natObject.cc 37.4 KB
Newer Older
Tom Tromey committed
1 2
// natObject.cc - Implementation of the Object class.

3
/* Copyright (C) 1998, 1999, 2000, 2001  Free Software Foundation
Tom Tromey committed
4 5 6 7 8 9 10 11 12 13 14 15 16

   This file is part of libgcj.

This software is copyrighted work licensed under the terms of the
Libgcj License.  Please consult the file "LIBGCJ_LICENSE" for
details.  */

#include <config.h>

#include <string.h>

#pragma implementation "Object.h"

Tom Tromey committed
17
#include <gcj/cni.h>
Tom Tromey committed
18 19 20
#include <jvm.h>
#include <java/lang/Object.h>
#include <java-threads.h>
21
#include <java-signal.h>
Tom Tromey committed
22 23 24 25 26 27 28 29 30
#include <java/lang/CloneNotSupportedException.h>
#include <java/lang/IllegalArgumentException.h>
#include <java/lang/IllegalMonitorStateException.h>
#include <java/lang/InterruptedException.h>
#include <java/lang/NullPointerException.h>
#include <java/lang/Class.h>
#include <java/lang/Cloneable.h>
#include <java/lang/Thread.h>

Tom Tromey committed
31 32 33 34
#ifdef LOCK_DEBUG
#  include <stdio.h>
#endif

Tom Tromey committed
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88


// This is used to represent synchronization information.
struct _Jv_SyncInfo
{
#if defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy)
  // We only need to keep track of initialization state if we can
  // possibly finalize this object.
  bool init;
#endif
  _Jv_ConditionVariable_t condition;
  _Jv_Mutex_t mutex;
};



jclass
java::lang::Object::getClass (void)
{
  _Jv_VTable **dt = (_Jv_VTable **) this;
  return (*dt)->clas;
}

jint
java::lang::Object::hashCode (void)
{
  return _Jv_HashCode (this);
}

jobject
java::lang::Object::clone (void)
{
  jclass klass = getClass ();
  jobject r;
  jint size;

  // We also clone arrays here.  If we put the array code into
  // __JArray, then we'd have to figure out a way to find the array
  // vtbl when creating a new array class.  This is easier, if uglier.
  if (klass->isArray())
    {
      __JArray *array = (__JArray *) this;
      jclass comp = getClass()->getComponentType();
      jint eltsize;
      if (comp->isPrimitive())
	{
	  r = _Jv_NewPrimArray (comp, array->length);
	  eltsize = comp->size();
	}
      else
	{
	  r = _Jv_NewObjectArray (array->length, comp, NULL);
	  eltsize = sizeof (jobject);
	}
89 90 91 92
      // We can't use sizeof on __JArray because we must account for
      // alignment of the element type.
      size = (_Jv_GetArrayElementFromElementType (array, comp) - (char *) array
	      + array->length * eltsize);
Tom Tromey committed
93 94 95
    }
  else
    {
96
      if (! java::lang::Cloneable::class$.isAssignableFrom(klass))
97
	throw new CloneNotSupportedException;
Tom Tromey committed
98 99 100 101 102 103 104 105 106

      size = klass->size();
      r = JvAllocObject (klass, size);
    }

  memcpy ((void *) r, (void *) this, size);
  return r;
}

Tom Tromey committed
107 108 109 110 111 112 113 114 115 116 117 118 119 120
void
_Jv_FinalizeObject (jobject obj)
{
  // Ignore exceptions.  From section 12.6 of the Java Language Spec.
  try
    {
      obj->finalize ();
    }
  catch (java::lang::Throwable *t)
    {
      // Ignore.
    }
}

Tom Tromey committed
121 122 123 124 125

//
// Synchronization code.
//

Tom Tromey committed
126
#ifndef JV_HASH_SYNCHRONIZATION
Tom Tromey committed
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
// This global is used to make sure that only one thread sets an
// object's `sync_info' field.
static _Jv_Mutex_t sync_mutex;

// This macro is used to see if synchronization initialization is
// needed.
#if defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy)
#  define INIT_NEEDED(Obj) (! (Obj)->sync_info \
			    || ! ((_Jv_SyncInfo *) ((Obj)->sync_info))->init)
#else
#  define INIT_NEEDED(Obj) (! (Obj)->sync_info)
#endif

#if defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy)
// If we have to run a destructor for a sync_info member, then this
// function is registered as a finalizer for the sync_info.
static void
finalize_sync_info (jobject obj)
{
  _Jv_SyncInfo *si = (_Jv_SyncInfo *) obj;
#if defined (_Jv_HaveCondDestroy)
  _Jv_CondDestroy (&si->condition);
#endif
#if defined (_Jv_HaveMutexDestroy)
  _Jv_MutexDestroy (&si->mutex);
#endif
  si->init = false;
}
#endif

