     *
     * @param toKey the exclusive upper range of the submap.
     * @return a submap from <code>firstKey()</code> to the
     *         the key preceding toKey.
     * @throws ClassCastException if toKey is not comparable to the underlying
     *         map's contents.
     * @throws IllegalArgumentException if toKey is outside the map's range.
     * @throws NullPointerException if toKey is null. but the map does not allow
     *         null keys.
     */
3903
    public SortedMap<K, V> headMap(K toKey)
Tom Tromey committed
3904 3905 3906
    {
      synchronized (mutex)
        {
3907
          return new SynchronizedSortedMap<K, V>(mutex, sm.headMap(toKey));
Tom Tromey committed
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
        }
    }

    /**
     * Returns the last, highest sorted, key from the underlying map.
     * A lock is obtained on the mutex before the map is accessed.
     *
     * @return the last key.
     * @throws NoSuchElementException if this map is empty.
     */
3918
    public K lastKey()
Tom Tromey committed
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
    {
      synchronized (mutex)
        {
          return sm.lastKey();
        }
    }

    /**
     * Returns a submap containing the keys from fromKey to
     * the key before toKey.  The submap supports all
     * operations supported by the underlying map and all actions
     * taking place on the submap are also reflected in the underlying
     * map.  A lock is obtained on the mutex prior to submap creation.
     * The submap retains the thread-safe status of this map.
     *
     * @param fromKey the inclusive lower range of the submap.
     * @param toKey the exclusive upper range of the submap.
     * @return a submap from fromKey to the key preceding toKey.
     * @throws ClassCastException if fromKey or toKey is not comparable
     *         to the underlying map's contents.
     * @throws IllegalArgumentException if fromKey or toKey is outside the map's
     *         range.
     * @throws NullPointerException if fromKey or toKey is null. but the map does
     *         not allow  null keys.
     */
3944
    public SortedMap<K, V> subMap(K fromKey, K toKey)
Tom Tromey committed
3945 3946 3947
    {
      synchronized (mutex)
        {
3948
          return new SynchronizedSortedMap<K, V>(mutex,
3949
                                                 sm.subMap(fromKey, toKey));
Tom Tromey committed
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
        }
    }

    /**
     * Returns a submap containing all the keys from fromKey onwards.
     * The submap supports all operations supported by the underlying
     * map and all actions taking place on the submap are also reflected
     * in the underlying map.  A lock is obtained on the mutex prior to
     * submap creation.  The submap retains the thread-safe status of
     * this map.
     *
     * @param fromKey the inclusive lower range of the submap.
     * @return a submap from fromKey to <code>lastKey()</code>.
     * @throws ClassCastException if fromKey is not comparable to the underlying
     *         map's contents.
     * @throws IllegalArgumentException if fromKey is outside the map's range.
     * @throws NullPointerException if fromKey is null. but the map does not allow
     *         null keys.
     */
3969
    public SortedMap<K, V> tailMap(K fromKey)
Tom Tromey committed
3970 3971 3972
    {
      synchronized (mutex)
        {
3973
          return new SynchronizedSortedMap<K, V>(mutex, sm.tailMap(fromKey));
Tom Tromey committed
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
        }
    }
  } // class SynchronizedSortedMap

  /**
   * Returns a synchronized (thread-safe) sorted set wrapper backed by the
   * given set. Notice that element access through the iterator and through
   * subviews are thread-safe, but if the set can be structurally modified
   * (adding or removing elements) then you should synchronize around the
   * iteration to avoid non-deterministic behavior:<br>
   * <pre>
   * SortedSet s = Collections.synchronizedSortedSet(new SortedSet(...));
   * ...
   * SortedSet s2 = s.headSet(foo); // safe outside a synchronized block
   * synchronized (s) // synch on s, not s2
   *   {
   *     Iterator i = s2.iterator();
   *     while (i.hasNext())
   *       foo(i.next());
   *   }
   * </pre><p>
   *
   * The returned SortedSet implements Serializable, but can only be
   * serialized if the set it wraps is likewise Serializable.
   *
   * @param s the sorted set to wrap
   * @return a synchronized view of the sorted set
   * @see Serializable
   */
4003
  public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s)
Tom Tromey committed
4004
  {
4005
    return new SynchronizedSortedSet<T>(s);
Tom Tromey committed
4006 4007 4008 4009 4010 4011 4012 4013
  }

  /**
   * The implementation of {@link #synchronizedSortedSet(SortedSet)}. This
   * class name is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
4014 4015 4016
  private static final class SynchronizedSortedSet<T>
    extends SynchronizedSet<T>
    implements SortedSet<T>
Tom Tromey committed
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 8695801310862127406L;

    /**
     * The wrapped set; stored both here and in the superclass to avoid
     * excessive casting.
     * @serial the wrapped set
     */
4028
    private final SortedSet<T> ss;
Tom Tromey committed
4029 4030 4031 4032 4033 4034

    /**
     * Wrap a given set.
     * @param ss the set to wrap
     * @throws NullPointerException if ss is null
     */
4035
    SynchronizedSortedSet(SortedSet<T> ss)
Tom Tromey committed
4036 4037 4038 4039 4040 4041 4042 4043
    {
      super(ss);
      this.ss = ss;
    }

    /**
     * Called only by trusted code to specify the mutex as well as the set.
     * @param sync the mutex
4044
     * @param ss the set
Tom Tromey committed
4045
     */
4046
    SynchronizedSortedSet(Object sync, SortedSet<T> ss)
Tom Tromey committed
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
    {
      super(sync, ss);
      this.ss = ss;
    }

    /**
     * Returns the comparator used in sorting the underlying set, or null if
     * it is the elements' natural ordering.  A lock is obtained on the mutex
     * before the comparator is retrieved.
     *
     * @return the sorting comparator.
     */
4059
    public Comparator<? super T> comparator()
Tom Tromey committed
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
    {
      synchronized (mutex)
        {
          return ss.comparator();
        }
    }

    /**
     * Returns the first, lowest sorted, element from the underlying set.
     * A lock is obtained on the mutex before the set is accessed.
     *
     * @return the first element.
     * @throws NoSuchElementException if this set is empty.
     */
4074
    public T first()
Tom Tromey committed
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
    {
      synchronized (mutex)
        {
          return ss.first();
        }
    }

    /**
     * Returns a subset containing the element from the first
     * element (as returned by <code>first()</code>) to
     * the element before that specified.  The subset supports all
     * operations supported by the underlying set and all actions
     * taking place on the subset are also reflected in the underlying
     * set.  A lock is obtained on the mutex prior to subset creation.
     * This operation is equivalent to <code>subSet(first(), toElement)</code>.
     * The subset retains the thread-safe status of this set.
     *
     * @param toElement the exclusive upper range of the subset.
     * @return a subset from <code>first()</code> to the
     *         the element preceding toElement.
     * @throws ClassCastException if toElement is not comparable to the underlying
     *         set's contents.
     * @throws IllegalArgumentException if toElement is outside the set's range.
     * @throws NullPointerException if toElement is null. but the set does not allow
     *         null elements.
     */
4101
    public SortedSet<T> headSet(T toElement)
Tom Tromey committed
4102 4103 4104
    {
      synchronized (mutex)
        {
4105
          return new SynchronizedSortedSet<T>(mutex, ss.headSet(toElement));
Tom Tromey committed
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
        }
    }

    /**
     * Returns the last, highest sorted, element from the underlying set.
     * A lock is obtained on the mutex before the set is accessed.
     *
     * @return the last element.
     * @throws NoSuchElementException if this set is empty.
     */
4116
    public T last()
Tom Tromey committed
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
    {
      synchronized (mutex)
        {
          return ss.last();
        }
    }

    /**
     * Returns a subset containing the elements from fromElement to
     * the element before toElement.  The subset supports all
     * operations supported by the underlying set and all actions
     * taking place on the subset are also reflected in the underlying
     * set.  A lock is obtained on the mutex prior to subset creation.
     * The subset retains the thread-safe status of this set.
     *
     * @param fromElement the inclusive lower range of the subset.
     * @param toElement the exclusive upper range of the subset.
     * @return a subset from fromElement to the element preceding toElement.
     * @throws ClassCastException if fromElement or toElement is not comparable
     *         to the underlying set's contents.
     * @throws IllegalArgumentException if fromElement or toElement is outside the set's
     *         range.
     * @throws NullPointerException if fromElement or toElement is null. but the set does
     *         not allow null elements.
     */
4142
    public SortedSet<T> subSet(T fromElement, T toElement)
Tom Tromey committed
4143 4144 4145
    {
      synchronized (mutex)
        {
4146
          return new SynchronizedSortedSet<T>(mutex,
4147 4148
                                              ss.subSet(fromElement,
                                                        toElement));
Tom Tromey committed
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
        }
    }

    /**
     * Returns a subset containing all the elements from fromElement onwards.
     * The subset supports all operations supported by the underlying
     * set and all actions taking place on the subset are also reflected
     * in the underlying set.  A lock is obtained on the mutex prior to
     * subset creation.  The subset retains the thread-safe status of
     * this set.
     *
     * @param fromElement the inclusive lower range of the subset.
     * @return a subset from fromElement to <code>last()</code>.
     * @throws ClassCastException if fromElement is not comparable to the underlying
     *         set's contents.
     * @throws IllegalArgumentException if fromElement is outside the set's range.
     * @throws NullPointerException if fromElement is null. but the set does not allow
     *         null elements.
     */
4168
    public SortedSet<T> tailSet(T fromElement)
Tom Tromey committed
4169 4170 4171
    {
      synchronized (mutex)
        {
4172
          return new SynchronizedSortedSet<T>(mutex, ss.tailSet(fromElement));
Tom Tromey committed
4173 4174 4175 4176
        }
    }
  } // class SynchronizedSortedSet

4177

Tom Tromey committed
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
  /**
   * Returns an unmodifiable view of the given collection. This allows
   * "read-only" access, although changes in the backing collection show up
   * in this view. Attempts to modify the collection directly or via iterators
   * will fail with {@link UnsupportedOperationException}.  Although this view
   * prevents changes to the structure of the collection and its elements, the values
   * referenced by the objects in the collection can still be modified.
   * <p>
   *
   * Since the collection might be a List or a Set, and those have incompatible
   * equals and hashCode requirements, this relies on Object's implementation
   * rather than passing those calls on to the wrapped collection. The returned
   * Collection implements Serializable, but can only be serialized if
   * the collection it wraps is likewise Serializable.
   *
   * @param c the collection to wrap
   * @return a read-only view of the collection
   * @see Serializable
   */
4197
  public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c)
Tom Tromey committed
4198
  {
4199
    return new UnmodifiableCollection<T>(c);
Tom Tromey committed
4200 4201 4202 4203 4204 4205 4206 4207
  }

  /**
   * The implementation of {@link #unmodifiableCollection(Collection)}. This
   * class name is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
4208 4209
  private static class UnmodifiableCollection<T>
    implements Collection<T>, Serializable
Tom Tromey committed
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 1820017752578914078L;

    /**
     * The wrapped collection. Package visible for use by subclasses.
     * @serial the real collection
     */
4220
    final Collection<? extends T> c;
Tom Tromey committed
4221 4222 4223 4224 4225 4226

    /**
     * Wrap a given collection.
     * @param c the collection to wrap
     * @throws NullPointerException if c is null
     */
4227
    UnmodifiableCollection(Collection<? extends T> c)
Tom Tromey committed
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
    {
      this.c = c;
      if (c == null)
        throw new NullPointerException();
    }

    /**
     * Blocks the addition of elements to the underlying collection.
     * This method never returns, throwing an exception instead.
     *
     * @param o the object to add.
     * @return <code>true</code> if the collection was modified as a result of this action.
     * @throws UnsupportedOperationException as an unmodifiable collection does not
     *         support the add operation.
     */
4243
    public boolean add(T o)
Tom Tromey committed
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Blocks the addition of a collection of elements to the underlying
     * collection.  This method never returns, throwing an exception instead.
     *
     * @param c the collection to add.
     * @return <code>true</code> if the collection was modified as a result of this action.
     * @throws UnsupportedOperationException as an unmodifiable collection does not
     *         support the <code>addAll</code> operation.
     */
4257
    public boolean addAll(Collection<? extends T> c)
Tom Tromey committed
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Blocks the clearing of the underlying collection.  This method never
     * returns, throwing an exception instead.
     *
     * @throws UnsupportedOperationException as an unmodifiable collection does
     *         not support the <code>clear()</code> operation.
     */
    public void clear()
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Test whether the underlying collection contains a given object as one of its
     * elements.
     *
     * @param o the element to look for.
     * @return <code>true</code> if the underlying collection contains at least
     *         one element e such that
     *         <code>o == null ? e == null : o.equals(e)</code>.
     * @throws ClassCastException if the type of o is not a valid type for the
     *         underlying collection.
     * @throws NullPointerException if o is null and the underlying collection
     *         doesn't support null values.
     */
    public boolean contains(Object o)
    {
      return c.contains(o);
    }

    /**
     * Test whether the underlying collection contains every element in a given
     * collection.
     *
     * @param c1 the collection to test for.
     * @return <code>true</code> if for every element o in c, contains(o) would
     *         return <code>true</code>.
     * @throws ClassCastException if the type of any element in c is not a valid
     *   type for the underlying collection.
     * @throws NullPointerException if some element of c is null and the underlying
     *   collection does not support null values.
     * @throws NullPointerException if c itself is null.
     */
4305
    public boolean containsAll(Collection<?> c1)
Tom Tromey committed
4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
    {
      return c.containsAll(c1);
    }

    /**
     * Tests whether the underlying collection is empty, that is,
     * if size() == 0.
     *
     * @return <code>true</code> if this collection contains no elements.
     */
    public boolean isEmpty()
    {
      return c.isEmpty();
    }

