df.c 93.2 KB
Newer Older
Jeff Law committed
1
/* Dataflow support routines.
2
   Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
Jeff Law committed
3 4 5
   Contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz,
                                    mhayes@redhat.com)

6
This file is part of GCC.
Jeff Law committed
7

8 9 10 11
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
Jeff Law committed
12

13 14 15 16
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
Jeff Law committed
17 18

You should have received a copy of the GNU General Public License
19 20 21
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.
Jeff Law committed
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56


OVERVIEW:

This file provides some dataflow routines for computing reaching defs,
upward exposed uses, live variables, def-use chains, and use-def
chains.  The global dataflow is performed using simple iterative
methods with a worklist and could be sped up by ordering the blocks
with a depth first search order.

A `struct ref' data structure (ref) is allocated for every register
reference (def or use) and this records the insn and bb the ref is
found within.  The refs are linked together in chains of uses and defs
for each insn and for each register.  Each ref also has a chain field
that links all the use refs for a def or all the def refs for a use.
This is used to create use-def or def-use chains.


USAGE:

Here's an example of using the dataflow routines.

      struct df *df;

      df = df_init ();

      df_analyse (df, 0, DF_ALL);

      df_dump (df, DF_ALL, stderr);

      df_finish (df);


df_init simply creates a poor man's object (df) that needs to be
passed to all the dataflow routines.  df_finish destroys this
57 58
object and frees up any allocated memory.   DF_ALL says to analyse
everything.
Jeff Law committed
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

df_analyse performs the following:

1. Records defs and uses by scanning the insns in each basic block
   or by scanning the insns queued by df_insn_modify.
2. Links defs and uses into insn-def and insn-use chains.
3. Links defs and uses into reg-def and reg-use chains.
4. Assigns LUIDs to each insn (for modified blocks).
5. Calculates local reaching definitions.
6. Calculates global reaching definitions.
7. Creates use-def chains.
8. Calculates local reaching uses (upwards exposed uses).
9. Calculates global reaching uses.
10. Creates def-use chains.
11. Calculates local live registers.
12. Calculates global live registers.
13. Calculates register lifetimes and determines local registers.


PHILOSOPHY:

Note that the dataflow information is not updated for every newly
deleted or created insn.  If the dataflow information requires
updating then all the changed, new, or deleted insns needs to be
marked with df_insn_modify (or df_insns_modify) either directly or
indirectly (say through calling df_insn_delete).  df_insn_modify
marks all the modified insns to get processed the next time df_analyse
 is called.

Beware that tinkering with insns may invalidate the dataflow information.
The philosophy behind these routines is that once the dataflow
90
information has been gathered, the user should store what they require
Jeff Law committed
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
before they tinker with any insn.  Once a reg is replaced, for example,
then the reg-def/reg-use chains will point to the wrong place.  Once a
whole lot of changes have been made, df_analyse can be called again
to update the dataflow information.  Currently, this is not very smart
with regard to propagating changes to the dataflow so it should not
be called very often.


DATA STRUCTURES:

The basic object is a REF (reference) and this may either be a DEF
(definition) or a USE of a register.

These are linked into a variety of lists; namely reg-def, reg-use,
  insn-def, insn-use, def-use, and use-def lists.  For example,
the reg-def lists contain all the refs that define a given register
while the insn-use lists contain all the refs used by an insn.

Note that the reg-def and reg-use chains are generally short (except for the
hard registers) and thus it is much faster to search these chains
111
rather than searching the def or use bitmaps.
Jeff Law committed
112 113 114 115

If the insns are in SSA form then the reg-def and use-def lists
should only contain the single defining ref.

116

Jeff Law committed
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
TODO:

1) Incremental dataflow analysis.

Note that if a loop invariant insn is hoisted (or sunk), we do not
need to change the def-use or use-def chains.  All we have to do is to
change the bb field for all the associated defs and uses and to
renumber the LUIDs for the original and new basic blocks of the insn.

When shadowing loop mems we create new uses and defs for new pseudos
so we do not affect the existing dataflow information.

My current strategy is to queue up all modified, created, or deleted
insns so when df_analyse is called we can easily determine all the new
or deleted refs.  Currently the global dataflow information is
recomputed from scratch but this could be propagated more efficiently.

134
2) Reduced memory requirements.
Jeff Law committed
135 136 137 138 139 140 141 142

We could operate a pool of ref structures.  When a ref is deleted it
gets returned to the pool (say by linking on to a chain of free refs).
This will require a pair of bitmaps for defs and uses so that we can
tell which ones have been changed.  Alternatively, we could
periodically squeeze the def and use tables and associated bitmaps and
renumber the def and use ids.

143
3) Ordering of reg-def and reg-use lists.
Jeff Law committed
144 145 146

Should the first entry in the def list be the first def (within a BB)?
Similarly, should the first entry in the use list be the last use
147
(within a BB)?
Jeff Law committed
148

149
4) Working with a sub-CFG.
Jeff Law committed
150

151
Often the whole CFG does not need to be analyzed, for example,
152
when optimizing a loop, only certain registers are of interest.
Jeff Law committed
153
Perhaps there should be a bitmap argument to df_analyse to specify
154
which registers should be analyzed?
155 156 157 158 159


NOTES:

Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
160
both a use and a def.  These are both marked read/write to show that they
161
are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
162 163
will generate a use of reg 42 followed by a def of reg 42 (both marked
read/write).  Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
164 165 166 167 168 169 170 171
generates a use of reg 41 then a def of reg 41 (both marked read/write),
even though reg 41 is decremented before it is used for the memory
address in this second example.

A set to a REG inside a ZERO_EXTRACT, SIGN_EXTRACT, or SUBREG invokes
a read-modify write operation.  We generate both a use and a def
and again mark them read/write.
*/
Jeff Law committed
172 173 174

#include "config.h"
#include "system.h"
175 176
#include "coretypes.h"
#include "tm.h"
177 178 179 180 181 182
#include "rtl.h"
#include "tm_p.h"
#include "insn-config.h"
#include "recog.h"
#include "function.h"
#include "regs.h"
183
#include "alloc-pool.h"
Jeff Law committed
184 185
#include "hard-reg-set.h"
#include "basic-block.h"
186
#include "sbitmap.h"
Jeff Law committed
187 188
#include "bitmap.h"
#include "df.h"
189
#include "fibheap.h"
Jeff Law committed
190

Kazu Hirata committed
191 192 193 194 195 196 197 198
#define FOR_EACH_BB_IN_BITMAP(BITMAP, MIN, BB, CODE)	\
  do							\
    {							\
      unsigned int node_;				\
      EXECUTE_IF_SET_IN_BITMAP (BITMAP, MIN, node_,	\
      {(BB) = BASIC_BLOCK (node_); CODE;});		\
    }							\
  while (0)
Jeff Law committed
199

200 201
static alloc_pool df_ref_pool;
static alloc_pool df_link_pool;
Jeff Law committed
202 203
static struct df *ddf;

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
static void df_reg_table_realloc (struct df *, int);
static void df_insn_table_realloc (struct df *, unsigned int);
static void df_bitmaps_alloc (struct df *, int);
static void df_bitmaps_free (struct df *, int);
static void df_free (struct df *);
static void df_alloc (struct df *, int);

static rtx df_reg_clobber_gen (unsigned int);
static rtx df_reg_use_gen (unsigned int);

static inline struct df_link *df_link_create (struct ref *, struct df_link *);
static struct df_link *df_ref_unlink (struct df_link **, struct ref *);
static void df_def_unlink (struct df *, struct ref *);
static void df_use_unlink (struct df *, struct ref *);
static void df_insn_refs_unlink (struct df *, basic_block, rtx);
Jeff Law committed
219
#if 0
220 221
static void df_bb_refs_unlink (struct df *, basic_block);
static void df_refs_unlink (struct df *, bitmap);
Jeff Law committed
222 223
#endif

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static struct ref *df_ref_create (struct df *, rtx, rtx *, rtx,
				  enum df_ref_type, enum df_ref_flags);
static void df_ref_record_1 (struct df *, rtx, rtx *, rtx, enum df_ref_type,
			     enum df_ref_flags);
static void df_ref_record (struct df *, rtx, rtx *, rtx, enum df_ref_type,
			   enum df_ref_flags);
static void df_def_record_1 (struct df *, rtx, basic_block, rtx);
static void df_defs_record (struct df *, rtx, basic_block, rtx);
static void df_uses_record (struct df *, rtx *, enum df_ref_type,
			    basic_block, rtx, enum df_ref_flags);
static void df_insn_refs_record (struct df *, basic_block, rtx);
static void df_bb_refs_record (struct df *, basic_block);
static void df_refs_record (struct df *, bitmap);

static void df_bb_reg_def_chain_create (struct df *, basic_block);
static void df_reg_def_chain_create (struct df *, bitmap);
static void df_bb_reg_use_chain_create (struct df *, basic_block);
static void df_reg_use_chain_create (struct df *, bitmap);
static void df_bb_du_chain_create (struct df *, basic_block, bitmap);
static void df_du_chain_create (struct df *, bitmap);
static void df_bb_ud_chain_create (struct df *, basic_block);
static void df_ud_chain_create (struct df *, bitmap);
static void df_bb_rd_local_compute (struct df *, basic_block);
static void df_rd_local_compute (struct df *, bitmap);
static void df_bb_ru_local_compute (struct df *, basic_block);
static void df_ru_local_compute (struct df *, bitmap);
static void df_bb_lr_local_compute (struct df *, basic_block);
static void df_lr_local_compute (struct df *, bitmap);
static void df_bb_reg_info_compute (struct df *, basic_block, bitmap);
static void df_reg_info_compute (struct df *, bitmap);

static int df_bb_luids_set (struct df *df, basic_block);
static int df_luids_set (struct df *df, bitmap);

static int df_modified_p (struct df *, bitmap);
static int df_refs_queue (struct df *);
static int df_refs_process (struct df *);
static int df_bb_refs_update (struct df *, basic_block);
static int df_refs_update (struct df *);
static void df_analyse_1 (struct df *, bitmap, int, int);

static void df_insns_modify (struct df *, basic_block, rtx, rtx);
static int df_rtx_mem_replace (rtx *, void *);
static int df_rtx_reg_replace (rtx *, void *);
void df_refs_reg_replace (struct df *, bitmap, struct df_link *, rtx, rtx);

static int df_def_dominates_all_uses_p (struct df *, struct ref *def);
static int df_def_dominates_uses_p (struct df *, struct ref *def, bitmap);
static struct ref *df_bb_regno_last_use_find (struct df *, basic_block,
					      unsigned int);
static struct ref *df_bb_regno_first_def_find (struct df *, basic_block,
					       unsigned int);
static struct ref *df_bb_insn_regno_last_use_find (struct df *, basic_block,
						   rtx, unsigned int);
static struct ref *df_bb_insn_regno_first_def_find (struct df *, basic_block,
						    rtx, unsigned int);

static void df_chain_dump (struct df_link *, FILE *file);
static void df_chain_dump_regno (struct df_link *, FILE *file);
static void df_regno_debug (struct df *, unsigned int, FILE *);
static void df_ref_debug (struct df *, struct ref *, FILE *);
static void df_rd_transfer_function (int, int *, bitmap, bitmap, bitmap,
				     bitmap, void *);
static void df_ru_transfer_function (int, int *, bitmap, bitmap, bitmap,
				     bitmap, void *);
static void df_lr_transfer_function (int, int *, bitmap, bitmap, bitmap,
				     bitmap, void *);
static void hybrid_search_bitmap (basic_block, bitmap *, bitmap *,
				  bitmap *, bitmap *, enum df_flow_dir,
				  enum df_confluence_op,
				  transfer_function_bitmap,
				  sbitmap, sbitmap, void *);
static void hybrid_search_sbitmap (basic_block, sbitmap *, sbitmap *,
				   sbitmap *, sbitmap *, enum df_flow_dir,
				   enum df_confluence_op,
				   transfer_function_sbitmap,
				   sbitmap, sbitmap, void *);
Jeff Law committed
301 302 303 304 305


/* Local memory allocation/deallocation routines.  */


306 307
/* Increase the insn info table to have space for at least SIZE + 1
   elements.  */
Jeff Law committed
308
static void
309
df_insn_table_realloc (struct df *df, unsigned int size)
Jeff Law committed
310
{
311 312 313
  size++;
  if (size <= df->insn_size)
    return;
Jeff Law committed
314

315
  /* Make the table a little larger than requested, so we do not need
316 317
     to enlarge it so often.  */
  size += df->insn_size / 4;
318

319
  df->insns = xrealloc (df->insns, size * sizeof (struct insn_info));
320 321

  memset (df->insns + df->insn_size, 0,
Jeff Law committed
322 323 324 325 326 327 328 329 330 331 332 333 334 335
	  (size - df->insn_size) * sizeof (struct insn_info));

  df->insn_size = size;

  if (! df->insns_modified)
    {
      df->insns_modified = BITMAP_XMALLOC ();
      bitmap_zero (df->insns_modified);
    }
}


/* Increase the reg info table by SIZE more elements.  */
static void
336
df_reg_table_realloc (struct df *df, int size)
Jeff Law committed
337 338 339 340 341 342
{
  /* Make table 25 percent larger by default.  */
  if (! size)
    size = df->reg_size / 4;

  size += df->reg_size;
343 344
  if (size < max_reg_num ())
    size = max_reg_num ();
Jeff Law committed
345

346
  df->regs = xrealloc (df->regs, size * sizeof (struct reg_info));
Jeff Law committed
347 348

  /* Zero the new entries.  */
349
  memset (df->regs + df->reg_size, 0,
Jeff Law committed
350 351 352 353 354 355 356 357
	  (size - df->reg_size) * sizeof (struct reg_info));

  df->reg_size = size;
}


/* Allocate bitmaps for each basic block.  */
static void
358
df_bitmaps_alloc (struct df *df, int flags)
Jeff Law committed
359 360
{
  int dflags = 0;
361
  basic_block bb;
Jeff Law committed
362 363

  /* Free the bitmaps if they need resizing.  */
Kazu Hirata committed
364
  if ((flags & DF_LR) && df->n_regs < (unsigned int) max_reg_num ())
Jeff Law committed
365 366 367 368 369 370 371 372 373 374 375 376
    dflags |= DF_LR | DF_RU;
  if ((flags & DF_RU) && df->n_uses < df->use_id)
    dflags |= DF_RU;
  if ((flags & DF_RD) && df->n_defs < df->def_id)
    dflags |= DF_RD;

  if (dflags)
    df_bitmaps_free (df, dflags);

  df->n_defs = df->def_id;
  df->n_uses = df->use_id;

377
  FOR_EACH_BB (bb)
Jeff Law committed
378 379
    {
      struct bb_info *bb_info = DF_BB_INFO (df, bb);
380

Jeff Law committed
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
      if (flags & DF_RD && ! bb_info->rd_in)
	{
	  /* Allocate bitmaps for reaching definitions.  */
	  bb_info->rd_kill = BITMAP_XMALLOC ();
	  bitmap_zero (bb_info->rd_kill);
	  bb_info->rd_gen = BITMAP_XMALLOC ();
	  bitmap_zero (bb_info->rd_gen);
	  bb_info->rd_in = BITMAP_XMALLOC ();
	  bb_info->rd_out = BITMAP_XMALLOC ();
	  bb_info->rd_valid = 0;
	}

      if (flags & DF_RU && ! bb_info->ru_in)
	{
	  /* Allocate bitmaps for upward exposed uses.  */
	  bb_info->ru_kill = BITMAP_XMALLOC ();
	  bitmap_zero (bb_info->ru_kill);
	  /* Note the lack of symmetry.  */
	  bb_info->ru_gen = BITMAP_XMALLOC ();
	  bitmap_zero (bb_info->ru_gen);
	  bb_info->ru_in = BITMAP_XMALLOC ();
	  bb_info->ru_out = BITMAP_XMALLOC ();
	  bb_info->ru_valid = 0;
	}

      if (flags & DF_LR && ! bb_info->lr_in)
	{
	  /* Allocate bitmaps for live variables.  */
	  bb_info->lr_def = BITMAP_XMALLOC ();
	  bitmap_zero (bb_info->lr_def);
	  bb_info->lr_use = BITMAP_XMALLOC ();
	  bitmap_zero (bb_info->lr_use);
	  bb_info->lr_in = BITMAP_XMALLOC ();
	  bb_info->lr_out = BITMAP_XMALLOC ();
	  bb_info->lr_valid = 0;
	}
    }
}