// This is called to initialize the sync_info element of an object.
void
java::lang::Object::sync_init (void)
{
  _Jv_MutexLock (&sync_mutex);
  // Check again to see if initialization is needed now that we have
  // the lock.
  if (INIT_NEEDED (this))
    {
      // We assume there are no pointers in the sync_info
      // representation.
      _Jv_SyncInfo *si;
      // We always create a new sync_info, even if there is already
      // one available.  Any given object can only be finalized once.
      // If we get here and sync_info is not null, then it has already
      // been finalized.  So if we just reinitialize the old one,
      // we'll never be able to (re-)destroy the mutex and/or
      // condition variable.
Tom Tromey committed
175
      si = (_Jv_SyncInfo *) _Jv_AllocBytes (sizeof (_Jv_SyncInfo));
Tom Tromey committed
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
      _Jv_MutexInit (&si->mutex);
      _Jv_CondInit (&si->condition);
#if defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy)
      // Register a finalizer.
      si->init = true;
      _Jv_RegisterFinalizer (si, finalize_sync_info);
#endif
      sync_info = (jobject) si;
    }
  _Jv_MutexUnlock (&sync_mutex);
}

void
java::lang::Object::notify (void)
{
191
  if (__builtin_expect (INIT_NEEDED (this), false))
Tom Tromey committed
192 193
    sync_init ();
  _Jv_SyncInfo *si = (_Jv_SyncInfo *) sync_info;
194
  if (__builtin_expect (_Jv_CondNotify (&si->condition, &si->mutex), false))
195 196
    throw new IllegalMonitorStateException(JvNewStringLatin1 
					   ("current thread not owner"));
Tom Tromey committed
197 198 199 200 201
}

void
java::lang::Object::notifyAll (void)
{
202
  if (__builtin_expect (INIT_NEEDED (this), false))
Tom Tromey committed
203 204
    sync_init ();
  _Jv_SyncInfo *si = (_Jv_SyncInfo *) sync_info;
205
  if (__builtin_expect (_Jv_CondNotifyAll (&si->condition, &si->mutex), false))
206 207
    throw new IllegalMonitorStateException(JvNewStringLatin1 
					   ("current thread not owner"));
Tom Tromey committed
208 209 210 211 212
}

void
java::lang::Object::wait (jlong timeout, jint nanos)
{
213
  if (__builtin_expect (INIT_NEEDED (this), false))
Tom Tromey committed
214
    sync_init ();
215
  if (__builtin_expect (timeout < 0 || nanos < 0 || nanos > 999999, false))
216
    throw new IllegalArgumentException;
Tom Tromey committed
217
  _Jv_SyncInfo *si = (_Jv_SyncInfo *) sync_info;
218 219 220
  switch (_Jv_CondWait (&si->condition, &si->mutex, timeout, nanos))
    {
      case _JV_NOT_OWNER:
221 222
	throw new IllegalMonitorStateException (JvNewStringLatin1 
						("current thread not owner"));
223 224
      case _JV_INTERRUPTED:
	if (Thread::interrupted ())
225
	  throw new InterruptedException;
226
    }
Tom Tromey committed
227 228 229 230 231 232 233 234 235 236 237 238 239 240
}

//
// Some runtime code.
//

// This function is called at system startup to initialize the
// `sync_mutex'.
void
_Jv_InitializeSyncMutex (void)
{
  _Jv_MutexInit (&sync_mutex);
}

Tom Tromey committed
241
void
Tom Tromey committed
242 243
_Jv_MonitorEnter (jobject obj)
{
244
#ifndef HANDLE_SEGV
245
  if (__builtin_expect (! obj, false))
246
    throw new java::lang::NullPointerException;
247
#endif
248
  if (__builtin_expect (INIT_NEEDED (obj), false))
Tom Tromey committed
249 250
    obj->sync_init ();
  _Jv_SyncInfo *si = (_Jv_SyncInfo *) obj->sync_info;
Tom Tromey committed
251 252 253
  _Jv_MutexLock (&si->mutex);
  // FIXME: In the Windows case, this can return a nonzero error code.
  // We should turn that into some exception ...
Tom Tromey committed
254 255
}

Tom Tromey committed
256
void
Tom Tromey committed
257 258 259 260 261
_Jv_MonitorExit (jobject obj)
{
  JvAssert (obj);
  JvAssert (! INIT_NEEDED (obj));
  _Jv_SyncInfo *si = (_Jv_SyncInfo *) obj->sync_info;
262
  if (__builtin_expect (_Jv_MutexUnlock (&si->mutex), false))
263
    throw new java::lang::IllegalMonitorStateException;
Tom Tromey committed
264 265
}

Tom Tromey committed
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
#else /* JV_HASH_SYNCHRONIZATION */

// FIXME: We shouldn't be calling GC_register_finalizer directly.
#ifndef HAVE_BOEHM_GC
# error Hash synchronization currently requires boehm-gc
// That's actually a bit of a lie: It should also work with the null GC,
// probably even better than the alternative.
// To really support alternate GCs here, we would need to widen the
// interface to finalization, since we sometimes have to register a
// second finalizer for an object that already has one.
// We might also want to move the GC interface to a .h file, since
// the number of procedure call levels involved in some of these
// operations is already ridiculous, and would become worse if we
// went through the proper intermediaries.
#else
# include "gc.h"
#endif

// What follows currenly assumes a Linux-like platform.
// Some of it specifically assumes X86 or IA64 Linux, though that
// should be easily fixable.

