doloop.c 25.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
/* Perform doloop optimizations
   Copyright (C) 1999, 2000 Free Software Foundation, Inc.
   Contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz)

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "rtl.h"
#include "insn-flags.h"
#include "flags.h"
#include "expr.h"
#include "loop.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "tm_p.h"


/* This module is used to modify loops with a determinable number of
   iterations to use special low-overhead looping instructions.

   It first validates whether the loop is well behaved and has a
   determinable number of iterations (either at compile or run-time).
   It then modifies the loop to use a low-overhead looping pattern as
   follows:

   1. A pseudo register is allocated as the loop iteration counter.

   2. The number of loop iterations is calculated and is stored
      in the loop counter.

   3. At the end of the loop, the jump insn is replaced by the
      doloop_end pattern.  The compare must remain because it might be
      used elsewhere.  If the loop-variable or condition register are
      used elsewhere, they will be eliminated by flow.

   4. An optional doloop_begin pattern is inserted at the top of the
      loop.
*/


#ifdef HAVE_doloop_end

static rtx doloop_condition_get
  PARAMS ((rtx));
static unsigned HOST_WIDE_INT doloop_iterations_max
  PARAMS ((const struct loop_info *, enum machine_mode, int));
static int doloop_valid_p
  PARAMS ((const struct loop *, rtx));
static int doloop_modify
  PARAMS ((const struct loop *, rtx, rtx, rtx, rtx, rtx));
static int doloop_modify_runtime
  PARAMS ((const struct loop *, rtx, rtx, rtx, enum machine_mode, rtx));


/* Return the loop termination condition for PATTERN or zero
   if it is not a decrement and branch jump insn.  */
static rtx
doloop_condition_get (pattern)
     rtx pattern;
{
  rtx cmp;
  rtx inc;
  rtx reg;
  rtx condition;

  /* The canonical doloop pattern we expect is:

     (parallel [(set (pc) (if_then_else (condition)
                                        (label_ref (label))
                                        (pc)))
                (set (reg) (plus (reg) (const_int -1)))
                (additional clobbers and uses)])

     Some machines (IA-64) make the decrement conditional on
     the condition as well, so we don't bother verifying the
     actual decrement.  In summary, the branch must be the
     first entry of the parallel (also required by jump.c),
     and the second entry of the parallel must be a set of
     the loop counter register.  */

  if (GET_CODE (pattern) != PARALLEL)
    return 0;

  cmp = XVECEXP (pattern, 0, 0);
  inc = XVECEXP (pattern, 0, 1);

  /* Check for (set (reg) (something)).  */
  if (GET_CODE (inc) != SET || ! REG_P (SET_DEST (inc)))
    return 0;

  /* Extract loop counter register.  */
  reg = SET_DEST (inc);

  /* Check for (set (pc) (if_then_else (condition)
                                       (label_ref (label))
                                       (pc))).  */
  if (GET_CODE (cmp) != SET
      || SET_DEST (cmp) != pc_rtx
      || GET_CODE (SET_SRC (cmp)) != IF_THEN_ELSE
      || GET_CODE (XEXP (SET_SRC (cmp), 1)) != LABEL_REF
      || XEXP (SET_SRC (cmp), 2) != pc_rtx)
    return 0;

  /* Extract loop termination condition.  */
  condition = XEXP (SET_SRC (cmp), 0);

  if ((GET_CODE (condition) != GE && GET_CODE (condition) != NE)
      || GET_CODE (XEXP (condition, 1)) != CONST_INT)
    return 0;

  if (XEXP (condition, 0) == reg)
    return condition;

  if (GET_CODE (XEXP (condition, 0)) == PLUS
      && XEXP (XEXP (condition, 0), 0) == reg)
    return condition;

  /* ??? If a machine uses a funny comparison, we could return a
     canonicalised form here.  */

  return 0;
}


/* Return an estimate of the maximum number of loop iterations for the
   loop specified by LOOP or zero if the loop is not normal.
   MODE is the mode of the iteration count and NONNEG is non-zero if
   the the iteration count has been proved to be non-negative.  */
static unsigned HOST_WIDE_INT
doloop_iterations_max (loop_info, mode, nonneg)
     const struct loop_info *loop_info;
     enum machine_mode mode;
     int nonneg;
{
  unsigned HOST_WIDE_INT n_iterations_max;
  enum rtx_code code;
  rtx min_value;
  rtx max_value;
  HOST_WIDE_INT abs_inc;
  int neg_inc;

  neg_inc = 0;
  abs_inc = INTVAL (loop_info->increment);
  if (abs_inc < 0)
    {
      abs_inc = -abs_inc;
      neg_inc = 1;
    }

  if (neg_inc)
    {
      code = swap_condition (loop_info->comparison_code);
      min_value = loop_info->final_equiv_value;
      max_value = loop_info->initial_equiv_value;
    }
  else
    {
      code = loop_info->comparison_code;
      min_value = loop_info->initial_equiv_value;
      max_value = loop_info->final_equiv_value;
    }