/* Free bitmaps for each basic block.  */
static void
423
df_bitmaps_free (struct df *df, int flags)
Jeff Law committed
424
{
425
  basic_block bb;
Jeff Law committed
426

427
  FOR_EACH_BB (bb)
Jeff Law committed
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
    {
      struct bb_info *bb_info = DF_BB_INFO (df, bb);

      if (!bb_info)
	continue;

      if ((flags & DF_RD) && bb_info->rd_in)
	{
	  /* Free bitmaps for reaching definitions.  */
	  BITMAP_XFREE (bb_info->rd_kill);
	  bb_info->rd_kill = NULL;
	  BITMAP_XFREE (bb_info->rd_gen);
	  bb_info->rd_gen = NULL;
	  BITMAP_XFREE (bb_info->rd_in);
	  bb_info->rd_in = NULL;
	  BITMAP_XFREE (bb_info->rd_out);
	  bb_info->rd_out = NULL;
	}

      if ((flags & DF_RU) && bb_info->ru_in)
	{
	  /* Free bitmaps for upward exposed uses.  */
	  BITMAP_XFREE (bb_info->ru_kill);
	  bb_info->ru_kill = NULL;
	  BITMAP_XFREE (bb_info->ru_gen);
	  bb_info->ru_gen = NULL;
	  BITMAP_XFREE (bb_info->ru_in);
	  bb_info->ru_in = NULL;
	  BITMAP_XFREE (bb_info->ru_out);
	  bb_info->ru_out = NULL;
	}

      if ((flags & DF_LR) && bb_info->lr_in)
	{
	  /* Free bitmaps for live variables.  */
	  BITMAP_XFREE (bb_info->lr_def);
	  bb_info->lr_def = NULL;
	  BITMAP_XFREE (bb_info->lr_use);
	  bb_info->lr_use = NULL;
	  BITMAP_XFREE (bb_info->lr_in);
	  bb_info->lr_in = NULL;
	  BITMAP_XFREE (bb_info->lr_out);
	  bb_info->lr_out = NULL;
	}
    }
  df->flags &= ~(flags & (DF_RD | DF_RU | DF_LR));
}


477
/* Allocate and initialize dataflow memory.  */
Jeff Law committed
478
static void
479
df_alloc (struct df *df, int n_regs)
Jeff Law committed
480 481
{
  int n_insns;
482
  basic_block bb;
Jeff Law committed
483

484 485 486
  df_link_pool = create_alloc_pool ("df_link pool", sizeof (struct df_link),
				    100);
  df_ref_pool  = create_alloc_pool ("df_ref pool", sizeof (struct ref), 100);
Jeff Law committed
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

  /* Perhaps we should use LUIDs to save memory for the insn_refs
     table.  This is only a small saving; a few pointers.  */
  n_insns = get_max_uid () + 1;

  df->def_id = 0;
  df->n_defs = 0;
  /* Approximate number of defs by number of insns.  */
  df->def_size = n_insns;
  df->defs = xmalloc (df->def_size * sizeof (*df->defs));

  df->use_id = 0;
  df->n_uses = 0;
  /* Approximate number of uses by twice number of insns.  */
  df->use_size = n_insns * 2;
  df->uses = xmalloc (df->use_size * sizeof (*df->uses));

  df->n_regs = n_regs;
505
  df->n_bbs = last_basic_block;
Jeff Law committed
506 507 508 509 510 511 512 513 514 515 516 517 518

  /* Allocate temporary working array used during local dataflow analysis.  */
  df->reg_def_last = xmalloc (df->n_regs * sizeof (struct ref *));

  df_insn_table_realloc (df, n_insns);

  df_reg_table_realloc (df, df->n_regs);

  df->bbs_modified = BITMAP_XMALLOC ();
  bitmap_zero (df->bbs_modified);

  df->flags = 0;

519
  df->bbs = xcalloc (last_basic_block, sizeof (struct bb_info));
Jeff Law committed
520 521

  df->all_blocks = BITMAP_XMALLOC ();
522 523
  FOR_EACH_BB (bb)
    bitmap_set_bit (df->all_blocks, bb->index);
Jeff Law committed
524 525 526 527 528
}


/* Free all the dataflow info.  */
static void
529
df_free (struct df *df)
Jeff Law committed
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
{
  df_bitmaps_free (df, DF_ALL);

  if (df->bbs)
    free (df->bbs);
  df->bbs = 0;

  if (df->insns)
    free (df->insns);
  df->insns = 0;
  df->insn_size = 0;

  if (df->defs)
    free (df->defs);
  df->defs = 0;
  df->def_size = 0;
  df->def_id = 0;

  if (df->uses)
    free (df->uses);
  df->uses = 0;
  df->use_size = 0;
  df->use_id = 0;

  if (df->regs)
    free (df->regs);
  df->regs = 0;
  df->reg_size = 0;

  if (df->bbs_modified)
    BITMAP_XFREE (df->bbs_modified);
  df->bbs_modified = 0;

  if (df->insns_modified)
    BITMAP_XFREE (df->insns_modified);
  df->insns_modified = 0;

  BITMAP_XFREE (df->all_blocks);
  df->all_blocks = 0;

570 571 572
  free_alloc_pool (df_ref_pool);
  free_alloc_pool (df_link_pool);

Jeff Law committed
573 574 575 576 577
}

/* Local miscellaneous routines.  */

/* Return a USE for register REGNO.  */
578
static rtx df_reg_use_gen (unsigned int regno)
Jeff Law committed
579 580 581 582
{
  rtx reg;
  rtx use;

583
  reg = regno_reg_rtx[regno];
584

Jeff Law committed
585 586 587 588 589 590
  use = gen_rtx_USE (GET_MODE (reg), reg);
  return use;
}


/* Return a CLOBBER for register REGNO.  */
591
static rtx df_reg_clobber_gen (unsigned int regno)
Jeff Law committed
592 593 594 595
{
  rtx reg;
  rtx use;

596
  reg = regno_reg_rtx[regno];
Jeff Law committed
597 598 599 600 601 602 603 604 605

  use = gen_rtx_CLOBBER (GET_MODE (reg), reg);
  return use;
}

/* Local chain manipulation routines.  */

/* Create a link in a def-use or use-def chain.  */
static inline struct df_link *
606
df_link_create (struct ref *ref, struct df_link *next)
Jeff Law committed
607 608 609
{
  struct df_link *link;

610
  link = pool_alloc (df_link_pool);
Jeff Law committed
611 612 613 614 615 616 617 618
  link->next = next;
  link->ref = ref;
  return link;
}


/* Add REF to chain head pointed to by PHEAD.  */
static struct df_link *
619
df_ref_unlink (struct df_link **phead, struct ref *ref)
Jeff Law committed
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
{
  struct df_link *link = *phead;

  if (link)
    {
      if (! link->next)
	{
	  /* Only a single ref.  It must be the one we want.
	     If not, the def-use and use-def chains are likely to
	     be inconsistent.  */
	  if (link->ref != ref)
	    abort ();
	  /* Now have an empty chain.  */
	  *phead = NULL;
	}
      else
	{
	  /* Multiple refs.  One of them must be us.  */
	  if (link->ref == ref)
	    *phead = link->next;
	  else
	    {
	      /* Follow chain.  */
	      for (; link->next; link = link->next)
		{
		  if (link->next->ref == ref)
		    {
		      /* Unlink from list.  */
		      link->next = link->next->next;
		      return link->next;
		    }
		}
	    }
	}
    }
  return link;
}


/* Unlink REF from all def-use/use-def chains, etc.  */
int
661
df_ref_remove (struct df *df, struct ref *ref)
Jeff Law committed
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
{
  if (DF_REF_REG_DEF_P (ref))
    {
      df_def_unlink (df, ref);
      df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].defs, ref);
    }
  else
    {
      df_use_unlink (df, ref);
      df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].uses, ref);
    }
  return 1;
}


/* Unlink DEF from use-def and reg-def chains.  */
678
static void
679
df_def_unlink (struct df *df ATTRIBUTE_UNUSED, struct ref *def)
Jeff Law committed
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
{
  struct df_link *du_link;
  unsigned int dregno = DF_REF_REGNO (def);

  /* Follow def-use chain to find all the uses of this def.  */
  for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
    {
      struct ref *use = du_link->ref;

      /* Unlink this def from the use-def chain.  */
      df_ref_unlink (&DF_REF_CHAIN (use), def);
    }
  DF_REF_CHAIN (def) = 0;

  /* Unlink def from reg-def chain.  */
  df_ref_unlink (&df->regs[dregno].defs, def);

  df->defs[DF_REF_ID (def)] = 0;
}


/* Unlink use from def-use and reg-use chains.  */
702
static void
703
df_use_unlink (struct df *df ATTRIBUTE_UNUSED, struct ref *use)
Jeff Law committed
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
{
  struct df_link *ud_link;
  unsigned int uregno = DF_REF_REGNO (use);

  /* Follow use-def chain to find all the defs of this use.  */
  for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
    {
      struct ref *def = ud_link->ref;

      /* Unlink this use from the def-use chain.  */
      df_ref_unlink (&DF_REF_CHAIN (def), use);
    }
  DF_REF_CHAIN (use) = 0;

  /* Unlink use from reg-use chain.  */
  df_ref_unlink (&df->regs[uregno].uses, use);

  df->uses[DF_REF_ID (use)] = 0;
}

/* Local routines for recording refs.  */


/* Create a new ref of type DF_REF_TYPE for register REG at address
   LOC within INSN of BB.  */
static struct ref *
730 731
df_ref_create (struct df *df, rtx reg, rtx *loc, rtx insn,
	       enum df_ref_type ref_type, enum df_ref_flags ref_flags)
Jeff Law committed
732 733
{
  struct ref *this_ref;
734

735
  this_ref = pool_alloc (df_ref_pool);
Jeff Law committed
736 737 738 739 740
  DF_REF_REG (this_ref) = reg;
  DF_REF_LOC (this_ref) = loc;
  DF_REF_INSN (this_ref) = insn;
  DF_REF_CHAIN (this_ref) = 0;
  DF_REF_TYPE (this_ref) = ref_type;
741
  DF_REF_FLAGS (this_ref) = ref_flags;
Jeff Law committed
742 743 744 745 746 747 748

  if (ref_type == DF_REF_REG_DEF)
    {
      if (df->def_id >= df->def_size)
	{
	  /* Make table 25 percent larger.  */
	  df->def_size += (df->def_size / 4);
749
	  df->defs = xrealloc (df->defs,
Jeff Law committed
750 751 752 753 754 755 756 757 758 759 760
			       df->def_size * sizeof (*df->defs));
	}
      DF_REF_ID (this_ref) = df->def_id;
      df->defs[df->def_id++] = this_ref;
    }
  else
    {
      if (df->use_id >= df->use_size)
	{
	  /* Make table 25 percent larger.  */
	  df->use_size += (df->use_size / 4);
761
	  df->uses = xrealloc (df->uses,
Jeff Law committed
762 763 764 765 766 767 768 769 770 771 772 773
			       df->use_size * sizeof (*df->uses));
	}
      DF_REF_ID (this_ref) = df->use_id;
      df->uses[df->use_id++] = this_ref;
    }
  return this_ref;
}


/* Create a new reference of type DF_REF_TYPE for a single register REG,
   used inside the LOC rtx of INSN.  */
static void
774 775
df_ref_record_1 (struct df *df, rtx reg, rtx *loc, rtx insn,
		 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
Jeff Law committed
776
{
777
  df_ref_create (df, reg, loc, insn, ref_type, ref_flags);
Jeff Law committed
778 779 780 781 782 783
}


/* Create new references of type DF_REF_TYPE for each part of register REG
   at address LOC within INSN of BB.  */
static void
784 785
df_ref_record (struct df *df, rtx reg, rtx *loc, rtx insn,
	       enum df_ref_type ref_type, enum df_ref_flags ref_flags)
Jeff Law committed
786 787 788 789 790 791 792 793 794 795 796 797 798
{
  unsigned int regno;

  if (GET_CODE (reg) != REG && GET_CODE (reg) != SUBREG)
    abort ();

  /* For the reg allocator we are interested in some SUBREG rtx's, but not
     all.  Notably only those representing a word extraction from a multi-word
     reg.  As written in the docu those should have the form
     (subreg:SI (reg:M A) N), with size(SImode) > size(Mmode).
     XXX Is that true?  We could also use the global word_mode variable.  */
  if (GET_CODE (reg) == SUBREG
      && (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (word_mode)
Kazu Hirata committed
799
	  || GET_MODE_SIZE (GET_MODE (reg))
Jeff Law committed
800 801 802 803
	       >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (reg)))))
    {
      loc = &SUBREG_REG (reg);
      reg = *loc;
804
      ref_flags |= DF_REF_STRIPPED;
Jeff Law committed
805 806 807 808 809 810 811
    }

  regno = REGNO (GET_CODE (reg) == SUBREG ? SUBREG_REG (reg) : reg);
  if (regno < FIRST_PSEUDO_REGISTER)
    {
      int i;
      int endregno;
812

Jeff Law committed
813 814 815
      if (! (df->flags & DF_HARD_REGS))
	return;

816
      /* GET_MODE (reg) is correct here.  We do not want to go into a SUBREG
Jeff Law committed
817
         for the mode, because we only want to add references to regs, which
818
	 are really referenced.  E.g., a (subreg:SI (reg:DI 0) 0) does _not_
Jeff Law committed
819 820
	 reference the whole reg 0 in DI mode (which would also include
	 reg 1, at least, if 0 and 1 are SImode registers).  */
821 822 823 824 825
      endregno = HARD_REGNO_NREGS (regno, GET_MODE (reg));
      if (GET_CODE (reg) == SUBREG)
        regno += subreg_regno_offset (regno, GET_MODE (SUBREG_REG (reg)),
				      SUBREG_BYTE (reg), GET_MODE (reg));
      endregno += regno;
Jeff Law committed
826 827

      for (i = regno; i < endregno; i++)
828
	df_ref_record_1 (df, regno_reg_rtx[i],
829
			 loc, insn, ref_type, ref_flags);
Jeff Law committed
830 831 832
    }
  else
    {
833
      df_ref_record_1 (df, reg, loc, insn, ref_type, ref_flags);
Jeff Law committed
834 835 836
    }
}

837

838
/* Return nonzero if writes to paradoxical SUBREGs, or SUBREGs which
839
   are too narrow, are read-modify-write.  */
840
bool
841
read_modify_subreg_p (rtx x)
842
{
843
  unsigned int isize, osize;
844 845
  if (GET_CODE (x) != SUBREG)
    return false;
846 847
  isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
  osize = GET_MODE_SIZE (GET_MODE (x));
848 849
  /* Paradoxical subreg writes don't leave a trace of the old content.  */
  return (isize > osize && isize > UNITS_PER_WORD);
850 851
}

852

Jeff Law committed
853 854
/* Process all the registers defined in the rtx, X.  */
static void
855
df_def_record_1 (struct df *df, rtx x, basic_block bb, rtx insn)
Jeff Law committed
856
{
857 858
  rtx *loc;
  rtx dst;
859
  enum df_ref_flags flags = 0;
Jeff Law committed
860

861
 /* We may recursively call ourselves on EXPR_LIST when dealing with PARALLEL
862
     construct.  */
863 864 865 866 867 868
  if (GET_CODE (x) == EXPR_LIST || GET_CODE (x) == CLOBBER)
    loc = &XEXP (x, 0);
  else
    loc = &SET_DEST (x);
  dst = *loc;

Jeff Law committed
869 870 871 872 873 874 875
  /* Some targets place small structures in registers for
     return values of functions.  */
  if (GET_CODE (dst) == PARALLEL && GET_MODE (dst) == BLKmode)
    {
      int i;

      for (i = XVECLEN (dst, 0) - 1; i >= 0; i--)
876 877 878 879 880 881
	{
	  rtx temp = XVECEXP (dst, 0, i);
	  if (GET_CODE (temp) == EXPR_LIST || GET_CODE (temp) == CLOBBER
	      || GET_CODE (temp) == SET)
	    df_def_record_1 (df, temp, bb, insn);
	}
Jeff Law committed
882 883 884
      return;
    }