// A Java monitor implemention based on a table of locks.
// Each entry in the table describes
// locks held for objects that hash to that location.
// This started out as a reimplementation of the technique used in SGIs JVM,
// for which we obtained permission from SGI.
// But in fact, this ended up quite different, though some ideas are
// still shared with the original.
// It was also influenced by some of the published IBM work,
// though it also differs in many ways from that.
// We could speed this up if we had a way to atomically update
// an entire cache entry, i.e. 2 contiguous words of memory.
// That would usually be the case with a 32 bit ABI on a 64 bit processor.
// But we don't currently go out of our way to target those.
// I don't know how to do much better with a N bit ABI on a processor
// that can atomically update only N bits at a time.
// Author: Hans-J. Boehm  (Hans_Boehm@hp.com, boehm@acm.org)

#include <assert.h>
#include <limits.h>
#include <unistd.h>	// for usleep, sysconf.
#include <sched.h>	// for sched_yield.
#include <gcj/javaprims.h>

typedef size_t obj_addr_t;	/* Integer type big enough for object	*/
				/* address.				*/

// The following should move to some standard place. Linux-threads
// already defines roughly these, as do more recent versions of boehm-gc.
// The problem is that neither exports them.

#if defined(__GNUC__) && defined(__i386__)
  // Atomically replace *addr by new_val if it was initially equal to old.
  // Return true if the comparison succeeded.
  // Assumed to have acquire semantics, i.e. later memory operations
  // cannot execute before the compare_and_swap finishes.
  inline static bool
  compare_and_swap(volatile obj_addr_t *addr,
		  				obj_addr_t old,
						obj_addr_t new_val) 
  {
    char result;
    __asm__ __volatile__("lock; cmpxchgl %2, %0; setz %1"
	    	: "=m"(*(addr)), "=q"(result)
		: "r" (new_val), "0"(*(addr)), "a"(old) : "memory");
    return (bool) result;
  }

  // Set *addr to new_val with release semantics, i.e. making sure
  // that prior loads and stores complete before this
  // assignment.
  // On X86, the hardware shouldn't reorder reads and writes,
  // so we just have to convince gcc not to do it either.
  inline static void
  release_set(volatile obj_addr_t *addr, obj_addr_t new_val)
  {
    __asm__ __volatile__(" " : : : "memory");
    *(addr) = new_val;
  }

  // Compare_and_swap with release semantics instead of acquire semantics.
  // On many architecture, the operation makes both guarantees, so the
  // implementation can be the same.
  inline static bool
  compare_and_swap_release(volatile obj_addr_t *addr,
		  				       obj_addr_t old,
						       obj_addr_t new_val)
  {
    return compare_and_swap(addr, old, new_val);
  }
#endif

#if defined(__GNUC__) && defined(__ia64__) && SIZEOF_VOID_P == 8
  inline static bool
  compare_and_swap(volatile obj_addr_t *addr,
	 				        obj_addr_t old,
						obj_addr_t new_val) 
  {
    unsigned long oldval;
    __asm__ __volatile__("mov ar.ccv=%4 ;; cmpxchg8.acq %0=%1,%2,ar.ccv"
		: "=r"(oldval), "=m"(*addr)
		: "r"(new_val), "1"(*addr), "r"(old) : "memory");
    return (oldval == old);
  }

  // The fact that *addr is volatile should cause the compiler to
  // automatically generate an st8.rel.
  inline static void
  release_set(volatile obj_addr_t *addr, obj_addr_t new_val)
  {
    __asm__ __volatile__(" " : : : "memory");
    *(addr) = new_val;
  }

  inline static bool
  compare_and_swap_release(volatile obj_addr_t *addr,
	 				               obj_addr_t old,
						       obj_addr_t new_val) 
  {
    unsigned long oldval;
    __asm__ __volatile__("mov ar.ccv=%4 ;; cmpxchg8.rel %0=%1,%2,ar.ccv"
		: "=r"(oldval), "=m"(*addr)
		: "r"(new_val), "1"(*addr), "r"(old) : "memory");
    return (oldval == old);
  }
#endif

// Try to determine whether we are on a multiprocessor, i.e. whether
// spinning may be profitable.
// This should really use a suitable autoconf macro.
// False is the conservative answer, though the right one is much better.
static bool
is_mp()
{
  long nprocs = sysconf(_SC_NPROCESSORS_ONLN);
  return (nprocs > 1);
}

// A call to keep_live(p) forces p to be accessible to the GC
// at this point.
inline static void
keep_live(obj_addr_t p)
{
    __asm__ __volatile__("" : : "rm"(p) : "memory");
}


// Each hash table entry holds a single preallocated "lightweight" lock.
// In addition, it holds a chain of "heavyweight" locks.  Lightweight
// locks do not support Object.wait(), and are converted to heavyweight
// status in response to contention.  Unlike the SGI scheme, both
// ligtweight and heavyweight locks in one hash entry can be simultaneously
// in use.  (The SGI scheme requires that we be able to acquire a heavyweight
// lock on behalf of another thread, and can thus convert a lock we don't
// hold to heavyweight status.  Here we don't insist on that, and thus
// let the original holder of the lighweight lock keep it.)

struct heavy_lock {
  void * reserved_for_gc;
  struct heavy_lock *next;	// Hash chain link.
				// The only field traced by GC.
  obj_addr_t address;		// Object to which this lock corresponds.
				// Should not be traced by GC.
  _Jv_SyncInfo si;
  // The remaining fields save prior finalization info for
  // the object, which we needed to replace in order to arrange
  // for cleanup of the lock structure.
  GC_finalization_proc old_finalization_proc;
  void * old_client_data;
};

#ifdef LOCK_DEBUG
Tom Tromey committed
439
void
Tom Tromey committed
440
print_hl_list(heavy_lock *hl)
Tom Tromey committed
441
{
Tom Tromey committed
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
    heavy_lock *p = hl;
    for (; 0 != p; p = p->next)
      fprintf (stderr, "(hl = %p, addr = %p)", p, (void *)(p -> address));
}
#endif /* LOCK_DEBUG */