  /* Since the loop has a VTOP, we know that the initial test will be
     true and thus the value of max_value should be greater than the
     value of min_value.  Thus the difference should always be positive
     and the code must be LT, LE, LTU, LEU, or NE.  Otherwise the loop is
     not normal, e.g., `for (i = 0; i < 10; i--)'.  */
  switch (code)
    {
    case LTU:
    case LEU:
      {
	unsigned HOST_WIDE_INT umax;
	unsigned HOST_WIDE_INT umin;

	if (GET_CODE (min_value) == CONST_INT)
	  umin = INTVAL (min_value);
	else
	  umin = 0;

	if (GET_CODE (max_value) == CONST_INT)
	  umax = INTVAL (max_value);
	else
200
	  umax = ((unsigned)2 << (GET_MODE_BITSIZE (mode) - 1)) - 1;
201 202 203 204 205 206 207 208 209 210 211 212 213 214

	n_iterations_max = umax - umin;
	break;
      }

    case LT:
    case LE:
      {
	HOST_WIDE_INT smax;
	HOST_WIDE_INT smin;

	if (GET_CODE (min_value) == CONST_INT)
	  smin = INTVAL (min_value);
	else
215
	  smin = -((unsigned)1 << (GET_MODE_BITSIZE (mode) - 1));
216 217 218 219

	if (GET_CODE (max_value) == CONST_INT)
	  smax = INTVAL (max_value);
	else
220
	  smax = ((unsigned)1 << (GET_MODE_BITSIZE (mode) - 1)) - 1;
221 222 223 224 225 226 227 228 229 230 231 232

	n_iterations_max = smax - smin;
	break;
      }

    case NE:
      if (GET_CODE (min_value) == CONST_INT
	  && GET_CODE (max_value) == CONST_INT)
	n_iterations_max = INTVAL (max_value) - INTVAL (min_value);
      else
	/* We need to conservatively assume that we might have the maximum
	   number of iterations without any additional knowledge.  */
233
	n_iterations_max = ((unsigned)2 << (GET_MODE_BITSIZE (mode) - 1)) - 1;
234 235 236 237 238 239 240 241 242 243
      break;

    default:
      return 0;
    }

  n_iterations_max /= abs_inc;

  /* If we know that the iteration count is non-negative then adjust
     n_iterations_max if it is so large that it appears negative.  */
244 245 246
  if (nonneg
      && n_iterations_max > ((unsigned)1 << (GET_MODE_BITSIZE (mode) - 1)))
    n_iterations_max = ((unsigned)1 << (GET_MODE_BITSIZE (mode) - 1)) - 1;
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

  return n_iterations_max;
}


/* Return non-zero if the loop specified by LOOP is suitable for
   the use of special low-overhead looping instructions.  */
static int
doloop_valid_p (loop, jump_insn)
     const struct loop *loop;
     rtx jump_insn;
{
  const struct loop_info *loop_info = LOOP_INFO (loop);

  /* The loop must have a conditional jump at the end.  */
  if (! any_condjump_p (jump_insn)
      || ! onlyjump_p (jump_insn))
    {
      if (loop_dump_stream)
  	fprintf (loop_dump_stream,
		 "Doloop: Invalid jump at loop end.\n");
      return 0;
    }

  /* Give up if a loop has been completely unrolled.  */
  if (loop_info->n_iterations == loop_info->unroll_number)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: Loop completely unrolled.\n");
      return 0;
    }

  /* The loop must have a single exit target.  A break or return
     statement within a loop will generate multiple loop exits.
     Another example of a loop that currently generates multiple exit
     targets is for (i = 0; i < (foo ? 8 : 4); i++) { }.  */
284
  if (loop_info->has_multiple_exit_targets || loop->exit_count)
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: Loop has multiple exit targets.\n");
      return 0;
    }

  /* An indirect jump may jump out of the loop.  */
  if (loop_info->has_indirect_jump)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: Indirect jump in function.\n");
      return 0;
    }