    /**
     * Obtain an Iterator over the underlying collection, which maintains
     * its unmodifiable nature.
     *
     * @return an UnmodifiableIterator over the elements of the underlying
     *         collection, in any order.
     */
4328
    public Iterator<T> iterator()
Tom Tromey committed
4329
    {
4330
      return new UnmodifiableIterator<T>(c.iterator());
Tom Tromey committed
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
    }

    /**
     * Blocks the removal of an object from the underlying collection.
     * This method never returns, throwing an exception instead.
     *
     * @param o The object to remove.
     * @return <code>true</code> if the object was removed (i.e. the underlying
     *         collection returned 1 or more instances of o).
     * @throws UnsupportedOperationException as an unmodifiable collection
     *         does not support the <code>remove()</code> operation.
     */
    public boolean remove(Object o)
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Blocks the removal of a collection of objects from the underlying
     * collection.  This method never returns, throwing an exception
     * instead.
     *
     * @param c The collection of objects to remove.
     * @return <code>true</code> if the collection was modified.
     * @throws UnsupportedOperationException as an unmodifiable collection
     *         does not support the <code>removeAll()</code> operation.
     */
4358
    public boolean removeAll(Collection<?> c)
Tom Tromey committed
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Blocks the removal of all elements from the underlying collection,
     * except those in the supplied collection.  This method never returns,
     * throwing an exception instead.
     *
     * @param c The collection of objects to retain.
     * @return <code>true</code> if the collection was modified.
     * @throws UnsupportedOperationException as an unmodifiable collection
     *         does not support the <code>retainAll()</code> operation.
     */
4373
    public boolean retainAll(Collection<?> c)
Tom Tromey committed
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Retrieves the number of elements in the underlying collection.
     *
     * @return the number of elements in the collection.
     */
    public int size()
    {
      return c.size();
    }

    /**
     * Copy the current contents of the underlying collection into an array.
     *
     * @return an array of type Object[] with a length equal to the size of the
     *         underlying collection and containing the elements currently in
     *         the underlying collection, in any order.
     */
    public Object[] toArray()
    {
      return c.toArray();
    }

    /**
     * Copy the current contents of the underlying collection into an array.  If
     * the array passed as an argument has length less than the size of the
     * underlying collection, an array of the same run-time type as a, with a length
     * equal to the size of the underlying collection, is allocated using reflection.
     * Otherwise, a itself is used.  The elements of the underlying collection are
     * copied into it, and if there is space in the array, the following element is
     * set to null. The resultant array is returned.
     * Note: The fact that the following element is set to null is only useful
     * if it is known that this collection does not contain any null elements.
     *
     * @param a the array to copy this collection into.
     * @return an array containing the elements currently in the underlying
     *         collection, in any order.
     * @throws ArrayStoreException if the type of any element of the
     *         collection is not a subtype of the element type of a.
     */
4417
    public <S> S[] toArray(S[] a)
Tom Tromey committed
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
    {
      return c.toArray(a);
    }

    /**
     * A textual representation of the unmodifiable collection.
     *
     * @return The unmodifiable collection in the form of a <code>String</code>.
     */
    public String toString()
    {
      return c.toString();
    }
  } // class UnmodifiableCollection

  /**
   * The implementation of the various iterator methods in the
   * unmodifiable classes.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
4439
  private static class UnmodifiableIterator<T> implements Iterator<T>
Tom Tromey committed
4440 4441 4442 4443
  {
    /**
     * The wrapped iterator.
     */
4444
    private final Iterator<? extends T> i;
Tom Tromey committed
4445 4446 4447 4448 4449

    /**
     * Only trusted code creates a wrapper.
     * @param i the wrapped iterator
     */
4450
    UnmodifiableIterator(Iterator<? extends T> i)
Tom Tromey committed
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
    {
      this.i = i;
    }

    /**
     * Obtains the next element in the underlying collection.
     *
     * @return the next element in the collection.
     * @throws NoSuchElementException if there are no more elements.
     */
4461
    public T next()
Tom Tromey committed
4462 4463 4464
    {
      return i.next();
    }
4465

Tom Tromey committed
4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
    /**
     * Tests whether there are still elements to be retrieved from the
     * underlying collection by <code>next()</code>.  When this method
     * returns <code>true</code>, an exception will not be thrown on calling
     * <code>next()</code>.
     *
     * @return <code>true</code> if there is at least one more element in the underlying
     *         collection.
     */
    public boolean hasNext()
    {
      return i.hasNext();
    }

    /**
     * Blocks the removal of elements from the underlying collection by the
     * iterator.
     *
     * @throws UnsupportedOperationException as an unmodifiable collection
     *         does not support the removal of elements by its iterator.
     */
    public void remove()
    {
      throw new UnsupportedOperationException();
    }
  } // class UnmodifiableIterator

  /**
   * Returns an unmodifiable view of the given list. This allows
   * "read-only" access, although changes in the backing list show up
   * in this view. Attempts to modify the list directly, via iterators, or
   * via sublists, will fail with {@link UnsupportedOperationException}.
   * Although this view prevents changes to the structure of the list and
   * its elements, the values referenced by the objects in the list can
4500
   * still be modified.
Tom Tromey committed
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
   * <p>
   *
   * The returned List implements Serializable, but can only be serialized if
   * the list it wraps is likewise Serializable. In addition, if the wrapped
   * list implements RandomAccess, this does too.
   *
   * @param l the list to wrap
   * @return a read-only view of the list
   * @see Serializable
   * @see RandomAccess
   */
4512
  public static <T> List<T> unmodifiableList(List<? extends T> l)
Tom Tromey committed
4513 4514
  {
    if (l instanceof RandomAccess)
4515 4516
      return new UnmodifiableRandomAccessList<T>(l);
    return new UnmodifiableList<T>(l);
Tom Tromey committed
4517 4518 4519 4520 4521 4522 4523 4524 4525
  }

  /**
   * The implementation of {@link #unmodifiableList(List)} for sequential
   * lists. This class name is required for compatibility with Sun's JDK
   * serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
4526 4527
  private static class UnmodifiableList<T> extends UnmodifiableCollection<T>
    implements List<T>
Tom Tromey committed
4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = -283967356065247728L;


    /**
     * The wrapped list; stored both here and in the superclass to avoid
     * excessive casting. Package visible for use by subclass.
     * @serial the wrapped list
     */
4540
    final List<T> list;
Tom Tromey committed
4541 4542 4543 4544 4545 4546

    /**
     * Wrap a given list.
     * @param l the list to wrap
     * @throws NullPointerException if l is null
     */
4547
    UnmodifiableList(List<? extends T> l)
Tom Tromey committed
4548 4549
    {
      super(l);
4550
      list = (List<T>) l;
Tom Tromey committed
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
    }

    /**
     * Blocks the addition of an element to the underlying
     * list at a specific index.  This method never returns,
     * throwing an exception instead.
     *
     * @param index The index at which to place the new element.
     * @param o the object to add.
     * @throws UnsupportedOperationException as an unmodifiable
     *         list doesn't support the <code>add()</code> operation.
     */
4563
    public void add(int index, T o)
Tom Tromey committed
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Blocks the addition of a collection of elements to the
     * underlying list at a specific index.  This method never
     * returns, throwing an exception instead.
     *
     * @param index The index at which to place the new element.
     * @param c the collections of objects to add.
     * @throws UnsupportedOperationException as an unmodifiable
     *         list doesn't support the <code>addAll()</code> operation.
     */
4578
    public boolean addAll(int index, Collection<? extends T> c)
Tom Tromey committed
4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Returns <code>true</code> if the object, o, is an instance of
     * <code>List</code> with the same size and elements
     * as the underlying list.
     *
     * @param o The object to compare.
     * @return <code>true</code> if o is equivalent to the underlying list.
     */
    public boolean equals(Object o)
    {
      return list.equals(o);
    }

    /**
     * Retrieves the element at a given index in the underlying list.
     *
     * @param index the index of the element to be returned
     * @return the element at index index in this list
     * @throws IndexOutOfBoundsException if index &lt; 0 || index &gt;= size()
     */
4603
    public T get(int index)
Tom Tromey committed
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
    {
      return list.get(index);
    }

    /**
     * Computes the hash code for the underlying list.
     * The exact computation is described in the documentation
     * of the <code>List</code> interface.
     *
     * @return The hash code of the underlying list.
     * @see List#hashCode()
     */
    public int hashCode()
    {
      return list.hashCode();
    }

    /**
     * Obtain the first index at which a given object is to be found in the
     * underlying list.
     *
     * @param o the object to search for
     * @return the least integer n such that <code>o == null ? get(n) == null :
     *         o.equals(get(n))</code>, or -1 if there is no such index.
     * @throws ClassCastException if the type of o is not a valid
     *         type for the underlying list.
     * @throws NullPointerException if o is null and the underlying
     *         list does not support null values.
     */
    public int indexOf(Object o)
    {
      return list.indexOf(o);
    }

    /**
     * Obtain the last index at which a given object is to be found in the
     * underlying list.
     *
     * @return the greatest integer n such that <code>o == null ? get(n) == null
     *         : o.equals(get(n))</code>, or -1 if there is no such index.
     * @throws ClassCastException if the type of o is not a valid
     *         type for the underlying list.
     * @throws NullPointerException if o is null and the underlying
     *         list does not support null values.
     */
    public int lastIndexOf(Object o)
    {
      return list.lastIndexOf(o);
    }

  /**
   * Obtains a list iterator over the underlying list, starting at the beginning
   * and maintaining the unmodifiable nature of this list.
   *
   * @return a <code>UnmodifiableListIterator</code> over the elements of the
   *         underlying list, in order, starting at the beginning.
   */
4661
    public ListIterator<T> listIterator()
Tom Tromey committed
4662
    {
4663
      return new UnmodifiableListIterator<T>(list.listIterator());
Tom Tromey committed
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
    }

  /**
   * Obtains a list iterator over the underlying list, starting at the specified
   * index and maintaining the unmodifiable nature of this list.  An initial call
   * to <code>next()</code> will retrieve the element at the specified index,
   * and an initial call to <code>previous()</code> will retrieve the element
   * at index - 1.
   *
   *
   * @param index the position, between 0 and size() inclusive, to begin the
   *        iteration from.
   * @return a <code>UnmodifiableListIterator</code> over the elements of the
   *         underlying list, in order, starting at the specified index.
   * @throws IndexOutOfBoundsException if index &lt; 0 || index &gt; size()
   */
4680
    public ListIterator<T> listIterator(int index)
Tom Tromey committed
4681
    {
4682
      return new UnmodifiableListIterator<T>(list.listIterator(index));
Tom Tromey committed
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
    }

    /**
     * Blocks the removal of the element at the specified index.
     * This method never returns, throwing an exception instead.
     *
     * @param index The index of the element to remove.
     * @return the removed element.
     * @throws UnsupportedOperationException as an unmodifiable
     *         list does not support the <code>remove()</code>
     *         operation.
     */
4695
    public T remove(int index)
Tom Tromey committed
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Blocks the replacement of the element at the specified index.
     * This method never returns, throwing an exception instead.
     *
     * @param index The index of the element to replace.
     * @param o The new object to place at the specified index.
     * @return the replaced element.
     * @throws UnsupportedOperationException as an unmodifiable
     *         list does not support the <code>set()</code>
     *         operation.
     */
4711
    public T set(int index, T o)
Tom Tromey committed
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Obtain a List view of a subsection of the underlying list, from
     * fromIndex (inclusive) to toIndex (exclusive). If the two indices
     * are equal, the sublist is empty. The returned list will be
     * unmodifiable, like this list.  Changes to the elements of the
     * returned list will be reflected in the underlying list. No structural
     * modifications can take place in either list.
     *
     * @param fromIndex the index that the returned list should start from
     *        (inclusive).
     * @param toIndex the index that the returned list should go to (exclusive).
     * @return a List backed by a subsection of the underlying list.
     * @throws IndexOutOfBoundsException if fromIndex &lt; 0
     *         || toIndex &gt; size() || fromIndex &gt; toIndex.
     */
4731
    public List<T> subList(int fromIndex, int toIndex)
Tom Tromey committed
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
    {
      return unmodifiableList(list.subList(fromIndex, toIndex));
    }
  } // class UnmodifiableList

  /**
   * The implementation of {@link #unmodifiableList(List)} for random-access
   * lists. This class name is required for compatibility with Sun's JDK
   * serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
4744 4745
  private static final class UnmodifiableRandomAccessList<T>
    extends UnmodifiableList<T> implements RandomAccess
Tom Tromey committed
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = -2542308836966382001L;

    /**
     * Wrap a given list.
     * @param l the list to wrap
     * @throws NullPointerException if l is null
     */
4757
    UnmodifiableRandomAccessList(List<? extends T> l)
Tom Tromey committed
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
    {
      super(l);
    }
  } // class UnmodifiableRandomAccessList

  /**
   * The implementation of {@link UnmodifiableList#listIterator()}.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
4768 4769
  private static final class UnmodifiableListIterator<T>
    extends UnmodifiableIterator<T> implements ListIterator<T>
Tom Tromey committed
4770 4771 4772 4773 4774
  {
    /**
     * The wrapped iterator, stored both here and in the superclass to
     * avoid excessive casting.
     */
4775
    private final ListIterator<T> li;
Tom Tromey committed
4776 4777 4778 4779 4780

    /**
     * Only trusted code creates a wrapper.
     * @param li the wrapped iterator
     */
4781
    UnmodifiableListIterator(ListIterator<T> li)
Tom Tromey committed
4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794
    {
      super(li);
      this.li = li;
    }

    /**
     * Blocks the addition of an object to the list underlying this iterator.
     * This method never returns, throwing an exception instead.
     *
     * @param o The object to add.
     * @throws UnsupportedOperationException as the iterator of an unmodifiable
     *         list does not support the <code>add()</code> operation.
     */
4795
    public void add(T o)
Tom Tromey committed
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Tests whether there are still elements to be retrieved from the
     * underlying collection by <code>previous()</code>.  When this method
     * returns <code>true</code>, an exception will not be thrown on calling
     * <code>previous()</code>.
     *
     * @return <code>true</code> if there is at least one more element prior to the
     *         current position in the underlying list.
     */
    public boolean hasPrevious()
    {
      return li.hasPrevious();
    }