#if defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy)
// If we have to run a destructor for a sync_info member, then this
// function is registered as a finalizer for the sync_info.
static void
heavy_lock_finalization_proc (jobject obj)
{
  heavy_lock *hl = (heavy_lock *) obj;
#if defined (_Jv_HaveCondDestroy)
  _Jv_CondDestroy (&hl->si.condition);
#endif
#if defined (_Jv_HaveMutexDestroy)
  _Jv_MutexDestroy (&hl->si.mutex);
#endif
  hl->si.init = false;
}
#endif /* defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy) */

// We convert the lock back to lightweight status when
// we exit, so that a single contention episode doesn't doom the lock
// forever.  But we also need to make sure that lock structures for dead
// objects are eventually reclaimed.  We do that in a an additional
// finalizer on the underlying object.
// Note that if the corresponding object is dead, it is safe to drop
// the heavy_lock structure from its list.  It is not necessarily
// safe to deallocate it, since the unlock code could still be running.

struct hash_entry {
  volatile obj_addr_t address;	// Address of object for which lightweight
  				// k is held.
				// We assume the 3 low order bits are zero.
				// With the Boehm collector and bitmap
				// allocation, objects of size 4 bytes are
				// broken anyway.  Thus this is primarily
				// a constraint on statically allocated
				// objects used for synchronization.
				// This allows us to use the low order
  				// bits as follows:
#   define LOCKED 	1 	// This hash entry is locked, and its
  				// state may be invalid.
  				// The lock protects both the hash_entry
  				// itself (except for the light_count
  				// and light_thr_id fields, which
  				// are protected by the lightweight
  				// lock itself), and any heavy_monitor
  				// structures attached to it.
#   define HEAVY	2	// There may be heavyweight locks
				// associated with this cache entry.
				// The lightweight entry is still valid,
  				// if the leading bits of the address
  				// field are nonzero.
 				// Set if heavy_count is > 0 .
  				// Stored redundantly so a single
  				// compare-and-swap works in the easy case.
#   define REQUEST_CONVERSION 4 // The lightweight lock is held.  But
  				// one or more other threads have tried
  				// to acquire the lock, and hence request
  				// conversion to heavyweight status.
#   define FLAGS (LOCKED | HEAVY | REQUEST_CONVERSION)
  volatile _Jv_ThreadId_t light_thr_id;
				// Thr_id of holder of lightweight lock.
  				// Only updated by lightweight lock holder.
				// Must be recognizably invalid if the
				// lightweight lock is not held.
#   define INVALID_THREAD_ID 0  // Works for Linux?
				// If zero doesn't work, we have to
				// initialize lock table.
  volatile unsigned short light_count;
				// Number of times the lightweight lock
  				// is held minus one.  Zero if lightweight
  				// lock is not held.
  unsigned short heavy_count; 	// Total number of times heavyweight locks
  				// associated with this hash entry are held
  				// or waiting to be acquired.
  				// Threads in wait() are included eventhough
  				// they have temporarily released the lock.
  struct heavy_lock * heavy_locks;
  				// Chain of heavy locks.  Protected
  				// by lockbit for he.  Locks may
  				// remain allocated here even if HEAVY
  				// is not set and heavy_count is 0.
  				// If a lightweight and hevyweight lock
  				// correspond to the same address, the
  				// lightweight lock is the right one.
};

#ifndef JV_SYNC_TABLE_SZ
# define JV_SYNC_TABLE_SZ 1024
#endif

hash_entry light_locks[JV_SYNC_TABLE_SZ];

#define JV_SYNC_HASH(p) (((long)p ^ ((long)p >> 10)) % JV_SYNC_TABLE_SZ)

#ifdef LOCK_DEBUG
  void print_he(hash_entry *he)
  {
     fprintf(stderr, "lock hash entry = %p, index = %d, address = 0x%lx\n"
		     "\tlight_thr_id = 0x%lx, light_count = %d, "
		     "heavy_count = %d\n\theavy_locks:", he,
		     he - light_locks, he -> address, he -> light_thr_id,
		     he -> light_count, he -> heavy_count);
     print_hl_list(he -> heavy_locks);
     fprintf(stderr, "\n");
  }
#endif /* LOCK_DEBUG */

// Wait for roughly 2^n units, touching as little memory as possible.
static void
spin(unsigned n)
{
  const unsigned MP_SPINS = 10;
  const unsigned YIELDS = 4;
  const unsigned SPINS_PER_UNIT = 30;
  const unsigned MIN_SLEEP_USECS = 2001; // Shorter times spin under Linux.
  const unsigned MAX_SLEEP_USECS = 200000;
  static unsigned spin_limit = 0;
  static unsigned yield_limit = YIELDS;
  static bool mp = false;
  static bool spin_initialized = false;

  if (!spin_initialized)
569
    {
Tom Tromey committed
570 571 572 573 574 575 576
      mp = is_mp();
      if (mp)
	{
	  spin_limit = MP_SPINS;
	  yield_limit = MP_SPINS + YIELDS;
	}
      spin_initialized = true;
577
    }
Tom Tromey committed
578
  if (n < spin_limit)
579
    {
Tom Tromey committed
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
      unsigned i = SPINS_PER_UNIT << n;
      for (; i > 0; --i)
        __asm__ __volatile__("");
    }
  else if (n < yield_limit)
    {
      sched_yield();
    }
  else
    {
      unsigned duration = MIN_SLEEP_USECS << (n - yield_limit);
      if (n >= 15 + yield_limit || duration > MAX_SLEEP_USECS)
	duration = MAX_SLEEP_USECS;
      usleep(duration);
    }
}

