QuadCurve2D.java 38.8 KB
Newer Older
1
/* QuadCurve2D.java -- represents a parameterized quadratic curve in 2-D space
2
   Copyright (C) 2002, 2003 Free Software Foundation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.

Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from
or based on this library.  If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so.  If you do not wish to do so, delete this
exception statement from your version. */


package java.awt.geom;

import java.awt.Rectangle;
import java.awt.Shape;
import java.util.NoSuchElementException;

45

46
/**
47 48 49 50 51 52 53
 * A two-dimensional curve that is parameterized with a quadratic
 * function.
 *
 * <p><img src="doc-files/QuadCurve2D-1.png" width="350" height="180"
 * alt="A drawing of a QuadCurve2D" />
 *
 * @author Eric Blake (ebb9@email.byu.edu)
54
 * @author Graydon Hoare (graydon@redhat.com)
55 56 57
 * @author Sascha Brawer (brawer@dandelis.ch)
 *
 * @since 1.2
58
 */
59 60
public abstract class QuadCurve2D
  implements Shape, Cloneable
61
{
62 63 64 65 66
  /**
   * Constructs a new QuadCurve2D. Typical users will want to
   * construct instances of a subclass, such as {@link
   * QuadCurve2D.Float} or {@link QuadCurve2D.Double}.
   */
67 68 69 70
  protected QuadCurve2D()
  {
  }

71 72 73 74 75

  /**
   * Returns the <i>x</i> coordinate of the curve&#x2019;s start
   * point.
   */
76
  public abstract double getX1();
77 78 79 80 81 82


  /**
   * Returns the <i>y</i> coordinate of the curve&#x2019;s start
   * point.
   */
83
  public abstract double getY1();
84 85 86 87 88


  /**
   * Returns the curve&#x2019;s start point.
   */
89
  public abstract Point2D getP1();
90 91 92 93 94 95


  /**
   * Returns the <i>x</i> coordinate of the curve&#x2019;s control
   * point.
   */
96
  public abstract double getCtrlX();
97 98 99 100 101 102


  /**
   * Returns the <i>y</i> coordinate of the curve&#x2019;s control
   * point.
   */
103
  public abstract double getCtrlY();
104 105 106 107 108


  /**
   * Returns the curve&#x2019;s control point.
   */
109
  public abstract Point2D getCtrlPt();
110 111 112 113 114 115


  /**
   * Returns the <i>x</i> coordinate of the curve&#x2019;s end
   * point.
   */
116
  public abstract double getX2();
117 118 119 120 121 122


  /**
   * Returns the <i>y</i> coordinate of the curve&#x2019;s end
   * point.
   */
123
  public abstract double getY2();
124 125 126 127 128


  /**
   * Returns the curve&#x2019;s end point.
   */
129 130
  public abstract Point2D getP2();

131 132

  /**
133 134
   * Changes the curve geometry, separately specifying each coordinate
   * value.
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
   *
   * @param x1 the <i>x</i> coordinate of the curve&#x2019;s new start
   * point.
   *
   * @param y1 the <i>y</i> coordinate of the curve&#x2019;s new start
   * point.
   *
   * @param cx the <i>x</i> coordinate of the curve&#x2019;s new
   * control point.
   *
   * @param cy the <i>y</i> coordinate of the curve&#x2019;s new
   * control point.
   *
   * @param x2 the <i>x</i> coordinate of the curve&#x2019;s new end
   * point.
   *
   * @param y2 the <i>y</i> coordinate of the curve&#x2019;s new end
   * point.
   */
154 155
  public abstract void setCurve(double x1, double y1, double cx, double cy,
                                double x2, double y2);
156 157