  /* A called function may clobber any special registers required for
     low-overhead looping.  */
  if (loop_info->has_call)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: Function call in loop.\n");
      return 0;
    }

 /* Some targets (eg, PPC) use the count register for branch on table
    instructions.  ??? This should be a target specific check.  */
  if (loop_info->has_tablejump)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: Computed branch in the loop.\n");
      return 0;
    }

  if (! loop_info->increment)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: Could not determine iteration info.\n");
      return 0;
    }

  if (GET_CODE (loop_info->increment) != CONST_INT)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: Increment not an integer constant.\n");
      return 0;
    }

  /* There is no guarantee that a NE loop will terminate if the
     absolute increment is not unity.  ??? We could compute this
     condition at run-time and have a additional jump around the loop
     to ensure an infinite loop.  */
  if (loop_info->comparison_code == NE
      && INTVAL (loop_info->increment) != -1
      && INTVAL (loop_info->increment) != 1)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: NE loop with non-unity increment.\n");
      return 0;
    }

  /* Check for loops that may not terminate under special conditions.  */
  if (! loop_info->n_iterations
      && ((loop_info->comparison_code == LEU
	   && INTVAL (loop_info->increment) > 0)
	  || (loop_info->comparison_code == GEU
	      && INTVAL (loop_info->increment) < 0)))
    {
      /* If the comparison is LEU and the comparison value is UINT_MAX
	 then the loop will not terminate.  Similarly, if the
	 comparison code is GEU and the initial value is 0, the loop
	 will not terminate.

	 Note that with LE and GE, the loop behaviour can be
	 implementation dependent if an overflow occurs, say between
	 INT_MAX and INT_MAX + 1.  We thus don't have to worry about
	 these two cases.

	 ??? We could compute these conditions at run-time and have a
	 additional jump around the loop to ensure an infinite loop.
	 However, it is very unlikely that this is the intended
	 behaviour of the loop and checking for these rare boundary
	 conditions would pessimize all other code.  */
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: Possible infinite iteration case ignored.\n");
    }

  return 1;
}


/* Modify the loop to use the low-overhead looping insn where LOOP
   describes the loop, ITERATIONS is an RTX containing the desired
   number of loop iterations, ITERATIONS_MAX is a CONST_INT specifying
   the maximum number of loop iterations, and DOLOOP_INSN is the
   low-overhead looping insn to emit at the end of the loop.  This
   returns non-zero if it was successful.  */
static int
doloop_modify (loop, iterations, iterations_max,
	       doloop_seq, start_label, condition)
     const struct loop *loop;
     rtx iterations;
     rtx iterations_max;
     rtx doloop_seq;
     rtx start_label;
     rtx condition;
{
  rtx counter_reg;
  rtx count;
  rtx sequence;
  rtx jump_insn;
  int nonneg = 0;
  int decrement_count;

  jump_insn = prev_nonnote_insn (loop->end);

  if (loop_dump_stream)
    {
      fprintf (loop_dump_stream, "Doloop: Inserting doloop pattern (");
      if (GET_CODE (iterations) == CONST_INT)
	fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
		 INTVAL (iterations));
      else
	fputs ("runtime", loop_dump_stream);
      fputs (" iterations).", loop_dump_stream);
    }

418 419 420 421 422 423
  /* Emit the label that will delimit the top of the loop.
     This has to be done before the delete_insn call below, to prevent
     delete_insn from deleting too much.  */
  emit_label_after (start_label, loop->top ? loop->top : loop->start);
  LABEL_NUSES (start_label)++;

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
  /* Discard original jump to continue loop.  The original compare
     result may still be live, so it cannot be discarded explicitly.  */
  delete_insn (jump_insn);

  counter_reg = XEXP (condition, 0);
  if (GET_CODE (counter_reg) == PLUS)
    counter_reg = XEXP (counter_reg, 0);

  start_sequence ();

  count = iterations;
  decrement_count = 0;
  switch (GET_CODE (condition))
    {
    case NE:
      /* Currently only NE tests against zero and one are supported.  */
      if (XEXP (condition, 1) == const0_rtx)
	decrement_count = 1;
      else if (XEXP (condition, 1) != const1_rtx)
	abort ();
      break;

    case GE:
      /* Currently only GE tests against zero are supported.  */
      if (XEXP (condition, 1) != const0_rtx)
	abort ();

      /* The iteration count needs decrementing for a GE test.  */
      decrement_count = 1;