885 886
  /* Maybe, we should flag the use of STRICT_LOW_PART somehow.  It might
     be handy for the reg allocator.  */
Jeff Law committed
887
  while (GET_CODE (dst) == STRICT_LOW_PART
Kazu Hirata committed
888
	 || GET_CODE (dst) == ZERO_EXTRACT
Jeff Law committed
889
	 || GET_CODE (dst) == SIGN_EXTRACT
890 891
	 || ((df->flags & DF_FOR_REGALLOC) == 0
             && read_modify_subreg_p (dst)))
Jeff Law committed
892
    {
893
      /* Strict low part always contains SUBREG, but we do not want to make
894
	 it appear outside, as whole register is always considered.  */
895 896 897 898 899
      if (GET_CODE (dst) == STRICT_LOW_PART)
	{
	  loc = &XEXP (dst, 0);
	  dst = *loc;
	}
Jeff Law committed
900 901
      loc = &XEXP (dst, 0);
      dst = *loc;
902
      flags |= DF_REF_READ_WRITE;
Jeff Law committed
903
    }
Kazu Hirata committed
904

Kazu Hirata committed
905 906 907
  if (GET_CODE (dst) == REG
      || (GET_CODE (dst) == SUBREG && GET_CODE (SUBREG_REG (dst)) == REG))
    df_ref_record (df, dst, loc, insn, DF_REF_REG_DEF, flags);
Jeff Law committed
908 909 910 911 912
}


/* Process all the registers defined in the pattern rtx, X.  */
static void
913
df_defs_record (struct df *df, rtx x, basic_block bb, rtx insn)
Jeff Law committed
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
{
  RTX_CODE code = GET_CODE (x);

  if (code == SET || code == CLOBBER)
    {
      /* Mark the single def within the pattern.  */
      df_def_record_1 (df, x, bb, insn);
    }
  else if (code == PARALLEL)
    {
      int i;

      /* Mark the multiple defs within the pattern.  */
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	{
	  code = GET_CODE (XVECEXP (x, 0, i));
	  if (code == SET || code == CLOBBER)
	    df_def_record_1 (df, XVECEXP (x, 0, i), bb, insn);
	}
    }
}


/* Process all the registers used in the rtx at address LOC.  */
static void
939 940
df_uses_record (struct df *df, rtx *loc, enum df_ref_type ref_type,
		basic_block bb, rtx insn, enum df_ref_flags flags)
Jeff Law committed
941 942 943 944 945
{
  RTX_CODE code;
  rtx x;
 retry:
  x = *loc;
946 947
  if (!x)
    return;
Jeff Law committed
948 949 950 951 952 953 954 955
  code = GET_CODE (x);
  switch (code)
    {
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_INT:
    case CONST:
    case CONST_DOUBLE:
956
    case CONST_VECTOR:
Jeff Law committed
957
    case PC:
958
    case CC0:
Jeff Law committed
959 960 961 962 963 964 965 966
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return;

    case CLOBBER:
      /* If we are clobbering a MEM, mark any registers inside the address
	 as being used.  */
      if (GET_CODE (XEXP (x, 0)) == MEM)
967
	df_uses_record (df, &XEXP (XEXP (x, 0), 0),
968
			DF_REF_REG_MEM_STORE, bb, insn, flags);
Jeff Law committed
969 970 971 972 973

      /* If we're clobbering a REG then we have a def so ignore.  */
      return;

    case MEM:
974
      df_uses_record (df, &XEXP (x, 0), DF_REF_REG_MEM_LOAD, bb, insn, 0);
Jeff Law committed
975 976 977 978 979
      return;

    case SUBREG:
      /* While we're here, optimize this case.  */

980
      /* In case the SUBREG is not of a REG, do not optimize.  */
Jeff Law committed
981 982 983
      if (GET_CODE (SUBREG_REG (x)) != REG)
	{
	  loc = &SUBREG_REG (x);
984
	  df_uses_record (df, loc, ref_type, bb, insn, flags);
Jeff Law committed
985 986 987 988 989
	  return;
	}
      /* ... Fall through ...  */

    case REG:
990
      df_ref_record (df, x, loc, insn, ref_type, flags);
Jeff Law committed
991 992 993 994 995 996
      return;

    case SET:
      {
	rtx dst = SET_DEST (x);

997
	df_uses_record (df, &SET_SRC (x), DF_REF_REG_USE, bb, insn, 0);
998

999
	switch (GET_CODE (dst))
Jeff Law committed
1000
	  {
1001
	    case SUBREG:
1002 1003
	      if ((df->flags & DF_FOR_REGALLOC) == 0
                  && read_modify_subreg_p (dst))
1004 1005
		{
		  df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1006
				  insn, DF_REF_READ_WRITE);
1007 1008
		  break;
		}
1009
	      /* ... FALLTHRU ...  */
1010
	    case REG:
1011
	    case PARALLEL:
1012 1013 1014
	    case PC:
	    case CC0:
		break;
1015
	    case MEM:
Kazu Hirata committed
1016
	      df_uses_record (df, &XEXP (dst, 0),
1017 1018 1019 1020
			      DF_REF_REG_MEM_STORE,
			      bb, insn, 0);
	      break;
	    case STRICT_LOW_PART:
1021
	      /* A strict_low_part uses the whole REG and not just the SUBREG.  */
1022 1023 1024 1025
	      dst = XEXP (dst, 0);
	      if (GET_CODE (dst) != SUBREG)
		abort ();
	      df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1026
			     insn, DF_REF_READ_WRITE);
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	      break;
	    case ZERO_EXTRACT:
	    case SIGN_EXTRACT:
	      df_uses_record (df, &XEXP (dst, 0), DF_REF_REG_USE, bb, insn,
			      DF_REF_READ_WRITE);
	      df_uses_record (df, &XEXP (dst, 1), DF_REF_REG_USE, bb, insn, 0);
	      df_uses_record (df, &XEXP (dst, 2), DF_REF_REG_USE, bb, insn, 0);
	      dst = XEXP (dst, 0);
	      break;
	    default:
	      abort ();
Jeff Law committed
1038
	  }
1039
	return;
Jeff Law committed
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
      }

    case RETURN:
      break;

    case ASM_OPERANDS:
    case UNSPEC_VOLATILE:
    case TRAP_IF:
    case ASM_INPUT:
      {
	/* Traditional and volatile asm instructions must be considered to use
	   and clobber all hard registers, all pseudo-registers and all of
	   memory.  So must TRAP_IF and UNSPEC_VOLATILE operations.

	   Consider for instance a volatile asm that changes the fpu rounding
	   mode.  An insn should not be moved across this even if it only uses
1056
	   pseudo-regs because it might give an incorrectly rounded result.
Jeff Law committed
1057 1058 1059 1060

	   For now, just mark any regs we can find in ASM_OPERANDS as
	   used.  */

Kazu Hirata committed
1061
	/* For all ASM_OPERANDS, we must traverse the vector of input operands.
Jeff Law committed
1062 1063 1064 1065 1066 1067 1068 1069
	   We can not just fall through here since then we would be confused
	   by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
	   traditional asms unlike their normal usage.  */
	if (code == ASM_OPERANDS)
	  {
	    int j;

	    for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
1070
	      df_uses_record (df, &ASM_OPERANDS_INPUT (x, j),
1071
			      DF_REF_REG_USE, bb, insn, 0);
1072
	    return;
Jeff Law committed
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	  }
	break;
      }

    case PRE_DEC:
    case POST_DEC:
    case PRE_INC:
    case POST_INC:
    case PRE_MODIFY:
    case POST_MODIFY:
      /* Catch the def of the register being modified.  */
1084
      df_ref_record (df, XEXP (x, 0), &XEXP (x, 0), insn, DF_REF_REG_DEF, DF_REF_READ_WRITE);
Jeff Law committed
1085

1086
      /* ... Fall through to handle uses ...  */
Jeff Law committed
1087 1088 1089 1090 1091 1092 1093

    default:
      break;
    }

  /* Recursively scan the operands of this expression.  */
  {
1094
    const char *fmt = GET_RTX_FORMAT (code);
Jeff Law committed
1095
    int i;
1096

Jeff Law committed
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
      {
	if (fmt[i] == 'e')
	  {
	    /* Tail recursive case: save a function call level.  */
	    if (i == 0)
	      {
		loc = &XEXP (x, 0);
		goto retry;
	      }
1107
	    df_uses_record (df, &XEXP (x, i), ref_type, bb, insn, flags);
Jeff Law committed
1108 1109 1110 1111 1112 1113
	  }
	else if (fmt[i] == 'E')
	  {
	    int j;
	    for (j = 0; j < XVECLEN (x, i); j++)
	      df_uses_record (df, &XVECEXP (x, i, j), ref_type,
1114
			      bb, insn, flags);
Jeff Law committed
1115 1116 1117 1118 1119 1120 1121 1122
	  }
      }
  }
}


/* Record all the df within INSN of basic block BB.  */
static void
1123
df_insn_refs_record (struct df *df, basic_block bb, rtx insn)
Jeff Law committed
1124 1125 1126 1127 1128
{
  int i;

  if (INSN_P (insn))
    {
1129 1130
      rtx note;

1131
      /* Record register defs.  */
Jeff Law committed
1132
      df_defs_record (df, PATTERN (insn), bb, insn);
1133 1134 1135 1136 1137 1138 1139

      if (df->flags & DF_EQUIV_NOTES)
	for (note = REG_NOTES (insn); note;
	     note = XEXP (note, 1))
	  {
	    switch (REG_NOTE_KIND (note))
	      {
Kazu Hirata committed
1140 1141 1142 1143 1144 1145
	      case REG_EQUIV:
	      case REG_EQUAL:
		df_uses_record (df, &XEXP (note, 0), DF_REF_REG_USE,
				bb, insn, 0);
	      default:
		break;
1146 1147
	      }
	  }
1148

Jeff Law committed
1149 1150 1151 1152
      if (GET_CODE (insn) == CALL_INSN)
	{
	  rtx note;
	  rtx x;
1153

Jeff Law committed
1154 1155 1156 1157 1158
	  /* Record the registers used to pass arguments.  */
	  for (note = CALL_INSN_FUNCTION_USAGE (insn); note;
	       note = XEXP (note, 1))
	    {
	      if (GET_CODE (XEXP (note, 0)) == USE)
1159
		df_uses_record (df, &XEXP (XEXP (note, 0), 0), DF_REF_REG_USE,
1160
				bb, insn, 0);
Jeff Law committed
1161 1162 1163 1164
	    }

	  /* The stack ptr is used (honorarily) by a CALL insn.  */
	  x = df_reg_use_gen (STACK_POINTER_REGNUM);
1165
	  df_uses_record (df, &XEXP (x, 0), DF_REF_REG_USE, bb, insn, 0);
1166

Jeff Law committed
1167 1168 1169 1170 1171 1172 1173 1174 1175
	  if (df->flags & DF_HARD_REGS)
	    {
	      /* Calls may also reference any of the global registers,
		 so they are recorded as used.  */
	      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
		if (global_regs[i])
		  {
		    x = df_reg_use_gen (i);
		    df_uses_record (df, &SET_DEST (x),
Kazu Hirata committed
1176
				    DF_REF_REG_USE, bb, insn, 0);
Jeff Law committed
1177 1178 1179
		  }
	    }
	}
1180

Jeff Law committed
1181
      /* Record the register uses.  */
1182
      df_uses_record (df, &PATTERN (insn),
1183
		      DF_REF_REG_USE, bb, insn, 0);
1184

Jeff Law committed
1185 1186 1187 1188 1189 1190
      if (GET_CODE (insn) == CALL_INSN)
	{
	  rtx note;

	  if (df->flags & DF_HARD_REGS)
	    {
1191
	      /* Kill all registers invalidated by a call.  */
Jeff Law committed
1192
	      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1193
		if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
Jeff Law committed
1194 1195 1196 1197 1198
		  {
		    rtx reg_clob = df_reg_clobber_gen (i);
		    df_defs_record (df, reg_clob, bb, insn);
		  }
	    }
1199

Jeff Law committed
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	  /* There may be extra registers to be clobbered.  */
	  for (note = CALL_INSN_FUNCTION_USAGE (insn);
	       note;
	       note = XEXP (note, 1))
	    if (GET_CODE (XEXP (note, 0)) == CLOBBER)
	      df_defs_record (df, XEXP (note, 0), bb, insn);
	}
    }
}


/* Record all the refs within the basic block BB.  */
static void
1213
df_bb_refs_record (struct df *df, basic_block bb)
Jeff Law committed
1214 1215 1216 1217
{
  rtx insn;

  /* Scan the block an insn at a time from beginning to end.  */
1218
  for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
Jeff Law committed
1219 1220 1221 1222 1223 1224
    {
      if (INSN_P (insn))
	{
	  /* Record defs within INSN.  */
	  df_insn_refs_record (df, bb, insn);
	}
1225
      if (insn == BB_END (bb))
Jeff Law committed
1226 1227 1228 1229 1230 1231 1232
	break;
    }
}


/* Record all the refs in the basic blocks specified by BLOCKS.  */
static void
1233
df_refs_record (struct df *df, bitmap blocks)
Jeff Law committed
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
    {
      df_bb_refs_record (df, bb);
    });
}

/* Dataflow analysis routines.  */


/* Create reg-def chains for basic block BB.  These are a list of
   definitions for each register.  */
static void
1249
df_bb_reg_def_chain_create (struct df *df, basic_block bb)
Jeff Law committed
1250 1251
{
  rtx insn;
1252

Jeff Law committed
1253 1254 1255
  /* Perhaps the defs should be sorted using a depth first search
     of the CFG (or possibly a breadth first search).  We currently
     scan the basic blocks in reverse order so that the first defs
1256
     appear at the start of the chain.  */
1257

1258
  for (insn = BB_END (bb); insn && insn != PREV_INSN (BB_HEAD (bb));
Jeff Law committed
1259 1260 1261 1262 1263 1264 1265
       insn = PREV_INSN (insn))
    {
      struct df_link *link;
      unsigned int uid = INSN_UID (insn);

      if (! INSN_P (insn))
	continue;
1266

Jeff Law committed
1267 1268 1269 1270
      for (link = df->insns[uid].defs; link; link = link->next)
	{
	  struct ref *def = link->ref;
	  unsigned int dregno = DF_REF_REGNO (def);
1271 1272 1273 1274 1275

          /* Do not add ref's to the chain twice, i.e., only add new
             refs.  XXX the same could be done by testing if the
             current insn is a modified (or a new) one.  This would be
             faster.  */
1276 1277
          if (DF_REF_ID (def) < df->def_id_save)
            continue;
1278

Jeff Law committed
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	  df->regs[dregno].defs
	    = df_link_create (def, df->regs[dregno].defs);
	}
    }
}


/* Create reg-def chains for each basic block within BLOCKS.  These
   are a list of definitions for each register.  */
static void
1289
df_reg_def_chain_create (struct df *df, bitmap blocks)
Jeff Law committed
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP/*_REV*/ (blocks, 0, bb,
    {
      df_bb_reg_def_chain_create (df, bb);
    });
}


/* Create reg-use chains for basic block BB.  These are a list of uses
   for each register.  */
static void
1303
df_bb_reg_use_chain_create (struct df *df, basic_block bb)
Jeff Law committed
1304 1305
{
  rtx insn;
1306

1307 1308
  /* Scan in forward order so that the last uses appear at the start
     of the chain.  */
1309

1310
  for (insn = BB_HEAD (bb); insn && insn != NEXT_INSN (BB_END (bb));
Jeff Law committed
1311 1312 1313 1314 1315 1316 1317
       insn = NEXT_INSN (insn))
    {
      struct df_link *link;
      unsigned int uid = INSN_UID (insn);

      if (! INSN_P (insn))
	continue;
1318

Jeff Law committed
1319 1320 1321 1322
      for (link = df->insns[uid].uses; link; link = link->next)
	{
	  struct ref *use = link->ref;
	  unsigned int uregno = DF_REF_REGNO (use);
1323 1324 1325 1326 1327

          /* Do not add ref's to the chain twice, i.e., only add new
             refs.  XXX the same could be done by testing if the
             current insn is a modified (or a new) one.  This would be
             faster.  */
1328 1329
          if (DF_REF_ID (use) < df->use_id_save)
            continue;
1330

Jeff Law committed
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	  df->regs[uregno].uses
	    = df_link_create (use, df->regs[uregno].uses);
	}
    }
}