158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
  /**
   * Changes the curve geometry, passing coordinate values in an
   * array.
   *
   * @param coords an array containing the new coordinate values.  The
   * <i>x</i> coordinate of the new start point is located at
   * <code>coords[offset]</code>, its <i>y</i> coordinate at
   * <code>coords[offset + 1]</code>.  The <i>x</i> coordinate of the
   * new control point is located at <code>coords[offset + 2]</code>,
   * its <i>y</i> coordinate at <code>coords[offset + 3]</code>. The
   * <i>x</i> coordinate of the new end point is located at
   * <code>coords[offset + 4]</code>, its <i>y</i> coordinate at
   * <code>coords[offset + 5]</code>.
   *
   * @param offset the offset of the first coordinate value in
   * <code>coords</code>.
   */
175 176 177 178 179 180
  public void setCurve(double[] coords, int offset)
  {
    setCurve(coords[offset++], coords[offset++],
             coords[offset++], coords[offset++],
             coords[offset++], coords[offset++]);
  }
181 182


183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
  /**
   * Changes the curve geometry, specifying coordinate values in
   * separate Point objects.
   *
   * <p><img src="doc-files/QuadCurve2D-1.png" width="350" height="180"
   * alt="A drawing of a QuadCurve2D" />
   *
   * <p>The curve does not keep any reference to the passed point
   * objects. Therefore, a later change to <code>p1</code>,
   * <code>c</code> <code>p2</code> will not affect the curve
   * geometry.
   *
   * @param p1 the new start point.
   * @param c the new control point.
   * @param p2 the new end point.
   */
199 200 201 202 203
  public void setCurve(Point2D p1, Point2D c, Point2D p2)
  {
    setCurve(p1.getX(), p1.getY(), c.getX(), c.getY(),
             p2.getX(), p2.getY());
  }
204 205


206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
  /**
   * Changes the curve geometry, specifying coordinate values in an
   * array of Point objects.
   *
   * <p><img src="doc-files/QuadCurve2D-1.png" width="350" height="180"
   * alt="A drawing of a QuadCurve2D" />
   *
   * <p>The curve does not keep references to the passed point
   * objects. Therefore, a later change to the <code>pts</code> array
   * or any of its elements will not affect the curve geometry.
   *
   * @param pts an array containing the points. The new start point
   * is located at <code>pts[offset]</code>, the new control
   * point at <code>pts[offset + 1]</code>, and the new end point
   * at <code>pts[offset + 2]</code>.
   *
   * @param offset the offset of the start point in <code>pts</code>.
   */
224 225
  public void setCurve(Point2D[] pts, int offset)
  {
226 227 228
    setCurve(pts[offset].getX(), pts[offset].getY(),
             pts[offset + 1].getX(), pts[offset + 1].getY(),
             pts[offset + 2].getX(), pts[offset + 2].getY());
229
  }
230 231 232 233 234 235 236


  /**
   * Changes the geometry of the curve to that of another curve.
   *
   * @param c the curve whose coordinates will be copied.
   */
237 238 239 240 241
  public void setCurve(QuadCurve2D c)
  {
    setCurve(c.getX1(), c.getY1(), c.getCtrlX(), c.getCtrlY(),
             c.getX2(), c.getY2());
  }
242 243


244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
  /**
   * Calculates the squared flatness of a quadratic curve, directly
   * specifying each coordinate value. The flatness is the distance of
   * the control point to the line between start and end point.
   *
   * <p><img src="doc-files/QuadCurve2D-4.png" width="350" height="180"
   * alt="A drawing that illustrates the flatness" />
   *
   * <p>In the above drawing, the straight line connecting start point
   * P1 and end point P2 is depicted in gray.  The result will be the
   * the square of the distance between C and the gray line, i.e.
   * the squared length of the red line.
   *
   * @param x1 the <i>x</i> coordinate of the start point P1.
   * @param y1 the <i>y</i> coordinate of the start point P1.
   * @param cx the <i>x</i> coordinate of the control point C.
   * @param cy the <i>y</i> coordinate of the control point C.
   * @param x2 the <i>x</i> coordinate of the end point P2.
   * @param y2 the <i>y</i> coordinate of the end point P2.
   */
264 265 266
  public static double getFlatnessSq(double x1, double y1, double cx,
                                     double cy, double x2, double y2)
  {
267
    return Line2D.ptSegDistSq(x1, y1, x2, y2, cx, cy);
268
  }
269 270