      /* Determine if the iteration counter will be non-negative.
	 Note that the maximum value loaded is iterations_max - 1.  */
      if ((unsigned HOST_WIDE_INT) INTVAL (iterations_max)
457
	  <= ((unsigned)1 << (GET_MODE_BITSIZE (GET_MODE (counter_reg)) - 1)))
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
	nonneg = 1;
      break;

      /* Abort if an invalid doloop pattern has been generated.  */
    default:
      abort();
    }

  if (decrement_count)
    {
      if (GET_CODE (count) == CONST_INT)
	count = GEN_INT (INTVAL (count) - 1);
      else
	count = expand_binop (GET_MODE (counter_reg), sub_optab,
			      count, GEN_INT (1),
			      0, 0, OPTAB_LIB_WIDEN);
    }

  /* Insert initialization of the count register into the loop header.  */
  convert_move (counter_reg, count, 1);
  sequence = gen_sequence ();
  end_sequence ();
  emit_insn_before (sequence, loop->start);

  /* Some targets (eg, C4x) need to initialize special looping
     registers.  */
#ifdef HAVE_doloop_begin
  {
    rtx init;

    init = gen_doloop_begin (counter_reg,
			     GET_CODE (iterations) == CONST_INT
			     ? iterations : const0_rtx, iterations_max,
			     GEN_INT (loop->level));
    if (init)
      {
	start_sequence ();
	emit_insn (init);
	sequence = gen_sequence ();
	end_sequence ();
	emit_insn_after (sequence, loop->start);
      }
  }
#endif

  /* Insert the new low-overhead looping insn.  */
  emit_jump_insn_before (doloop_seq, loop->end);
  jump_insn = prev_nonnote_insn (loop->end);
  JUMP_LABEL (jump_insn) = start_label;

  /* Add a REG_NONNEG note if the actual or estimated maximum number
     of iterations is non-negative.  */
  if (nonneg)
    {
      REG_NOTES (jump_insn)
	= gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX, REG_NOTES (jump_insn));
    }
  return 1;
}


/* Handle the more complex case, where the bounds are not known at
   compile time.  In this case we generate a run_time calculation of
   the number of iterations.  We rely on the existence of a run-time
   guard to ensure that the loop executes at least once, i.e.,
   initial_value obeys the loop comparison condition.  If a guard is
   not present, we emit one.  The loop to modify is described by LOOP.
   ITERATIONS_MAX is a CONST_INT specifying the estimated maximum
   number of loop iterations.  DOLOOP_INSN is the low-overhead looping
   insn to insert.  Returns non-zero if loop successfully modified.  */
static int
doloop_modify_runtime (loop, iterations_max,
		       doloop_seq, start_label, mode, condition)
     const struct loop *loop;
     rtx iterations_max;
     rtx doloop_seq;
     rtx start_label;
     enum machine_mode mode;
     rtx condition;
{
  const struct loop_info *loop_info = LOOP_INFO (loop);
  HOST_WIDE_INT abs_inc;
  int neg_inc;
  rtx diff;
  rtx sequence;
  rtx iterations;
  rtx initial_value;
  rtx final_value;
  rtx increment;
  int unsigned_p;
  enum rtx_code comparison_code;

  increment = loop_info->increment;
  initial_value = loop_info->initial_value;
  final_value = loop_info->final_value;

  neg_inc = 0;
  abs_inc = INTVAL (increment);
  if (abs_inc < 0)
    {
      abs_inc = -abs_inc;
      neg_inc = 1;
    }

  comparison_code = loop_info->comparison_code;
  unsigned_p = (comparison_code == LTU
		|| comparison_code == LEU
		|| comparison_code == GTU
		|| comparison_code == GEU
		|| comparison_code == NE);

  /* The number of iterations (prior to any loop unrolling) is given by:
     (abs (final - initial) + abs_inc - 1) / abs_inc.

     However, it is possible for the summation to overflow, and a
     safer method is:

     abs (final - initial) / abs_inc + (abs (final - initial) % abs_inc) != 0

     If the loop has been unrolled, then the loop body has been
     preconditioned to iterate a multiple of unroll_number times.
     The number of iterations of the loop body is simply:
     abs (final - initial) / (abs_inc * unroll_number).

