maxloc1_4_i2.c 12.9 KB
Newer Older
1
/* Implementation of the MAXLOC intrinsic
2
   Copyright (C) 2002-2017 Free Software Foundation, Inc.
3 4
   Contributed by Paul Brook <paul@nowt.org>

5
This file is part of the GNU Fortran runtime library (libgfortran).
6 7 8 9

Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
10
version 3 of the License, or (at your option) any later version.
11 12 13 14 15 16

Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

17 18 19 20 21 22 23 24
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */
25

26
#include "libgfortran.h"
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51


#if defined (HAVE_GFC_INTEGER_2) && defined (HAVE_GFC_INTEGER_4)


extern void maxloc1_4_i2 (gfc_array_i4 * const restrict, 
	gfc_array_i2 * const restrict, const index_type * const restrict);
export_proto(maxloc1_4_i2);

void
maxloc1_4_i2 (gfc_array_i4 * const restrict retarray, 
	gfc_array_i2 * const restrict array, 
	const index_type * const restrict pdim)
{
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type dstride[GFC_MAX_DIMENSIONS];
  const GFC_INTEGER_2 * restrict base;
  GFC_INTEGER_4 * restrict dest;
  index_type rank;
  index_type n;
  index_type len;
  index_type delta;
  index_type dim;
52
  int continue_loop;
53 54 55 56 57

  /* Make dim zero based to avoid confusion.  */
  dim = (*pdim) - 1;
  rank = GFC_DESCRIPTOR_RANK (array) - 1;

58
  len = GFC_DESCRIPTOR_EXTENT(array,dim);
59 60
  if (len < 0)
    len = 0;
61
  delta = GFC_DESCRIPTOR_STRIDE(array,dim);
62 63 64

  for (n = 0; n < dim; n++)
    {
65 66
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
67 68 69 70 71 72

      if (extent[n] < 0)
	extent[n] = 0;
    }
  for (n = dim; n < rank; n++)
    {
73 74
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
75 76 77 78 79

      if (extent[n] < 0)
	extent[n] = 0;
    }

80
  if (retarray->base_addr == NULL)
81
    {
82
      size_t alloc_size, str;
83 84

      for (n = 0; n < rank; n++)
85 86
	{
	  if (n == 0)
87
	    str = 1;
88 89
	  else
	    str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
90 91 92

	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);

93
	}
94 95 96 97

      retarray->offset = 0;
      retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;

98
      alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
99

100
      retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_4));
101 102 103
      if (alloc_size == 0)
	{
	  /* Make sure we have a zero-sized array.  */
104
	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
105
	  return;
106

107 108 109 110 111
	}
    }
  else
    {
      if (rank != GFC_DESCRIPTOR_RANK (retarray))
112
	runtime_error ("rank of return array incorrect in"
113 114 115
		       " MAXLOC intrinsic: is %ld, should be %ld",
		       (long int) (GFC_DESCRIPTOR_RANK (retarray)),
		       (long int) rank);
116

117
      if (unlikely (compile_options.bounds_check))
Thomas Koenig committed
118 119
	bounds_ifunction_return ((array_t *) retarray, extent,
				 "return value", "MAXLOC");
120 121 122 123 124
    }

  for (n = 0; n < rank; n++)
    {
      count[n] = 0;
125
      dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
126
      if (extent[n] <= 0)
127
	return;
128 129
    }

130 131
  base = array->base_addr;
  dest = retarray->base_addr;
132

133 134
  continue_loop = 1;
  while (continue_loop)
135 136 137 138 139 140
    {
      const GFC_INTEGER_2 * restrict src;
      GFC_INTEGER_4 result;
      src = base;
      {

141 142 143 144 145 146 147 148
	GFC_INTEGER_2 maxval;
#if defined (GFC_INTEGER_2_INFINITY)
	maxval = -GFC_INTEGER_2_INFINITY;
#else
	maxval = (-GFC_INTEGER_2_HUGE-1);
#endif
	result = 1;
	if (len <= 0)
149 150 151 152 153 154
	  *dest = 0;
	else
	  {
	    for (n = 0; n < len; n++, src += delta)
	      {

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
#if defined (GFC_INTEGER_2_QUIET_NAN)
		if (*src >= maxval)
		  {
		    maxval = *src;
		    result = (GFC_INTEGER_4)n + 1;
		    break;
		  }
	      }
	    for (; n < len; n++, src += delta)
	      {
#endif
		if (*src > maxval)
		  {
		    maxval = *src;
		    result = (GFC_INTEGER_4)n + 1;
		  }
	      }
172
	    