    /**
     * Find the index of the element that would be returned by a call to next.
     * If <code>hasNext()</code> returns <code>false</code>, this returns the list size.
     *
     * @return the index of the element that would be returned by
     *         <code>next()</code>.
     */
    public int nextIndex()
    {
      return li.nextIndex();
    }

    /**
     * Obtains the previous element in the underlying list.
     *
     * @return the previous element in the list.
     * @throws NoSuchElementException if there are no more prior elements.
     */
4832
    public T previous()
Tom Tromey committed
4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
    {
      return li.previous();
    }

    /**
     * Find the index of the element that would be returned by a call to
     * previous. If <code>hasPrevious()</code> returns <code>false</code>,
     * this returns -1.
     *
     * @return the index of the element that would be returned by
     *         <code>previous()</code>.
     */
    public int previousIndex()
    {
      return li.previousIndex();
    }

    /**
     * Blocks the replacement of an element in the list underlying this
     * iterator.  This method never returns, throwing an exception instead.
     *
     * @param o The new object to replace the existing one.
     * @throws UnsupportedOperationException as the iterator of an unmodifiable
     *         list does not support the <code>set()</code> operation.
     */
4858
    public void set(T o)
Tom Tromey committed
4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
    {
      throw new UnsupportedOperationException();
    }
  } // class UnmodifiableListIterator

  /**
   * Returns an unmodifiable view of the given map. This allows "read-only"
   * access, although changes in the backing map show up in this view.
   * Attempts to modify the map directly, or via collection views or their
   * iterators will fail with {@link UnsupportedOperationException}.
   * Although this view prevents changes to the structure of the map and its
   * entries, the values referenced by the objects in the map can still be
4871
   * modified.
Tom Tromey committed
4872 4873 4874 4875 4876 4877 4878 4879 4880
   * <p>
   *
   * The returned Map implements Serializable, but can only be serialized if
   * the map it wraps is likewise Serializable.
   *
   * @param m the map to wrap
   * @return a read-only view of the map
   * @see Serializable
   */
4881
  public static <K, V> Map<K, V> unmodifiableMap(Map<? extends K,
4882
                                                 ? extends V> m)
Tom Tromey committed
4883
  {
4884
    return new UnmodifiableMap<K, V>(m);
Tom Tromey committed
4885 4886 4887 4888 4889 4890 4891 4892
  }

  /**
   * The implementation of {@link #unmodifiableMap(Map)}. This
   * class name is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
4893
  private static class UnmodifiableMap<K, V> implements Map<K, V>, Serializable
Tom Tromey committed
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = -1034234728574286014L;

    /**
     * The wrapped map.
     * @serial the real map
     */
4904
    private final Map<K, V> m;
Tom Tromey committed
4905 4906 4907 4908

    /**
     * Cache the entry set.
     */
4909
    private transient Set<Map.Entry<K, V>> entries;
Tom Tromey committed
4910 4911 4912 4913

    /**
     * Cache the key set.
     */
4914
    private transient Set<K> keys;
Tom Tromey committed
4915 4916 4917 4918

    /**
     * Cache the value collection.
     */
4919
    private transient Collection<V> values;
Tom Tromey committed
4920 4921 4922 4923 4924 4925

    /**
     * Wrap a given map.
     * @param m the map to wrap
     * @throws NullPointerException if m is null
     */
4926
    UnmodifiableMap(Map<? extends K, ? extends V> m)
Tom Tromey committed
4927
    {
4928
      this.m = (Map<K,V>) m;
Tom Tromey committed
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
      if (m == null)
        throw new NullPointerException();
    }

    /**
     * Blocks the clearing of entries from the underlying map.
     * This method never returns, throwing an exception instead.
     *
     * @throws UnsupportedOperationException as an unmodifiable
     *         map does not support the <code>clear()</code> operation.
     */
    public void clear()
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Returns <code>true</code> if the underlying map contains a mapping for
     * the given key.
     *
     * @param key the key to search for
     * @return <code>true</code> if the map contains the key
     * @throws ClassCastException if the key is of an inappropriate type
     * @throws NullPointerException if key is <code>null</code> but the map
     *         does not permit null keys
     */
    public boolean containsKey(Object key)
    {
      return m.containsKey(key);
    }

    /**
     * Returns <code>true</code> if the underlying map contains at least one mapping with
     * the given value.  In other words, it returns <code>true</code> if a value v exists where
     * <code>(value == null ? v == null : value.equals(v))</code>. This usually
     * requires linear time.
     *
     * @param value the value to search for
     * @return <code>true</code> if the map contains the value
     * @throws ClassCastException if the type of the value is not a valid type
     *         for this map.
     * @throws NullPointerException if the value is null and the map doesn't
     *         support null values.
     */
    public boolean containsValue(Object value)
    {
      return m.containsValue(value);
    }

    /**
     * Returns a unmodifiable set view of the entries in the underlying map.
     * Each element in the set is a unmodifiable variant of <code>Map.Entry</code>.
     * The set is backed by the map, so that changes in one show up in the other.
     * Modifications made while an iterator is in progress cause undefined
     * behavior.  These modifications are again limited to the values of
     * the objects.
     *
     * @return the unmodifiable set view of all mapping entries.
     * @see Map.Entry
     */
4989
    public Set<Map.Entry<K, V>> entrySet()
Tom Tromey committed
4990 4991
    {
      if (entries == null)
4992
        entries = new UnmodifiableEntrySet<K,V>(m.entrySet());
Tom Tromey committed
4993 4994 4995 4996 4997 4998 4999 5000 5001
      return entries;
    }

    /**
     * The implementation of {@link UnmodifiableMap#entrySet()}. This class
     * name is required for compatibility with Sun's JDK serializability.
     *
     * @author Eric Blake (ebb9@email.byu.edu)
     */
5002 5003
    private static final class UnmodifiableEntrySet<K,V>
      extends UnmodifiableSet<Map.Entry<K,V>>
Tom Tromey committed
5004 5005
      implements Serializable
    {
5006 5007
      // Unmodifiable implementation of Map.Entry used as return value for
      // UnmodifiableEntrySet accessors (iterator, toArray, toArray(Object[]))
5008 5009
      private static final class UnmodifiableMapEntry<K,V>
          implements Map.Entry<K,V>
5010
      {
5011
        private final Map.Entry<K,V> e;
5012

5013
        private UnmodifiableMapEntry(Map.Entry<K,V> e)
5014 5015 5016 5017 5018 5019 5020 5021
        {
          super();
          this.e = e;
        }

        /**
         * Returns <code>true</code> if the object, o, is also a map entry
         * with an identical key and value.
5022
         *
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
         * @param o the object to compare.
         * @return <code>true</code> if o is an equivalent map entry.
         */
        public boolean equals(Object o)
        {
          return e.equals(o);
        }

        /**
         * Returns the key of this map entry.
5033
         *
5034 5035
         * @return the key.
         */
5036
        public K getKey()
5037 5038 5039 5040 5041 5042
        {
          return e.getKey();
        }

        /**
         * Returns the value of this map entry.
5043
         *
5044 5045
         * @return the value.
         */
5046
        public V getValue()
5047 5048 5049 5050 5051 5052 5053
        {
          return e.getValue();
        }

        /**
         * Computes the hash code of this map entry. The computation is
         * described in the <code>Map</code> interface documentation.
5054
         *
5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065
         * @return the hash code of this entry.
         * @see Map#hashCode()
         */
        public int hashCode()
        {
          return e.hashCode();
        }

        /**
         * Blocks the alteration of the value of this map entry. This method
         * never returns, throwing an exception instead.
5066
         *
5067 5068 5069 5070
         * @param value The new value.
         * @throws UnsupportedOperationException as an unmodifiable map entry
         *           does not support the <code>setValue()</code> operation.
         */
5071
        public V setValue(V value)
5072 5073 5074 5075 5076 5077
        {
          throw new UnsupportedOperationException();
        }

        /**
         * Returns a textual representation of the map entry.
5078
         *
5079 5080 5081 5082 5083 5084 5085 5086
         * @return The map entry as a <code>String</code>.
         */
        public String toString()
        {
          return e.toString();
        }
      }

Tom Tromey committed
5087 5088 5089 5090 5091 5092 5093 5094 5095
      /**
       * Compatible with JDK 1.4.
       */
      private static final long serialVersionUID = 7854390611657943733L;

      /**
       * Wrap a given set.
       * @param s the set to wrap
       */
5096
      UnmodifiableEntrySet(Set<Map.Entry<K,V>> s)
Tom Tromey committed
5097 5098 5099 5100 5101
      {
        super(s);
      }

      // The iterator must return unmodifiable map entries.
5102
      public Iterator<Map.Entry<K,V>> iterator()
Tom Tromey committed
5103
      {
5104
        return new UnmodifiableIterator<Map.Entry<K,V>>(c.iterator())
5105 5106 5107 5108 5109 5110 5111 5112
        {
          /**
           * Obtains the next element from the underlying set of
           * map entries.
           *
           * @return the next element in the collection.
           * @throws NoSuchElementException if there are no more elements.
           */
5113
          public Map.Entry<K,V> next()
Tom Tromey committed
5114
          {
5115
            final Map.Entry<K,V> e = super.next();
5116 5117 5118
            return new UnmodifiableMapEntry<K,V>(e);
          }
        };
5119
      }
Tom Tromey committed
5120

5121 5122
      // The array returned is an array of UnmodifiableMapEntry instead of
      // Map.Entry
5123
      public Object[] toArray()
5124
      {
5125
        Object[] mapEntryResult = super.toArray();
5126
        UnmodifiableMapEntry<K,V> result[] = null;
5127

5128 5129
        if (mapEntryResult != null)
          {
5130
            result = (UnmodifiableMapEntry<K,V>[])
5131
              new UnmodifiableMapEntry[mapEntryResult.length];
5132
            for (int i = 0; i < mapEntryResult.length; ++i)
5133 5134
              result[i] = new UnmodifiableMapEntry<K,V>((Map.Entry<K,V>)mapEntryResult[i]);
          }
5135 5136
        return result;
      }
5137

5138 5139
      // The array returned is an array of UnmodifiableMapEntry instead of
      // Map.Entry
5140
      public <S> S[] toArray(S[] array)
5141
      {
5142
        S[] result = super.toArray(array);
5143

5144
        if (result != null)
5145 5146 5147
          for (int i = 0; i < result.length; i++)
            array[i] =
              (S) new UnmodifiableMapEntry<K,V>((Map.Entry<K,V>) result[i]);
5148
        return array;
Tom Tromey committed
5149
      }
5150

5151

Tom Tromey committed
5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178
    } // class UnmodifiableEntrySet

    /**
     * Returns <code>true</code> if the object, o, is also an instance
     * of <code>Map</code> with an equal set of map entries.
     *
     * @param o The object to compare.
     * @return <code>true</code> if o is an equivalent map.
     */
    public boolean equals(Object o)
    {
      return m.equals(o);
    }

    /**
     * Returns the value associated with the supplied key or
     * null if no such mapping exists.  An ambiguity can occur
     * if null values are accepted by the underlying map.
     * In this case, <code>containsKey()</code> can be used
     * to separate the two possible cases of a null result.
     *
     * @param key The key to look up.
     * @return the value associated with the key, or null if key not in map.
     * @throws ClassCastException if the key is an inappropriate type.
     * @throws NullPointerException if this map does not accept null keys.
     * @see #containsKey(Object)
     */
5179
    public V get(Object key)
Tom Tromey committed
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193
    {
      return m.get(key);
    }

    /**
     * Blocks the addition of a new entry to the underlying map.
     * This method never returns, throwing an exception instead.
     *
     * @param key The new key.
     * @param value The new value.
     * @return the previous value of the key, or null if there was no mapping.
     * @throws UnsupportedOperationException as an unmodifiable
     *         map does not support the <code>put()</code> operation.
     */
5194
    public V put(K key, V value)
Tom Tromey committed
5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Computes the hash code for the underlying map, as the sum
     * of the hash codes of all entries.
     *
     * @return The hash code of the underlying map.
     * @see Map.Entry#hashCode()
     */
    public int hashCode()
    {
      return m.hashCode();
    }

    /**
     * Returns <code>true</code> if the underlying map contains no entries.
     *
     * @return <code>true</code> if the map is empty.
     */
    public boolean isEmpty()
    {
      return m.isEmpty();
    }

    /**
     * Returns a unmodifiable set view of the keys in the underlying map.
     * The set is backed by the map, so that changes in one show up in the other.
     * Modifications made while an iterator is in progress cause undefined
     * behavior.  These modifications are again limited to the values of
     * the keys.
     *
     * @return the set view of all keys.
     */
5230
    public Set<K> keySet()
Tom Tromey committed
5231 5232
    {
      if (keys == null)
5233
        keys = new UnmodifiableSet<K>(m.keySet());
Tom Tromey committed
5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
      return keys;
    }

    /**
     * Blocks the addition of the entries in the supplied map.
     * This method never returns, throwing an exception instead.
     *
     * @param m The map, the entries of which should be added
     *          to the underlying map.
     * @throws UnsupportedOperationException as an unmodifiable
     *         map does not support the <code>putAll</code> operation.
     */
5246
    public void putAll(Map<? extends K, ? extends V> m)
Tom Tromey committed
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Blocks the removal of an entry from the map.
     * This method never returns, throwing an exception instead.
     *
     * @param o The key of the entry to remove.
     * @return The value the key was associated with, or null
     *         if no such mapping existed.  Null is also returned
     *         if the removed entry had a null key.
     * @throws UnsupportedOperationException as an unmodifiable
     *         map does not support the <code>remove</code> operation.
     */
5262
    public V remove(Object o)
Tom Tromey committed
5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
    {
      throw new UnsupportedOperationException();
    }