     The division and modulo operations can be avoided by requiring
     that the increment is a power of 2 (precondition_loop_p enforces
     this requirement).  Nevertheless, the RTX_COSTS should be checked
     to see if a fast divmod is available.  */

  start_sequence ();
  /* abs (final - initial)  */
  diff = expand_binop (mode, sub_optab,
		       copy_rtx (neg_inc ? initial_value : final_value),
		       copy_rtx (neg_inc ? final_value : initial_value),
		       NULL_RTX, unsigned_p, OPTAB_LIB_WIDEN);

  if (loop_info->unroll_number == 1)
    {
      if (abs_inc != 1)
	{
	  int shift_count;
	  rtx extra;
	  rtx label;

	  shift_count = exact_log2 (abs_inc);
	  if (shift_count < 0)
	    abort ();

	  /* abs (final - initial) / abs_inc  */
	  iterations = expand_binop (GET_MODE (diff), lshr_optab,
				     diff, GEN_INT (shift_count),
				     NULL_RTX, 1,
				     OPTAB_LIB_WIDEN);

	  /* abs (final - initial) % abs_inc  */
	  extra = expand_binop (GET_MODE (iterations), and_optab,
				diff, GEN_INT (abs_inc - 1),
				NULL_RTX, 1,
				OPTAB_LIB_WIDEN);

	  /* If (abs (final - initial) % abs_inc == 0) jump past
	     following increment instruction.  */
	  label = gen_label_rtx();
	  emit_cmp_and_jump_insns (extra, const0_rtx, EQ, NULL_RTX,
				   GET_MODE (extra), 0, 0, label);
	  JUMP_LABEL (get_last_insn ()) = label;
	  LABEL_NUSES (label)++;

	  /* Increment the iteration count by one.  */
	  iterations = expand_binop (GET_MODE (iterations), add_optab,
				     iterations, GEN_INT (1),
				     iterations, 1,
				     OPTAB_LIB_WIDEN);

	  emit_label (label);
	}
      else
	iterations = diff;
    }
  else
    {
      int shift_count;

      /* precondition_loop_p has preconditioned the loop so that the
	 iteration count of the loop body is always a power of 2.
	 Since we won't get an overflow calculating the loop count,
	 the code we emit is simpler.  */
      shift_count = exact_log2 (loop_info->unroll_number * abs_inc);
      if (shift_count < 0)
	abort ();

      iterations = expand_binop (GET_MODE (diff), lshr_optab,
				 diff, GEN_INT (shift_count),
				 NULL_RTX, 1,
				 OPTAB_LIB_WIDEN);
    }


  /* If there is a NOTE_INSN_LOOP_VTOP, we have a `for' or `while'
     style loop, with a loop exit test at the start.  Thus, we can
     assume that the loop condition was true when the loop was
     entered.

     `do-while' loops require special treatment since the exit test is
     not executed before the start of the loop.  We need to determine
     if the loop will terminate after the first pass and to limit the
     iteration count to one if necessary.  */
  if (! loop->vtop)
    {
      rtx label;

      if (loop_dump_stream)
	fprintf (loop_dump_stream, "Doloop: Do-while loop.\n");

      /* A `do-while' loop must iterate at least once.  If the
	 iteration count is bogus, we set the iteration count to 1.
	 Note that if the loop has been unrolled, then the loop body
	 is guaranteed to execute at least once.  */
      if (loop_info->unroll_number == 1)
	{
	  /*  Emit insns to test if the loop will immediately
	      terminate and to set the iteration count to 1 if true.  */
	  label = gen_label_rtx();
	  emit_cmp_and_jump_insns (copy_rtx (initial_value),
				   copy_rtx (loop_info->comparison_value),
				   comparison_code, NULL_RTX, mode, 0, 0,
				   label);
	  JUMP_LABEL (get_last_insn ()) = label;
	  LABEL_NUSES (label)++;
	  emit_move_insn (iterations, const1_rtx);
	  emit_label (label);
	}
    }

  sequence = gen_sequence ();
  end_sequence ();
  emit_insn_before (sequence, loop->start);

  return doloop_modify (loop, iterations, iterations_max, doloop_seq,
			start_label, condition);
}