/* Create reg-use chains for each basic block within BLOCKS.  These
   are a list of uses for each register.  */
static void
1341
df_reg_use_chain_create (struct df *df, bitmap blocks)
Jeff Law committed
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
    {
      df_bb_reg_use_chain_create (df, bb);
    });
}


/* Create def-use chains from reaching use bitmaps for basic block BB.  */
static void
1354
df_bb_du_chain_create (struct df *df, basic_block bb, bitmap ru)
Jeff Law committed
1355 1356 1357
{
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
  rtx insn;
1358

Jeff Law committed
1359
  bitmap_copy (ru, bb_info->ru_out);
1360

Jeff Law committed
1361 1362
  /* For each def in BB create a linked list (chain) of uses
     reached from the def.  */
1363
  for (insn = BB_END (bb); insn && insn != PREV_INSN (BB_HEAD (bb));
Jeff Law committed
1364 1365 1366 1367 1368 1369 1370 1371
       insn = PREV_INSN (insn))
    {
      struct df_link *def_link;
      struct df_link *use_link;
      unsigned int uid = INSN_UID (insn);

      if (! INSN_P (insn))
	continue;
1372

Jeff Law committed
1373 1374 1375 1376 1377
      /* For each def in insn...  */
      for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
	{
	  struct ref *def = def_link->ref;
	  unsigned int dregno = DF_REF_REGNO (def);
1378

Jeff Law committed
1379 1380 1381 1382 1383
	  DF_REF_CHAIN (def) = 0;

	  /* While the reg-use chains are not essential, it
	     is _much_ faster to search these short lists rather
	     than all the reaching uses, especially for large functions.  */
1384
	  for (use_link = df->regs[dregno].uses; use_link;
Jeff Law committed
1385 1386 1387
	       use_link = use_link->next)
	    {
	      struct ref *use = use_link->ref;
1388

Jeff Law committed
1389 1390
	      if (bitmap_bit_p (ru, DF_REF_ID (use)))
		{
1391
		  DF_REF_CHAIN (def)
Jeff Law committed
1392
		    = df_link_create (use, DF_REF_CHAIN (def));
1393

Jeff Law committed
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
		  bitmap_clear_bit (ru, DF_REF_ID (use));
		}
	    }
	}

      /* For each use in insn...  */
      for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
	{
	  struct ref *use = use_link->ref;
	  bitmap_set_bit (ru, DF_REF_ID (use));
	}
    }
}


/* Create def-use chains from reaching use bitmaps for basic blocks
   in BLOCKS.  */
static void
1412
df_du_chain_create (struct df *df, bitmap blocks)
Jeff Law committed
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
{
  bitmap ru;
  basic_block bb;

  ru = BITMAP_XMALLOC ();

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
    {
      df_bb_du_chain_create (df, bb, ru);
    });

  BITMAP_XFREE (ru);
}


/* Create use-def chains from reaching def bitmaps for basic block BB.  */
static void
1430
df_bb_ud_chain_create (struct df *df, basic_block bb)
Jeff Law committed
1431 1432 1433 1434
{
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
  struct ref **reg_def_last = df->reg_def_last;
  rtx insn;
1435

Jeff Law committed
1436
  memset (reg_def_last, 0, df->n_regs * sizeof (struct ref *));
1437

Jeff Law committed
1438 1439
  /* For each use in BB create a linked list (chain) of defs
     that reach the use.  */
1440
  for (insn = BB_HEAD (bb); insn && insn != NEXT_INSN (BB_END (bb));
Jeff Law committed
1441 1442 1443 1444 1445 1446 1447 1448 1449
       insn = NEXT_INSN (insn))
    {
      unsigned int uid = INSN_UID (insn);
      struct df_link *use_link;
      struct df_link *def_link;

      if (! INSN_P (insn))
	continue;

1450
      /* For each use in insn...  */
Jeff Law committed
1451 1452 1453 1454
      for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
	{
	  struct ref *use = use_link->ref;
	  unsigned int regno = DF_REF_REGNO (use);
1455

Jeff Law committed
1456 1457 1458 1459 1460 1461 1462 1463 1464
	  DF_REF_CHAIN (use) = 0;

	  /* Has regno been defined in this BB yet?  If so, use
	     the last def as the single entry for the use-def
	     chain for this use.  Otherwise, we need to add all
	     the defs using this regno that reach the start of
	     this BB.  */
	  if (reg_def_last[regno])
	    {
1465
	      DF_REF_CHAIN (use)
Jeff Law committed
1466 1467 1468 1469 1470 1471 1472 1473
		= df_link_create (reg_def_last[regno], 0);
	    }
	  else
	    {
	      /* While the reg-def chains are not essential, it is
		 _much_ faster to search these short lists rather than
		 all the reaching defs, especially for large
		 functions.  */
1474
	      for (def_link = df->regs[regno].defs; def_link;
Jeff Law committed
1475 1476 1477
		   def_link = def_link->next)
		{
		  struct ref *def = def_link->ref;
1478

Jeff Law committed
1479 1480
		  if (bitmap_bit_p (bb_info->rd_in, DF_REF_ID (def)))
		    {
1481
		      DF_REF_CHAIN (use)
Jeff Law committed
1482 1483 1484 1485 1486
			= df_link_create (def, DF_REF_CHAIN (use));
		    }
		}
	    }
	}
1487

Jeff Law committed
1488

1489
      /* For each def in insn... record the last def of each reg.  */
Jeff Law committed
1490 1491 1492 1493
      for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
	{
	  struct ref *def = def_link->ref;
	  int dregno = DF_REF_REGNO (def);
1494

Jeff Law committed
1495 1496 1497 1498 1499 1500 1501 1502 1503
	  reg_def_last[dregno] = def;
	}
    }
}


/* Create use-def chains from reaching def bitmaps for basic blocks
   within BLOCKS.  */
static void
1504
df_ud_chain_create (struct df *df, bitmap blocks)
Jeff Law committed
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
    {
      df_bb_ud_chain_create (df, bb);
    });
}


1515

Jeff Law committed
1516
static void
1517 1518 1519
df_rd_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, bitmap in,
			 bitmap out, bitmap gen, bitmap kill,
			 void *data ATTRIBUTE_UNUSED)
Jeff Law committed
1520
{
1521
  *changed = bitmap_union_of_diff (out, gen, in, kill);
Jeff Law committed
1522
}
1523 1524


Jeff Law committed
1525
static void
1526 1527 1528
df_ru_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, bitmap in,
			 bitmap out, bitmap gen, bitmap kill,
			 void *data ATTRIBUTE_UNUSED)
Jeff Law committed
1529
{
1530
  *changed = bitmap_union_of_diff (in, gen, out, kill);
Jeff Law committed
1531 1532
}

1533

Jeff Law committed
1534
static void
1535 1536 1537
df_lr_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, bitmap in,
			 bitmap out, bitmap use, bitmap def,
			 void *data ATTRIBUTE_UNUSED)
Jeff Law committed
1538
{
1539
  *changed = bitmap_union_of_diff (in, use, out, def);
Jeff Law committed
1540 1541 1542 1543 1544
}


/* Compute local reaching def info for basic block BB.  */
static void
1545
df_bb_rd_local_compute (struct df *df, basic_block bb)
Jeff Law committed
1546 1547 1548
{
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
  rtx insn;
1549

1550
  for (insn = BB_HEAD (bb); insn && insn != NEXT_INSN (BB_END (bb));
Jeff Law committed
1551 1552 1553 1554 1555 1556 1557
       insn = NEXT_INSN (insn))
    {
      unsigned int uid = INSN_UID (insn);
      struct df_link *def_link;

      if (! INSN_P (insn))
	continue;
1558

Jeff Law committed
1559 1560 1561 1562 1563 1564
      for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
	{
	  struct ref *def = def_link->ref;
	  unsigned int regno = DF_REF_REGNO (def);
	  struct df_link *def2_link;

1565
	  for (def2_link = df->regs[regno].defs; def2_link;
Jeff Law committed
1566 1567 1568 1569 1570 1571 1572 1573 1574
	       def2_link = def2_link->next)
	    {
	      struct ref *def2 = def2_link->ref;

	      /* Add all defs of this reg to the set of kills.  This
		 is greedy since many of these defs will not actually
		 be killed by this BB but it keeps things a lot
		 simpler.  */
	      bitmap_set_bit (bb_info->rd_kill, DF_REF_ID (def2));
1575

Jeff Law committed
1576 1577 1578 1579 1580 1581 1582
	      /* Zap from the set of gens for this BB.  */
	      bitmap_clear_bit (bb_info->rd_gen, DF_REF_ID (def2));
	    }

	  bitmap_set_bit (bb_info->rd_gen, DF_REF_ID (def));
	}
    }
Kazu Hirata committed
1583

Jeff Law committed
1584 1585 1586 1587 1588 1589
  bb_info->rd_valid = 1;
}


/* Compute local reaching def info for each basic block within BLOCKS.  */
static void
1590
df_rd_local_compute (struct df *df, bitmap blocks)
Jeff Law committed
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
  {
    df_bb_rd_local_compute (df, bb);
  });
}


/* Compute local reaching use (upward exposed use) info for basic
   block BB.  */
static void
1604
df_bb_ru_local_compute (struct df *df, basic_block bb)
Jeff Law committed
1605 1606 1607 1608
{
  /* This is much more tricky than computing reaching defs.  With
     reaching defs, defs get killed by other defs.  With upwards
     exposed uses, these get killed by defs with the same regno.  */
Kazu Hirata committed
1609

Jeff Law committed
1610 1611 1612
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
  rtx insn;

1613

1614
  for (insn = BB_END (bb); insn && insn != PREV_INSN (BB_HEAD (bb));
Jeff Law committed
1615 1616 1617 1618 1619 1620 1621 1622
       insn = PREV_INSN (insn))
    {
      unsigned int uid = INSN_UID (insn);
      struct df_link *def_link;
      struct df_link *use_link;

      if (! INSN_P (insn))
	continue;
1623

Jeff Law committed
1624 1625 1626 1627 1628
      for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
	{
	  struct ref *def = def_link->ref;
	  unsigned int dregno = DF_REF_REGNO (def);

1629
	  for (use_link = df->regs[dregno].uses; use_link;
Jeff Law committed
1630 1631 1632 1633 1634 1635 1636 1637 1638
	       use_link = use_link->next)
	    {
	      struct ref *use = use_link->ref;

	      /* Add all uses of this reg to the set of kills.  This
		 is greedy since many of these uses will not actually
		 be killed by this BB but it keeps things a lot
		 simpler.  */
	      bitmap_set_bit (bb_info->ru_kill, DF_REF_ID (use));
1639

Jeff Law committed
1640 1641 1642 1643
	      /* Zap from the set of gens for this BB.  */
	      bitmap_clear_bit (bb_info->ru_gen, DF_REF_ID (use));
	    }
	}
1644

Jeff Law committed
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
      for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
	{
	  struct ref *use = use_link->ref;
	  /* Add use to set of gens in this BB.  */
	  bitmap_set_bit (bb_info->ru_gen, DF_REF_ID (use));
	}
    }
  bb_info->ru_valid = 1;
}


/* Compute local reaching use (upward exposed use) info for each basic
   block within BLOCKS.  */
static void
1659
df_ru_local_compute (struct df *df, bitmap blocks)
Jeff Law committed
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
  {
    df_bb_ru_local_compute (df, bb);
  });
}


/* Compute local live variable info for basic block BB.  */
static void
1672
df_bb_lr_local_compute (struct df *df, basic_block bb)
Jeff Law committed
1673 1674 1675
{
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
  rtx insn;
1676

1677
  for (insn = BB_END (bb); insn && insn != PREV_INSN (BB_HEAD (bb));
Jeff Law committed
1678 1679 1680 1681 1682 1683 1684
       insn = PREV_INSN (insn))
    {
      unsigned int uid = INSN_UID (insn);
      struct df_link *link;

      if (! INSN_P (insn))
	continue;
1685

Jeff Law committed
1686 1687 1688 1689
      for (link = df->insns[uid].defs; link; link = link->next)
	{
	  struct ref *def = link->ref;
	  unsigned int dregno = DF_REF_REGNO (def);
1690

Jeff Law committed
1691 1692
	  /* Add def to set of defs in this BB.  */
	  bitmap_set_bit (bb_info->lr_def, dregno);
1693

Jeff Law committed
1694 1695
	  bitmap_clear_bit (bb_info->lr_use, dregno);
	}
1696

Jeff Law committed
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
      for (link = df->insns[uid].uses; link; link = link->next)
	{
	  struct ref *use = link->ref;
	  /* Add use to set of uses in this BB.  */
	  bitmap_set_bit (bb_info->lr_use, DF_REF_REGNO (use));
	}
    }
  bb_info->lr_valid = 1;
}


/* Compute local live variable info for each basic block within BLOCKS.  */
static void
1710
df_lr_local_compute (struct df *df, bitmap blocks)
Jeff Law committed
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
  {
    df_bb_lr_local_compute (df, bb);
  });
}


/* Compute register info: lifetime, bb, and number of defs and uses
   for basic block BB.  */
static void
1724
df_bb_reg_info_compute (struct df *df, basic_block bb, bitmap live)
Jeff Law committed
1725 1726 1727 1728
{
  struct reg_info *reg_info = df->regs;
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
  rtx insn;
1729

Jeff Law committed
1730
  bitmap_copy (live, bb_info->lr_out);
1731

1732
  for (insn = BB_END (bb); insn && insn != PREV_INSN (BB_HEAD (bb));
Jeff Law committed
1733 1734 1735 1736 1737
       insn = PREV_INSN (insn))
    {
      unsigned int uid = INSN_UID (insn);
      unsigned int regno;
      struct df_link *link;
1738

Jeff Law committed
1739 1740
      if (! INSN_P (insn))
	continue;
1741

Jeff Law committed
1742 1743 1744 1745
      for (link = df->insns[uid].defs; link; link = link->next)
	{
	  struct ref *def = link->ref;
	  unsigned int dregno = DF_REF_REGNO (def);
1746

Jeff Law committed
1747 1748 1749 1750
	  /* Kill this register.  */
	  bitmap_clear_bit (live, dregno);
	  reg_info[dregno].n_defs++;
	}
1751

Jeff Law committed
1752 1753 1754 1755
      for (link = df->insns[uid].uses; link; link = link->next)
	{
	  struct ref *use = link->ref;
	  unsigned int uregno = DF_REF_REGNO (use);
1756

Jeff Law committed
1757 1758 1759 1760
	  /* This register is now live.  */
	  bitmap_set_bit (live, uregno);
	  reg_info[uregno].n_uses++;
	}
1761

Jeff Law committed
1762 1763
      /* Increment lifetimes of all live registers.  */
      EXECUTE_IF_SET_IN_BITMAP (live, 0, regno,
1764
      {
Jeff Law committed
1765 1766 1767 1768 1769 1770 1771 1772
	reg_info[regno].lifetime++;
      });
    }
}


/* Compute register info: lifetime, bb, and number of defs and uses.  */
static void
1773
df_reg_info_compute (struct df *df, bitmap blocks)
Jeff Law committed
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
{
  basic_block bb;
  bitmap live;

  live = BITMAP_XMALLOC ();

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
  {
    df_bb_reg_info_compute (df, bb, live);
  });

  BITMAP_XFREE (live);
}


/* Assign LUIDs for BB.  */
static int
1791
df_bb_luids_set (struct df *df, basic_block bb)
Jeff Law committed
1792 1793 1794 1795 1796 1797
{
  rtx insn;
  int luid = 0;

  /* The LUIDs are monotonically increasing for each basic block.  */

1798
  for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
Jeff Law committed
1799 1800 1801 1802 1803
    {
      if (INSN_P (insn))
	DF_INSN_LUID (df, insn) = luid++;
      DF_INSN_LUID (df, insn) = luid;

1804
      if (insn == BB_END (bb))
Jeff Law committed
1805 1806 1807 1808 1809 1810 1811 1812
	break;
    }
  return luid;
}


/* Assign LUIDs for each basic block within BLOCKS.  */
static int
1813
df_luids_set (struct df *df, bitmap blocks)
Jeff Law committed
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
{
  basic_block bb;
  int total = 0;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
    {
      total += df_bb_luids_set (df, bb);
    });
  return total;
}