    /**
     * Returns the number of key-value mappings in the underlying map.
     * If there are more than Integer.MAX_VALUE mappings, Integer.MAX_VALUE
     * is returned.
     *
     * @return the number of mappings.
     */
    public int size()
    {
      return m.size();
    }

    /**
     * Returns a textual representation of the map.
     *
     * @return The map in the form of a <code>String</code>.
     */
    public String toString()
    {
      return m.toString();
    }

    /**
     * Returns a unmodifiable collection view of the values in the underlying map.
     * The collection is backed by the map, so that changes in one show up in the other.
     * Modifications made while an iterator is in progress cause undefined
     * behavior.  These modifications are again limited to the values of
     * the keys.
     *
     * @return the collection view of all values.
     */
5299
    public Collection<V> values()
Tom Tromey committed
5300 5301
    {
      if (values == null)
5302
        values = new UnmodifiableCollection<V>(m.values());
Tom Tromey committed
5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
      return values;
    }
  } // class UnmodifiableMap

  /**
   * Returns an unmodifiable view of the given set. This allows
   * "read-only" access, although changes in the backing set show up
   * in this view. Attempts to modify the set directly or via iterators
   * will fail with {@link UnsupportedOperationException}.
   * Although this view prevents changes to the structure of the set and its
   * entries, the values referenced by the objects in the set can still be
5314
   * modified.
Tom Tromey committed
5315 5316 5317 5318 5319 5320 5321 5322 5323
   * <p>
   *
   * The returned Set implements Serializable, but can only be serialized if
   * the set it wraps is likewise Serializable.
   *
   * @param s the set to wrap
   * @return a read-only view of the set
   * @see Serializable
   */
5324
  public static <T> Set<T> unmodifiableSet(Set<? extends T> s)
Tom Tromey committed
5325
  {
5326
    return new UnmodifiableSet<T>(s);
Tom Tromey committed
5327 5328 5329 5330 5331 5332 5333 5334
  }

  /**
   * The implementation of {@link #unmodifiableSet(Set)}. This class
   * name is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
5335 5336
  private static class UnmodifiableSet<T> extends UnmodifiableCollection<T>
    implements Set<T>
Tom Tromey committed
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = -9215047833775013803L;

    /**
     * Wrap a given set.
     * @param s the set to wrap
     * @throws NullPointerException if s is null
     */
5348
    UnmodifiableSet(Set<? extends T> s)
Tom Tromey committed
5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368
    {
      super(s);
    }

    /**
     * Returns <code>true</code> if the object, o, is also an instance of
     * <code>Set</code> of the same size and with the same entries.
     *
     * @return <code>true</code> if o is an equivalent set.
     */
    public boolean equals(Object o)
    {
      return c.equals(o);
    }

    /**
     * Computes the hash code of this set, as the sum of the
     * hash codes of all elements within the set.
     *
     * @return the hash code of the set.
5369
     */
Tom Tromey committed
5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
    public int hashCode()
    {
      return c.hashCode();
    }
  } // class UnmodifiableSet

  /**
   * Returns an unmodifiable view of the given sorted map. This allows
   * "read-only" access, although changes in the backing map show up in this
   * view. Attempts to modify the map directly, via subviews, via collection
   * views, or iterators, will fail with {@link UnsupportedOperationException}.
   * Although this view prevents changes to the structure of the map and its
   * entries, the values referenced by the objects in the map can still be
5383
   * modified.
Tom Tromey committed
5384 5385 5386 5387 5388 5389 5390 5391 5392
   * <p>
   *
   * The returned SortedMap implements Serializable, but can only be
   * serialized if the map it wraps is likewise Serializable.
   *
   * @param m the map to wrap
   * @return a read-only view of the map
   * @see Serializable
   */
5393
  public static <K, V> SortedMap<K, V> unmodifiableSortedMap(SortedMap<K,
5394
                                                             ? extends V> m)
Tom Tromey committed
5395
  {
5396
    return new UnmodifiableSortedMap<K, V>(m);
Tom Tromey committed
5397 5398 5399 5400 5401 5402 5403 5404
  }

  /**
   * The implementation of {@link #unmodifiableSortedMap(SortedMap)}. This
   * class name is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
5405 5406 5407
  private static class UnmodifiableSortedMap<K, V>
    extends UnmodifiableMap<K, V>
    implements SortedMap<K, V>
Tom Tromey committed
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = -8806743815996713206L;

    /**
     * The wrapped map; stored both here and in the superclass to avoid
     * excessive casting.
     * @serial the wrapped map
     */
5419
    private final SortedMap<K, V> sm;
Tom Tromey committed
5420 5421 5422 5423 5424 5425

    /**
     * Wrap a given map.
     * @param sm the map to wrap
     * @throws NullPointerException if sm is null
     */
5426
    UnmodifiableSortedMap(SortedMap<K, ? extends V> sm)
Tom Tromey committed
5427 5428
    {
      super(sm);
5429
      this.sm = (SortedMap<K,V>) sm;
Tom Tromey committed
5430 5431 5432 5433 5434 5435 5436 5437
    }

    /**
     * Returns the comparator used in sorting the underlying map,
     * or null if it is the keys' natural ordering.
     *
     * @return the sorting comparator.
     */
5438
    public Comparator<? super K> comparator()
Tom Tromey committed
5439 5440 5441 5442 5443 5444 5445 5446 5447 5448
    {
      return sm.comparator();
    }

    /**
     * Returns the first (lowest sorted) key in the map.
     *
     * @return the first key.
     * @throws NoSuchElementException if this map is empty.
     */
5449
    public K firstKey()
Tom Tromey committed
5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475
    {
      return sm.firstKey();
    }

    /**
     * Returns a unmodifiable view of the portion of the map strictly less
     * than toKey. The view is backed by the underlying map, so changes in
     * one show up in the other.  The submap supports all optional operations
     * of the original.  This operation is equivalent to
     * <code>subMap(firstKey(), toKey)</code>.
     * <p>
     *
     * The returned map throws an IllegalArgumentException any time a key is
     * used which is out of the range of toKey. Note that the endpoint, toKey,
     * is not included; if you want this value to be included, pass its successor
     * object in to toKey.  For example, for Integers, you could request
     * <code>headMap(new Integer(limit.intValue() + 1))</code>.
     *
     * @param toKey the exclusive upper range of the submap.
     * @return the submap.
     * @throws ClassCastException if toKey is not comparable to the map contents.
     * @throws IllegalArgumentException if this is a subMap, and toKey is out
     *         of range.
     * @throws NullPointerException if toKey is null but the map does not allow
     *         null keys.
     */
5476
    public SortedMap<K, V> headMap(K toKey)
Tom Tromey committed
5477
    {
5478
      return new UnmodifiableSortedMap<K, V>(sm.headMap(toKey));
Tom Tromey committed
5479 5480 5481 5482 5483 5484 5485 5486
    }

    /**
     * Returns the last (highest sorted) key in the map.
     *
     * @return the last key.
     * @throws NoSuchElementException if this map is empty.
     */
5487
    public K lastKey()
Tom Tromey committed
5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
    {
      return sm.lastKey();
    }

    /**
     * Returns a unmodifiable view of the portion of the map greater than or
     * equal to fromKey, and strictly less than toKey. The view is backed by
     * the underlying map, so changes in one show up in the other. The submap
     * supports all optional operations of the original.
     * <p>
     *
     * The returned map throws an IllegalArgumentException any time a key is
     * used which is out of the range of fromKey and toKey. Note that the
     * lower endpoint is included, but the upper is not; if you want to
     * change the inclusion or exclusion of an endpoint, pass its successor
     * object in instead.  For example, for Integers, you could request
     * <code>subMap(new Integer(lowlimit.intValue() + 1),
     * new Integer(highlimit.intValue() + 1))</code> to reverse
     * the inclusiveness of both endpoints.
     *
     * @param fromKey the inclusive lower range of the submap.
     * @param toKey the exclusive upper range of the submap.
     * @return the submap.
     * @throws ClassCastException if fromKey or toKey is not comparable to
     *         the map contents.
     * @throws IllegalArgumentException if this is a subMap, and fromKey or
     *         toKey is out of range.
     * @throws NullPointerException if fromKey or toKey is null but the map
     *         does not allow null keys.
     */
5518
    public SortedMap<K, V> subMap(K fromKey, K toKey)
Tom Tromey committed
5519
    {
5520
      return new UnmodifiableSortedMap<K, V>(sm.subMap(fromKey, toKey));
Tom Tromey committed
5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544
    }

    /**
     * Returns a unmodifiable view of the portion of the map greater than or
     * equal to fromKey. The view is backed by the underlying map, so changes
     * in one show up in the other. The submap supports all optional operations
     * of the original.
     * <p>
     *
     * The returned map throws an IllegalArgumentException any time a key is
     * used which is out of the range of fromKey. Note that the endpoint, fromKey, is
     * included; if you do not want this value to be included, pass its successor object in
     * to fromKey.  For example, for Integers, you could request
     * <code>tailMap(new Integer(limit.intValue() + 1))</code>.
     *
     * @param fromKey the inclusive lower range of the submap
     * @return the submap
     * @throws ClassCastException if fromKey is not comparable to the map
     *         contents
     * @throws IllegalArgumentException if this is a subMap, and fromKey is out
     *         of range
     * @throws NullPointerException if fromKey is null but the map does not allow
     *         null keys
     */
5545
    public SortedMap<K, V> tailMap(K fromKey)
Tom Tromey committed
5546
    {
5547
      return new UnmodifiableSortedMap<K, V>(sm.tailMap(fromKey));
Tom Tromey committed
5548 5549 5550 5551 5552 5553 5554 5555 5556 5557
    }
  } // class UnmodifiableSortedMap

  /**
   * Returns an unmodifiable view of the given sorted set. This allows
   * "read-only" access, although changes in the backing set show up
   * in this view. Attempts to modify the set directly, via subsets, or via
   * iterators, will fail with {@link UnsupportedOperationException}.
   * Although this view prevents changes to the structure of the set and its
   * entries, the values referenced by the objects in the set can still be
5558
   * modified.
Tom Tromey committed
5559 5560 5561 5562 5563 5564 5565 5566 5567
   * <p>
   *
   * The returns SortedSet implements Serializable, but can only be
   * serialized if the set it wraps is likewise Serializable.
   *
   * @param s the set to wrap
   * @return a read-only view of the set
   * @see Serializable
   */
5568
  public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s)
Tom Tromey committed
5569
  {
5570
    return new UnmodifiableSortedSet<T>(s);
Tom Tromey committed
5571 5572 5573 5574 5575 5576 5577 5578
  }

  /**
   * The implementation of {@link #synchronizedSortedMap(SortedMap)}. This
   * class name is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
5579 5580
  private static class UnmodifiableSortedSet<T> extends UnmodifiableSet<T>
    implements SortedSet<T>
Tom Tromey committed
5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = -4929149591599911165L;

    /**
     * The wrapped set; stored both here and in the superclass to avoid
     * excessive casting.
     * @serial the wrapped set
     */
5592
    private SortedSet<T> ss;
Tom Tromey committed
5593 5594 5595 5596 5597 5598

    /**
     * Wrap a given set.
     * @param ss the set to wrap
     * @throws NullPointerException if ss is null
     */
5599
    UnmodifiableSortedSet(SortedSet<T> ss)
Tom Tromey committed
5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610
    {
      super(ss);
      this.ss = ss;
    }

    /**
     * Returns the comparator used in sorting the underlying set,
     * or null if it is the elements' natural ordering.
     *
     * @return the sorting comparator
     */
5611
    public Comparator<? super T> comparator()
Tom Tromey committed
5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
    {
      return ss.comparator();
    }

    /**
     * Returns the first (lowest sorted) element in the underlying
     * set.
     *
     * @return the first element.
     * @throws NoSuchElementException if the set is empty.
     */
5623
    public T first()
Tom Tromey committed
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650
    {
      return ss.first();
    }

    /**
     * Returns a unmodifiable view of the portion of the set strictly
     * less than toElement. The view is backed by the underlying set,
     * so changes in one show up in the other.  The subset supports
     * all optional operations of the original.  This operation
     * is equivalent to <code>subSet(first(), toElement)</code>.
     * <p>
     *
     * The returned set throws an IllegalArgumentException any time an element is
     * used which is out of the range of toElement. Note that the endpoint, toElement,
     * is not included; if you want this value included, pass its successor object in to
     * toElement.  For example, for Integers, you could request
     * <code>headSet(new Integer(limit.intValue() + 1))</code>.
     *
     * @param toElement the exclusive upper range of the subset
     * @return the subset.
     * @throws ClassCastException if toElement is not comparable to the set
     *         contents.
     * @throws IllegalArgumentException if this is a subSet, and toElement is out
     *         of range.
     * @throws NullPointerException if toElement is null but the set does not
     *         allow null elements.
     */
5651
    public SortedSet<T> headSet(T toElement)
Tom Tromey committed
5652
    {
5653
      return new UnmodifiableSortedSet<T>(ss.headSet(toElement));
Tom Tromey committed
5654 5655 5656 5657 5658 5659 5660 5661 5662
    }

    /**
     * Returns the last (highest sorted) element in the underlying
     * set.
     *
     * @return the last element.
     * @throws NoSuchElementException if the set is empty.
     */
5663
    public T last()
Tom Tromey committed
5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693
    {
      return ss.last();
    }