173 174 175 176 177 178 179 180 181
	    *dest = result;
	  }
      }
      /* Advance to the next element.  */
      count[0]++;
      base += sstride[0];
      dest += dstride[0];
      n = 0;
      while (count[n] == extent[n])
182 183 184 185 186 187 188 189 190 191 192 193
	{
	  /* When we get to the end of a dimension, reset it and increment
	     the next dimension.  */
	  count[n] = 0;
	  /* We could precalculate these products, but this is a less
	     frequently used path so probably not worth it.  */
	  base -= sstride[n] * extent[n];
	  dest -= dstride[n] * extent[n];
	  n++;
	  if (n == rank)
	    {
	      /* Break out of the look.  */
194 195
	      continue_loop = 0;
	      break;
196 197 198 199 200 201 202 203
	    }
	  else
	    {
	      count[n]++;
	      base += sstride[n];
	      dest += dstride[n];
	    }
	}
204 205 206 207 208 209
    }
}


extern void mmaxloc1_4_i2 (gfc_array_i4 * const restrict, 
	gfc_array_i2 * const restrict, const index_type * const restrict,
210
	gfc_array_l1 * const restrict);
211 212 213 214 215 216
export_proto(mmaxloc1_4_i2);

void
mmaxloc1_4_i2 (gfc_array_i4 * const restrict retarray, 
	gfc_array_i2 * const restrict array, 
	const index_type * const restrict pdim, 
217
	gfc_array_l1 * const restrict mask)
218 219 220 221 222 223 224 225
{
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type dstride[GFC_MAX_DIMENSIONS];
  index_type mstride[GFC_MAX_DIMENSIONS];
  GFC_INTEGER_4 * restrict dest;
  const GFC_INTEGER_2 * restrict base;
226
  const GFC_LOGICAL_1 * restrict mbase;
227 228 229 230 231 232
  int rank;
  int dim;
  index_type n;
  index_type len;
  index_type delta;
  index_type mdelta;
233
  int mask_kind;
234 235 236 237

  dim = (*pdim) - 1;
  rank = GFC_DESCRIPTOR_RANK (array) - 1;

238
  len = GFC_DESCRIPTOR_EXTENT(array,dim);
239 240
  if (len <= 0)
    return;
241

242
  mbase = mask->base_addr;
243 244 245 246 247 248 249 250 251 252 253 254

  mask_kind = GFC_DESCRIPTOR_SIZE (mask);

  if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
      || mask_kind == 16
#endif
      )
    mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
  else
    runtime_error ("Funny sized logical array");

255 256
  delta = GFC_DESCRIPTOR_STRIDE(array,dim);
  mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
257 258 259

  for (n = 0; n < dim; n++)
    {
260 261 262
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
      mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
263 264 265 266 267 268 269

      if (extent[n] < 0)
	extent[n] = 0;

    }
  for (n = dim; n < rank; n++)
    {
270 271 272
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
      mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
273 274 275 276 277

      if (extent[n] < 0)
	extent[n] = 0;
    }

278
  if (retarray->base_addr == NULL)
279
    {
280
      size_t alloc_size, str;
281 282

      for (n = 0; n < rank; n++)
283 284 285 286 287
	{
	  if (n == 0)
	    str = 1;
	  else
	    str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
288 289 290

	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);

291
	}
292

293
      alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
294 295 296 297 298 299 300

      retarray->offset = 0;
      retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;

      if (alloc_size == 0)
	{
	  /* Make sure we have a zero-sized array.  */
301
	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
302 303 304
	  return;
	}
      else
305
	retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_4));
306 307 308 309 310

    }
  else
    {
      if (rank != GFC_DESCRIPTOR_RANK (retarray))
311 312
	runtime_error ("rank of return array incorrect in MAXLOC intrinsic");

313
      if (unlikely (compile_options.bounds_check))
314
	{
Thomas Koenig committed
315 316 317 318
	  bounds_ifunction_return ((array_t *) retarray, extent,
				   "return value", "MAXLOC");
	  bounds_equal_extents ((array_t *) mask, (array_t *) array,
	  			"MASK argument", "MAXLOC");
319
	}
320 321 322 323 324
    }

  for (n = 0; n < rank; n++)
    {
      count[n] = 0;
325
      dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
326
      if (extent[n] <= 0)
327
	return;
328 329
    }

330 331
  dest = retarray->base_addr;
  base = array->base_addr;
332 333 334 335

  while (base)
    {
      const GFC_INTEGER_2 * restrict src;
336
      const GFC_LOGICAL_1 * restrict msrc;
337 338 339 340 341
      GFC_INTEGER_4 result;
      src = base;
      msrc = mbase;
      {

342 343 344 345 346 347 348 349 350 351
	GFC_INTEGER_2 maxval;
#if defined (GFC_INTEGER_2_INFINITY)
	maxval = -GFC_INTEGER_2_INFINITY;
#else
	maxval = (-GFC_INTEGER_2_HUGE-1);
#endif
#if defined (GFC_INTEGER_2_QUIET_NAN)
	GFC_INTEGER_4 result2 = 0;
#endif
	result = 0;
352
	for (n = 0; n < len; n++, src += delta, msrc += mdelta)
353 354
	  {