/* This is the main entry point.  Process loop described by LOOP
   validating that the loop is suitable for conversion to use a low
   overhead looping instruction, replacing the jump insn where
   suitable.  We distinguish between loops with compile-time bounds
   and those with run-time bounds.  Information from LOOP is used to
   compute the number of iterations and to determine whether the loop
   is a candidate for this optimization.  Returns non-zero if loop
   successfully modified.  */
int
doloop_optimize (loop)
     const struct loop *loop;
{
  struct loop_info *loop_info = LOOP_INFO (loop);
  rtx initial_value;
  rtx final_value;
  rtx increment;
  rtx jump_insn;
  enum machine_mode mode;
  unsigned HOST_WIDE_INT n_iterations;
  unsigned HOST_WIDE_INT n_iterations_max;
  rtx doloop_seq, doloop_pat, doloop_reg;
  rtx iterations;
  rtx iterations_max;
  rtx start_label;
  rtx condition;

  if (loop_dump_stream)
    fprintf (loop_dump_stream,
	     "Doloop: Processing loop %d, enclosed levels %d.\n",
	     loop->num, loop->level);

  jump_insn = prev_nonnote_insn (loop->end);

  /* Check that loop is a candidate for a low-overhead looping insn.  */
  if (! doloop_valid_p (loop, jump_insn))
    return 0;

  /* Determine if the loop can be safely, and profitably,
     preconditioned.  While we don't precondition the loop in a loop
     unrolling sense, this test ensures that the loop is well behaved
     and that the increment is a constant integer.  */
  if (! precondition_loop_p (loop, &initial_value, &final_value,
			     &increment, &mode))
    {
      if (loop_dump_stream)
      	fprintf (loop_dump_stream,
		 "Doloop: Cannot precondition loop.\n");
      return 0;
    }

  /* Determine or estimate the maximum number of loop iterations.  */
  n_iterations = loop_info->n_iterations;
  if (n_iterations)
    {
      /* This is the simple case where the initial and final loop
	 values are constants.  */
      n_iterations_max = n_iterations;
    }
  else
    {
      int nonneg = find_reg_note (jump_insn, REG_NONNEG, 0) != 0;

      /* This is the harder case where the initial and final loop
	 values may not be constants.  */
      n_iterations_max = doloop_iterations_max (loop_info, mode, nonneg);

      if (! n_iterations_max)
	{
	  /* We have something like `for (i = 0; i < 10; i--)'.  */
	  if (loop_dump_stream)
	    fprintf (loop_dump_stream,
		     "Doloop: Not normal loop.\n");
	  return 0;
	}
    }

  /* Account for loop unrolling in the iteration count.  This will
     have no effect if loop_iterations could not determine the number
     of iterations.  */
  n_iterations /= loop_info->unroll_number;
  n_iterations_max /= loop_info->unroll_number;

  if (n_iterations && n_iterations < 3)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: Too few iterations (%ld) to be profitable.\n",
		 (long int) n_iterations);
      return 0;
    }

  iterations = GEN_INT (n_iterations);
  iterations_max = GEN_INT (n_iterations_max);

  /* Generate looping insn.  If the pattern FAILs then give up trying
     to modify the loop since there is some aspect the back-end does
     not like.  */
  start_label = gen_label_rtx ();
  doloop_reg = gen_reg_rtx (mode);
  doloop_seq = gen_doloop_end (doloop_reg, iterations, iterations_max,
			       GEN_INT (loop->level), start_label);
  if (! doloop_seq && mode != word_mode)
    {
      PUT_MODE (doloop_reg, word_mode);
      doloop_seq = gen_doloop_end (doloop_reg, iterations, iterations_max,
				   GEN_INT (loop->level), start_label);
    }
  if (! doloop_seq)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: Target unwilling to use doloop pattern!\n");
      return 0;
    }

  /* A raw define_insn may yield a plain pattern.  If a sequence
     was involved, the last must be the jump instruction.  */
  if (GET_CODE (doloop_seq) == SEQUENCE)
    {
      doloop_pat = XVECEXP (doloop_seq, 0, XVECLEN (doloop_seq, 0) - 1);
      if (GET_CODE (doloop_pat) == JUMP_INSN)
	doloop_pat = PATTERN (doloop_pat);
      else
	doloop_pat = NULL_RTX;
    }
  else
    doloop_pat = doloop_seq;

  if (! doloop_pat
      || ! (condition = doloop_condition_get (doloop_pat)))
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: Unrecognizable doloop pattern!\n");
      return 0;
    }

  if (n_iterations != 0)
    /* Handle the simpler case, where we know the iteration count at
       compile time.  */
    return doloop_modify (loop, iterations, iterations_max, doloop_seq,
			  start_label, condition);
  else
    /* Handle the harder case, where we must add additional runtime tests.  */
    return doloop_modify_runtime (loop, iterations_max, doloop_seq,
				  start_label, mode, condition);
}

#endif /* HAVE_doloop_end */