real.h 19.3 KB
Newer Older
1
/* Definitions of floating-point access for GNU compiler.
2
   Copyright (C) 1989-2017 Free Software Foundation, Inc.
Richard Stallman committed
3

4
   This file is part of GCC.
Richard Stallman committed
5

6 7
   GCC is free software; you can redistribute it and/or modify it under
   the terms of the GNU General Public License as published by the Free
8
   Software Foundation; either version 3, or (at your option) any later
9
   version.
Richard Stallman committed
10

11 12 13 14
   GCC is distributed in the hope that it will be useful, but WITHOUT ANY
   WARRANTY; without even the implied warranty of MERCHANTABILITY or
   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   for more details.
Richard Stallman committed
15

16
   You should have received a copy of the GNU General Public License
17 18
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */
Richard Stallman committed
19

20 21
#ifndef GCC_REAL_H
#define GCC_REAL_H
Richard Stallman committed
22

23
/* An expanded form of the represented number.  */
24

25 26 27 28 29 30 31 32
/* Enumerate the special cases of numbers that we encounter.  */
enum real_value_class {
  rvc_zero,
  rvc_normal,
  rvc_inf,
  rvc_nan
};

33
#define SIGNIFICAND_BITS	(128 + HOST_BITS_PER_LONG)
Jon Grimm committed
34
#define EXP_BITS		(32 - 6)
35 36 37 38
#define MAX_EXP			((1 << (EXP_BITS - 1)) - 1)
#define SIGSZ			(SIGNIFICAND_BITS / HOST_BITS_PER_LONG)
#define SIG_MSB			((unsigned long)1 << (HOST_BITS_PER_LONG - 1))

39
struct GTY(()) real_value {
40 41 42
  /* Use the same underlying type for all bit-fields, so as to make
     sure they're packed together, otherwise REAL_VALUE_TYPE_SIZE will
     be miscomputed.  */
43
  unsigned int /* ENUM_BITFIELD (real_value_class) */ cl : 2;
Jon Grimm committed
44
  unsigned int decimal : 1;
45
  unsigned int sign : 1;
46
  unsigned int signalling : 1;
47
  unsigned int canonical : 1;
48
  unsigned int uexp : EXP_BITS;
49 50
  unsigned long sig[SIGSZ];
};
51

52 53 54 55 56 57
#define REAL_EXP(REAL) \
  ((int)((REAL)->uexp ^ (unsigned int)(1 << (EXP_BITS - 1))) \
   - (1 << (EXP_BITS - 1)))
#define SET_REAL_EXP(REAL, EXP) \
  ((REAL)->uexp = ((unsigned int)(EXP) & (unsigned int)((1 << EXP_BITS) - 1)))

58 59 60 61 62 63 64 65 66 67
/* Various headers condition prototypes on #ifdef REAL_VALUE_TYPE, so it
   needs to be a macro.  We do need to continue to have a structure tag
   so that other headers can forward declare it.  */
#define REAL_VALUE_TYPE struct real_value

/* We store a REAL_VALUE_TYPE into an rtx, and we do this by putting it in
   consecutive "w" slots.  Moreover, we've got to compute the number of "w"
   slots at preprocessor time, which means we can't use sizeof.  Guess.  */

#define REAL_VALUE_TYPE_SIZE (SIGNIFICAND_BITS + 32)
68 69 70
#define REAL_WIDTH \
  (REAL_VALUE_TYPE_SIZE/HOST_BITS_PER_WIDE_INT \
   + (REAL_VALUE_TYPE_SIZE%HOST_BITS_PER_WIDE_INT ? 1 : 0)) /* round up */
71

72 73
/* Verify the guess.  */
extern char test_real_width
74
  [sizeof (REAL_VALUE_TYPE) <= REAL_WIDTH * sizeof (HOST_WIDE_INT) ? 1 : -1];
75 76 77

/* Calculate the format for CONST_DOUBLE.  We need as many slots as
   are necessary to overlay a REAL_VALUE_TYPE on them.  This could be
78
   as many as four (32-bit HOST_WIDE_INT, 128-bit REAL_VALUE_TYPE).
79 80 81 82 83

   A number of places assume that there are always at least two 'w'
   slots in a CONST_DOUBLE, so we provide them even if one would suffice.  */