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
		if (*msrc)
		  {
#if defined (GFC_INTEGER_2_QUIET_NAN)
		    if (!result2)
		      result2 = (GFC_INTEGER_4)n + 1;
		    if (*src >= maxval)
#endif
		      {
			maxval = *src;
			result = (GFC_INTEGER_4)n + 1;
			break;
		      }
		  }
	      }
#if defined (GFC_INTEGER_2_QUIET_NAN)
	    if (unlikely (n >= len))
	      result = result2;
	    else
#endif
	    for (; n < len; n++, src += delta, msrc += mdelta)
	      {
		if (*msrc && *src > maxval)
		  {
		    maxval = *src;
		    result = (GFC_INTEGER_4)n + 1;
		  }
381
	  }
382
	*dest = result;
383 384 385 386 387 388 389 390
      }
      /* Advance to the next element.  */
      count[0]++;
      base += sstride[0];
      mbase += mstride[0];
      dest += dstride[0];
      n = 0;
      while (count[n] == extent[n])
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	{
	  /* When we get to the end of a dimension, reset it and increment
	     the next dimension.  */
	  count[n] = 0;
	  /* We could precalculate these products, but this is a less
	     frequently used path so probably not worth it.  */
	  base -= sstride[n] * extent[n];
	  mbase -= mstride[n] * extent[n];
	  dest -= dstride[n] * extent[n];
	  n++;
	  if (n == rank)
	    {
	      /* Break out of the look.  */
	      base = NULL;
	      break;
	    }
	  else
	    {
	      count[n]++;
	      base += sstride[n];
	      mbase += mstride[n];
	      dest += dstride[n];
	    }
	}
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
    }
}


extern void smaxloc1_4_i2 (gfc_array_i4 * const restrict, 
	gfc_array_i2 * const restrict, const index_type * const restrict,
	GFC_LOGICAL_4 *);
export_proto(smaxloc1_4_i2);

void
smaxloc1_4_i2 (gfc_array_i4 * const restrict retarray, 
	gfc_array_i2 * const restrict array, 
	const index_type * const restrict pdim, 
	GFC_LOGICAL_4 * mask)
{
430 431 432 433
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type dstride[GFC_MAX_DIMENSIONS];
  GFC_INTEGER_4 * restrict dest;
434 435
  index_type rank;
  index_type n;
436 437
  index_type dim;

438 439 440 441 442 443

  if (*mask)
    {
      maxloc1_4_i2 (retarray, array, pdim);
      return;
    }
444 445 446 447 448 449
  /* Make dim zero based to avoid confusion.  */
  dim = (*pdim) - 1;
  rank = GFC_DESCRIPTOR_RANK (array) - 1;

  for (n = 0; n < dim; n++)
    {
450
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
451 452 453 454 455 456 457 458

      if (extent[n] <= 0)
	extent[n] = 0;
    }

  for (n = dim; n < rank; n++)
    {
      extent[n] =
459
	GFC_DESCRIPTOR_EXTENT(array,n + 1);
460 461

      if (extent[n] <= 0)
462
	extent[n] = 0;
463
    }
464

465
  if (retarray->base_addr == NULL)
466
    {
467
      size_t alloc_size, str;
468 469

      for (n = 0; n < rank; n++)
470 471 472 473 474
	{
	  if (n == 0)
	    str = 1;
	  else
	    str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
475 476 477

	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);

478
	}
479

480
      retarray->offset = 0;
481 482
      retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;

483
      alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
484 485 486 487

      if (alloc_size == 0)
	{
	  /* Make sure we have a zero-sized array.  */
488
	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
489 490 491
	  return;
	}
      else
492
	retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_4));
493 494 495
    }
  else
    {
496 497 498 499 500 501
      if (rank != GFC_DESCRIPTOR_RANK (retarray))
	runtime_error ("rank of return array incorrect in"
		       " MAXLOC intrinsic: is %ld, should be %ld",
		       (long int) (GFC_DESCRIPTOR_RANK (retarray)),
		       (long int) rank);

502
      if (unlikely (compile_options.bounds_check))
503
	{
504 505 506
	  for (n=0; n < rank; n++)
	    {
	      index_type ret_extent;
507

508
	      ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
509 510 511 512 513 514
	      if (extent[n] != ret_extent)
		runtime_error ("Incorrect extent in return value of"
			       " MAXLOC intrinsic in dimension %ld:"
			       " is %ld, should be %ld", (long int) n + 1,
			       (long int) ret_extent, (long int) extent[n]);
	    }
515 516
	}
    }
517

518 519 520
  for (n = 0; n < rank; n++)
    {
      count[n] = 0;
521
      dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
522 523
    }

524
  dest = retarray->base_addr;
525 526 527 528 529 530 531 532

  while(1)
    {
      *dest = 0;
      count[0]++;
      dest += dstride[0];
      n = 0;
      while (count[n] == extent[n])
533
	{
534
	  /* When we get to the end of a dimension, reset it and increment
535 536 537 538 539 540 541
	     the next dimension.  */
	  count[n] = 0;
	  /* We could precalculate these products, but this is a less
	     frequently used path so probably not worth it.  */
	  dest -= dstride[n] * extent[n];
	  n++;
	  if (n == rank)
542
	    return;
543 544 545 546 547
	  else
	    {
	      count[n]++;
	      dest += dstride[n];
	    }
548 549
      	}
    }
550 551 552
}

#endif