1825

Jeff Law committed
1826 1827 1828
/* Perform dataflow analysis using existing DF structure for blocks
   within BLOCKS.  If BLOCKS is zero, use all basic blocks in the CFG.  */
static void
1829
df_analyse_1 (struct df *df, bitmap blocks, int flags, int update)
Jeff Law committed
1830 1831 1832
{
  int aflags;
  int dflags;
1833
  int i;
1834 1835
  basic_block bb;

Jeff Law committed
1836
  dflags = 0;
1837
  aflags = flags;
Jeff Law committed
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
  if (flags & DF_UD_CHAIN)
    aflags |= DF_RD | DF_RD_CHAIN;

  if (flags & DF_DU_CHAIN)
    aflags |= DF_RU;

  if (flags & DF_RU)
    aflags |= DF_RU_CHAIN;

  if (flags & DF_REG_INFO)
    aflags |= DF_LR;

  if (! blocks)
Kazu Hirata committed
1851
    blocks = df->all_blocks;
Jeff Law committed
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898

  df->flags = flags;
  if (update)
    {
      df_refs_update (df);
      /* More fine grained incremental dataflow analysis would be
	 nice.  For now recompute the whole shebang for the
	 modified blocks.  */
#if 0
      df_refs_unlink (df, blocks);
#endif
      /* All the def-use, use-def chains can be potentially
	 modified by changes in one block.  The size of the
	 bitmaps can also change.  */
    }
  else
    {
      /* Scan the function for all register defs and uses.  */
      df_refs_queue (df);
      df_refs_record (df, blocks);

      /* Link all the new defs and uses to the insns.  */
      df_refs_process (df);
    }

  /* Allocate the bitmaps now the total number of defs and uses are
     known.  If the number of defs or uses have changed, then
     these bitmaps need to be reallocated.  */
  df_bitmaps_alloc (df, aflags);

  /* Set the LUIDs for each specified basic block.  */
  df_luids_set (df, blocks);

  /* Recreate reg-def and reg-use chains from scratch so that first
     def is at the head of the reg-def chain and the last use is at
     the head of the reg-use chain.  This is only important for
     regs local to a basic block as it speeds up searching.  */
  if (aflags & DF_RD_CHAIN)
    {
      df_reg_def_chain_create (df, blocks);
    }

  if (aflags & DF_RU_CHAIN)
    {
      df_reg_use_chain_create (df, blocks);
    }

Kazu Hirata committed
1899 1900 1901 1902 1903 1904
  df->dfs_order = xmalloc (sizeof (int) * n_basic_blocks);
  df->rc_order = xmalloc (sizeof (int) * n_basic_blocks);
  df->rts_order = xmalloc (sizeof (int) * n_basic_blocks);
  df->inverse_dfs_map = xmalloc (sizeof (int) * last_basic_block);
  df->inverse_rc_map = xmalloc (sizeof (int) * last_basic_block);
  df->inverse_rts_map = xmalloc (sizeof (int) * last_basic_block);
1905

Jeff Law committed
1906
  flow_depth_first_order_compute (df->dfs_order, df->rc_order);
1907
  flow_reverse_top_sort_order_compute (df->rts_order);
Kazu Hirata committed
1908 1909 1910 1911 1912 1913
  for (i = 0; i < n_basic_blocks; i++)
    {
      df->inverse_dfs_map[df->dfs_order[i]] = i;
      df->inverse_rc_map[df->rc_order[i]] = i;
      df->inverse_rts_map[df->rts_order[i]] = i;
    }
Jeff Law committed
1914 1915 1916 1917
  if (aflags & DF_RD)
    {
      /* Compute the sets of gens and kills for the defs of each bb.  */
      df_rd_local_compute (df, df->flags & DF_RD ? blocks : df->all_blocks);
1918
      {
1919 1920 1921 1922
	bitmap *in = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *out = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *gen = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *kill = xmalloc (sizeof (bitmap) * last_basic_block);
1923
	FOR_EACH_BB (bb)
1924
	  {
1925 1926 1927 1928
	    in[bb->index] = DF_BB_INFO (df, bb)->rd_in;
	    out[bb->index] = DF_BB_INFO (df, bb)->rd_out;
	    gen[bb->index] = DF_BB_INFO (df, bb)->rd_gen;
	    kill[bb->index] = DF_BB_INFO (df, bb)->rd_kill;
1929
	  }
Kazu Hirata committed
1930
	iterative_dataflow_bitmap (in, out, gen, kill, df->all_blocks,
1931
				   DF_FORWARD, DF_UNION, df_rd_transfer_function,
1932 1933 1934 1935 1936 1937
				   df->inverse_rc_map, NULL);
	free (in);
	free (out);
	free (gen);
	free (kill);
      }
Jeff Law committed
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
    }

  if (aflags & DF_UD_CHAIN)
    {
      /* Create use-def chains.  */
      df_ud_chain_create (df, df->all_blocks);

      if (! (flags & DF_RD))
	dflags |= DF_RD;
    }
1948

Jeff Law committed
1949 1950 1951 1952 1953
  if (aflags & DF_RU)
    {
      /* Compute the sets of gens and kills for the upwards exposed
	 uses in each bb.  */
      df_ru_local_compute (df, df->flags & DF_RU ? blocks : df->all_blocks);
1954
      {
1955 1956 1957 1958
	bitmap *in = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *out = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *gen = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *kill = xmalloc (sizeof (bitmap) * last_basic_block);
1959
	FOR_EACH_BB (bb)
1960
	  {
1961 1962 1963 1964
	    in[bb->index] = DF_BB_INFO (df, bb)->ru_in;
	    out[bb->index] = DF_BB_INFO (df, bb)->ru_out;
	    gen[bb->index] = DF_BB_INFO (df, bb)->ru_gen;
	    kill[bb->index] = DF_BB_INFO (df, bb)->ru_kill;
1965
	  }
Kazu Hirata committed
1966
	iterative_dataflow_bitmap (in, out, gen, kill, df->all_blocks,
1967
				   DF_BACKWARD, DF_UNION, df_ru_transfer_function,
1968 1969 1970 1971 1972 1973
				   df->inverse_rts_map, NULL);
	free (in);
	free (out);
	free (gen);
	free (kill);
      }
Jeff Law committed
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
    }

  if (aflags & DF_DU_CHAIN)
    {
      /* Create def-use chains.  */
      df_du_chain_create (df, df->all_blocks);

      if (! (flags & DF_RU))
	dflags |= DF_RU;
    }

  /* Free up bitmaps that are no longer required.  */
  if (dflags)
Kazu Hirata committed
1987
    df_bitmaps_free (df, dflags);
Jeff Law committed
1988 1989 1990 1991

  if (aflags & DF_LR)
    {
      /* Compute the sets of defs and uses of live variables.  */
Kazu Hirata committed
1992
      df_lr_local_compute (df, df->flags & DF_LR ? blocks : df->all_blocks);
1993
      {
1994 1995 1996 1997
	bitmap *in = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *out = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *use = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *def = xmalloc (sizeof (bitmap) * last_basic_block);
1998
	FOR_EACH_BB (bb)
1999
	  {
2000 2001 2002 2003
	    in[bb->index] = DF_BB_INFO (df, bb)->lr_in;
	    out[bb->index] = DF_BB_INFO (df, bb)->lr_out;
	    use[bb->index] = DF_BB_INFO (df, bb)->lr_use;
	    def[bb->index] = DF_BB_INFO (df, bb)->lr_def;
2004
	  }
Kazu Hirata committed
2005
	iterative_dataflow_bitmap (in, out, use, def, df->all_blocks,
2006
				   DF_BACKWARD, DF_UNION, df_lr_transfer_function,
2007 2008 2009 2010 2011 2012
				   df->inverse_rts_map, NULL);
	free (in);
	free (out);
	free (use);
	free (def);
      }
Jeff Law committed
2013 2014 2015 2016 2017
    }

  if (aflags & DF_REG_INFO)
    {
      df_reg_info_compute (df, df->all_blocks);
2018
    }
2019

Jeff Law committed
2020 2021
  free (df->dfs_order);
  free (df->rc_order);
2022
  free (df->rts_order);
2023 2024 2025
  free (df->inverse_rc_map);
  free (df->inverse_dfs_map);
  free (df->inverse_rts_map);
Jeff Law committed
2026 2027 2028
}


2029
/* Initialize dataflow analysis.  */
Jeff Law committed
2030
struct df *
2031
df_init (void)
Jeff Law committed
2032 2033 2034 2035 2036 2037 2038
{
  struct df *df;

  df = xcalloc (1, sizeof (struct df));

  /* Squirrel away a global for debugging.  */
  ddf = df;
2039

Jeff Law committed
2040 2041 2042 2043 2044 2045
  return df;
}


/* Start queuing refs.  */
static int
2046
df_refs_queue (struct df *df)
Jeff Law committed
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
{
  df->def_id_save = df->def_id;
  df->use_id_save = df->use_id;
  /* ???? Perhaps we should save current obstack state so that we can
     unwind it.  */
  return 0;
}


/* Process queued refs.  */
static int
2058
df_refs_process (struct df *df)
Jeff Law committed
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
{
  unsigned int i;

  /* Build new insn-def chains.  */
  for (i = df->def_id_save; i != df->def_id; i++)
    {
      struct ref *def = df->defs[i];
      unsigned int uid = DF_REF_INSN_UID (def);

      /* Add def to head of def list for INSN.  */
      df->insns[uid].defs
	= df_link_create (def, df->insns[uid].defs);
    }

  /* Build new insn-use chains.  */
  for (i = df->use_id_save; i != df->use_id; i++)
    {
      struct ref *use = df->uses[i];
      unsigned int uid = DF_REF_INSN_UID (use);

      /* Add use to head of use list for INSN.  */
      df->insns[uid].uses
	= df_link_create (use, df->insns[uid].uses);
    }
  return 0;
}


/* Update refs for basic block BB.  */
2088
static int
2089
df_bb_refs_update (struct df *df, basic_block bb)
Jeff Law committed
2090 2091 2092 2093
{
  rtx insn;
  int count = 0;

2094
  /* While we have to scan the chain of insns for this BB, we do not
Jeff Law committed
2095 2096 2097 2098
     need to allocate and queue a long chain of BB/INSN pairs.  Using
     a bitmap for insns_modified saves memory and avoids queuing
     duplicates.  */

2099
  for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
Jeff Law committed
2100 2101 2102 2103 2104 2105 2106 2107 2108
    {
      unsigned int uid;

      uid = INSN_UID (insn);

      if (bitmap_bit_p (df->insns_modified, uid))
	{
	  /* Delete any allocated refs of this insn.  MPH,  FIXME.  */
	  df_insn_refs_unlink (df, bb, insn);
2109

Jeff Law committed
2110 2111 2112 2113 2114
	  /* Scan the insn for refs.  */
	  df_insn_refs_record (df, bb, insn);

	  count++;
	}
2115
      if (insn == BB_END (bb))
Jeff Law committed
2116 2117 2118 2119 2120 2121 2122 2123
	break;
    }
  return count;
}


/* Process all the modified/deleted insns that were queued.  */
static int
2124
df_refs_update (struct df *df)
Jeff Law committed
2125 2126 2127 2128
{
  basic_block bb;
  int count = 0;

Kazu Hirata committed
2129
  if ((unsigned int) max_reg_num () >= df->reg_size)
Jeff Law committed
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
    df_reg_table_realloc (df, 0);

  df_refs_queue (df);

  FOR_EACH_BB_IN_BITMAP (df->bbs_modified, 0, bb,
    {
      count += df_bb_refs_update (df, bb);
    });

  df_refs_process (df);
  return count;
}


2144
/* Return nonzero if any of the requested blocks in the bitmap
Jeff Law committed
2145 2146
   BLOCKS have been modified.  */
static int
2147
df_modified_p (struct df *df, bitmap blocks)
Jeff Law committed
2148 2149
{
  int update = 0;
2150 2151 2152 2153
  basic_block bb;

  if (!df->n_bbs)
    return 0;
Jeff Law committed
2154

2155 2156 2157
  FOR_EACH_BB (bb)
    if (bitmap_bit_p (df->bbs_modified, bb->index)
	&& (! blocks || (blocks == (bitmap) -1) || bitmap_bit_p (blocks, bb->index)))
Jeff Law committed
2158 2159 2160 2161 2162 2163 2164 2165 2166
    {
      update = 1;
      break;
    }

  return update;
}


2167
/* Analyze dataflow info for the basic blocks specified by the bitmap
Jeff Law committed
2168 2169 2170
   BLOCKS, or for the whole CFG if BLOCKS is zero, or just for the
   modified blocks if BLOCKS is -1.  */
int
2171
df_analyse (struct df *df, bitmap blocks, int flags)
Jeff Law committed
2172 2173 2174 2175 2176
{
  int update;

  /* We could deal with additional basic blocks being created by
     rescanning everything again.  */
2177
  if (df->n_bbs && df->n_bbs != (unsigned int) last_basic_block)
Jeff Law committed
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
    abort ();

  update = df_modified_p (df, blocks);
  if (update || (flags != df->flags))
    {
      if (! blocks)
	{
	  if (df->n_bbs)
	    {
	      /* Recompute everything from scratch.  */
	      df_free (df);
	    }
2190
	  /* Allocate and initialize data structures.  */
Jeff Law committed
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	  df_alloc (df, max_reg_num ());
	  df_analyse_1 (df, 0, flags, 0);
	  update = 1;
	}
      else
	{
	  if (blocks == (bitmap) -1)
	    blocks = df->bbs_modified;

	  if (! df->n_bbs)
	    abort ();

	  df_analyse_1 (df, blocks, flags, 1);
	  bitmap_zero (df->bbs_modified);
2205
	  bitmap_zero (df->insns_modified);
Jeff Law committed
2206 2207 2208 2209 2210 2211 2212 2213
	}
    }
  return update;
}


/* Free all the dataflow info and the DF structure.  */
void
2214
df_finish (struct df *df)
Jeff Law committed
2215 2216 2217 2218 2219 2220 2221 2222
{
  df_free (df);
  free (df);
}


/* Unlink INSN from its reference information.  */
static void
2223
df_insn_refs_unlink (struct df *df, basic_block bb ATTRIBUTE_UNUSED, rtx insn)
Jeff Law committed
2224 2225 2226
{
  struct df_link *link;
  unsigned int uid;
2227

Jeff Law committed
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
  uid = INSN_UID (insn);

  /* Unlink all refs defined by this insn.  */
  for (link = df->insns[uid].defs; link; link = link->next)
    df_def_unlink (df, link->ref);

  /* Unlink all refs used by this insn.  */
  for (link = df->insns[uid].uses; link; link = link->next)
    df_use_unlink (df, link->ref);

  df->insns[uid].defs = 0;
  df->insns[uid].uses = 0;
}


2243
#if 0
Jeff Law committed
2244 2245
/* Unlink all the insns within BB from their reference information.  */
static void
2246
df_bb_refs_unlink (struct df *df, basic_block bb)
Jeff Law committed
2247 2248 2249 2250
{
  rtx insn;

  /* Scan the block an insn at a time from beginning to end.  */
2251
  for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
Jeff Law committed
2252 2253 2254 2255 2256 2257
    {
      if (INSN_P (insn))
	{
	  /* Unlink refs for INSN.  */
	  df_insn_refs_unlink (df, bb, insn);
	}
2258
      if (insn == BB_END (bb))
Jeff Law committed
2259 2260 2261 2262 2263 2264 2265 2266
	break;
    }
}


/* Unlink all the refs in the basic blocks specified by BLOCKS.
   Not currently used.  */
static void
2267
df_refs_unlink (struct df *df, bitmap blocks)
Jeff Law committed
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
{
  basic_block bb;

  if (blocks)
    {
      FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
      {
	df_bb_refs_unlink (df, bb);
      });
    }
  else
    {
2280
      FOR_EACH_BB (bb)
Jeff Law committed
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
	df_bb_refs_unlink (df, bb);
    }
}
#endif

/* Functions to modify insns.  */


/* Delete INSN and all its reference information.  */
rtx
2291
df_insn_delete (struct df *df, basic_block bb ATTRIBUTE_UNUSED, rtx insn)
Jeff Law committed
2292 2293 2294 2295 2296
{
  /* If the insn is a jump, we should perhaps call delete_insn to
     handle the JUMP_LABEL?  */