    /**
     * Returns a unmodifiable view of the portion of the set greater than or
     * equal to fromElement, and strictly less than toElement. The view is backed by
     * the underlying set, so changes in one show up in the other. The subset
     * supports all optional operations of the original.
     * <p>
     *
     * The returned set throws an IllegalArgumentException any time an element is
     * used which is out of the range of fromElement and toElement. Note that the
     * lower endpoint is included, but the upper is not; if you want to
     * change the inclusion or exclusion of an endpoint, pass its successor
     * object in instead.  For example, for Integers, you can request
     * <code>subSet(new Integer(lowlimit.intValue() + 1),
     * new Integer(highlimit.intValue() + 1))</code> to reverse
     * the inclusiveness of both endpoints.
     *
     * @param fromElement the inclusive lower range of the subset.
     * @param toElement the exclusive upper range of the subset.
     * @return the subset.
     * @throws ClassCastException if fromElement or toElement is not comparable
     *         to the set contents.
     * @throws IllegalArgumentException if this is a subSet, and fromElement or
     *         toElement is out of range.
     * @throws NullPointerException if fromElement or toElement is null but the
     *         set does not allow null elements.
     */
5694
    public SortedSet<T> subSet(T fromElement, T toElement)
Tom Tromey committed
5695
    {
5696
      return new UnmodifiableSortedSet<T>(ss.subSet(fromElement, toElement));
Tom Tromey committed
5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719
    }

    /**
     * Returns a unmodifiable view of the portion of the set greater than or equal to
     * fromElement. The view is backed by the underlying set, so changes in one show up
     * in the other. The subset supports all optional operations of the original.
     * <p>
     *
     * The returned set throws an IllegalArgumentException any time an element is
     * used which is out of the range of fromElement. Note that the endpoint,
     * fromElement, is included; if you do not want this value to be included, pass its
     * successor object in to fromElement.  For example, for Integers, you could request
     * <code>tailSet(new Integer(limit.intValue() + 1))</code>.
     *
     * @param fromElement the inclusive lower range of the subset
     * @return the subset.
     * @throws ClassCastException if fromElement is not comparable to the set
     *         contents.
     * @throws IllegalArgumentException if this is a subSet, and fromElement is
     *         out of range.
     * @throws NullPointerException if fromElement is null but the set does not
     *         allow null elements.
     */
5720
    public SortedSet<T> tailSet(T fromElement)
Tom Tromey committed
5721
    {
5722
      return new UnmodifiableSortedSet<T>(ss.tailSet(fromElement));
Tom Tromey committed
5723 5724
    }
  } // class UnmodifiableSortedSet
5725 5726

  /**
5727
   * <p>
5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742
   * Returns a dynamically typesafe view of the given collection,
   * where any modification is first checked to ensure that the type
   * of the new data is appropriate.  Although the addition of
   * generics and parametrically-typed collections prevents an
   * incorrect type of element being added to a collection at
   * compile-time, via static type checking, this can be overridden by
   * casting.  In contrast, wrapping the collection within a
   * dynamically-typesafe wrapper, using this and associated methods,
   * <emph>guarantees</emph> that the collection will only contain
   * elements of an appropriate type (provided it only contains such
   * at the type of wrapping, and all subsequent access is via the
   * wrapper).  This can be useful for debugging the cause of a
   * <code>ClassCastException</code> caused by erroneous casting, or
   * for protecting collections from corruption by external libraries.
   * </p>
5743
   * <p>
5744 5745 5746 5747 5748 5749 5750
   * Since the collection might be a List or a Set, and those
   * have incompatible equals and hashCode requirements, this relies
   * on Object's implementation rather than passing those calls on to
   * the wrapped collection. The returned Collection implements
   * Serializable, but can only be serialized if the collection it
   * wraps is likewise Serializable.
   * </p>
5751
   *
5752 5753 5754 5755 5756 5757 5758
   * @param c the collection to wrap in a dynamically typesafe wrapper
   * @param type the type of elements the collection should hold.
   * @return a dynamically typesafe view of the collection.
   * @see Serializable
   * @since 1.5
   */
  public static <E> Collection<E> checkedCollection(Collection<E> c,
5759
                                                    Class<E> type)
5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777
  {
    return new CheckedCollection<E>(c, type);
  }

  /**
   * The implementation of {@link #checkedCollection(Collection,Class)}. This
   * class name is required for compatibility with Sun's JDK serializability.
   *
   * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
   * @since 1.5
   */
  private static class CheckedCollection<E>
    implements Collection<E>, Serializable
  {
    /**
     * Compatible with JDK 1.5.
     */
    private static final long serialVersionUID = 1578914078182001775L;
5778

5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816
    /**
     * The wrapped collection. Package visible for use by subclasses.
     * @serial the real collection
     */
    final Collection<E> c;

    /**
     * The type of the elements of this collection.
     * @serial the element type.
     */
    final Class<E> type;

    /**
     * Wrap a given collection.
     * @param c the collection to wrap
     * @param type the type to wrap
     * @throws NullPointerException if c is null
     */
    CheckedCollection(Collection<E> c, Class<E> type)
    {
      this.c = c;
      this.type = type;
      if (c == null)
        throw new NullPointerException();
    }

    /**
     * Adds the supplied object to the collection, on the condition that
     * it is of the correct type.
     *
     * @param o the object to add.
     * @return <code>true</code> if the collection was modified as a result
     *                           of this action.
     * @throws ClassCastException if the object is not of the correct type.
     */
    public boolean add(E o)
    {
      if (type.isInstance(o))
5817
        return c.add(o);
5818
      else
5819
        throw new ClassCastException("The element is of the incorrect type.");
5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834
    }

    /**
     * Adds the elements of the specified collection to the backing collection,
     * provided they are all of the correct type.
     *
     * @param coll the collection to add.
     * @return <code>true</code> if the collection was modified as a result
     *                           of this action.
     * @throws ClassCastException if <code>c</code> contained elements of an
     *                            incorrect type.
     */
    public boolean addAll(Collection<? extends E> coll)
    {
      Collection<E> typedColl = (Collection<E>) c;
5835 5836
      final Iterator<E> it = typedColl.iterator();
      while (it.hasNext())
5837 5838 5839 5840 5841
        {
          final E element = it.next();
          if (!type.isInstance(element))
            throw new ClassCastException("A member of the collection is not of the correct type.");
        }
5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077
      return c.addAll(typedColl);
    }

    /**
     * Removes all elements from the underlying collection.
     */
    public void clear()
    {
      c.clear();
    }

    /**
     * Test whether the underlying collection contains a given object as one
     * of its elements.
     *
     * @param o the element to look for.
     * @return <code>true</code> if the underlying collection contains at least
     *         one element e such that
     *         <code>o == null ? e == null : o.equals(e)</code>.
     * @throws ClassCastException if the type of o is not a valid type for the
     *         underlying collection.
     * @throws NullPointerException if o is null and the underlying collection
     *         doesn't support null values.
     */
    public boolean contains(Object o)
    {
      return c.contains(o);
    }

    /**
     * Test whether the underlying collection contains every element in a given
     * collection.
     *
     * @param coll the collection to test for.
     * @return <code>true</code> if for every element o in c, contains(o) would
     *         return <code>true</code>.
     * @throws ClassCastException if the type of any element in c is not a
     *                            valid type for the underlying collection.
     * @throws NullPointerException if some element of c is null and the
     *                              underlying collection does not support
     *                              null values.
     * @throws NullPointerException if c itself is null.
     */
    public boolean containsAll(Collection<?> coll)
    {
      return c.containsAll(coll);
    }

    /**
     * Tests whether the underlying collection is empty, that is,
     * if size() == 0.
     *
     * @return <code>true</code> if this collection contains no elements.
     */
    public boolean isEmpty()
    {
      return c.isEmpty();
    }

    /**
     * Obtain an Iterator over the underlying collection, which maintains
     * its checked nature.
     *
     * @return a Iterator over the elements of the underlying
     *         collection, in any order.
     */
    public Iterator<E> iterator()
    {
      return new CheckedIterator<E>(c.iterator(), type);
    }

    /**
     * Removes the supplied object from the collection, if it exists.
     *
     * @param o The object to remove.
     * @return <code>true</code> if the object was removed (i.e. the underlying
     *         collection returned 1 or more instances of o).
     */
    public boolean remove(Object o)
    {
      return c.remove(o);
    }

    /**
     * Removes all objects in the supplied collection from the backing
     * collection, if they exist within it.
     *
     * @param coll the collection of objects to remove.
     * @return <code>true</code> if the collection was modified.
     */
    public boolean removeAll(Collection<?> coll)
    {
      return c.removeAll(coll);
    }

    /**
     * Retains all objects specified by the supplied collection which exist
     * within the backing collection, and removes all others.
     *
     * @param coll the collection of objects to retain.
     * @return <code>true</code> if the collection was modified.
     */
    public boolean retainAll(Collection<?> coll)
    {
      return c.retainAll(coll);
    }

    /**
     * Retrieves the number of elements in the underlying collection.
     *
     * @return the number of elements in the collection.
     */
    public int size()
    {
      return c.size();
    }

    /**
     * Copy the current contents of the underlying collection into an array.
     *
     * @return an array of type Object[] with a length equal to the size of the
     *         underlying collection and containing the elements currently in
     *         the underlying collection, in any order.
     */
    public Object[] toArray()
    {
      return c.toArray();
    }

    /**
     * <p>
     * Copy the current contents of the underlying collection into an array. If
     * the array passed as an argument has length less than the size of the
     * underlying collection, an array of the same run-time type as a, with a
     * length equal to the size of the underlying collection, is allocated
     * using reflection.
     * </p>
     * <p>
     * Otherwise, a itself is used.  The elements of the underlying collection
     * are copied into it, and if there is space in the array, the following
     * element is set to null. The resultant array is returned.
     * </p>
     * <p>
     * <emph>Note</emph>: The fact that the following element is set to null
     * is only useful if it is known that this collection does not contain
     * any null elements.
     *
     * @param a the array to copy this collection into.
     * @return an array containing the elements currently in the underlying
     *         collection, in any order.
     * @throws ArrayStoreException if the type of any element of the
     *         collection is not a subtype of the element type of a.
     */
    public <S> S[] toArray(S[] a)
    {
      return c.toArray(a);
    }

    /**
     * A textual representation of the unmodifiable collection.
     *
     * @return The checked collection in the form of a <code>String</code>.
     */
    public String toString()
    {
      return c.toString();
    }
  } // class CheckedCollection

  /**
   * The implementation of the various iterator methods in the
   * checked classes.
   *
   * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
   * @since 1.5
   */
  private static class CheckedIterator<E>
    implements Iterator<E>
  {
    /**
     * The wrapped iterator.
     */
    private final Iterator<E> i;

    /**
     * The type of the elements of this collection.
     * @serial the element type.
     */
    final Class<E> type;

    /**
     * Only trusted code creates a wrapper.
     * @param i the wrapped iterator
     * @param type the type of the elements within the checked list.
     */
    CheckedIterator(Iterator<E> i, Class<E> type)
    {
      this.i = i;
      this.type = type;
    }

    /**
     * Obtains the next element in the underlying collection.
     *
     * @return the next element in the collection.
     * @throws NoSuchElementException if there are no more elements.
     */
    public E next()
    {
      return i.next();
    }

    /**
     * Tests whether there are still elements to be retrieved from the
     * underlying collection by <code>next()</code>.  When this method
     * returns <code>true</code>, an exception will not be thrown on calling
     * <code>next()</code>.
     *
     * @return <code>true</code> if there is at least one more element in the
     *         underlying collection.
     */
    public boolean hasNext()
    {
      return i.hasNext();
    }

    /**
     * Removes the next element from the collection.
     */
    public void remove()
    {
      i.remove();
    }
  } // class CheckedIterator

  /**
6078
   * <p>
6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120
   * Returns a dynamically typesafe view of the given list,
   * where any modification is first checked to ensure that the type
   * of the new data is appropriate.  Although the addition of
   * generics and parametrically-typed collections prevents an
   * incorrect type of element being added to a collection at
   * compile-time, via static type checking, this can be overridden by
   * casting.  In contrast, wrapping the collection within a
   * dynamically-typesafe wrapper, using this and associated methods,
   * <emph>guarantees</emph> that the collection will only contain
   * elements of an appropriate type (provided it only contains such
   * at the type of wrapping, and all subsequent access is via the
   * wrapper).  This can be useful for debugging the cause of a
   * <code>ClassCastException</code> caused by erroneous casting, or
   * for protecting collections from corruption by external libraries.
   * </p>
   * <p>
   * The returned List implements Serializable, but can only be serialized if
   * the list it wraps is likewise Serializable. In addition, if the wrapped
   * list implements RandomAccess, this does too.
   * </p>
   *
   * @param l the list to wrap
   * @param type the type of the elements within the checked list.
   * @return a dynamically typesafe view of the list
   * @see Serializable
   * @see RandomAccess
   */
  public static <E> List<E> checkedList(List<E> l, Class<E> type)
  {
    if (l instanceof RandomAccess)
      return new CheckedRandomAccessList<E>(l, type);
    return new CheckedList<E>(l, type);
  }

  /**
   * The implementation of {@link #checkedList(List,Class)} for sequential
   * lists. This class name is required for compatibility with Sun's JDK
   * serializability.
   *
   * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
   * @since 1.5
   */
6121
  private static class CheckedList<E>
6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160
    extends CheckedCollection<E>
    implements List<E>
  {
    /**
     * Compatible with JDK 1.5.
     */
    private static final long serialVersionUID = 65247728283967356L;

    /**
     * The wrapped list; stored both here and in the superclass to avoid
     * excessive casting. Package visible for use by subclass.
     * @serial the wrapped list
     */
    final List<E> list;

    /**
     * Wrap a given list.
     * @param l the list to wrap
     * @param type the type of the elements within the checked list.
     * @throws NullPointerException if l is null
     */
    CheckedList(List<E> l, Class<E> type)
    {
      super(l, type);
      list = l;
    }

    /**
     * Adds the supplied element to the underlying list at the specified
     * index, provided it is of the right type.
     *
     * @param index The index at which to place the new element.
     * @param o the object to add.
     * @throws ClassCastException if the type of the object is not a
     *                            valid type for the underlying collection.
     */
    public void add(int index, E o)
    {
      if (type.isInstance(o))
6161
        list.add(index, o);
6162
      else
6163
        throw new ClassCastException("The object is of the wrong type.");
6164 6165 6166 6167 6168 6169 6170 6171
    }