271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
  /**
   * Calculates the flatness of a quadratic curve, directly specifying
   * each coordinate value. The flatness is the distance of the
   * control point to the line between start and end point.
   *
   * <p><img src="doc-files/QuadCurve2D-4.png" width="350" height="180"
   * alt="A drawing that illustrates the flatness" />
   *
   * <p>In the above drawing, the straight line connecting start point
   * P1 and end point P2 is depicted in gray.  The result will be the
   * the distance between C and the gray line, i.e. the length of
   * the red line.
   *
   * @param x1 the <i>x</i> coordinate of the start point P1.
   * @param y1 the <i>y</i> coordinate of the start point P1.
   * @param cx the <i>x</i> coordinate of the control point C.
   * @param cy the <i>y</i> coordinate of the control point C.
   * @param x2 the <i>x</i> coordinate of the end point P2.
   * @param y2 the <i>y</i> coordinate of the end point P2.
   */
291 292 293
  public static double getFlatness(double x1, double y1, double cx, double cy,
                                   double x2, double y2)
  {
294
    return Line2D.ptSegDist(x1, y1, x2, y2, cx, cy);
295
  }
296 297


298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
  /**
   * Calculates the squared flatness of a quadratic curve, specifying
   * the coordinate values in an array. The flatness is the distance
   * of the control point to the line between start and end point.
   *
   * <p><img src="doc-files/QuadCurve2D-4.png" width="350" height="180"
   * alt="A drawing that illustrates the flatness" />
   *
   * <p>In the above drawing, the straight line connecting start point
   * P1 and end point P2 is depicted in gray.  The result will be the
   * the square of the distance between C and the gray line, i.e.
   * the squared length of the red line.
   *
   * @param coords an array containing the coordinate values.  The
   * <i>x</i> coordinate of the start point P1 is located at
   * <code>coords[offset]</code>, its <i>y</i> coordinate at
   * <code>coords[offset + 1]</code>.  The <i>x</i> coordinate of the
   * control point C is located at <code>coords[offset + 2]</code>,
   * its <i>y</i> coordinate at <code>coords[offset + 3]</code>. The
   * <i>x</i> coordinate of the end point P2 is located at
   * <code>coords[offset + 4]</code>, its <i>y</i> coordinate at
   * <code>coords[offset + 5]</code>.
   *
   * @param offset the offset of the first coordinate value in
   * <code>coords</code>.
   */
324 325
  public static double getFlatnessSq(double[] coords, int offset)
  {
326 327 328
    return Line2D.ptSegDistSq(coords[offset], coords[offset + 1],
                              coords[offset + 4], coords[offset + 5],
                              coords[offset + 2], coords[offset + 3]);
329
  }
330 331


332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
  /**
   * Calculates the flatness of a quadratic curve, specifying the
   * coordinate values in an array. The flatness is the distance of
   * the control point to the line between start and end point.
   *
   * <p><img src="doc-files/QuadCurve2D-4.png" width="350" height="180"
   * alt="A drawing that illustrates the flatness" />
   *
   * <p>In the above drawing, the straight line connecting start point
   * P1 and end point P2 is depicted in gray.  The result will be the
   * the the distance between C and the gray line, i.e.  the length of
   * the red line.
   *
   * @param coords an array containing the coordinate values.  The
   * <i>x</i> coordinate of the start point P1 is located at
   * <code>coords[offset]</code>, its <i>y</i> coordinate at
   * <code>coords[offset + 1]</code>.  The <i>x</i> coordinate of the
   * control point C is located at <code>coords[offset + 2]</code>,
   * its <i>y</i> coordinate at <code>coords[offset + 3]</code>. The
   * <i>x</i> coordinate of the end point P2 is located at
   * <code>coords[offset + 4]</code>, its <i>y</i> coordinate at
   * <code>coords[offset + 5]</code>.
   *
   * @param offset the offset of the first coordinate value in
   * <code>coords</code>.
   */
358 359
  public static double getFlatness(double[] coords, int offset)
  {
360 361 362
    return Line2D.ptSegDist(coords[offset], coords[offset + 1],
                            coords[offset + 4], coords[offset + 5],
                            coords[offset + 2], coords[offset + 3]);
363
  }
364 365