#if REAL_WIDTH == 1
84
# define CONST_DOUBLE_FORMAT	 "ww"
85 86
#else
# if REAL_WIDTH == 2
87
#  define CONST_DOUBLE_FORMAT	 "ww"
88 89
# else
#  if REAL_WIDTH == 3
90
#   define CONST_DOUBLE_FORMAT	 "www"
91 92
#  else
#   if REAL_WIDTH == 4
93
#    define CONST_DOUBLE_FORMAT	 "wwww"
94 95
#   else
#    if REAL_WIDTH == 5
96
#     define CONST_DOUBLE_FORMAT "wwwww"
97
#    else
98 99 100 101 102
#     if REAL_WIDTH == 6
#      define CONST_DOUBLE_FORMAT "wwwwww"
#     else
       #error "REAL_WIDTH > 6 not supported"
#     endif
103 104 105 106 107
#    endif
#   endif
#  endif
# endif
#endif
108

109

110 111 112 113
/* Describes the properties of the specific target format in use.  */
struct real_format
{
  /* Move to and from the target bytes.  */
114 115 116 117
  void (*encode) (const struct real_format *, long *,
		  const REAL_VALUE_TYPE *);
  void (*decode) (const struct real_format *, REAL_VALUE_TYPE *,
		  const long *);
118 119 120 121 122 123 124

  /* The radix of the exponent and digits of the significand.  */
  int b;

  /* Size of the significand in digits of radix B.  */
  int p;

125 126 127
  /* Size of the significant of a NaN, in digits of radix B.  */
  int pnan;

128 129 130 131 132 133
  /* The minimum negative integer, x, such that b**(x-1) is normalized.  */
  int emin;

  /* The maximum integer, x, such that b**(x-1) is representable.  */
  int emax;

134 135 136 137 138 139 140
  /* The bit position of the sign bit, for determining whether a value
     is positive/negative, or -1 for a complex encoding.  */
  int signbit_ro;

  /* The bit position of the sign bit, for changing the sign of a number,
     or -1 for a complex encoding.  */
  int signbit_rw;
141

142 143 144 145 146 147 148 149 150 151 152
  /* If this is an IEEE interchange format, the number of bits in the
     format; otherwise, if it is an IEEE extended format, one more
     than the greatest number of bits in an interchange format it
     extends; otherwise 0.  Formats need not follow the IEEE 754-2008
     recommended practice regarding how signaling NaNs are identified,
     and may vary in the choice of default NaN, but must follow other
     IEEE practice regarding having NaNs, infinities and subnormal
     values, and the relation of minimum and maximum exponents, and,
     for interchange formats, the details of the encoding.  */
  int ieee_bits;

153 154
  /* Default rounding mode for operations on this format.  */
  bool round_towards_zero;
155
  bool has_sign_dependent_rounding;
156

157 158 159 160 161 162
  /* Properties of the format.  */
  bool has_nans;
  bool has_inf;
  bool has_denorm;
  bool has_signed_zero;
  bool qnan_msb_set;
163
  bool canonical_nan_lsbs_set;
164
  const char *name;
165 166 167
};


Jon Grimm committed
168 169 170 171 172
/* The target format used for each floating point mode.
   Float modes are followed by decimal float modes, with entries for
   float modes indexed by (MODE - first float mode), and entries for
   decimal float modes indexed by (MODE - first decimal float mode) +
   the number of float modes.  */
173
extern const struct real_format *
Jon Grimm committed
174 175
  real_format_for_mode[MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1
		       + MAX_MODE_DECIMAL_FLOAT - MIN_MODE_DECIMAL_FLOAT + 1];
176

Jon Grimm committed
177 178
#define REAL_MODE_FORMAT(MODE)						\
  (real_format_for_mode[DECIMAL_FLOAT_MODE_P (MODE)			\
179
			? (((MODE) - MIN_MODE_DECIMAL_FLOAT)		\
Jon Grimm committed
180
			   + (MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1))	\
181 182 183
			: GET_MODE_CLASS (MODE) == MODE_FLOAT		\
			? ((MODE) - MIN_MODE_FLOAT)			\
			: (gcc_unreachable (), 0)])
184 185 186 187