    /**
     * Adds the members of the supplied collection to the underlying
     * collection at the specified index, provided they are all of the
     * correct type.
     *
     * @param index the index at which to place the new element.
6172
     * @param coll the collections of objects to add.
6173 6174 6175 6176 6177 6178
     * @throws ClassCastException if the type of any element in c is not a
     *                            valid type for the underlying collection.
     */
    public boolean addAll(int index, Collection<? extends E> coll)
    {
      Collection<E> typedColl = (Collection<E>) coll;
6179 6180
      final Iterator<E> it = typedColl.iterator();
      while (it.hasNext())
6181 6182 6183 6184
        {
          if (!type.isInstance(it.next()))
            throw new ClassCastException("A member of the collection is not of the correct type.");
        }
6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401
      return list.addAll(index, coll);
    }

    /**
     * Returns <code>true</code> if the object, o, is an instance of
     * <code>List</code> with the same size and elements
     * as the underlying list.
     *
     * @param o The object to compare.
     * @return <code>true</code> if o is equivalent to the underlying list.
     */
    public boolean equals(Object o)
    {
      return list.equals(o);
    }

    /**
     * Retrieves the element at a given index in the underlying list.
     *
     * @param index the index of the element to be returned
     * @return the element at the specified index in the underlying list
     * @throws IndexOutOfBoundsException if index &lt; 0 || index &gt;= size()
     */
    public E get(int index)
    {
      return list.get(index);
    }

    /**
     * Computes the hash code for the underlying list.
     * The exact computation is described in the documentation
     * of the <code>List</code> interface.
     *
     * @return The hash code of the underlying list.
     * @see List#hashCode()
     */
    public int hashCode()
    {
      return list.hashCode();
    }

    /**
     * Obtain the first index at which a given object is to be found in the
     * underlying list.
     *
     * @param o the object to search for
     * @return the least integer n such that <code>o == null ? get(n) == null :
     *         o.equals(get(n))</code>, or -1 if there is no such index.
     * @throws ClassCastException if the type of o is not a valid
     *         type for the underlying list.
     * @throws NullPointerException if o is null and the underlying
     *         list does not support null values.
     */
    public int indexOf(Object o)
    {
      return list.indexOf(o);
    }

    /**
     * Obtain the last index at which a given object is to be found in the
     * underlying list.
     *
     * @return the greatest integer n such that
     *         <code>o == null ? get(n) == null : o.equals(get(n))</code>,
     *         or -1 if there is no such index.
     * @throws ClassCastException if the type of o is not a valid
     *         type for the underlying list.
     * @throws NullPointerException if o is null and the underlying
     *         list does not support null values.
     */
    public int lastIndexOf(Object o)
    {
      return list.lastIndexOf(o);
    }

    /**
     * Obtains a list iterator over the underlying list, starting at the
     * beginning and maintaining the checked nature of this list.
     *
     * @return a <code>CheckedListIterator</code> over the elements of the
     *         underlying list, in order, starting at the beginning.
     */
    public ListIterator<E> listIterator()
    {
      return new CheckedListIterator<E>(list.listIterator(), type);
    }

  /**
   * Obtains a list iterator over the underlying list, starting at the
   * specified index and maintaining the checked nature of this list.  An
   * initial call to <code>next()</code> will retrieve the element at the
   * specified index, and an initial call to <code>previous()</code> will
   * retrieve the element at index - 1.
   *
   * @param index the position, between 0 and size() inclusive, to begin the
   *        iteration from.
   * @return a <code>CheckedListIterator</code> over the elements of the
   *         underlying list, in order, starting at the specified index.
   * @throws IndexOutOfBoundsException if index &lt; 0 || index &gt; size()
   */
    public ListIterator<E> listIterator(int index)
    {
      return new CheckedListIterator<E>(list.listIterator(index), type);
    }

    /**
     * Removes the element at the specified index.
     *
     * @param index The index of the element to remove.
     * @return the removed element.
     */
    public E remove(int index)
    {
      return list.remove(index);
    }

    /**
     * Replaces the element at the specified index in the underlying list
     * with that supplied.
     *
     * @param index the index of the element to replace.
     * @param o the new object to place at the specified index.
     * @return the replaced element.
     */
    public E set(int index, E o)
    {
      return list.set(index, o);
    }

    /**
     * Obtain a List view of a subsection of the underlying list, from
     * fromIndex (inclusive) to toIndex (exclusive). If the two indices
     * are equal, the sublist is empty. The returned list will be
     * checked, like this list.  Changes to the elements of the
     * returned list will be reflected in the underlying list. The effect
     * of structural modifications is undefined.
     *
     * @param fromIndex the index that the returned list should start from
     *        (inclusive).
     * @param toIndex the index that the returned list should go
     *                to (exclusive).
     * @return a List backed by a subsection of the underlying list.
     * @throws IndexOutOfBoundsException if fromIndex &lt; 0
     *         || toIndex &gt; size() || fromIndex &gt; toIndex.
     */
    public List<E> subList(int fromIndex, int toIndex)
    {
      return checkedList(list.subList(fromIndex, toIndex), type);
    }
  } // class CheckedList

  /**
   * The implementation of {@link #checkedList(List)} for random-access
   * lists. This class name is required for compatibility with Sun's JDK
   * serializability.
   *
   * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
   * @since 1.5
   */
  private static final class CheckedRandomAccessList<E>
    extends CheckedList<E>
    implements RandomAccess
  {
    /**
     * Compatible with JDK 1.5.
     */
    private static final long serialVersionUID = 1638200125423088369L;

    /**
     * Wrap a given list.
     * @param l the list to wrap
     * @param type the type of the elements within the checked list.
     * @throws NullPointerException if l is null
     */
    CheckedRandomAccessList(List<E> l, Class<E> type)
    {
      super(l, type);
    }
  } // class CheckedRandomAccessList

  /**
   * The implementation of {@link CheckedList#listIterator()}.
   *
   * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
   * @since 1.5
   */
  private static final class CheckedListIterator<E>
    extends CheckedIterator<E>
    implements ListIterator<E>
  {
    /**
     * The wrapped iterator, stored both here and in the superclass to
     * avoid excessive casting.
     */
    private final ListIterator<E> li;

    /**
     * Only trusted code creates a wrapper.
     * @param li the wrapped iterator
     */
    CheckedListIterator(ListIterator<E> li, Class<E> type)
    {
      super(li, type);
      this.li = li;
    }

    /**
     * Adds the supplied object at the current iterator position, provided
     * it is of the correct type.
     *
     * @param o the object to add.
     * @throws ClassCastException if the type of the object is not a
     *                            valid type for the underlying collection.
     */
    public void add(E o)
    {
      if (type.isInstance(o))
6402
        li.add(o);
6403
      else
6404
        throw new ClassCastException("The object is of the wrong type.");
6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468
    }

    /**
     * Tests whether there are still elements to be retrieved from the
     * underlying collection by <code>previous()</code>.  When this method
     * returns <code>true</code>, an exception will not be thrown on calling
     * <code>previous()</code>.
     *
     * @return <code>true</code> if there is at least one more element prior
     *         to the current position in the underlying list.
     */
    public boolean hasPrevious()
    {
      return li.hasPrevious();
    }

    /**
     * Find the index of the element that would be returned by a call to next.
     * If <code>hasNext()</code> returns <code>false</code>, this returns the
     * list size.
     *
     * @return the index of the element that would be returned by
     *         <code>next()</code>.
     */
    public int nextIndex()
    {
      return li.nextIndex();
    }

    /**
     * Obtains the previous element in the underlying list.
     *
     * @return the previous element in the list.
     * @throws NoSuchElementException if there are no more prior elements.
     */
    public E previous()
    {
      return li.previous();
    }

    /**
     * Find the index of the element that would be returned by a call to
     * previous. If <code>hasPrevious()</code> returns <code>false</code>,
     * this returns -1.
     *
     * @return the index of the element that would be returned by
     *         <code>previous()</code>.
     */
    public int previousIndex()
    {
      return li.previousIndex();
    }

    /**
     * Sets the next element to that supplied, provided that it is of the
     * correct type.
     *
     * @param o The new object to replace the existing one.
     * @throws ClassCastException if the type of the object is not a
     *                            valid type for the underlying collection.
     */
    public void set(E o)
    {
      if (type.isInstance(o))
6469
        li.set(o);
6470
      else
6471
        throw new ClassCastException("The object is of the wrong type.");
6472 6473 6474 6475
    }
  } // class CheckedListIterator

  /**
6476
   * <p>
6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503
   * Returns a dynamically typesafe view of the given map,
   * where any modification is first checked to ensure that the type
   * of the new data is appropriate.  Although the addition of
   * generics and parametrically-typed collections prevents an
   * incorrect type of element being added to a collection at
   * compile-time, via static type checking, this can be overridden by
   * casting.  In contrast, wrapping the collection within a
   * dynamically-typesafe wrapper, using this and associated methods,
   * <emph>guarantees</emph> that the collection will only contain
   * elements of an appropriate type (provided it only contains such
   * at the type of wrapping, and all subsequent access is via the
   * wrapper).  This can be useful for debugging the cause of a
   * <code>ClassCastException</code> caused by erroneous casting, or
   * for protecting collections from corruption by external libraries.
   * </p>
   * <p>
   * The returned Map implements Serializable, but can only be serialized if
   * the map it wraps is likewise Serializable.
   * </p>
   *
   * @param m the map to wrap
   * @param keyType the dynamic type of the map's keys.
   * @param valueType the dynamic type of the map's values.
   * @return a dynamically typesafe view of the map
   * @see Serializable
   */
  public static <K, V> Map<K, V> checkedMap(Map<K, V> m, Class<K> keyType,
6504
                                            Class<V> valueType)
6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515
  {
    return new CheckedMap<K, V>(m, keyType, valueType);
  }

  /**
   * The implementation of {@link #checkedMap(Map)}. This
   * class name is required for compatibility with Sun's JDK serializability.
   *
   * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
   * @since 1.5
   */
6516
  private static class CheckedMap<K, V>
6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
    implements Map<K, V>, Serializable
  {
    /**
     * Compatible with JDK 1.5.
     */
    private static final long serialVersionUID = 5742860141034234728L;

    /**
     * The wrapped map.
     * @serial the real map
     */
    private final Map<K, V> m;

    /**
     * The type of the map's keys.
     * @serial the key type.
     */
    final Class<K> keyType;

    /**
     * The type of the map's values.
     * @serial the value type.
     */
    final Class<V> valueType;

    /**
     * Cache the entry set.
     */
    private transient Set<Map.Entry<K, V>> entries;

    /**
     * Cache the key set.
     */
    private transient Set<K> keys;

    /**
     * Cache the value collection.
     */
    private transient Collection<V> values;

    /**
     * Wrap a given map.
     * @param m the map to wrap
     * @param keyType the dynamic type of the map's keys.
     * @param valueType the dynamic type of the map's values.
     * @throws NullPointerException if m is null
     */
    CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType)
    {
      this.m = m;
      this.keyType = keyType;
      this.valueType = valueType;
      if (m == null)
        throw new NullPointerException();
    }

    /**
     * Clears all pairs from the map.
     */
    public void clear()
    {
      m.clear();
    }

    /**
     * Returns <code>true</code> if the underlying map contains a mapping for
     * the given key.
     *
     * @param key the key to search for
     * @return <code>true</code> if the map contains the key
     * @throws ClassCastException if the key is of an inappropriate type
     * @throws NullPointerException if key is <code>null</code> but the map
     *         does not permit null keys
     */
    public boolean containsKey(Object key)
    {
      return m.containsKey(key);
    }

    /**
     * Returns <code>true</code> if the underlying map contains at least one
     * mapping with the given value.  In other words, it returns
     * <code>true</code> if a value v exists where
     * <code>(value == null ? v == null : value.equals(v))</code>.
     * This usually requires linear time.
     *
     * @param value the value to search for
     * @return <code>true</code> if the map contains the value
     * @throws ClassCastException if the type of the value is not a valid type
     *         for this map.
     * @throws NullPointerException if the value is null and the map doesn't
     *         support null values.
     */
    public boolean containsValue(Object value)
    {
      return m.containsValue(value);
    }

    /**
     * <p>
     * Returns a checked set view of the entries in the underlying map.
     * Each element in the set is a unmodifiable variant of
     * <code>Map.Entry</code>.
     * </p>
     * <p>
     * The set is backed by the map, so that changes in one show up in the
     * other.  Modifications made while an iterator is in progress cause
6624
     * undefined behavior.
6625 6626 6627 6628 6629 6630 6631 6632
     * </p>
     *
     * @return the checked set view of all mapping entries.
     * @see Map.Entry
     */
    public Set<Map.Entry<K, V>> entrySet()
    {
      if (entries == null)
6633 6634 6635 6636 6637 6638 6639 6640
        {
          Class<Map.Entry<K,V>> klass =
            (Class<Map.Entry<K,V>>) (Class) Map.Entry.class;
          entries = new CheckedEntrySet<Map.Entry<K,V>,K,V>(m.entrySet(),
                                                            klass,
                                                            keyType,
                                                            valueType);
        }
6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658
      return entries;
    }

    /**
     * The implementation of {@link CheckedMap#entrySet()}. This class
     * is <emph>not</emph> serializable.
     *
     * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
     * @since 1.5
     */
    private static final class CheckedEntrySet<E,SK,SV>
      extends CheckedSet<E>
    {
      /**
       * The type of the map's keys.
       * @serial the key type.
       */
      private final Class<SK> keyType;
6659

6660 6661 6662 6663 6664
      /**
       * The type of the map's values.
       * @serial the value type.
       */
      private final Class<SV> valueType;
6665