366 367 368 369 370 371 372 373 374 375 376 377 378
  /**
   * Calculates the squared flatness of this curve. The flatness is
   * the distance of the control point to the line between start and
   * end point.
   *
   * <p><img src="doc-files/QuadCurve2D-4.png" width="350" height="180"
   * alt="A drawing that illustrates the flatness" />
   *
   * <p>In the above drawing, the straight line connecting start point
   * P1 and end point P2 is depicted in gray.  The result will be the
   * the square of the distance between C and the gray line, i.e. the
   * squared length of the red line.
   */
379 380
  public double getFlatnessSq()
  {
381 382 383
    return Line2D.ptSegDistSq(getX1(), getY1(),
                              getX2(), getY2(),
                              getCtrlX(), getCtrlY());
384
  }
385 386


387 388 389 390 391 392 393 394 395 396 397 398 399
  /**
   * Calculates the flatness of this curve. The flatness is the
   * distance of the control point to the line between start and end
   * point.
   *
   * <p><img src="doc-files/QuadCurve2D-4.png" width="350" height="180"
   * alt="A drawing that illustrates the flatness" />
   *
   * <p>In the above drawing, the straight line connecting start point
   * P1 and end point P2 is depicted in gray.  The result will be the
   * the distance between C and the gray line, i.e.  the length of the
   * red line.
   */
400 401
  public double getFlatness()
  {
402 403 404
    return Line2D.ptSegDist(getX1(), getY1(),
                            getX2(), getY2(),
                            getCtrlX(), getCtrlY());
405 406
  }

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423

  /**
   * Subdivides this curve into two halves.
   *
   * <p><img src="doc-files/QuadCurve2D-3.png" width="700"
   * height="180" alt="A drawing that illustrates the effects of
   * subdividing a QuadCurve2D" />
   *
   * @param left a curve whose geometry will be set to the left half
   * of this curve, or <code>null</code> if the caller is not
   * interested in the left half.
   *
   * @param right a curve whose geometry will be set to the right half
   * of this curve, or <code>null</code> if the caller is not
   * interested in the right half.
   */
  public void subdivide(QuadCurve2D left, QuadCurve2D right)
424 425 426 427 428
  {
    // Use empty slots at end to share single array.
    double[] d = new double[] { getX1(), getY1(), getCtrlX(), getCtrlY(),
                                getX2(), getY2(), 0, 0, 0, 0 };
    subdivide(d, 0, d, 0, d, 4);
429 430 431 432
    if (left != null)
      left.setCurve(d, 0);
    if (right != null)
      right.setCurve(d, 4);
433
  }
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454


  /**
   * Subdivides a quadratic curve into two halves.
   *
   * <p><img src="doc-files/QuadCurve2D-3.png" width="700"
   * height="180" alt="A drawing that illustrates the effects of
   * subdividing a QuadCurve2D" />
   *
   * @param src the curve to be subdivided.
   *
   * @param left a curve whose geometry will be set to the left half
   * of <code>src</code>, or <code>null</code> if the caller is not
   * interested in the left half.
   *
   * @param right a curve whose geometry will be set to the right half
   * of <code>src</code>, or <code>null</code> if the caller is not
   * interested in the right half.
   */
  public static void subdivide(QuadCurve2D src, QuadCurve2D left,
                               QuadCurve2D right)
455
  {
456
    src.subdivide(left, right);
457
  }
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502