#define FLOAT_MODE_FORMAT(MODE) \
  (REAL_MODE_FORMAT (SCALAR_FLOAT_MODE_P (MODE)? (MODE) \
					       : GET_MODE_INNER (MODE)))
188

189 190 191
/* The following macro determines whether the floating point format is
   composite, i.e. may contain non-consecutive mantissa bits, in which
   case compile-time FP overflow may not model run-time overflow.  */
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
#define MODE_COMPOSITE_P(MODE) \
  (FLOAT_MODE_P (MODE) \
   && FLOAT_MODE_FORMAT (MODE)->pnan < FLOAT_MODE_FORMAT (MODE)->p)

/* Accessor macros for format properties.  */
#define MODE_HAS_NANS(MODE) \
  (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_nans)
#define MODE_HAS_INFINITIES(MODE) \
  (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_inf)
#define MODE_HAS_SIGNED_ZEROS(MODE) \
  (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_signed_zero)
#define MODE_HAS_SIGN_DEPENDENT_ROUNDING(MODE) \
  (FLOAT_MODE_P (MODE) \
   && FLOAT_MODE_FORMAT (MODE)->has_sign_dependent_rounding)

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
/* This class allows functions in this file to accept a floating-point
   format as either a mode or an explicit real_format pointer.  In the
   former case the mode must be VOIDmode (which means "no particular
   format") or must satisfy SCALAR_FLOAT_MODE_P.  */
class format_helper
{
public:
  format_helper (const real_format *format) : m_format (format) {}
  format_helper (machine_mode m);
  const real_format *operator-> () const { return m_format; }
  operator const real_format *() const { return m_format; }

  bool decimal_p () const { return m_format && m_format->b == 10; }

private:
  const real_format *m_format;
};

inline format_helper::format_helper (machine_mode m)
  : m_format (m == VOIDmode ? 0 : REAL_MODE_FORMAT (m))
{}

229 230
/* Declare functions in real.c.  */

231 232 233 234 235
/* True if the given mode has a NaN representation and the treatment of
   NaN operands is important.  Certain optimizations, such as folding
   x * 0 into 0, are not correct for NaN operands, and are normally
   disabled for modes with NaNs.  The user can ask for them to be
   done anyway using the -funsafe-math-optimizations switch.  */
236 237 238
extern bool HONOR_NANS (machine_mode);
extern bool HONOR_NANS (const_tree);
extern bool HONOR_NANS (const_rtx);
239 240

/* Like HONOR_NANs, but true if we honor signaling NaNs (or sNaNs).  */
241 242 243
extern bool HONOR_SNANS (machine_mode);
extern bool HONOR_SNANS (const_tree);
extern bool HONOR_SNANS (const_rtx);
244 245 246

/* As for HONOR_NANS, but true if the mode can represent infinity and
   the treatment of infinite values is important.  */
247 248 249
extern bool HONOR_INFINITIES (machine_mode);
extern bool HONOR_INFINITIES (const_tree);
extern bool HONOR_INFINITIES (const_rtx);
250 251 252

/* Like HONOR_NANS, but true if the given mode distinguishes between
   positive and negative zero, and the sign of zero is important.  */
253 254 255
extern bool HONOR_SIGNED_ZEROS (machine_mode);
extern bool HONOR_SIGNED_ZEROS (const_tree);
extern bool HONOR_SIGNED_ZEROS (const_rtx);
256 257 258

/* Like HONOR_NANS, but true if given mode supports sign-dependent rounding,
   and the rounding mode is important.  */
259 260 261
extern bool HONOR_SIGN_DEPENDENT_ROUNDING (machine_mode);
extern bool HONOR_SIGN_DEPENDENT_ROUNDING (const_tree);
extern bool HONOR_SIGN_DEPENDENT_ROUNDING (const_rtx);
262

263
/* Binary or unary arithmetic on tree_code.  */
264
extern bool real_arithmetic (REAL_VALUE_TYPE *, int, const REAL_VALUE_TYPE *,
265
			     const REAL_VALUE_TYPE *);
266 267

/* Compare reals by tree_code.  */
268
extern bool real_compare (int, const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
269 270

/* Determine whether a floating-point value X is infinite.  */
271
extern bool real_isinf (const REAL_VALUE_TYPE *);
272 273