6666 6667 6668 6669 6670 6671 6672 6673 6674
      /**
       * Wrap a given set of map entries.
       *
       * @param s the set to wrap.
       * @param type the type of the set's entries.
       * @param keyType the type of the map's keys.
       * @param valueType the type of the map's values.
       */
      CheckedEntrySet(Set<E> s, Class<E> type, Class<SK> keyType,
6675
                      Class<SV> valueType)
6676 6677
      {
        super(s, type);
6678 6679
        this.keyType = keyType;
        this.valueType = valueType;
6680 6681 6682 6683 6684 6685
      }

      // The iterator must return checked map entries.
      public Iterator<E> iterator()
      {
        return new CheckedIterator<E>(c.iterator(), type)
6686 6687 6688 6689 6690 6691 6692 6693
        {
          /**
           * Obtains the next element from the underlying set of
           * map entries.
           *
           * @return the next element in the collection.
           * @throws NoSuchElementException if there are no more elements.
           */
6694 6695 6696 6697
          public E next()
          {
            final Map.Entry e = (Map.Entry) super.next();
            return (E) new Map.Entry()
6698 6699 6700 6701 6702 6703 6704 6705
            {
              /**
               * Returns <code>true</code> if the object, o, is also a map
               * entry with an identical key and value.
               *
               * @param o the object to compare.
               * @return <code>true</code> if o is an equivalent map entry.
               */
6706 6707 6708 6709
              public boolean equals(Object o)
              {
                return e.equals(o);
              }
6710 6711 6712 6713 6714 6715

              /**
               * Returns the key of this map entry.
               *
               * @return the key.
               */
6716 6717 6718 6719 6720
              public Object getKey()
              {
                return e.getKey();
              }

6721 6722 6723 6724 6725
              /**
               * Returns the value of this map entry.
               *
               * @return the value.
               */
6726 6727 6728 6729 6730
              public Object getValue()
              {
                return e.getValue();
              }

6731 6732 6733 6734 6735 6736 6737 6738 6739
              /**
               * Computes the hash code of this map entry.
               * The computation is described in the <code>Map</code>
               * interface documentation.
               *
               * @return the hash code of this entry.
               * @see Map#hashCode()
               */
              public int hashCode()
6740 6741 6742 6743
              {
                return e.hashCode();
              }

6744 6745 6746 6747 6748 6749 6750 6751 6752
              /**
               * Sets the value of this map entry, provided it is of the
               * right type.
               *
               * @param value The new value.
               * @throws ClassCastException if the type of the value is not
               *                            a valid type for the underlying
               *                             map.
               */
6753 6754
              public Object setValue(Object value)
              {
6755 6756 6757 6758
                if (valueType.isInstance(value))
                  return e.setValue(value);
                else
                  throw new ClassCastException("The value is of the wrong type.");
6759 6760
              }

6761 6762 6763 6764 6765
              /**
               * Returns a textual representation of the map entry.
               *
               * @return The map entry as a <code>String</code>.
               */
6766 6767 6768 6769
              public String toString()
              {
                return e.toString();
              }
6770
            };
6771
          }
6772
        };
6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813
      }
    } // class CheckedEntrySet

    /**
     * Returns <code>true</code> if the object, o, is also an instance
     * of <code>Map</code> with an equal set of map entries.
     *
     * @param o The object to compare.
     * @return <code>true</code> if o is an equivalent map.
     */
    public boolean equals(Object o)
    {
      return m.equals(o);
    }

    /**
     * Returns the value associated with the supplied key or
     * null if no such mapping exists.  An ambiguity can occur
     * if null values are accepted by the underlying map.
     * In this case, <code>containsKey()</code> can be used
     * to separate the two possible cases of a null result.
     *
     * @param key The key to look up.
     * @return the value associated with the key, or null if key not in map.
     * @throws ClassCastException if the key is an inappropriate type.
     * @throws NullPointerException if this map does not accept null keys.
     * @see #containsKey(Object)
     */
    public V get(Object key)
    {
      return m.get(key);
    }

    /**
     * Adds a new pair to the map, provided both the key and the value are
     * of the correct types.
     *
     * @param key The new key.
     * @param value The new value.
     * @return the previous value of the key, or null if there was no mapping.
     * @throws ClassCastException if the type of the key or the value is
6814
     *                            not a valid type for the underlying map.
6815 6816 6817 6818
     */
    public V put(K key, V value)
    {
      if (keyType.isInstance(key))
6819 6820 6821 6822 6823 6824
        {
          if (valueType.isInstance(value))
            return m.put(key,value);
          else
            throw new ClassCastException("The value is of the wrong type.");
        }
6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874
      throw new ClassCastException("The key is of the wrong type.");
    }

    /**
     * Computes the hash code for the underlying map, as the sum
     * of the hash codes of all entries.
     *
     * @return The hash code of the underlying map.
     * @see Map.Entry#hashCode()
     */
    public int hashCode()
    {
      return m.hashCode();
    }

    /**
     * Returns <code>true</code> if the underlying map contains no entries.
     *
     * @return <code>true</code> if the map is empty.
     */
    public boolean isEmpty()
    {
      return m.isEmpty();
    }

    /**
     * <p>
     * Returns a checked set view of the keys in the underlying map.
     * The set is backed by the map, so that changes in one show up in the
     * other.
     * </p>
     * <p>
     * Modifications made while an iterator is in progress cause undefined
     * behavior.  These modifications are again limited to the values of
     * the keys.
     * </p>
     *
     * @return the set view of all keys.
     */
    public Set<K> keySet()
    {
      if (keys == null)
        keys = new CheckedSet<K>(m.keySet(), keyType);
      return keys;
    }

    /**
     * Adds all pairs within the supplied map to the underlying map,
     * provided they are all have the correct key and value types.
     *
6875
     * @param map the map, the entries of which should be added
6876 6877
     *          to the underlying map.
     * @throws ClassCastException if the type of a key or value is
6878
     *                            not a valid type for the underlying map.
6879 6880 6881 6882
     */
    public void putAll(Map<? extends K, ? extends V> map)
    {
      Map<K,V> typedMap = (Map<K,V>) map;
6883 6884
      final Iterator<Map.Entry<K,V>> it = typedMap.entrySet().iterator();
      while (it.hasNext())
6885 6886 6887 6888 6889 6890 6891
        {
          final Map.Entry<K,V> entry = it.next();
          if (!keyType.isInstance(entry.getKey()))
            throw new ClassCastException("A key is of the wrong type.");
          if (!valueType.isInstance(entry.getValue()))
            throw new ClassCastException("A value is of the wrong type.");
        }
6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943
      m.putAll(typedMap);
    }

    /**
     * Removes a pair from the map.
     *
     * @param o The key of the entry to remove.
     * @return The value the key was associated with, or null
     *         if no such mapping existed.  Null is also returned
     *         if the removed entry had a null key.
     * @throws UnsupportedOperationException as an unmodifiable
     *         map does not support the <code>remove</code> operation.
     */
    public V remove(Object o)
    {
      return m.remove(o);
    }


    /**
     * Returns the number of key-value mappings in the underlying map.
     * If there are more than Integer.MAX_VALUE mappings, Integer.MAX_VALUE
     * is returned.
     *
     * @return the number of mappings.
     */
    public int size()
    {
      return m.size();
    }

    /**
     * Returns a textual representation of the map.
     *
     * @return The map in the form of a <code>String</code>.
     */
    public String toString()
    {
      return m.toString();
    }

    /**
     * <p>
     * Returns a unmodifiable collection view of the values in the underlying
     * map.  The collection is backed by the map, so that changes in one show
     * up in the other.
     * </p>
     * <p>
     * Modifications made while an iterator is in progress cause undefined
     * behavior.  These modifications are again limited to the values of
     * the keys.
     * </p>
6944
     *
6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955
     * @return the collection view of all values.
     */
    public Collection<V> values()
    {
      if (values == null)
        values = new CheckedCollection<V>(m.values(), valueType);
      return values;
    }
  } // class CheckedMap

  /**
6956
   * <p>
6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993
   * Returns a dynamically typesafe view of the given set,
   * where any modification is first checked to ensure that the type
   * of the new data is appropriate.  Although the addition of
   * generics and parametrically-typed collections prevents an
   * incorrect type of element being added to a collection at
   * compile-time, via static type checking, this can be overridden by
   * casting.  In contrast, wrapping the collection within a
   * dynamically-typesafe wrapper, using this and associated methods,
   * <emph>guarantees</emph> that the collection will only contain
   * elements of an appropriate type (provided it only contains such
   * at the type of wrapping, and all subsequent access is via the
   * wrapper).  This can be useful for debugging the cause of a
   * <code>ClassCastException</code> caused by erroneous casting, or
   * for protecting collections from corruption by external libraries.
   * </p>
   * <p>
   * The returned Set implements Serializable, but can only be serialized if
   * the set it wraps is likewise Serializable.
   * </p>
   *
   * @param s the set to wrap.
   * @param type the type of the elements within the checked list.
   * @return a dynamically typesafe view of the set
   * @see Serializable
   */
  public static <E> Set<E> checkedSet(Set<E> s, Class<E> type)
  {
    return new CheckedSet<E>(s, type);
  }

  /**
   * The implementation of {@link #checkedSet(Set)}. This class
   * name is required for compatibility with Sun's JDK serializability.
   *
   * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
   * @since 1.5
   */
6994
  private static class CheckedSet<E>
6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029
    extends CheckedCollection<E>
    implements Set<E>
  {
    /**
     * Compatible with JDK 1.5.
     */
    private static final long serialVersionUID = 4694047833775013803L;

    /**
     * Wrap a given set.
     *
     * @param s the set to wrap
     * @throws NullPointerException if s is null
     */
    CheckedSet(Set<E> s, Class<E> type)
    {
      super(s, type);
    }

    /**
     * Returns <code>true</code> if the object, o, is also an instance of
     * <code>Set</code> of the same size and with the same entries.
     *
     * @return <code>true</code> if o is an equivalent set.
     */
    public boolean equals(Object o)
    {
      return c.equals(o);
    }

    /**
     * Computes the hash code of this set, as the sum of the
     * hash codes of all elements within the set.
     *
     * @return the hash code of the set.
7030
     */
7031 7032 7033 7034 7035 7036 7037
    public int hashCode()
    {
      return c.hashCode();
    }
  } // class CheckedSet

  /**
7038
   * <p>
7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065
   * Returns a dynamically typesafe view of the given sorted map,
   * where any modification is first checked to ensure that the type
   * of the new data is appropriate.  Although the addition of
   * generics and parametrically-typed collections prevents an
   * incorrect type of element being added to a collection at
   * compile-time, via static type checking, this can be overridden by
   * casting.  In contrast, wrapping the collection within a
   * dynamically-typesafe wrapper, using this and associated methods,
   * <emph>guarantees</emph> that the collection will only contain
   * elements of an appropriate type (provided it only contains such
   * at the type of wrapping, and all subsequent access is via the
   * wrapper).  This can be useful for debugging the cause of a
   * <code>ClassCastException</code> caused by erroneous casting, or
   * for protecting collections from corruption by external libraries.
   * </p>
   * <p>
   * The returned SortedMap implements Serializable, but can only be
   * serialized if the map it wraps is likewise Serializable.
   * </p>
   *
   * @param m the map to wrap.
   * @param keyType the dynamic type of the map's keys.
   * @param valueType the dynamic type of the map's values.
   * @return a dynamically typesafe view of the map
   * @see Serializable
   */
  public static <K, V> SortedMap<K, V> checkedSortedMap(SortedMap<K, V> m,
7066 7067
                                                        Class<K> keyType,
                                                        Class<V> valueType)
7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201
  {
    return new CheckedSortedMap<K, V>(m, keyType, valueType);
  }

  /**
   * The implementation of {@link #checkedSortedMap(SortedMap,Class,Class)}.
   * This class name is required for compatibility with Sun's JDK
   * serializability.
   *
   * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
   */
  private static class CheckedSortedMap<K, V>
    extends CheckedMap<K, V>
    implements SortedMap<K, V>
  {
    /**
     * Compatible with JDK 1.5.
     */
    private static final long serialVersionUID = 1599671320688067438L;

    /**
     * The wrapped map; stored both here and in the superclass to avoid
     * excessive casting.
     * @serial the wrapped map
     */
    private final SortedMap<K, V> sm;

    /**
     * Wrap a given map.
     *
     * @param sm the map to wrap
     * @param keyType the dynamic type of the map's keys.
     * @param valueType the dynamic type of the map's values.
     * @throws NullPointerException if sm is null
     */
    CheckedSortedMap(SortedMap<K, V> sm, Class<K> keyType, Class<V> valueType)
    {
      super(sm, keyType, valueType);
      this.sm = sm;
    }

    /**
     * Returns the comparator used in sorting the underlying map,
     * or null if it is the keys' natural ordering.
     *
     * @return the sorting comparator.
     */
    public Comparator<? super K> comparator()
    {
      return sm.comparator();
    }

    /**
     * Returns the first (lowest sorted) key in the map.
     *
     * @return the first key.
     * @throws NoSuchElementException if this map is empty.
     */
    public K firstKey()
    {
      return sm.firstKey();
    }

    /**
     * <p>
     * Returns a checked view of the portion of the map strictly less
     * than toKey. The view is backed by the underlying map, so changes in
     * one show up in the other.  The submap supports all optional operations
     * of the original.  This operation is equivalent to
     * <code>subMap(firstKey(), toKey)</code>.
     * </p>
     * <p>
     * The returned map throws an IllegalArgumentException any time a key is
     * used which is out of the range of toKey. Note that the endpoint, toKey,
     * is not included; if you want this value to be included, pass its
     * successor object in to toKey.  For example, for Integers, you could
     * request <code>headMap(new Integer(limit.intValue() + 1))</code>.
     * </p>
     *
     * @param toKey the exclusive upper range of the submap.
     * @return the submap.
     * @throws ClassCastException if toKey is not comparable to the map
     *                            contents.
     * @throws IllegalArgumentException if this is a subMap, and toKey is out
     *         of range.
     * @throws NullPointerException if toKey is null but the map does not allow
     *         null keys.
     */
    public SortedMap<K, V> headMap(K toKey)
    {
      return new CheckedSortedMap<K, V>(sm.headMap(toKey), keyType, valueType);
    }