// Wait for a hash entry to become unlocked.
static void
wait_unlocked (hash_entry *he)
{
  unsigned i = 0;
  while (he -> address & LOCKED)
    spin (i++);
}

// Return the heavy lock for addr if it was already allocated.
// The client passes in the appropriate hash_entry.
// We hold the lock for he.
static inline heavy_lock *
find_heavy (obj_addr_t addr, hash_entry *he)
{
  heavy_lock *hl = he -> heavy_locks;
  while (hl != 0 && hl -> address != addr) hl = hl -> next;
  return hl;
}

// Unlink the heavy lock for the given address from its hash table chain.
// Dies miserably and conspicuously if it's not there, since that should
// be impossible.
static inline void
unlink_heavy (obj_addr_t addr, hash_entry *he)
{
  heavy_lock **currentp = &(he -> heavy_locks);
  while ((*currentp) -> address != addr)
    currentp = &((*currentp) -> next);
  *currentp = (*currentp) -> next;
}

// Finalization procedure for objects that have associated heavy-weight
// locks.  This may replace the real finalization procedure.
static void
heavy_lock_obj_finalization_proc (void *obj, void *cd)
{
  heavy_lock *hl = (heavy_lock *)cd;
  obj_addr_t addr = (obj_addr_t)obj;
  GC_finalization_proc old_finalization_proc = hl -> old_finalization_proc;
  void * old_client_data = hl -> old_client_data;

  if (old_finalization_proc != 0)
    {
      // We still need to run a real finalizer.  In an idealized
      // world, in which people write thread-safe finalizers, that is
      // likely to require synchronization.  Thus we reregister
      // ourselves as the only finalizer, and simply run the real one.
      // Thus we don't clean up the lock yet, but we're likely to do so
      // on the next GC cycle.
      hl -> old_finalization_proc = 0;
      hl -> old_client_data = 0;
#     ifdef HAVE_BOEHM_GC
        GC_REGISTER_FINALIZER_NO_ORDER(obj, heavy_lock_obj_finalization_proc, cd, 0, 0);
#     endif
      old_finalization_proc(obj, old_client_data);
    }
  else
    {
      // The object is really dead, although it's conceivable that
      // some thread may still be in the process of releasing the
      // heavy lock.  Unlink it and, if necessary, register a finalizer
      // to distroy sync_info.
      hash_entry *he = light_locks + JV_SYNC_HASH(addr);
      obj_addr_t address = (he -> address & ~LOCKED);
      while (!compare_and_swap(&(he -> address), address, address | LOCKED ))
	{
	  // Hash table entry is currently locked.  We can't safely touch
	  // touch the list of heavy locks.  
	  wait_unlocked(he);
	  address = (he -> address & ~LOCKED);
	}
      unlink_heavy(addr, light_locks + JV_SYNC_HASH(addr));
      release_set(&(he -> address), address);
#     if defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy)
        // Register a finalizer, yet again.
          hl->si.init = true;
          _Jv_RegisterFinalizer (hl, heavy_lock_finalization_proc);
#     endif
    }
}

// Allocate a new heavy lock for addr, returning its address.
// Assumes we already have the hash_entry locked, and there
// is currently no lightweight or allocated lock for addr.
// We register a finalizer for addr, which is responsible for
// removing the heavy lock when addr goes away, in addition
// to the responsibilities of any prior finalizer.
static heavy_lock *
alloc_heavy(obj_addr_t addr, hash_entry *he)
{
  heavy_lock * hl = (heavy_lock *) _Jv_AllocTraceOne(sizeof (heavy_lock));
  
  hl -> address = addr;
  _Jv_MutexInit (&(hl -> si.mutex));
  _Jv_CondInit (&(hl -> si.condition));
# if defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy)
694
    hl->si.init = true;  // needed ?
Tom Tromey committed
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
# endif
  hl -> next = he -> heavy_locks;
  he -> heavy_locks = hl;
  // FIXME: The only call that cheats and goes directly to the GC interface.
# ifdef HAVE_BOEHM_GC
    GC_REGISTER_FINALIZER_NO_ORDER(
		    	  (void *)addr, heavy_lock_obj_finalization_proc,
			  hl, &hl->old_finalization_proc,
			  &hl->old_client_data);
# endif /* HAVE_BOEHM_GC */
  return hl;
}