  /**
   * Subdivides a quadratic curve into two halves, passing all
   * coordinates in an array.
   *
   * <p><img src="doc-files/QuadCurve2D-3.png" width="700"
   * height="180" alt="A drawing that illustrates the effects of
   * subdividing a QuadCurve2D" />
   *
   * <p>The left end point and the right start point will always be
   * identical. Memory-concious programmers thus may want to pass the
   * same array for both <code>left</code> and <code>right</code>, and
   * set <code>rightOff</code> to <code>leftOff + 4</code>.
   *
   * @param src an array containing the coordinates of the curve to be
   * subdivided.  The <i>x</i> coordinate of the start point is
   * located at <code>src[srcOff]</code>, its <i>y</i> at
   * <code>src[srcOff + 1]</code>.  The <i>x</i> coordinate of the
   * control point is located at <code>src[srcOff + 2]</code>, its
   * <i>y</i> at <code>src[srcOff + 3]</code>.  The <i>x</i>
   * coordinate of the end point is located at <code>src[srcOff +
   * 4]</code>, its <i>y</i> at <code>src[srcOff + 5]</code>.
   *
   * @param srcOff an offset into <code>src</code>, specifying
   * the index of the start point&#x2019;s <i>x</i> coordinate.
   *
   * @param left an array that will receive the coordinates of the
   * left half of <code>src</code>. It is acceptable to pass
   * <code>src</code>. A caller who is not interested in the left half
   * can pass <code>null</code>.
   *
   * @param leftOff an offset into <code>left</code>, specifying the
   * index where the start point&#x2019;s <i>x</i> coordinate will be
   * stored.
   *
   * @param right an array that will receive the coordinates of the
   * right half of <code>src</code>. It is acceptable to pass
   * <code>src</code> or <code>left</code>. A caller who is not
   * interested in the right half can pass <code>null</code>.
   *
   * @param rightOff an offset into <code>right</code>, specifying the
   * index where the start point&#x2019;s <i>x</i> coordinate will be
   * stored.
   */
503 504 505 506
  public static void subdivide(double[] src, int srcOff,
                               double[] left, int leftOff,
                               double[] right, int rightOff)
  {
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
    double x1, y1, xc, yc, x2, y2;

    x1 = src[srcOff];
    y1 = src[srcOff + 1];
    xc = src[srcOff + 2];
    yc = src[srcOff + 3];
    x2 = src[srcOff + 4];
    y2 = src[srcOff + 5];

    if (left != null)
    {
      left[leftOff] = x1;
      left[leftOff + 1] = y1;
    }

    if (right != null)
    {
      right[rightOff + 4] = x2;
      right[rightOff + 5] = y2;
    }

    x1 = (x1 + xc) / 2;
    x2 = (xc + x2) / 2;
    xc = (x1 + x2) / 2;
    y1 = (y1 + yc) / 2;
    y2 = (y2 + yc) / 2;
    yc = (y1 + y2) / 2;

    if (left != null)
    {
      left[leftOff + 2] = x1;
      left[leftOff + 3] = y1;
      left[leftOff + 4] = xc;
      left[leftOff + 5] = yc;
    }

    if (right != null)
    {
      right[rightOff] = xc;
      right[rightOff + 1] = yc;
      right[rightOff + 2] = x2;
      right[rightOff + 3] = y2;
    }
550
  }
551 552


553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
  /**
   * Finds the non-complex roots of a quadratic equation, placing the
   * results into the same array as the equation coefficients. The
   * following equation is being solved:
   *
   * <blockquote><code>eqn[2]</code> &#xb7; <i>x</i><sup>2</sup>
   * + <code>eqn[1]</code> &#xb7; <i>x</i>
   * + <code>eqn[0]</code>
   * = 0
   * </blockquote>
   *
   * <p>For some background about solving quadratic equations, see the
   * article <a href=
   * "http://planetmath.org/encyclopedia/QuadraticFormula.html"
   * >&#x201c;Quadratic Formula&#x201d;</a> in <a href=
   * "http://planetmath.org/">PlanetMath</a>. For an extensive library
   * of numerical algorithms written in the C programming language,
   * see the <a href="http://www.gnu.org/software/gsl/">GNU Scientific
   * Library</a>.
   *
   * @see #solveQuadratic(double[], double[])
   * @see CubicCurve2D#solveCubic(double[], double[])
   *
   * @param eqn an array with the coefficients of the equation. When
   * this procedure has returned, <code>eqn</code> will contain the
   * non-complex solutions of the equation, in no particular order.
   *
   * @return the number of non-complex solutions. A result of 0
   * indicates that the equation has no non-complex solutions. A
   * result of -1 indicates that the equation is constant (i.e.,
   * always or never zero).
   *
   * @author <a href="mailto:bjg@network-theory.com">Brian Gough</a>
   * (original C implementation in the <a href=
   * "http://www.gnu.org/software/gsl/">GNU Scientific Library</a>)
   *
   * @author <a href="mailto:brawer@dandelis.ch">Sascha Brawer</a>
   * (adaptation to Java)
   */
592 593 594 595
  public static int solveQuadratic(double[] eqn)
  {
    return solveQuadratic(eqn, eqn);
  }
596 597