    /**
     * Returns the last (highest sorted) key in the map.
     *
     * @return the last key.
     * @throws NoSuchElementException if this map is empty.
     */
    public K lastKey()
    {
      return sm.lastKey();
    }

    /**
     * <p>
     * Returns a checked view of the portion of the map greater than or
     * equal to fromKey, and strictly less than toKey. The view is backed by
     * the underlying map, so changes in one show up in the other. The submap
     * supports all optional operations of the original.
     * </p>
     * <p>
     * The returned map throws an IllegalArgumentException any time a key is
     * used which is out of the range of fromKey and toKey. Note that the
     * lower endpoint is included, but the upper is not; if you want to
     * change the inclusion or exclusion of an endpoint, pass its successor
     * object in instead.  For example, for Integers, you could request
     * <code>subMap(new Integer(lowlimit.intValue() + 1),
     * new Integer(highlimit.intValue() + 1))</code> to reverse
     * the inclusiveness of both endpoints.
     * </p>
     *
     * @param fromKey the inclusive lower range of the submap.
     * @param toKey the exclusive upper range of the submap.
     * @return the submap.
     * @throws ClassCastException if fromKey or toKey is not comparable to
     *         the map contents.
     * @throws IllegalArgumentException if this is a subMap, and fromKey or
     *         toKey is out of range.
     * @throws NullPointerException if fromKey or toKey is null but the map
     *         does not allow null keys.
     */
    public SortedMap<K, V> subMap(K fromKey, K toKey)
    {
7202 7203
      return new CheckedSortedMap<K, V>(sm.subMap(fromKey, toKey), keyType,
                                        valueType);
7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233
    }

    /**
     * <p>
     * Returns a checked view of the portion of the map greater than or
     * equal to fromKey. The view is backed by the underlying map, so changes
     * in one show up in the other. The submap supports all optional operations
     * of the original.
     * </p>
     * <p>
     * The returned map throws an IllegalArgumentException any time a key is
     * used which is out of the range of fromKey. Note that the endpoint,
     * fromKey, is included; if you do not want this value to be included,
     * pass its successor object in to fromKey.  For example, for Integers,
     * you could request
     * <code>tailMap(new Integer(limit.intValue() + 1))</code>.
     * </p>
     *
     * @param fromKey the inclusive lower range of the submap
     * @return the submap
     * @throws ClassCastException if fromKey is not comparable to the map
     *         contents
     * @throws IllegalArgumentException if this is a subMap, and fromKey is out
     *         of range
     * @throws NullPointerException if fromKey is null but the map does not
     *                              allow null keys
     */
    public SortedMap<K, V> tailMap(K fromKey)
    {
      return new CheckedSortedMap<K, V>(sm.tailMap(fromKey), keyType,
7234
                                        valueType);
7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265
    }
  } // class CheckedSortedMap

  /**
   * <p>
   * Returns a dynamically typesafe view of the given sorted set,
   * where any modification is first checked to ensure that the type
   * of the new data is appropriate.  Although the addition of
   * generics and parametrically-typed collections prevents an
   * incorrect type of element being added to a collection at
   * compile-time, via static type checking, this can be overridden by
   * casting.  In contrast, wrapping the collection within a
   * dynamically-typesafe wrapper, using this and associated methods,
   * <emph>guarantees</emph> that the collection will only contain
   * elements of an appropriate type (provided it only contains such
   * at the type of wrapping, and all subsequent access is via the
   * wrapper).  This can be useful for debugging the cause of a
   * <code>ClassCastException</code> caused by erroneous casting, or
   * for protecting collections from corruption by external libraries.
   * </p>
   * <p>
   * The returned SortedSet implements Serializable, but can only be
   * serialized if the set it wraps is likewise Serializable.
   * </p>
   *
   * @param s the set to wrap.
   * @param type the type of the set's elements.
   * @return a dynamically typesafe view of the set
   * @see Serializable
   */
  public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s,
7266
                                                  Class<E> type)
7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277
  {
    return new CheckedSortedSet<E>(s, type);
  }

  /**
   * The implementation of {@link #checkedSortedSet(SortedSet,Class)}. This
   * class name is required for compatibility with Sun's JDK serializability.
   *
   * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
   * @since 1.5
   */
7278
  private static class CheckedSortedSet<E>
7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289
    extends CheckedSet<E>
    implements SortedSet<E>
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 1599911165492914959L;

    /**
     * The wrapped set; stored both here and in the superclass to avoid
     * excessive casting.
7290
     *
7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390
     * @serial the wrapped set
     */
    private SortedSet<E> ss;

    /**
     * Wrap a given set.
     *
     * @param ss the set to wrap.
     * @param type the type of the set's elements.
     * @throws NullPointerException if ss is null
     */
    CheckedSortedSet(SortedSet<E> ss, Class<E> type)
    {
      super(ss, type);
      this.ss = ss;
    }

    /**
     * Returns the comparator used in sorting the underlying set,
     * or null if it is the elements' natural ordering.
     *
     * @return the sorting comparator
     */
    public Comparator<? super E> comparator()
    {
      return ss.comparator();
    }

    /**
     * Returns the first (lowest sorted) element in the underlying
     * set.
     *
     * @return the first element.
     * @throws NoSuchElementException if the set is empty.
     */
    public E first()
    {
      return ss.first();
    }

    /**
     * <p>
     * Returns a checked view of the portion of the set strictly
     * less than toElement. The view is backed by the underlying set,
     * so changes in one show up in the other.  The subset supports
     * all optional operations of the original.  This operation
     * is equivalent to <code>subSet(first(), toElement)</code>.
     * </p>
     * <p>
     * The returned set throws an IllegalArgumentException any time an
     * element is used which is out of the range of toElement. Note that
     * the endpoint, toElement, is not included; if you want this value
     * included, pass its successor object in to toElement.  For example,
     * for Integers, you could request
     * <code>headSet(new Integer(limit.intValue() + 1))</code>.
     * </p>
     *
     * @param toElement the exclusive upper range of the subset
     * @return the subset.
     * @throws ClassCastException if toElement is not comparable to the set
     *         contents.
     * @throws IllegalArgumentException if this is a subSet, and toElement is
     *                                  out of range.
     * @throws NullPointerException if toElement is null but the set does not
     *         allow null elements.
     */
    public SortedSet<E> headSet(E toElement)
    {
      return new CheckedSortedSet<E>(ss.headSet(toElement), type);
    }

    /**
     * Returns the last (highest sorted) element in the underlying
     * set.
     *
     * @return the last element.
     * @throws NoSuchElementException if the set is empty.
     */
    public E last()
    {
      return ss.last();
    }

    /**
     * <p>
     * Returns a checked view of the portion of the set greater than or
     * equal to fromElement, and strictly less than toElement. The view is
     * backed by the underlying set, so changes in one show up in the other.
     * The subset supports all optional operations of the original.
     * </p>
     * <p>
     * The returned set throws an IllegalArgumentException any time an
     * element is used which is out of the range of fromElement and toElement.
     * Note that the lower endpoint is included, but the upper is not; if you
     * want to change the inclusion or exclusion of an endpoint, pass its
     * successor object in instead.  For example, for Integers, you can request
     * <code>subSet(new Integer(lowlimit.intValue() + 1),
     * new Integer(highlimit.intValue() + 1))</code> to reverse
     * the inclusiveness of both endpoints.
     * </p>
7391
     *
7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437
     * @param fromElement the inclusive lower range of the subset.
     * @param toElement the exclusive upper range of the subset.
     * @return the subset.
     * @throws ClassCastException if fromElement or toElement is not comparable
     *         to the set contents.
     * @throws IllegalArgumentException if this is a subSet, and fromElement or
     *         toElement is out of range.
     * @throws NullPointerException if fromElement or toElement is null but the
     *         set does not allow null elements.
     */
    public SortedSet<E> subSet(E fromElement, E toElement)
    {
      return new CheckedSortedSet<E>(ss.subSet(fromElement, toElement), type);
    }

    /**
     * <p>
     * Returns a checked view of the portion of the set greater than or equal
     * to fromElement. The view is backed by the underlying set, so changes in
     * one show up in the other. The subset supports all optional operations
     * of the original.
     * </p>
     * <p>
     * The returned set throws an IllegalArgumentException any time an
     * element is used which is out of the range of fromElement. Note that
     * the endpoint, fromElement, is included; if you do not want this value
     * to be included, pass its successor object in to fromElement.  For
     * example, for Integers, you could request
     * <code>tailSet(new Integer(limit.intValue() + 1))</code>.
     * </p>
     *
     * @param fromElement the inclusive lower range of the subset
     * @return the subset.
     * @throws ClassCastException if fromElement is not comparable to the set
     *         contents.
     * @throws IllegalArgumentException if this is a subSet, and fromElement is
     *         out of range.
     * @throws NullPointerException if fromElement is null but the set does not
     *         allow null elements.
     */
    public SortedSet<E> tailSet(E fromElement)
    {
      return new CheckedSortedSet<E>(ss.tailSet(fromElement), type);
    }
  } // class CheckedSortedSet

7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473
  /**
   * Returns a view of a {@link Deque} as a stack or LIFO (Last-In-First-Out)
   * {@link Queue}.  Each call to the LIFO queue corresponds to one
   * equivalent method call to the underlying deque, with the exception
   * of {@link Collection#addAll(Collection)}, which is emulated by a series
   * of {@link Deque#push(E)} calls.
   *
   * @param deque the deque to convert to a LIFO queue.
   * @return a LIFO queue.
   * @since 1.6
   */
  public static <T> Queue<T> asLifoQueue(Deque<T> deque)
  {
    return new LIFOQueue<T>(deque);
  }

  /**
   * Returns a set backed by the supplied map.  The resulting set
   * has the same performance, concurrency and ordering characteristics
   * as the original map.  The supplied map must be empty and should not
   * be used after the set is created.  Each call to the set corresponds
   * to one equivalent method call to the underlying map, with the exception
   * of {@link Set#addAll(Collection)} which is emulated by a series of
   * calls to <code>put</code>.
   *
   * @param map the map to convert to a set.
   * @return a set backed by the supplied map.
   * @throws IllegalArgumentException if the map is not empty.
   * @since 1.6
   */
  public static <E> Set<E> newSetFromMap(Map<E,Boolean> map)
  {
    return new MapSet<E>(map);
  }

  /**
7474
   * The implementation of {@link #asLIFOQueue(Deque)}.
7475 7476 7477 7478 7479 7480 7481
   *
   * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
   * @since 1.6
   */
  private static class LIFOQueue<T>
    extends AbstractQueue<T>
  {
7482

7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502
    /**
     * The backing deque.
     */
    private Deque<T> deque;

    /**
     * Constructs a new {@link LIFOQueue} with the specified
     * backing {@link Deque}.
     *
     * @param deque the backing deque.
     */
    public LIFOQueue(Deque<T> deque)
    {
      this.deque = deque;
    }

    public boolean add(T e)
    {
      return deque.offerFirst(e);
    }
7503

7504 7505 7506 7507 7508
    public boolean addAll(Collection<? extends T> c)
    {
      boolean result = false;
      final Iterator<? extends T> it = c.iterator();
      while (it.hasNext())
7509
        result |= deque.offerFirst(it.next());
7510 7511
      return result;
    }
7512

7513 7514 7515 7516
    public void clear()
    {
      deque.clear();
    }
7517

7518 7519 7520 7521
    public boolean isEmpty()
    {
      return deque.isEmpty();
    }
7522

7523 7524 7525 7526
    public Iterator<T> iterator()
    {
      return deque.iterator();
    }
7527

7528 7529 7530 7531
    public boolean offer(T e)
    {
      return deque.offerFirst(e);
    }
7532

7533 7534 7535 7536 7537 7538 7539 7540 7541
    public T peek()
    {
      return deque.peek();
    }

    public T poll()
    {
      return deque.poll();
    }
7542

7543 7544 7545 7546 7547 7548 7549
    public int size()
    {
      return deque.size();
    }
  } // class LIFOQueue

  /**
7550
   * The implementation of {@link #newSetFromMap(Map)}.
7551 7552 7553 7554 7555 7556 7557
   *
   * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
   * @since 1.6
   */
  private static class MapSet<E>
    extends AbstractSet<E>
  {
7558

7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573
    /**
     * The backing map.
     */
    private Map<E,Boolean> map;

    /**
     * Constructs a new {@link MapSet} using the specified
     * backing {@link Map}.
     *
     * @param map the backing map.
     * @throws IllegalArgumentException if the map is not empty.
     */
    public MapSet(Map<E,Boolean> map)
    {
      if (!map.isEmpty())
7574
        throw new IllegalArgumentException("The map must be empty.");
7575 7576 7577 7578 7579 7580 7581
      this.map = map;
    }

    public boolean add(E e)
    {
      return map.put(e, true) == null;
    }
7582

7583 7584 7585 7586 7587
    public boolean addAll(Collection<? extends E> c)
    {
      boolean result = false;
      final Iterator<? extends E> it = c.iterator();
      while (it.hasNext())
7588
        result |= (map.put(it.next(), true) == null);
7589 7590
      return result;
    }
7591

7592 7593 7594 7595
    public void clear()
    {
      map.clear();
    }
7596

7597 7598 7599 7600
    public boolean contains(Object o)
    {
      return map.containsKey(o);
    }
7601

7602 7603 7604 7605
    public boolean isEmpty()
    {
      return map.isEmpty();
    }
7606

7607 7608 7609 7610
    public Iterator<E> iterator()
    {
      return map.keySet().iterator();
    }
7611

7612 7613 7614 7615
    public boolean remove(Object o)
    {
      return map.remove(o) != null;
    }
7616

7617 7618 7619 7620 7621
    public int size()
    {
      return map.size();
    }
  } // class MapSet
7622

Tom Tromey committed
7623
} // class Collections