  /* We should not be deleting the NOTE_INSN_BASIC_BLOCK or label.  */
2297
  if (insn == BB_HEAD (bb))
Jeff Law committed
2298 2299 2300
    abort ();

  /* Delete the insn.  */
2301
  delete_insn (insn);
Jeff Law committed
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313

  df_insn_modify (df, bb, insn);

  return NEXT_INSN (insn);
}


/* Mark that INSN within BB may have changed  (created/modified/deleted).
   This may be called multiple times for the same insn.  There is no
   harm calling this function if the insn wasn't changed; it will just
   slow down the rescanning of refs.  */
void
2314
df_insn_modify (struct df *df, basic_block bb, rtx insn)
Jeff Law committed
2315 2316 2317 2318
{
  unsigned int uid;

  uid = INSN_UID (insn);
2319
  if (uid >= df->insn_size)
2320
    df_insn_table_realloc (df, uid);
2321

2322
  bitmap_set_bit (df->bbs_modified, bb->index);
Jeff Law committed
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
  bitmap_set_bit (df->insns_modified, uid);

  /* For incremental updating on the fly, perhaps we could make a copy
     of all the refs of the original insn and turn them into
     anti-refs.  When df_refs_update finds these anti-refs, it annihilates
     the original refs.  If validate_change fails then these anti-refs
     will just get ignored.  */
}


2333 2334
typedef struct replace_args
{
Jeff Law committed
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
  rtx match;
  rtx replacement;
  rtx insn;
  int modified;
} replace_args;


/* Replace mem pointed to by PX with its associated pseudo register.
   DATA is actually a pointer to a structure describing the
   instruction currently being scanned and the MEM we are currently
   replacing.  */
static int
2347
df_rtx_mem_replace (rtx *px, void *data)
Jeff Law committed
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
{
  replace_args *args = (replace_args *) data;
  rtx mem = *px;

  if (mem == NULL_RTX)
    return 0;

  switch (GET_CODE (mem))
    {
    case MEM:
      break;

    case CONST_DOUBLE:
      /* We're not interested in the MEM associated with a
	 CONST_DOUBLE, so there's no need to traverse into one.  */
      return -1;

    default:
      /* This is not a MEM.  */
      return 0;
    }

  if (!rtx_equal_p (args->match, mem))
    /* This is not the MEM we are currently replacing.  */
    return 0;

  /* Actually replace the MEM.  */
  validate_change (args->insn, px, args->replacement, 1);
  args->modified++;

  return 0;
}


int
2383
df_insn_mem_replace (struct df *df, basic_block bb, rtx insn, rtx mem, rtx reg)
Jeff Law committed
2384 2385 2386 2387 2388 2389 2390 2391
{
  replace_args args;

  args.insn = insn;
  args.match = mem;
  args.replacement = reg;
  args.modified = 0;

2392
  /* Search and replace all matching mems within insn.  */
Jeff Law committed
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
  for_each_rtx (&insn, df_rtx_mem_replace, &args);

  if (args.modified)
    df_insn_modify (df, bb, insn);

  /* ???? FIXME.  We may have a new def or one or more new uses of REG
     in INSN.  REG should be a new pseudo so it won't affect the
     dataflow information that we currently have.  We should add
     the new uses and defs to INSN and then recreate the chains
     when df_analyse is called.  */
  return args.modified;
}


/* Replace one register with another.  Called through for_each_rtx; PX
   points to the rtx being scanned.  DATA is actually a pointer to a
   structure of arguments.  */
static int
2411
df_rtx_reg_replace (rtx *px, void *data)
Jeff Law committed
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
{
  rtx x = *px;
  replace_args *args = (replace_args *) data;

  if (x == NULL_RTX)
    return 0;

  if (x == args->match)
    {
      validate_change (args->insn, px, args->replacement, 1);
      args->modified++;
    }

  return 0;
}


/* Replace the reg within every ref on CHAIN that is within the set
   BLOCKS of basic blocks with NEWREG.  Also update the regs within
   REG_NOTES.  */
void
2433
df_refs_reg_replace (struct df *df, bitmap blocks, struct df_link *chain, rtx oldreg, rtx newreg)
Jeff Law committed
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
{
  struct df_link *link;
  replace_args args;

  if (! blocks)
    blocks = df->all_blocks;

  args.match = oldreg;
  args.replacement = newreg;
  args.modified = 0;

  for (link = chain; link; link = link->next)
    {
      struct ref *ref = link->ref;
      rtx insn = DF_REF_INSN (ref);

      if (! INSN_P (insn))
	continue;

      if (bitmap_bit_p (blocks, DF_REF_BBNO (ref)))
	{
	  df_ref_reg_replace (df, ref, oldreg, newreg);

	  /* Replace occurrences of the reg within the REG_NOTES.  */
	  if ((! link->next || DF_REF_INSN (ref)
	      != DF_REF_INSN (link->next->ref))
	      && REG_NOTES (insn))
	    {
	      args.insn = insn;
	      for_each_rtx (&REG_NOTES (insn), df_rtx_reg_replace, &args);
	    }
	}
      else
	{
	  /* Temporary check to ensure that we have a grip on which
	     regs should be replaced.  */
	  abort ();
	}
    }
}


/* Replace all occurrences of register OLDREG with register NEWREG in
   blocks defined by bitmap BLOCKS.  This also replaces occurrences of
   OLDREG in the REG_NOTES but only for insns containing OLDREG.  This
   routine expects the reg-use and reg-def chains to be valid.  */
int
2481
df_reg_replace (struct df *df, bitmap blocks, rtx oldreg, rtx newreg)
Jeff Law committed
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
{
  unsigned int oldregno = REGNO (oldreg);

  df_refs_reg_replace (df, blocks, df->regs[oldregno].defs, oldreg, newreg);
  df_refs_reg_replace (df, blocks, df->regs[oldregno].uses, oldreg, newreg);
  return 1;
}


/* Try replacing the reg within REF with NEWREG.  Do not modify
   def-use/use-def chains.  */
int
2494
df_ref_reg_replace (struct df *df, struct ref *ref, rtx oldreg, rtx newreg)
Jeff Law committed
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
{
  /* Check that insn was deleted by being converted into a NOTE.  If
   so ignore this insn.  */
  if (! INSN_P (DF_REF_INSN (ref)))
    return 0;

  if (oldreg && oldreg != DF_REF_REG (ref))
    abort ();

  if (! validate_change (DF_REF_INSN (ref), DF_REF_LOC (ref), newreg, 1))
    return 0;

  df_insn_modify (df, DF_REF_BB (ref), DF_REF_INSN (ref));
  return 1;
}


struct ref*
2513
df_bb_def_use_swap (struct df *df, basic_block bb, rtx def_insn, rtx use_insn, unsigned int regno)
Jeff Law committed
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
{
  struct ref *def;
  struct ref *use;
  int def_uid;
  int use_uid;
  struct df_link *link;

  def = df_bb_insn_regno_first_def_find (df, bb, def_insn, regno);
  if (! def)
    return 0;

  use = df_bb_insn_regno_last_use_find (df, bb, use_insn, regno);
  if (! use)
    return 0;

  /* The USE no longer exists.  */
  use_uid = INSN_UID (use_insn);
  df_use_unlink (df, use);
  df_ref_unlink (&df->insns[use_uid].uses, use);

  /* The DEF requires shifting so remove it from DEF_INSN
     and add it to USE_INSN by reusing LINK.  */
  def_uid = INSN_UID (def_insn);
  link = df_ref_unlink (&df->insns[def_uid].defs, def);
  link->ref = def;
  link->next = df->insns[use_uid].defs;
  df->insns[use_uid].defs = link;

#if 0
  link = df_ref_unlink (&df->regs[regno].defs, def);
  link->ref = def;
  link->next = df->regs[regno].defs;
  df->insns[regno].defs = link;
#endif

  DF_REF_INSN (def) = use_insn;
  return def;
}


2554
/* Record df between FIRST_INSN and LAST_INSN inclusive.  All new
Jeff Law committed
2555 2556
   insns must be processed by this routine.  */
static void
2557
df_insns_modify (struct df *df, basic_block bb, rtx first_insn, rtx last_insn)
Jeff Law committed
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
{
  rtx insn;

  for (insn = first_insn; ; insn = NEXT_INSN (insn))
    {
      unsigned int uid;

      /* A non-const call should not have slipped through the net.  If
	 it does, we need to create a new basic block.  Ouch.  The
	 same applies for a label.  */
      if ((GET_CODE (insn) == CALL_INSN
2569
	   && ! CONST_OR_PURE_CALL_P (insn))
Jeff Law committed
2570 2571 2572 2573 2574 2575
	  || GET_CODE (insn) == CODE_LABEL)
	abort ();

      uid = INSN_UID (insn);

      if (uid >= df->insn_size)
2576
	df_insn_table_realloc (df, uid);
Jeff Law committed
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587

      df_insn_modify (df, bb, insn);

      if (insn == last_insn)
	break;
    }
}


/* Emit PATTERN before INSN within BB.  */
rtx
2588
df_pattern_emit_before (struct df *df, rtx pattern, basic_block bb, rtx insn)
Jeff Law committed
2589 2590 2591 2592 2593
{
  rtx ret_insn;
  rtx prev_insn = PREV_INSN (insn);

  /* We should not be inserting before the start of the block.  */
2594
  if (insn == BB_HEAD (bb))
Jeff Law committed
2595 2596 2597 2598
    abort ();
  ret_insn = emit_insn_before (pattern, insn);
  if (ret_insn == insn)
    return ret_insn;
2599

Jeff Law committed
2600 2601 2602 2603 2604 2605 2606
  df_insns_modify (df, bb, NEXT_INSN (prev_insn), ret_insn);
  return ret_insn;
}


/* Emit PATTERN after INSN within BB.  */
rtx
2607
df_pattern_emit_after (struct df *df, rtx pattern, basic_block bb, rtx insn)
Jeff Law committed
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
{
  rtx ret_insn;

  ret_insn = emit_insn_after (pattern, insn);
  if (ret_insn == insn)
    return ret_insn;

  df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
  return ret_insn;
}


/* Emit jump PATTERN after INSN within BB.  */
rtx
2622
df_jump_pattern_emit_after (struct df *df, rtx pattern, basic_block bb, rtx insn)
Jeff Law committed
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
{
  rtx ret_insn;

  ret_insn = emit_jump_insn_after (pattern, insn);
  if (ret_insn == insn)
    return ret_insn;

  df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
  return ret_insn;
}


/* Move INSN within BB before BEFORE_INSN within BEFORE_BB.

   This function should only be used to move loop invariant insns
   out of a loop where it has been proven that the def-use info
   will still be valid.  */
rtx
2641
df_insn_move_before (struct df *df, basic_block bb, rtx insn, basic_block before_bb, rtx before_insn)
Jeff Law committed
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
{
  struct df_link *link;
  unsigned int uid;

  if (! bb)
    return df_pattern_emit_before (df, insn, before_bb, before_insn);

  uid = INSN_UID (insn);

  /* Change bb for all df defined and used by this insn.  */
2652
  for (link = df->insns[uid].defs; link; link = link->next)
Jeff Law committed
2653
    DF_REF_BB (link->ref) = before_bb;
2654
  for (link = df->insns[uid].uses; link; link = link->next)
Jeff Law committed
2655 2656 2657 2658 2659 2660 2661 2662 2663
    DF_REF_BB (link->ref) = before_bb;

  /* The lifetimes of the registers used in this insn will be reduced
     while the lifetimes of the registers defined in this insn
     are likely to be increased.  */

  /* ???? Perhaps all the insns moved should be stored on a list
     which df_analyse removes when it recalculates data flow.  */

2664
  return emit_insn_before (insn, before_insn);
Jeff Law committed
2665 2666 2667 2668 2669 2670
}

/* Functions to query dataflow information.  */


int
2671 2672
df_insn_regno_def_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
		     rtx insn, unsigned int regno)
Jeff Law committed
2673 2674 2675 2676 2677 2678
{
  unsigned int uid;
  struct df_link *link;

  uid = INSN_UID (insn);

2679
  for (link = df->insns[uid].defs; link; link = link->next)
Jeff Law committed
2680 2681
    {
      struct ref *def = link->ref;
2682

Jeff Law committed
2683 2684 2685 2686 2687 2688 2689 2690 2691
      if (DF_REF_REGNO (def) == regno)
	return 1;
    }

  return 0;
}


static int
2692
df_def_dominates_all_uses_p (struct df *df ATTRIBUTE_UNUSED, struct ref *def)
Jeff Law committed
2693 2694 2695 2696 2697 2698 2699 2700
{
  struct df_link *du_link;

  /* Follow def-use chain to find all the uses of this def.  */
  for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
    {
      struct ref *use = du_link->ref;
      struct df_link *ud_link;
2701

Jeff Law committed
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
      /* Follow use-def chain to check all the defs for this use.  */
      for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
	if (ud_link->ref != def)
	  return 0;
    }
  return 1;
}


int
2712 2713
df_insn_dominates_all_uses_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
			      rtx insn)
Jeff Law committed
2714 2715 2716 2717 2718 2719
{
  unsigned int uid;
  struct df_link *link;

  uid = INSN_UID (insn);

2720
  for (link = df->insns[uid].defs; link; link = link->next)
Jeff Law committed
2721 2722
    {
      struct ref *def = link->ref;
2723

Jeff Law committed
2724 2725 2726 2727 2728 2729 2730 2731
      if (! df_def_dominates_all_uses_p (df, def))
	return 0;
    }

  return 1;
}


2732
/* Return nonzero if all DF dominates all the uses within the bitmap
Jeff Law committed
2733 2734
   BLOCKS.  */
static int
2735 2736
df_def_dominates_uses_p (struct df *df ATTRIBUTE_UNUSED, struct ref *def,
			 bitmap blocks)
Jeff Law committed
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
{
  struct df_link *du_link;

  /* Follow def-use chain to find all the uses of this def.  */
  for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
    {
      struct ref *use = du_link->ref;
      struct df_link *ud_link;

      /* Only worry about the uses within BLOCKS.  For example,
      consider a register defined within a loop that is live at the
      loop exits.  */
      if (bitmap_bit_p (blocks, DF_REF_BBNO (use)))
	{
	  /* Follow use-def chain to check all the defs for this use.  */
	  for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
	    if (ud_link->ref != def)
	      return 0;
	}
    }
  return 1;
}


2761
/* Return nonzero if all the defs of INSN within BB dominates
Jeff Law committed
2762 2763
   all the corresponding uses.  */
int
2764 2765
df_insn_dominates_uses_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
			  rtx insn, bitmap blocks)
Jeff Law committed
2766 2767 2768 2769 2770 2771
{
  unsigned int uid;
  struct df_link *link;

  uid = INSN_UID (insn);

2772
  for (link = df->insns[uid].defs; link; link = link->next)
Jeff Law committed
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
    {
      struct ref *def = link->ref;

      /* Only consider the defs within BLOCKS.  */
      if (bitmap_bit_p (blocks, DF_REF_BBNO (def))
	  && ! df_def_dominates_uses_p (df, def, blocks))
	return 0;
    }
  return 1;
}


/* Return the basic block that REG referenced in or NULL if referenced
   in multiple basic blocks.  */
basic_block
2788
df_regno_bb (struct df *df, unsigned int regno)
Jeff Law committed
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
{
  struct df_link *defs = df->regs[regno].defs;
  struct df_link *uses = df->regs[regno].uses;
  struct ref *def = defs ? defs->ref : 0;
  struct ref *use = uses ? uses->ref : 0;
  basic_block bb_def = def ? DF_REF_BB (def) : 0;
  basic_block bb_use = use ? DF_REF_BB (use) : 0;

  /* Compare blocks of first def and last use.  ???? FIXME.  What if
     the reg-def and reg-use lists are not correctly ordered.  */
  return bb_def == bb_use ? bb_def : 0;
}


2803
/* Return nonzero if REG used in multiple basic blocks.  */
Jeff Law committed
2804
int
2805
df_reg_global_p (struct df *df, rtx reg)
Jeff Law committed
2806 2807 2808 2809 2810 2811 2812
{
  return df_regno_bb (df, REGNO (reg)) != 0;
}


/* Return total lifetime (in insns) of REG.  */
int
2813
df_reg_lifetime (struct df *df, rtx reg)
Jeff Law committed
2814 2815 2816 2817 2818
{
  return df->regs[REGNO (reg)].lifetime;
}