// Return the heavy lock for addr, allocating if necessary.
// Assumes we have the cache entry locked, and there is no lightweight
// lock for addr.
static heavy_lock *
get_heavy(obj_addr_t addr, hash_entry *he)
{
  heavy_lock *hl = find_heavy(addr, he);
  if (0 == hl)
    hl = alloc_heavy(addr, he);
  return hl;
}

void
_Jv_MonitorEnter (jobject obj)
{
  obj_addr_t addr = (obj_addr_t)obj;
  obj_addr_t address;
  unsigned hash = JV_SYNC_HASH(addr);
  hash_entry * he = light_locks + hash;
  _Jv_ThreadId_t self = _Jv_ThreadSelf();
  unsigned count;
  const unsigned N_SPINS = 18;

  assert(!(addr & FLAGS));
retry:
  if (__builtin_expect(compare_and_swap(&(he -> address),
					0, addr),true))
    {
      assert(he -> light_thr_id == INVALID_THREAD_ID);
      assert(he -> light_count == 0);
      he -> light_thr_id = self;
      // Count fields are set correctly.  Heavy_count was also zero,
      // but can change asynchronously.
      // This path is hopefully both fast and the most common.
      return;
    }
  address = he -> address;
  if ((address & ~(HEAVY | REQUEST_CONVERSION)) == addr)
    {
      if (he -> light_thr_id == self)
	{
	  // We hold the lightweight lock, and it's for the right
	  // address.
	  count = he -> light_count;
	  if (count == USHRT_MAX)
	    {
	      // I think most JVMs don't check for this.
	      // But I'm not convinced I couldn't turn this into a security
	      // hole, even with a 32 bit counter.
	      throw new java::lang::IllegalMonitorStateException(
		JvNewStringLatin1("maximum monitor nesting level exceeded")); 
	    }
	  he -> light_count = count + 1;
	  return;
	}
      else
	{
	  // Lightweight lock is held, but by somone else.
          // Spin a few times.  This avoids turning this into a heavyweight
    	  // lock if the current holder is about to release it.
          for (unsigned int i = 0; i < N_SPINS; ++i)
	    {
	      if ((he -> address & ~LOCKED) != (address & ~LOCKED)) goto retry;
	      spin(i);
            }
	  address &= ~LOCKED;
	  if (!compare_and_swap(&(he -> address), address, address | LOCKED ))
	    {
	      wait_unlocked(he);      
	      goto retry;
	    }
	  heavy_lock *hl = get_heavy(addr, he);
	  ++ (he -> heavy_count);
	  // The hl lock acquisition can't block for long, since it can
	  // only be held by other threads waiting for conversion, and
	  // they, like us, drop it quickly without blocking.
	  _Jv_MutexLock(&(hl->si.mutex));
	  assert(he -> address == address | LOCKED );
	  release_set(&(he -> address), (address | REQUEST_CONVERSION | HEAVY));
				// release lock on he
	  while ((he -> address & ~FLAGS) == (address & ~FLAGS))
	    {
	      // Once converted, the lock has to retain heavyweight
	      // status, since heavy_count > 0 . 
	      _Jv_CondWait (&(hl->si.condition), &(hl->si.mutex), 0, 0);
	    }
	  keep_live(addr);
		// Guarantee that hl doesn't get unlinked by finalizer.
		// This is only an issue if the client fails to release
		// the lock, which is unlikely.
	  assert(he -> address & HEAVY);
	  // Lock has been converted, we hold the heavyweight lock,
	  // heavy_count has been incremented.
	  return;
        }
    }
  obj_addr_t was_heavy = (address & HEAVY);
  address &= ~LOCKED;
  if (!compare_and_swap(&(he -> address), address, (address | LOCKED )))
    {
      wait_unlocked(he);
      goto retry;
    }
  if ((address & ~(HEAVY | REQUEST_CONVERSION)) == 0)
    {
      // Either was_heavy is true, or something changed out from under us,
      // since the initial test for 0 failed.
      assert(!(address & REQUEST_CONVERSION));
	// Can't convert a nonexistent lightweight lock.
      heavy_lock *hl;
      hl = (was_heavy? find_heavy(addr, he) : 0);
      if (0 == hl)
        {
	  // It is OK to use the lighweight lock, since either the
	  // heavyweight lock does not exist, or none of the
	  // heavyweight locks currently exist.  Future threads
	  // trying to acquire the lock will see the lightweight
	  // one first and use that.
	  he -> light_thr_id = self;  // OK, since nobody else can hold
				      // light lock or do this at the same time.
	  assert(he -> light_count == 0);
	  assert(was_heavy == (he -> address & HEAVY));
	  release_set(&(he -> address), (addr | was_heavy));
        }
      else
	{
	  // Must use heavy lock.
	  ++ (he -> heavy_count);
	  assert(0 == (address & ~HEAVY));
          release_set(&(he -> address), HEAVY);
          _Jv_MutexLock(&(hl->si.mutex));
	  keep_live(addr);
        }
      return;
    }
  // Lightweight lock is held, but does not correspond to this object.
  // We hold the lock on the hash entry, and he -> address can't
  // change from under us.  Neither can the chain of heavy locks.
    {
      assert(0 == he -> heavy_count || (address & HEAVY));
      heavy_lock *hl = get_heavy(addr, he);
      ++ (he -> heavy_count);
      release_set(&(he -> address), address | HEAVY);
      _Jv_MutexLock(&(hl->si.mutex));
      keep_live(addr);
853
    }
Tom Tromey committed
854
}
Tom Tromey committed
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188


void
_Jv_MonitorExit (jobject obj)
{
  obj_addr_t addr = (obj_addr_t)obj;
  _Jv_ThreadId_t self = _Jv_ThreadSelf();
  unsigned hash = JV_SYNC_HASH(addr);
  hash_entry * he = light_locks + hash;
  _Jv_ThreadId_t light_thr_id;
  unsigned count;
  obj_addr_t address;