598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
  /**
   * Finds the non-complex roots of a quadratic equation. The
   * following equation is being solved:
   *
   * <blockquote><code>eqn[2]</code> &#xb7; <i>x</i><sup>2</sup>
   * + <code>eqn[1]</code> &#xb7; <i>x</i>
   * + <code>eqn[0]</code>
   * = 0
   * </blockquote>
   *
   * <p>For some background about solving quadratic equations, see the
   * article <a href=
   * "http://planetmath.org/encyclopedia/QuadraticFormula.html"
   * >&#x201c;Quadratic Formula&#x201d;</a> in <a href=
   * "http://planetmath.org/">PlanetMath</a>. For an extensive library
   * of numerical algorithms written in the C programming language,
   * see the <a href="http://www.gnu.org/software/gsl/">GNU Scientific
   * Library</a>.
   *
   * @see CubicCurve2D#solveCubic(double[],double[])
   *
   * @param eqn an array with the coefficients of the equation.
   *
   * @param res an array into which the non-complex roots will be
   * stored.  The results may be in an arbitrary order. It is safe to
   * pass the same array object reference for both <code>eqn</code>
   * and <code>res</code>.
   *
   * @return the number of non-complex solutions. A result of 0
   * indicates that the equation has no non-complex solutions. A
   * result of -1 indicates that the equation is constant (i.e.,
   * always or never zero).
   *
   * @author <a href="mailto:bjg@network-theory.com">Brian Gough</a>
   * (original C implementation in the <a href=
   * "http://www.gnu.org/software/gsl/">GNU Scientific Library</a>)
   *
   * @author <a href="mailto:brawer@dandelis.ch">Sascha Brawer</a>
   * (adaptation to Java)
   */
638 639
  public static int solveQuadratic(double[] eqn, double[] res)
  {
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
    // Taken from poly/solve_quadratic.c in the GNU Scientific Library
    // (GSL), cvs revision 1.7 of 2003-07-26. For the original source,
    // see http://www.gnu.org/software/gsl/
    //
    // Brian Gough, the author of that code, has granted the
    // permission to use it in GNU Classpath under the GNU Classpath
    // license, and has assigned the copyright to the Free Software
    // Foundation.
    //
    // The Java implementation is very similar to the GSL code, but
    // not a strict one-to-one copy. For example, GSL would sort the
    // result.

    double a, b, c, disc;

    c = eqn[0];
    b = eqn[1];
    a = eqn[2];

    // Check for linear or constant functions. This is not done by the
    // GNU Scientific Library.  Without this special check, we
    // wouldn't return -1 for constant functions, and 2 instead of 1
    // for linear functions.
663
    if (a == 0)
664 665 666
    {
      if (b == 0)
        return -1;
667
      
668 669 670
      res[0] = -c / b;
      return 1;
    }
671 672 673 674

    disc = b * b - 4 * a * c;

    if (disc < 0)
675
      return 0;
676 677 678 679 680 681 682 683 684 685 686

    if (disc == 0)
    {
      // The GNU Scientific Library returns two identical results here.
      // We just return one.
      res[0] = -0.5 * b / a ;
      return 1;
    }