2819
/* Return nonzero if REG live at start of BB.  */
Jeff Law committed
2820
int
2821
df_bb_reg_live_start_p (struct df *df, basic_block bb, rtx reg)
Jeff Law committed
2822 2823 2824 2825 2826 2827 2828
{
  struct bb_info *bb_info = DF_BB_INFO (df, bb);

#ifdef ENABLE_CHECKING
  if (! bb_info->lr_in)
    abort ();
#endif
2829

Jeff Law committed
2830 2831 2832 2833
  return bitmap_bit_p (bb_info->lr_in, REGNO (reg));
}


2834
/* Return nonzero if REG live at end of BB.  */
Jeff Law committed
2835
int
2836
df_bb_reg_live_end_p (struct df *df, basic_block bb, rtx reg)
Jeff Law committed
2837 2838
{
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
2839

Jeff Law committed
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
#ifdef ENABLE_CHECKING
  if (! bb_info->lr_in)
    abort ();
#endif

  return bitmap_bit_p (bb_info->lr_out, REGNO (reg));
}


/* Return -1 if life of REG1 before life of REG2, 1 if life of REG1
   after life of REG2, or 0, if the lives overlap.  */
int
2852
df_bb_regs_lives_compare (struct df *df, basic_block bb, rtx reg1, rtx reg2)
Jeff Law committed
2853 2854 2855 2856 2857 2858 2859 2860
{
  unsigned int regno1 = REGNO (reg1);
  unsigned int regno2 = REGNO (reg2);
  struct ref *def1;
  struct ref *use1;
  struct ref *def2;
  struct ref *use2;

2861

Jeff Law committed
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
  /* The regs must be local to BB.  */
  if (df_regno_bb (df, regno1) != bb
      || df_regno_bb (df, regno2) != bb)
    abort ();

  def2 = df_bb_regno_first_def_find (df, bb, regno2);
  use1 = df_bb_regno_last_use_find (df, bb, regno1);

  if (DF_INSN_LUID (df, DF_REF_INSN (def2))
      > DF_INSN_LUID (df, DF_REF_INSN (use1)))
    return -1;

  def1 = df_bb_regno_first_def_find (df, bb, regno1);
  use2 = df_bb_regno_last_use_find (df, bb, regno2);

  if (DF_INSN_LUID (df, DF_REF_INSN (def1))
      > DF_INSN_LUID (df, DF_REF_INSN (use2)))
    return 1;

  return 0;
}


/* Return last use of REGNO within BB.  */
static struct ref *
2887
df_bb_regno_last_use_find (struct df *df, basic_block bb, unsigned int regno)
Jeff Law committed
2888 2889 2890 2891 2892 2893 2894
{
  struct df_link *link;

  /* This assumes that the reg-use list is ordered such that for any
     BB, the last use is found first.  However, since the BBs are not
     ordered, the first use in the chain is not necessarily the last
     use in the function.  */
2895
  for (link = df->regs[regno].uses; link; link = link->next)
Jeff Law committed
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
    {
      struct ref *use = link->ref;

      if (DF_REF_BB (use) == bb)
	return use;
    }
  return 0;
}


/* Return first def of REGNO within BB.  */
static struct ref *
2908
df_bb_regno_first_def_find (struct df *df, basic_block bb, unsigned int regno)
Jeff Law committed
2909 2910 2911 2912 2913 2914 2915
{
  struct df_link *link;

  /* This assumes that the reg-def list is ordered such that for any
     BB, the first def is found first.  However, since the BBs are not
     ordered, the first def in the chain is not necessarily the first
     def in the function.  */
2916
  for (link = df->regs[regno].defs; link; link = link->next)
Jeff Law committed
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
    {
      struct ref *def = link->ref;

      if (DF_REF_BB (def) == bb)
	return def;
    }
  return 0;
}


/* Return first use of REGNO inside INSN within BB.  */
static struct ref *
2929 2930 2931
df_bb_insn_regno_last_use_find (struct df *df,
				basic_block bb ATTRIBUTE_UNUSED, rtx insn,
				unsigned int regno)
Jeff Law committed
2932 2933 2934 2935 2936 2937
{
  unsigned int uid;
  struct df_link *link;

  uid = INSN_UID (insn);

2938
  for (link = df->insns[uid].uses; link; link = link->next)
Jeff Law committed
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
    {
      struct ref *use = link->ref;

      if (DF_REF_REGNO (use) == regno)
	return use;
    }

  return 0;
}


/* Return first def of REGNO inside INSN within BB.  */
static struct ref *
2952 2953 2954
df_bb_insn_regno_first_def_find (struct df *df,
				 basic_block bb ATTRIBUTE_UNUSED, rtx insn,
				 unsigned int regno)
Jeff Law committed
2955 2956 2957 2958 2959 2960
{
  unsigned int uid;
  struct df_link *link;

  uid = INSN_UID (insn);

2961
  for (link = df->insns[uid].defs; link; link = link->next)
Jeff Law committed
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
    {
      struct ref *def = link->ref;

      if (DF_REF_REGNO (def) == regno)
	return def;
    }

  return 0;
}


/* Return insn using REG if the BB contains only a single
   use and def of REG.  */
rtx
2976
df_bb_single_def_use_insn_find (struct df *df, basic_block bb, rtx insn, rtx reg)
Jeff Law committed
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
{
  struct ref *def;
  struct ref *use;
  struct df_link *du_link;

  def = df_bb_insn_regno_first_def_find (df, bb, insn, REGNO (reg));

  if (! def)
    abort ();

  du_link = DF_REF_CHAIN (def);

  if (! du_link)
    return NULL_RTX;

  use = du_link->ref;

  /* Check if def is dead.  */
  if (! use)
    return NULL_RTX;

  /* Check for multiple uses.  */
  if (du_link->next)
    return NULL_RTX;
3001

Jeff Law committed
3002 3003 3004 3005 3006 3007 3008 3009
  return DF_REF_INSN (use);
}

/* Functions for debugging/dumping dataflow information.  */


/* Dump a def-use or use-def chain for REF to FILE.  */
static void
3010
df_chain_dump (struct df_link *link, FILE *file)
Jeff Law committed
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
{
  fprintf (file, "{ ");
  for (; link; link = link->next)
    {
      fprintf (file, "%c%d ",
	       DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
	       DF_REF_ID (link->ref));
    }
  fprintf (file, "}");
}

3022 3023

/* Dump a chain of refs with the associated regno.  */
Jeff Law committed
3024
static void
3025
df_chain_dump_regno (struct df_link *link, FILE *file)
Jeff Law committed
3026 3027 3028 3029 3030
{
  fprintf (file, "{ ");
  for (; link; link = link->next)
    {
      fprintf (file, "%c%d(%d) ",
Kazu Hirata committed
3031 3032 3033
	       DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
	       DF_REF_ID (link->ref),
	       DF_REF_REGNO (link->ref));
Jeff Law committed
3034 3035 3036 3037
    }
  fprintf (file, "}");
}

3038

Jeff Law committed
3039 3040
/* Dump dataflow info.  */
void
3041
df_dump (struct df *df, int flags, FILE *file)
Jeff Law committed
3042 3043
{
  unsigned int j;
3044
  basic_block bb;
Jeff Law committed
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054

  if (! df || ! file)
    return;

  fprintf (file, "\nDataflow summary:\n");
  fprintf (file, "n_regs = %d, n_defs = %d, n_uses = %d, n_bbs = %d\n",
	   df->n_regs, df->n_defs, df->n_uses, df->n_bbs);

  if (flags & DF_RD)
    {
3055 3056
      basic_block bb;

Jeff Law committed
3057
      fprintf (file, "Reaching defs:\n");
3058
      FOR_EACH_BB (bb)
Jeff Law committed
3059
	{
3060 3061
	  struct bb_info *bb_info = DF_BB_INFO (df, bb);

Jeff Law committed
3062 3063 3064
	  if (! bb_info->rd_in)
	    continue;

3065
	  fprintf (file, "bb %d in  \t", bb->index);
Jeff Law committed
3066
	  dump_bitmap (file, bb_info->rd_in);
3067
	  fprintf (file, "bb %d gen \t", bb->index);
Jeff Law committed
3068
	  dump_bitmap (file, bb_info->rd_gen);
3069
	  fprintf (file, "bb %d kill\t", bb->index);
Jeff Law committed
3070
	  dump_bitmap (file, bb_info->rd_kill);
3071
	  fprintf (file, "bb %d out \t", bb->index);
Jeff Law committed
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
	  dump_bitmap (file, bb_info->rd_out);
	}
    }

  if (flags & DF_UD_CHAIN)
    {
      fprintf (file, "Use-def chains:\n");
      for (j = 0; j < df->n_defs; j++)
	{
	  if (df->defs[j])
	    {
	      fprintf (file, "d%d bb %d luid %d insn %d reg %d ",
		       j, DF_REF_BBNO (df->defs[j]),
		       DF_INSN_LUID (df, DF_REF_INSN (df->defs[j])),
		       DF_REF_INSN_UID (df->defs[j]),
		       DF_REF_REGNO (df->defs[j]));
3088 3089
	      if (df->defs[j]->flags & DF_REF_READ_WRITE)
		fprintf (file, "read/write ");
Jeff Law committed
3090 3091 3092 3093 3094 3095 3096 3097 3098
	      df_chain_dump (DF_REF_CHAIN (df->defs[j]), file);
	      fprintf (file, "\n");
	    }
	}
    }

  if (flags & DF_RU)
    {
      fprintf (file, "Reaching uses:\n");
3099
      FOR_EACH_BB (bb)
Jeff Law committed
3100
	{
3101 3102
	  struct bb_info *bb_info = DF_BB_INFO (df, bb);

Jeff Law committed
3103 3104 3105
	  if (! bb_info->ru_in)
	    continue;

3106
	  fprintf (file, "bb %d in  \t", bb->index);
Jeff Law committed
3107
	  dump_bitmap (file, bb_info->ru_in);
3108
	  fprintf (file, "bb %d gen \t", bb->index);
Jeff Law committed
3109
	  dump_bitmap (file, bb_info->ru_gen);
3110
	  fprintf (file, "bb %d kill\t", bb->index);
Jeff Law committed
3111
	  dump_bitmap (file, bb_info->ru_kill);
3112
	  fprintf (file, "bb %d out \t", bb->index);
Jeff Law committed
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
	  dump_bitmap (file, bb_info->ru_out);
	}
    }

  if (flags & DF_DU_CHAIN)
    {
      fprintf (file, "Def-use chains:\n");
      for (j = 0; j < df->n_uses; j++)
	{
	  if (df->uses[j])
	    {
	      fprintf (file, "u%d bb %d luid %d insn %d reg %d ",
		       j, DF_REF_BBNO (df->uses[j]),
		       DF_INSN_LUID (df, DF_REF_INSN (df->uses[j])),
		       DF_REF_INSN_UID (df->uses[j]),
		       DF_REF_REGNO (df->uses[j]));
3129 3130
	      if (df->uses[j]->flags & DF_REF_READ_WRITE)
		fprintf (file, "read/write ");
Jeff Law committed
3131 3132 3133 3134 3135 3136 3137 3138 3139
	      df_chain_dump (DF_REF_CHAIN (df->uses[j]), file);
	      fprintf (file, "\n");
	    }
	}
    }

  if (flags & DF_LR)
    {
      fprintf (file, "Live regs:\n");
3140
      FOR_EACH_BB (bb)
Jeff Law committed
3141
	{
3142 3143
	  struct bb_info *bb_info = DF_BB_INFO (df, bb);

Jeff Law committed
3144 3145 3146
	  if (! bb_info->lr_in)
	    continue;

3147
	  fprintf (file, "bb %d in  \t", bb->index);
Jeff Law committed
3148
	  dump_bitmap (file, bb_info->lr_in);
3149
	  fprintf (file, "bb %d use \t", bb->index);
Jeff Law committed
3150
	  dump_bitmap (file, bb_info->lr_use);
3151
	  fprintf (file, "bb %d def \t", bb->index);
Jeff Law committed
3152
	  dump_bitmap (file, bb_info->lr_def);
3153
	  fprintf (file, "bb %d out \t", bb->index);
Jeff Law committed
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
	  dump_bitmap (file, bb_info->lr_out);
	}
    }

  if (flags & (DF_REG_INFO | DF_RD_CHAIN | DF_RU_CHAIN))
    {
      struct reg_info *reg_info = df->regs;

      fprintf (file, "Register info:\n");
      for (j = 0; j < df->n_regs; j++)
	{
3165
	  if (((flags & DF_REG_INFO)
Jeff Law committed
3166 3167 3168
	       && (reg_info[j].n_uses || reg_info[j].n_defs))
	      || ((flags & DF_RD_CHAIN) && reg_info[j].defs)
	      || ((flags & DF_RU_CHAIN) && reg_info[j].uses))
Kazu Hirata committed
3169 3170 3171 3172 3173
	    {
	      fprintf (file, "reg %d", j);
	      if ((flags & DF_RD_CHAIN) && (flags & DF_RU_CHAIN))
		{
		  basic_block bb = df_regno_bb (df, j);
3174

Kazu Hirata committed
3175 3176 3177 3178 3179 3180 3181 3182 3183
		  if (bb)
		    fprintf (file, " bb %d", bb->index);
		  else
		    fprintf (file, " bb ?");
		}
	      if (flags & DF_REG_INFO)
		{
		  fprintf (file, " life %d", reg_info[j].lifetime);
		}
Jeff Law committed
3184

Kazu Hirata committed
3185 3186 3187 3188 3189 3190 3191 3192
	      if ((flags & DF_REG_INFO) || (flags & DF_RD_CHAIN))
		{
		  fprintf (file, " defs ");
		  if (flags & DF_REG_INFO)
		    fprintf (file, "%d ", reg_info[j].n_defs);
		  if (flags & DF_RD_CHAIN)
		    df_chain_dump (reg_info[j].defs, file);
		}
Jeff Law committed
3193

Kazu Hirata committed
3194 3195 3196 3197 3198 3199 3200 3201
	      if ((flags & DF_REG_INFO) || (flags & DF_RU_CHAIN))
		{
		  fprintf (file, " uses ");
		  if (flags & DF_REG_INFO)
		    fprintf (file, "%d ", reg_info[j].n_uses);
		  if (flags & DF_RU_CHAIN)
		    df_chain_dump (reg_info[j].uses, file);
		}
Jeff Law committed
3202

Kazu Hirata committed
3203 3204
	      fprintf (file, "\n");
	    }
Jeff Law committed
3205 3206 3207 3208 3209 3210 3211
	}
    }
  fprintf (file, "\n");
}


void
3212
df_insn_debug (struct df *df, rtx insn, FILE *file)
Jeff Law committed
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
{
  unsigned int uid;
  int bbi;

  uid = INSN_UID (insn);
  if (uid >= df->insn_size)
    return;

  if (df->insns[uid].defs)
    bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
Kazu Hirata committed
3223
  else if (df->insns[uid].uses)
Jeff Law committed
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
    bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
  else
    bbi = -1;

  fprintf (file, "insn %d bb %d luid %d defs ",
	   uid, bbi, DF_INSN_LUID (df, insn));
  df_chain_dump (df->insns[uid].defs, file);
  fprintf (file, " uses ");
  df_chain_dump (df->insns[uid].uses, file);
  fprintf (file, "\n");
}

3236

Jeff Law committed
3237
void
3238
df_insn_debug_regno (struct df *df, rtx insn, FILE *file)
Jeff Law committed
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
{
  unsigned int uid;
  int bbi;

  uid = INSN_UID (insn);
  if (uid >= df->insn_size)
    return;

  if (df->insns[uid].defs)
    bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
Kazu Hirata committed
3249
  else if (df->insns[uid].uses)
Jeff Law committed
3250 3251 3252 3253 3254
    bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
  else
    bbi = -1;

  fprintf (file, "insn %d bb %d luid %d defs ",
Kazu Hirata committed
3255
	   uid, bbi, DF_INSN_LUID (df, insn));
Jeff Law committed
3256 3257 3258 3259 3260 3261
  df_chain_dump_regno (df->insns[uid].defs, file);
  fprintf (file, " uses ");
  df_chain_dump_regno (df->insns[uid].uses, file);
  fprintf (file, "\n");
}