retry:
  light_thr_id = he -> light_thr_id;
  // Unfortunately, it turns out we always need to read the address
  // first.  Even if we are going to update it with compare_and_swap,
  // we need to reset light_thr_id, and that's not safe unless we know
  // know that we hold the lock.
  address = he -> address;
  // First the (relatively) fast cases:
  if (__builtin_expect(light_thr_id == self, true))
    {
      count = he -> light_count;
      if (__builtin_expect((address & ~HEAVY) == addr, true))
	{
          if (count != 0)
            {
	      // We held the lightweight lock all along.  Thus the values
	      // we saw for light_thr_id and light_count must have been valid. 
	      he -> light_count = count - 1;
	      return;
            }
	  else
	    {
	      // We hold the lightweight lock once.
	      he -> light_thr_id = INVALID_THREAD_ID;
              if (compare_and_swap_release(&(he -> address), address,
					   address & HEAVY))
	        return;
	      else
		{
	          he -> light_thr_id = light_thr_id; // Undo prior damage.
	          goto retry;
	        }
            }
        }
      // else lock is not for this address, conversion is requested,
      // or the lock bit in the address field is set.
    }
  else
    {
      if ((address & ~(HEAVY | REQUEST_CONVERSION)) == addr)
	{
#	  ifdef LOCK_DEBUG
	    fprintf(stderr, "Lightweight lock held by other thread\n\t"
			    "light_thr_id = 0x%lx, self = 0x%lx, "
			    "address = 0x%lx, pid = %d\n",
			    light_thr_id, self, address, getpid());
	    print_he(he);
	    for(;;) {}
#	  endif
	  // Someone holds the lightweight lock for this object, and
	  // it can't be us.
	  throw new java::lang::IllegalMonitorStateException(
			JvNewStringLatin1("current thread not owner"));
        }
      else
	count = he -> light_count;
    }
  if (address & LOCKED)
    {
      wait_unlocked(he);
      goto retry;
    }
  // Now the unlikely cases.
  // We do know that:
  // - Address is set, and doesn't contain the LOCKED bit.
  // - If address refers to the same object as addr, then he -> light_thr_id
  //   refers to this thread, and count is valid.
  // - The case in which we held the lightweight lock has been
  //   completely handled, except for the REQUEST_CONVERSION case.
  //   
  if ((address & ~FLAGS) == addr)
    {
      // The lightweight lock is assigned to this object.
      // Thus we must be in the REQUEST_CONVERSION case.
      if (0 != count)
        {
	  // Defer conversion until we exit completely.
	  he -> light_count = count - 1;
	  return;
        }
      assert(he -> light_thr_id == self);
      assert(address & REQUEST_CONVERSION);
      // Conversion requested
      // Convert now.
      if (!compare_and_swap(&(he -> address), address, address | LOCKED))
	goto retry;
      heavy_lock *hl = find_heavy(addr, he);
      assert (0 != hl);
		// Requestor created it.
      he -> light_count = 0;
      assert(he -> heavy_count > 0);
	  	// was incremented by requestor.
      _Jv_MutexLock(&(hl->si.mutex));
	// Release the he lock after acquiring the mutex.
	// Otherwise we can accidentally
	// notify a thread that has already seen a heavyweight
	// lock.
      he -> light_thr_id = INVALID_THREAD_ID;
      release_set(&(he -> address), HEAVY);
	  	// lightweight lock now unused.
      _Jv_CondNotifyAll(&(hl->si.condition), &(hl->si.mutex));
      _Jv_MutexUnlock(&(hl->si.mutex));
      // heavy_count was already incremented by original requestor.
      keep_live(addr);
      return;
    }
  // lightweight lock not for this object.
  assert(!(address & LOCKED));
  assert((address & ~FLAGS) != addr);
  if (!compare_and_swap(&(he -> address), address, address | LOCKED))
	goto retry;
  heavy_lock *hl = find_heavy(addr, he);
  if (NULL == hl)
    {
#     ifdef LOCK_DEBUG
	fprintf(stderr, "Failed to find heavyweight lock for addr 0x%lx"
			" pid = %d\n", addr, getpid());
	print_he(he);
	for(;;) {}
#     endif
      throw new java::lang::IllegalMonitorStateException(
			JvNewStringLatin1("current thread not owner"));
    }
  assert(address & HEAVY);
  count = he -> heavy_count;
  assert(count > 0);
  --count;
  if (0 == count) address &= ~HEAVY;
  he -> heavy_count = count;
  release_set(&(he -> address), address);
    				// release lock bit, preserving
				// REQUEST_CONVERSION
    				// and object address.
  _Jv_MutexUnlock(&(hl->si.mutex));
  			// Unlock after releasing the lock bit, so that
  			// we don't switch to another thread prematurely.
  keep_live(addr);
}     

// The rest of these are moderately thin veneers on _Jv_Cond ops.
// The current version of Notify might be able to make the pthread
// call AFTER releasing the lock, thus saving some context switches??