    // disc > 0
    if (b == 0)
687
    {
688 689 690 691 692
      double r;

      r = Math.abs(0.5 * Math.sqrt(disc) / a);
      res[0] = -r;
      res[1] = r;
693
    }
694
    else
695
    {
696 697 698 699 700 701 702 703
      double sgnb, temp;
      
      sgnb = (b > 0 ? 1 : -1);
      temp = -0.5 * (b + sgnb * Math.sqrt(disc));

      // The GNU Scientific Library sorts the result here. We don't.
      res[0] = temp / a;
      res[1] = c / temp;
704
    }
705 706 707
    return 2;
  }

708

709 710 711 712 713 714 715 716 717 718
  /**
   * Determines whether a point lies inside the area that is bounded
   * by the curve and the straight line connecting its end points.
   *
   * <p><img src="doc-files/QuadCurve2D-5.png" width="350" height="180"
   * alt="A drawing of the area spanned by the curve" />
   *
   * <p>The above drawing illustrates in which area points are
   * considered &#x201c;contained&#x201d; in a QuadCurve2D.
   */
719 720 721 722 723
  public boolean contains(double x, double y)
  {
    // XXX Implement.
    throw new Error("not implemented");
  }
724 725


726 727 728 729 730 731 732 733 734 735
  /**
   * Determines whether a point lies inside the area that is bounded
   * by the curve and the straight line connecting its end points.
   *
   * <p><img src="doc-files/QuadCurve2D-5.png" width="350" height="180"
   * alt="A drawing of the area spanned by the curve" />
   *
   * <p>The above drawing illustrates in which area points are
   * considered &#x201c;contained&#x201d; in a QuadCurve2D.
   */
736 737 738 739
  public boolean contains(Point2D p)
  {
    return contains(p.getX(), p.getY());
  }
740 741


742 743 744 745 746
  public boolean intersects(double x, double y, double w, double h)
  {
    // XXX Implement.
    throw new Error("not implemented");
  }
747 748


749 750 751 752
  public boolean intersects(Rectangle2D r)
  {
    return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
  }
753 754


755 756 757 758 759
  public boolean contains(double x, double y, double w, double h)
  {
    // XXX Implement.
    throw new Error("not implemented");
  }
760 761


762 763 764 765
  public boolean contains(Rectangle2D r)
  {
    return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
  }
766 767 768 769 770 771 772 773 774 775 776 777


  /**
   * Determines the smallest rectangle that encloses the
   * curve&#x2019;s start, end and control point. As the illustration
   * below shows, the invisible control point may cause the bounds to
   * be much larger than the area that is actually covered by the
   * curve.
   *
   * <p><img src="doc-files/QuadCurve2D-2.png" width="350" height="180"
   * alt="An illustration of the bounds of a QuadCurve2D" />
   */
778 779 780 781
  public Rectangle getBounds()
  {
    return getBounds2D().getBounds();
  }
782 783


784 785 786 787 788
  public PathIterator getPathIterator(final AffineTransform at)
  {
    return new PathIterator()
    {
      /** Current coordinate. */
Graydon Hoare committed
789
      private int current = 0;
790

791

792 793 794 795 796
      public int getWindingRule()
      {
        return WIND_NON_ZERO;
      }

797

798 799
      public boolean isDone()
      {
Graydon Hoare committed
800
        return current >= 2;
801 802
      }

803

804 805 806 807 808
      public void next()
      {
        current++;
      }

809

810 811
      public int currentSegment(float[] coords)
      {
Graydon Hoare committed
812 813
        int result;
        switch (current)
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
        {
        case 0:
          coords[0] = (float) getX1();
          coords[1] = (float) getY1();
          result = SEG_MOVETO;
          break;

        case 1:
          coords[0] = (float) getCtrlX();
          coords[1] = (float) getCtrlY();
          coords[2] = (float) getX2();
          coords[3] = (float) getY2();
          result = SEG_QUADTO;
          break;

        default:
          throw new NoSuchElementException("quad iterator out of bounds");
        }
Graydon Hoare committed
832 833 834
        if (at != null)
          at.transform(coords, 0, coords, 0, 2);
        return result;
835 836
      }