3262

Jeff Law committed
3263
static void
3264
df_regno_debug (struct df *df, unsigned int regno, FILE *file)
Jeff Law committed
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
{
  if (regno >= df->reg_size)
    return;

  fprintf (file, "reg %d life %d defs ",
	   regno, df->regs[regno].lifetime);
  df_chain_dump (df->regs[regno].defs, file);
  fprintf (file, " uses ");
  df_chain_dump (df->regs[regno].uses, file);
  fprintf (file, "\n");
}


static void
3279
df_ref_debug (struct df *df, struct ref *ref, FILE *file)
Jeff Law committed
3280 3281 3282 3283
{
  fprintf (file, "%c%d ",
	   DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
	   DF_REF_ID (ref));
3284
  fprintf (file, "reg %d bb %d luid %d insn %d chain ",
Jeff Law committed
3285
	   DF_REF_REGNO (ref),
3286
	   DF_REF_BBNO (ref),
Jeff Law committed
3287 3288 3289 3290 3291
	   DF_INSN_LUID (df, DF_REF_INSN (ref)),
	   INSN_UID (DF_REF_INSN (ref)));
  df_chain_dump (DF_REF_CHAIN (ref), file);
  fprintf (file, "\n");
}
3292 3293

/* Functions for debugging from GDB.  */
Jeff Law committed
3294

3295
void
3296
debug_df_insn (rtx insn)
Jeff Law committed
3297 3298 3299 3300 3301 3302
{
  df_insn_debug (ddf, insn, stderr);
  debug_rtx (insn);
}


3303
void
3304
debug_df_reg (rtx reg)
Jeff Law committed
3305 3306 3307 3308 3309
{
  df_regno_debug (ddf, REGNO (reg), stderr);
}


3310
void
3311
debug_df_regno (unsigned int regno)
Jeff Law committed
3312 3313 3314 3315 3316
{
  df_regno_debug (ddf, regno, stderr);
}


3317
void
3318
debug_df_ref (struct ref *ref)
Jeff Law committed
3319 3320 3321 3322 3323
{
  df_ref_debug (ddf, ref, stderr);
}


3324
void
3325
debug_df_defno (unsigned int defno)
Jeff Law committed
3326 3327 3328 3329 3330
{
  df_ref_debug (ddf, ddf->defs[defno], stderr);
}


3331
void
3332
debug_df_useno (unsigned int defno)
Jeff Law committed
3333 3334 3335 3336 3337
{
  df_ref_debug (ddf, ddf->uses[defno], stderr);
}


3338
void
3339
debug_df_chain (struct df_link *link)
Jeff Law committed
3340 3341 3342 3343
{
  df_chain_dump (link, stderr);
  fputc ('\n', stderr);
}
3344

3345

3346 3347
/* Hybrid search algorithm from "Implementation Techniques for
   Efficient Data-Flow Analysis of Large Programs".  */
Kazu Hirata committed
3348
static void
3349 3350 3351 3352 3353
hybrid_search_bitmap (basic_block block, bitmap *in, bitmap *out, bitmap *gen,
		      bitmap *kill, enum df_flow_dir dir,
		      enum df_confluence_op conf_op,
		      transfer_function_bitmap transfun, sbitmap visited,
		      sbitmap pending, void *data)
3354 3355
{
  int changed;
3356
  int i = block->index;
3357
  edge e;
Kazu Hirata committed
3358
  basic_block bb = block;
3359

3360 3361
  SET_BIT (visited, block->index);
  if (TEST_BIT (pending, block->index))
3362
    {
3363
      if (dir == DF_FORWARD)
3364
	{
3365
	  /*  Calculate <conf_op> of predecessor_outs.  */
3366
	  bitmap_zero (in[i]);
3367 3368 3369 3370 3371 3372
	  for (e = bb->pred; e != 0; e = e->pred_next)
	    {
	      if (e->src == ENTRY_BLOCK_PTR)
		continue;
	      switch (conf_op)
		{
3373
		case DF_UNION:
3374
		  bitmap_a_or_b (in[i], in[i], out[e->src->index]);
3375
		  break;
3376
		case DF_INTERSECTION:
3377
		  bitmap_a_and_b (in[i], in[i], out[e->src->index]);
3378 3379 3380 3381
		  break;
		}
	    }
	}
Kazu Hirata committed
3382
      else
3383
	{
3384
	  /* Calculate <conf_op> of successor ins.  */
Kazu Hirata committed
3385
	  bitmap_zero (out[i]);
3386 3387 3388 3389 3390
	  for (e = bb->succ; e != 0; e = e->succ_next)
	    {
	      if (e->dest == EXIT_BLOCK_PTR)
		continue;
	      switch (conf_op)
Kazu Hirata committed
3391
		{
3392
		case DF_UNION:
3393
		  bitmap_a_or_b (out[i], out[i], in[e->dest->index]);
3394
		  break;
3395
		case DF_INTERSECTION:
3396
		  bitmap_a_and_b (out[i], out[i], in[e->dest->index]);
3397 3398 3399
		  break;
		}
	    }
Kazu Hirata committed
3400
	}
3401 3402
      /* Common part */
      (*transfun)(i, &changed, in[i], out[i], gen[i], kill[i], data);
3403
      RESET_BIT (pending, i);
3404 3405
      if (changed)
	{
3406
	  if (dir == DF_FORWARD)
3407 3408 3409
	    {
	      for (e = bb->succ; e != 0; e = e->succ_next)
		{
3410
		  if (e->dest == EXIT_BLOCK_PTR || e->dest->index == i)
3411
		    continue;
3412
		  SET_BIT (pending, e->dest->index);
3413 3414 3415 3416 3417 3418
		}
	    }
	  else
	    {
	      for (e = bb->pred; e != 0; e = e->pred_next)
		{
3419
		  if (e->src == ENTRY_BLOCK_PTR || e->dest->index == i)
3420
		    continue;
3421
		  SET_BIT (pending, e->src->index);
3422 3423 3424 3425
		}
	    }
	}
    }
3426
  if (dir == DF_FORWARD)
3427 3428 3429
    {
      for (e = bb->succ; e != 0; e = e->succ_next)
	{
3430
	  if (e->dest == EXIT_BLOCK_PTR || e->dest->index == i)
3431
	    continue;
3432 3433 3434
	  if (!TEST_BIT (visited, e->dest->index))
	    hybrid_search_bitmap (e->dest, in, out, gen, kill, dir,
				  conf_op, transfun, visited, pending,
3435 3436 3437 3438 3439 3440 3441
				  data);
	}
    }
  else
    {
      for (e = bb->pred; e != 0; e = e->pred_next)
	{
3442
	  if (e->src == ENTRY_BLOCK_PTR || e->src->index == i)
3443
	    continue;
3444
	  if (!TEST_BIT (visited, e->src->index))
Kazu Hirata committed
3445 3446
	    hybrid_search_bitmap (e->src, in, out, gen, kill, dir,
				  conf_op, transfun, visited, pending,
3447 3448 3449
				  data);
	}
    }
3450
}
3451 3452 3453


/* Hybrid search for sbitmaps, rather than bitmaps.  */
Kazu Hirata committed
3454
static void
3455 3456 3457 3458 3459
hybrid_search_sbitmap (basic_block block, sbitmap *in, sbitmap *out,
		       sbitmap *gen, sbitmap *kill, enum df_flow_dir dir,
		       enum df_confluence_op conf_op,
		       transfer_function_sbitmap transfun, sbitmap visited,
		       sbitmap pending, void *data)
3460 3461
{
  int changed;
3462
  int i = block->index;
3463
  edge e;
Kazu Hirata committed
3464
  basic_block bb = block;
3465

3466 3467
  SET_BIT (visited, block->index);
  if (TEST_BIT (pending, block->index))
3468
    {
3469
      if (dir == DF_FORWARD)
3470
	{
3471
	  /* Calculate <conf_op> of predecessor_outs.  */
3472
	  sbitmap_zero (in[i]);
3473 3474 3475 3476 3477 3478
	  for (e = bb->pred; e != 0; e = e->pred_next)
	    {
	      if (e->src == ENTRY_BLOCK_PTR)
		continue;
	      switch (conf_op)
		{
3479
		case DF_UNION:
3480
		  sbitmap_a_or_b (in[i], in[i], out[e->src->index]);
3481
		  break;
3482
		case DF_INTERSECTION:
3483
		  sbitmap_a_and_b (in[i], in[i], out[e->src->index]);
3484 3485 3486 3487
		  break;
		}
	    }
	}
Kazu Hirata committed
3488
      else
3489
	{
3490
	  /* Calculate <conf_op> of successor ins.  */
Kazu Hirata committed
3491
	  sbitmap_zero (out[i]);
3492 3493 3494 3495 3496
	  for (e = bb->succ; e != 0; e = e->succ_next)
	    {
	      if (e->dest == EXIT_BLOCK_PTR)
		continue;
	      switch (conf_op)
Kazu Hirata committed
3497
		{
3498
		case DF_UNION:
3499
		  sbitmap_a_or_b (out[i], out[i], in[e->dest->index]);
3500
		  break;
3501
		case DF_INTERSECTION:
3502
		  sbitmap_a_and_b (out[i], out[i], in[e->dest->index]);
3503 3504 3505
		  break;
		}
	    }
Kazu Hirata committed
3506
	}
3507
      /* Common part.  */
3508
      (*transfun)(i, &changed, in[i], out[i], gen[i], kill[i], data);
3509
      RESET_BIT (pending, i);
3510 3511
      if (changed)
	{
3512
	  if (dir == DF_FORWARD)
3513 3514 3515
	    {
	      for (e = bb->succ; e != 0; e = e->succ_next)
		{
3516
		  if (e->dest == EXIT_BLOCK_PTR || e->dest->index == i)
3517
		    continue;
3518
		  SET_BIT (pending, e->dest->index);
3519 3520 3521 3522 3523 3524
		}
	    }
	  else
	    {
	      for (e = bb->pred; e != 0; e = e->pred_next)
		{
3525
		  if (e->src == ENTRY_BLOCK_PTR || e->dest->index == i)
3526
		    continue;
3527
		  SET_BIT (pending, e->src->index);
3528 3529 3530 3531
		}
	    }
	}
    }
3532
  if (dir == DF_FORWARD)
3533 3534 3535
    {
      for (e = bb->succ; e != 0; e = e->succ_next)
	{
3536
	  if (e->dest == EXIT_BLOCK_PTR || e->dest->index == i)
3537
	    continue;
3538
	  if (!TEST_BIT (visited, e->dest->index))
Kazu Hirata committed
3539 3540
	    hybrid_search_sbitmap (e->dest, in, out, gen, kill, dir,
				   conf_op, transfun, visited, pending,
3541 3542 3543 3544 3545 3546 3547
				   data);
	}
    }
  else
    {
      for (e = bb->pred; e != 0; e = e->pred_next)
	{
3548
	  if (e->src == ENTRY_BLOCK_PTR || e->src->index == i)
3549
	    continue;
3550
	  if (!TEST_BIT (visited, e->src->index))
Kazu Hirata committed
3551 3552
	    hybrid_search_sbitmap (e->src, in, out, gen, kill, dir,
				   conf_op, transfun, visited, pending,
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
				   data);
	}
    }
}


/* gen = GEN set.
   kill = KILL set.
   in, out = Filled in by function.
   blocks = Blocks to analyze.
   dir = Dataflow direction.
   conf_op = Confluence operation.
   transfun = Transfer function.
   order = Order to iterate in. (Should map block numbers -> order)
   data = Whatever you want.  It's passed to the transfer function.
Kazu Hirata committed
3568

3569 3570 3571 3572 3573 3574
   This function will perform iterative bitvector dataflow, producing
   the in and out sets.  Even if you only want to perform it for a
   small number of blocks, the vectors for in and out must be large
   enough for *all* blocks, because changing one block might affect
   others.  However, it'll only put what you say to analyze on the
   initial worklist.
Kazu Hirata committed
3575

3576 3577 3578 3579
   For forward problems, you probably want to pass in a mapping of
   block number to rc_order (like df->inverse_rc_map).
*/
void
3580 3581 3582 3583 3584 3585
iterative_dataflow_sbitmap (sbitmap *in, sbitmap *out, sbitmap *gen,
			    sbitmap *kill, bitmap blocks,
			    enum df_flow_dir dir,
			    enum df_confluence_op conf_op,
			    transfer_function_sbitmap transfun, int *order,
			    void *data)
3586 3587 3588 3589 3590
{
  int i;
  fibheap_t worklist;
  basic_block bb;
  sbitmap visited, pending;
3591

3592 3593
  pending = sbitmap_alloc (last_basic_block);
  visited = sbitmap_alloc (last_basic_block);
3594 3595 3596
  sbitmap_zero (pending);
  sbitmap_zero (visited);
  worklist = fibheap_new ();
3597

3598 3599
  EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
  {
Kazu Hirata committed
3600
    fibheap_insert (worklist, order[i], (void *) (size_t) i);
3601
    SET_BIT (pending, i);
3602
    if (dir == DF_FORWARD)
3603 3604 3605 3606
      sbitmap_copy (out[i], gen[i]);
    else
      sbitmap_copy (in[i], gen[i]);
  });
3607

3608 3609 3610 3611
  while (sbitmap_first_set_bit (pending) != -1)
    {
      while (!fibheap_empty (worklist))
	{
3612
	  i = (size_t) fibheap_extract_min (worklist);
3613
	  bb = BASIC_BLOCK (i);
3614
	  if (!TEST_BIT (visited, bb->index))
Kazu Hirata committed
3615
	    hybrid_search_sbitmap (bb, in, out, gen, kill, dir,
3616
				   conf_op, transfun, visited, pending, data);
3617
	}
3618

3619 3620 3621 3622
      if (sbitmap_first_set_bit (pending) != -1)
	{
	  EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
	  {
3623
	    fibheap_insert (worklist, order[i], (void *) (size_t) i);
3624 3625 3626 3627 3628 3629
	  });
	  sbitmap_zero (visited);
	}
      else
	{
	  break;
Kazu Hirata committed
3630
	}
3631
    }
3632

3633 3634
  sbitmap_free (pending);
  sbitmap_free (visited);
3635
  fibheap_delete (worklist);
3636 3637
}

3638

3639
/* Exactly the same as iterative_dataflow_sbitmap, except it works on
3640
   bitmaps instead.  */
3641
void
3642 3643 3644 3645 3646
iterative_dataflow_bitmap (bitmap *in, bitmap *out, bitmap *gen, bitmap *kill,
			   bitmap blocks, enum df_flow_dir dir,
			   enum df_confluence_op conf_op,
			   transfer_function_bitmap transfun, int *order,
			   void *data)
3647 3648 3649 3650 3651
{
  int i;
  fibheap_t worklist;
  basic_block bb;
  sbitmap visited, pending;
3652

3653 3654
  pending = sbitmap_alloc (last_basic_block);
  visited = sbitmap_alloc (last_basic_block);
3655 3656 3657
  sbitmap_zero (pending);
  sbitmap_zero (visited);
  worklist = fibheap_new ();
3658

3659 3660
  EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
  {
3661
    fibheap_insert (worklist, order[i], (void *) (size_t) i);
3662
    SET_BIT (pending, i);
3663
    if (dir == DF_FORWARD)
3664 3665 3666 3667
      bitmap_copy (out[i], gen[i]);
    else
      bitmap_copy (in[i], gen[i]);
  });
3668

3669 3670 3671 3672
  while (sbitmap_first_set_bit (pending) != -1)
    {
      while (!fibheap_empty (worklist))
	{
3673
	  i = (size_t) fibheap_extract_min (worklist);
3674
	  bb = BASIC_BLOCK (i);
3675
	  if (!TEST_BIT (visited, bb->index))
Kazu Hirata committed
3676
	    hybrid_search_bitmap (bb, in, out, gen, kill, dir,
3677
				  conf_op, transfun, visited, pending, data);
3678
	}
3679

3680 3681 3682 3683
      if (sbitmap_first_set_bit (pending) != -1)
	{
	  EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
	  {
3684
	    fibheap_insert (worklist, order[i], (void *) (size_t) i);
3685 3686 3687 3688 3689 3690
	  });
	  sbitmap_zero (visited);
	}
      else
	{
	  break;
Kazu Hirata committed
3691
	}
3692 3693 3694
    }
  sbitmap_free (pending);
  sbitmap_free (visited);
Kazu Hirata committed
3695
  fibheap_delete (worklist);
3696
}