void
java::lang::Object::wait (jlong timeout, jint nanos)
{
  obj_addr_t addr = (obj_addr_t)this;
  _Jv_ThreadId_t self = _Jv_ThreadSelf();
  unsigned hash = JV_SYNC_HASH(addr);
  hash_entry * he = light_locks + hash;
  unsigned count;
  obj_addr_t address;
  heavy_lock *hl;
    
  if (__builtin_expect (timeout < 0 || nanos < 0 || nanos > 999999, false))
    throw new IllegalArgumentException;
retry:
  address = he -> address;
  address &= ~LOCKED;
  if (!compare_and_swap(&(he -> address), address, address | LOCKED))
    {
      wait_unlocked(he);
      goto retry;
    }
  // address does not have the lock bit set.  We hold the lock on he.
  if ((address & ~FLAGS) == addr)
    {
      // Convert to heavyweight.
	if (he -> light_thr_id != self)
	  {
#	    ifdef LOCK_DEBUG
	      fprintf(stderr, "Found wrong lightweight lock owner in wait "
			      "address = 0x%lx pid = %d\n", address, getpid());
	      print_he(he);
	      for(;;) {}
#	    endif
	    release_set(&(he -> address), address);
	    throw new IllegalMonitorStateException (JvNewStringLatin1 
                          ("current thread not owner"));
	  }
	count = he -> light_count;
	hl = get_heavy(addr, he);
	he -> light_count = 0;
	he -> heavy_count += count + 1;
	for (unsigned i = 0; i <= count; ++i)
	  _Jv_MutexLock(&(hl->si.mutex));
	// Again release the he lock after acquiring the mutex.
        he -> light_thr_id = INVALID_THREAD_ID;
	release_set(&(he -> address), HEAVY);  // lightweight lock now unused.
	if (address & REQUEST_CONVERSION)
	  _Jv_CondNotify (&(hl->si.condition), &(hl->si.mutex));
    }
  else /* We should hold the heavyweight lock. */
    {
      hl = find_heavy(addr, he);
      release_set(&(he -> address), address);
      if (0 == hl)
	{
#	  ifdef LOCK_DEBUG
	    fprintf(stderr, "Couldn't find heavy lock in wait "
		 	    "addr = 0x%lx pid = %d\n", addr, getpid());
	    print_he(he);
	    for(;;) {}
#	  endif
	  throw new IllegalMonitorStateException (JvNewStringLatin1 
                          ("current thread not owner"));
	}
      assert(address & HEAVY);
    }
  switch (_Jv_CondWait (&(hl->si.condition), &(hl->si.mutex), timeout, nanos))
    {
      case _JV_NOT_OWNER:
	throw new IllegalMonitorStateException (JvNewStringLatin1 
                          ("current thread not owner"));        
      case _JV_INTERRUPTED:
	if (Thread::interrupted ())
	  throw new InterruptedException;        
    }
}

void
java::lang::Object::notify (void)
{
  obj_addr_t addr = (obj_addr_t)this;
  _Jv_ThreadId_t self = _Jv_ThreadSelf();
  unsigned hash = JV_SYNC_HASH(addr);
  hash_entry * he = light_locks + hash;
  heavy_lock *hl;
  obj_addr_t address;
  int result;

retry:
  address = ((he -> address) & ~LOCKED);
  if (!compare_and_swap(&(he -> address), address, address | LOCKED))
    {
      wait_unlocked(he);
      goto retry;
    }
  if ((address & ~FLAGS) == addr && he -> light_thr_id == self)
    {
      // We hold lightweight lock.  Since it has not
      // been inflated, there are no waiters.
      release_set(&(he -> address), address);	// unlock
      return;
    }
  hl = find_heavy(addr, he);
  // Hl can't disappear since we point to the underlying object.
  // It's important that we release the lock bit before the notify, since
  // otherwise we will try to wake up thee target while we still hold the
  // bit.  This results in lock bit contention, which we don't handle
  // terribly well.
  release_set(&(he -> address), address); // unlock
  if (0 == hl)
    {
      throw new IllegalMonitorStateException(JvNewStringLatin1 
                                              ("current thread not owner"));
      return;
    }
  result = _Jv_CondNotify(&(hl->si.condition), &(hl->si.mutex));
  keep_live(addr);
  if (__builtin_expect (result, 0))
    throw new IllegalMonitorStateException(JvNewStringLatin1 
                                              ("current thread not owner"));
}

void
java::lang::Object::notifyAll (void)
{
  obj_addr_t addr = (obj_addr_t)this;
  _Jv_ThreadId_t self = _Jv_ThreadSelf();
  unsigned hash = JV_SYNC_HASH(addr);
  hash_entry * he = light_locks + hash;
  heavy_lock *hl;
  obj_addr_t address;
  int result;

retry:
  address = (he -> address) & ~LOCKED;
  if (!compare_and_swap(&(he -> address), address, address | LOCKED))
    {
      wait_unlocked(he);
      goto retry;
    }
  hl = find_heavy(addr, he);
  if ((address & ~FLAGS) == addr && he -> light_thr_id == self)
    {
      // We hold lightweight lock.  Since it has not
      // been inflated, there are no waiters.
      release_set(&(he -> address), address);	// unlock
      return;
    }
  release_set(&(he -> address), address); // unlock
  if (0 == hl)
    {
      throw new IllegalMonitorStateException(JvNewStringLatin1 
                                              ("current thread not owner"));
    }
  result = _Jv_CondNotifyAll(&(hl->si.condition), &(hl->si.mutex));
  if (__builtin_expect (result, 0))
    throw new IllegalMonitorStateException(JvNewStringLatin1 
                                              ("current thread not owner"));
}

// This is declared in Java code and in Object.h.
// It should never be called with JV_HASH_SYNCHRONIZATION
void
java::lang::Object::sync_init (void)
{
  throw new IllegalMonitorStateException(JvNewStringLatin1 
                                              ("internal error: sync_init"));
}

// This is called on startup and declared in Object.h.
// For now we just make it a no-op.
void
_Jv_InitializeSyncMutex (void)
{
}

#endif /* JV_HASH_SYNCHRONIZATION */