/* Determine whether a floating-point value X is a NaN.  */
274
extern bool real_isnan (const REAL_VALUE_TYPE *);
275

276 277 278
/* Determine whether a floating-point value X is a signaling NaN.  */
extern bool real_issignaling_nan (const REAL_VALUE_TYPE *);

279 280 281
/* Determine whether a floating-point value X is finite.  */
extern bool real_isfinite (const REAL_VALUE_TYPE *);

282
/* Determine whether a floating-point value X is negative.  */
283
extern bool real_isneg (const REAL_VALUE_TYPE *);
284 285

/* Determine whether a floating-point value X is minus zero.  */
286
extern bool real_isnegzero (const REAL_VALUE_TYPE *);
287

288
/* Test relationships between reals.  */
289
extern bool real_identical (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
290
extern bool real_equal (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
291
extern bool real_less (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
292

293 294
/* Extend or truncate to a new format.  */
extern void real_convert (REAL_VALUE_TYPE *, format_helper,
295
			  const REAL_VALUE_TYPE *);
296 297

/* Return true if truncating to NEW is exact.  */
298
extern bool exact_real_truncate (format_helper, const REAL_VALUE_TYPE *);
299 300

/* Render R as a decimal floating point constant.  */
301 302
extern void real_to_decimal (char *, const REAL_VALUE_TYPE *, size_t,
			     size_t, int);
303

304 305 306
/* Render R as a decimal floating point constant, rounded so as to be
   parsed back to the same value when interpreted in mode MODE.  */
extern void real_to_decimal_for_mode (char *, const REAL_VALUE_TYPE *, size_t,
307
				      size_t, int, machine_mode);
308

309
/* Render R as a hexadecimal floating point constant.  */
310 311
extern void real_to_hexadecimal (char *, const REAL_VALUE_TYPE *,
				 size_t, size_t, int);
312 313

/* Render R as an integer.  */
314
extern HOST_WIDE_INT real_to_integer (const REAL_VALUE_TYPE *);
315

316 317 318
/* Initialize R from a decimal or hexadecimal string.  Return -1 if
   the value underflows, +1 if overflows, and 0 otherwise.  */
extern int real_from_string (REAL_VALUE_TYPE *, const char *);
Jon Grimm committed
319
/* Wrapper to allow different internal representation for decimal floats. */
320
extern void real_from_string3 (REAL_VALUE_TYPE *, const char *, format_helper);
321

322
extern long real_to_target (long *, const REAL_VALUE_TYPE *, format_helper);
323

324
extern void real_from_target (REAL_VALUE_TYPE *, const long *,
325
			      format_helper);
326

327
extern void real_inf (REAL_VALUE_TYPE *);
328

329
extern bool real_nan (REAL_VALUE_TYPE *, const char *, int, format_helper);
330

331
extern void real_maxval (REAL_VALUE_TYPE *, int, machine_mode);
332

333
extern void real_2expN (REAL_VALUE_TYPE *, int, format_helper);
334

335
extern unsigned int real_hash (const REAL_VALUE_TYPE *);
336

337 338 339

/* Target formats defined in real.c.  */
extern const struct real_format ieee_single_format;
340
extern const struct real_format mips_single_format;
341
extern const struct real_format motorola_single_format;
342
extern const struct real_format spu_single_format;
343
extern const struct real_format ieee_double_format;
344
extern const struct real_format mips_double_format;
345
extern const struct real_format motorola_double_format;
346 347
extern const struct real_format ieee_extended_motorola_format;
extern const struct real_format ieee_extended_intel_96_format;
348
extern const struct real_format ieee_extended_intel_96_round_53_format;
349
extern const struct real_format ieee_extended_intel_128_format;
350
extern const struct real_format ibm_extended_format;
351
extern const struct real_format mips_extended_format;
352
extern const struct real_format ieee_quad_format;
353
extern const struct real_format mips_quad_format;
354 355 356
extern const struct real_format vax_f_format;
extern const struct real_format vax_d_format;
extern const struct real_format vax_g_format;
357
extern const struct real_format real_internal_format;
Jon Grimm committed
358 359 360
extern const struct real_format decimal_single_format;
extern const struct real_format decimal_double_format;
extern const struct real_format decimal_quad_format;
361 362
extern const struct real_format ieee_half_format;
extern const struct real_format arm_half_format;
363 364


365 366 367
/* ====================================================================== */
/* Crap.  */

368
/* Determine whether a floating-point value X is infinite.  */
369
#define REAL_VALUE_ISINF(x)		real_isinf (&(x))
370 371

/* Determine whether a floating-point value X is a NaN.  */
372
#define REAL_VALUE_ISNAN(x)		real_isnan (&(x))
373

374 375 376
/* Determine whether a floating-point value X is a signaling NaN.  */ 
#define REAL_VALUE_ISSIGNALING_NAN(x)  real_issignaling_nan (&(x))

377
/* Determine whether a floating-point value X is negative.  */
378
#define REAL_VALUE_NEGATIVE(x)		real_isneg (&(x))
379 380

/* Determine whether a floating-point value X is minus zero.  */
381 382 383 384 385 386
#define REAL_VALUE_MINUS_ZERO(x)	real_isnegzero (&(x))

/* IN is a REAL_VALUE_TYPE.  OUT is an array of longs.  */
#define REAL_VALUE_TO_TARGET_LONG_DOUBLE(IN, OUT)			\
  real_to_target (OUT, &(IN),						\
		  mode_for_size (LONG_DOUBLE_TYPE_SIZE, MODE_FLOAT, 0))
387

388 389
#define REAL_VALUE_TO_TARGET_DOUBLE(IN, OUT) \
  real_to_target (OUT, &(IN), mode_for_size (64, MODE_FLOAT, 0))
390

391 392 393
/* IN is a REAL_VALUE_TYPE.  OUT is a long.  */
#define REAL_VALUE_TO_TARGET_SINGLE(IN, OUT) \
  ((OUT) = real_to_target (NULL, &(IN), mode_for_size (32, MODE_FLOAT, 0)))
394

395
/* Real values to IEEE 754 decimal floats.  */
Jon Grimm committed
396 397 398 399 400 401 402 403 404 405 406 407

/* IN is a REAL_VALUE_TYPE.  OUT is an array of longs.  */
#define REAL_VALUE_TO_TARGET_DECIMAL128(IN, OUT) \
  real_to_target (OUT, &(IN), mode_for_size (128, MODE_DECIMAL_FLOAT, 0))

#define REAL_VALUE_TO_TARGET_DECIMAL64(IN, OUT) \
  real_to_target (OUT, &(IN), mode_for_size (64, MODE_DECIMAL_FLOAT, 0))

/* IN is a REAL_VALUE_TYPE.  OUT is a long.  */
#define REAL_VALUE_TO_TARGET_DECIMAL32(IN, OUT) \
  ((OUT) = real_to_target (NULL, &(IN), mode_for_size (32, MODE_DECIMAL_FLOAT, 0)))

408
extern REAL_VALUE_TYPE real_value_truncate (format_helper, REAL_VALUE_TYPE);
409

410 411
extern REAL_VALUE_TYPE real_value_negate (const REAL_VALUE_TYPE *);
extern REAL_VALUE_TYPE real_value_abs (const REAL_VALUE_TYPE *);
412

413
extern int significand_size (format_helper);
414

415
extern REAL_VALUE_TYPE real_from_string2 (const char *, format_helper);
416

417 418
#define REAL_VALUE_ATOF(s, m) \
  real_from_string2 (s, m)
419

420
#define CONST_DOUBLE_ATOF(s, m) \
421
  const_double_from_real_value (real_from_string2 (s, m), m)
422 423 424 425 426 427 428 429 430 431 432

#define REAL_VALUE_FIX(r) \
  real_to_integer (&(r))

/* ??? Not quite right.  */
#define REAL_VALUE_UNSIGNED_FIX(r) \
  real_to_integer (&(r))

/* ??? These were added for Paranoia support.  */

/* Return floor log2(R).  */
433
extern int real_exponent (const REAL_VALUE_TYPE *);
434 435

/* R = A * 2**EXP.  */
436
extern void real_ldexp (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int);
437 438

/* **** End of software floating point emulator interface macros **** */
Richard Stallman committed
439

440
/* Constant real values 0, 1, 2, -1 and 0.5.  */
Richard Stallman committed
441 442 443 444 445

extern REAL_VALUE_TYPE dconst0;
extern REAL_VALUE_TYPE dconst1;
extern REAL_VALUE_TYPE dconst2;
extern REAL_VALUE_TYPE dconstm1;
446
extern REAL_VALUE_TYPE dconsthalf;
447

448 449 450 451 452 453
#define dconst_e() (*dconst_e_ptr ())
#define dconst_third() (*dconst_third_ptr ())
#define dconst_quarter() (*dconst_quarter_ptr ())
#define dconst_sixth() (*dconst_sixth_ptr ())
#define dconst_ninth() (*dconst_ninth_ptr ())
#define dconst_sqrt2() (*dconst_sqrt2_ptr ())
454 455 456 457

/* Function to return the real value special constant 'e'.  */
extern const REAL_VALUE_TYPE * dconst_e_ptr (void);

458 459 460 461 462
/* Returns a cached REAL_VALUE_TYPE corresponding to 1/n, for various n.  */
extern const REAL_VALUE_TYPE *dconst_third_ptr (void);
extern const REAL_VALUE_TYPE *dconst_quarter_ptr (void);
extern const REAL_VALUE_TYPE *dconst_sixth_ptr (void);
extern const REAL_VALUE_TYPE *dconst_ninth_ptr (void);
463

464 465
/* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2).  */
extern const REAL_VALUE_TYPE * dconst_sqrt2_ptr (void);
Richard Stallman committed
466 467 468

/* Function to return a real value (not a tree node)
   from a given integer constant.  */
469
REAL_VALUE_TYPE real_value_from_int_cst (const_tree, const_tree);
Richard Stallman committed
470 471

/* Return a CONST_DOUBLE with value R and mode M.  */
472
extern rtx const_double_from_real_value (REAL_VALUE_TYPE, machine_mode);
473

474 475
/* Replace R by 1/R in the given format, if the result is exact.  */
extern bool exact_real_inverse (format_helper, REAL_VALUE_TYPE *);
476

477 478 479
/* Return true if arithmetic on values in IMODE that were promoted
   from values in TMODE is equivalent to direct arithmetic on values
   in TMODE.  */
480
bool real_can_shorten_arithmetic (machine_mode, machine_mode);
481

482
/* In tree.c: wrap up a REAL_VALUE_TYPE in a tree node.  */
483
extern tree build_real (tree, REAL_VALUE_TYPE);
484

485 486 487
/* Likewise, but first truncate the value to the type.  */
extern tree build_real_truncate (tree, REAL_VALUE_TYPE);

488 489
/* Calculate R as X raised to the integer exponent N in format FMT.  */
extern bool real_powi (REAL_VALUE_TYPE *, format_helper,
490
		       const REAL_VALUE_TYPE *, HOST_WIDE_INT);
491

492
/* Standard round to integer value functions.  */
493
extern void real_trunc (REAL_VALUE_TYPE *, format_helper,
494
			const REAL_VALUE_TYPE *);
495
extern void real_floor (REAL_VALUE_TYPE *, format_helper,
496
			const REAL_VALUE_TYPE *);
497
extern void real_ceil (REAL_VALUE_TYPE *, format_helper,
498
		       const REAL_VALUE_TYPE *);
499
extern void real_round (REAL_VALUE_TYPE *, format_helper,
500
			const REAL_VALUE_TYPE *);
501

502 503 504
/* Set the sign of R to the sign of X.  */
extern void real_copysign (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);

505
/* Check whether the real constant value given is an integer.  */
506
extern bool real_isinteger (const REAL_VALUE_TYPE *, format_helper);
Richard Sandiford committed
507
extern bool real_isinteger (const REAL_VALUE_TYPE *, HOST_WIDE_INT *);
508

509 510 511 512
/* Write into BUF the maximum representable finite floating-point
   number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
   float string.  BUF must be large enough to contain the result.  */
extern void get_max_float (const struct real_format *, char *, size_t);
Kenneth Zadeck committed
513 514 515 516

#ifndef GENERATOR_FILE
/* real related routines.  */
extern wide_int real_to_integer (const REAL_VALUE_TYPE *, bool *, int);
517
extern void real_from_integer (REAL_VALUE_TYPE *, format_helper,
Kenneth Zadeck committed
518 519 520
			       const wide_int_ref &, signop);
#endif

521
#endif /* ! GCC_REAL_H */