837

838 839
      public int currentSegment(double[] coords)
      {
Graydon Hoare committed
840 841
        int result;
        switch (current)
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
        {
        case 0:
          coords[0] = getX1();
          coords[1] = getY1();
          result = SEG_MOVETO;
          break;

        case 1:
          coords[0] = getCtrlX();
          coords[1] = getCtrlY();
          coords[2] = getX2();
          coords[3] = getY2();
          result = SEG_QUADTO;
          break;

        default:
          throw new NoSuchElementException("quad iterator out of bounds");
        }
Graydon Hoare committed
860 861 862
        if (at != null)
          at.transform(coords, 0, coords, 0, 2);
        return result;
863 864 865
      }
    };
  }
866 867


868 869 870 871 872
  public PathIterator getPathIterator(AffineTransform at, double flatness)
  {
    return new FlatteningPathIterator(getPathIterator(at), flatness);
  }

873

874
  /**
875
   * Creates a new curve with the same contents as this one.
876
   *
877
   * @return the clone.
878 879 880 881
   */
  public Object clone()
  {
    try
882 883 884
    {
      return super.clone();
    }
885
    catch (CloneNotSupportedException e)
886 887 888
    {
      throw (Error) new InternalError().initCause(e); // Impossible
    }
889 890
  }

891

892
  /**
893 894 895 896 897 898 899 900
   * A two-dimensional curve that is parameterized with a quadratic
   * function and stores coordinate values in double-precision
   * floating-point format.
   *
   * @see QuadCurve2D.Float
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   * @author Sascha Brawer (brawer@dandelis.ch)
901
   */
902 903
  public static class Double
    extends QuadCurve2D
904
  {
905 906 907
    /**
     * The <i>x</i> coordinate of the curve&#x2019;s start point.
     */
908
    public double x1;
909 910 911 912 913


    /**
     * The <i>y</i> coordinate of the curve&#x2019;s start point.
     */
914
    public double y1;
915 916 917 918 919


    /**
     * The <i>x</i> coordinate of the curve&#x2019;s control point.
     */
920
    public double ctrlx;
921 922 923 924 925


    /**
     * The <i>y</i> coordinate of the curve&#x2019;s control point.
     */
926
    public double ctrly;
927 928 929 930 931


    /**
     * The <i>x</i> coordinate of the curve&#x2019;s end point.
     */
932
    public double x2;
933 934 935 936 937


    /**
     * The <i>y</i> coordinate of the curve&#x2019;s end point.
     */
938 939
    public double y2;

940 941 942 943 944 945

    /**
     * Constructs a new QuadCurve2D that stores its coordinate values
     * in double-precision floating-point format. All points are
     * initially at position (0, 0).
     */
946 947 948 949
    public Double()
    {
    }

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973

    /**
     * Constructs a new QuadCurve2D that stores its coordinate values
     * in double-precision floating-point format, specifying the
     * initial position of each point.
     *
     * @param x1 the <i>x</i> coordinate of the curve&#x2019;s start
     * point.
     *
     * @param y1 the <i>y</i> coordinate of the curve&#x2019;s start
     * point.
     *
     * @param cx the <i>x</i> coordinate of the curve&#x2019;s control
     * point.
     *
     * @param cy the <i>y</i> coordinate of the curve&#x2019;s control
     * point.
     *
     * @param x2 the <i>x</i> coordinate of the curve&#x2019;s end
     * point.
     *
     * @param y2 the <i>y</i> coordinate of the curve&#x2019;s end
     * point.
     */
974 975 976 977 978 979 980 981 982 983 984
    public Double(double x1, double y1, double cx, double cy,
                  double x2, double y2)
    {
      this.x1 = x1;
      this.y1 = y1;
      ctrlx = cx;
      ctrly = cy;
      this.x2 = x2;
      this.y2 = y2;
    }

985 986 987 988 989

    /**
     * Returns the <i>x</i> coordinate of the curve&#x2019;s start
     * point.
     */
990 991 992 993
    public double getX1()
    {
      return x1;
    }
994 995 996 997 998 999


    /**
     * Returns the <i>y</i> coordinate of the curve&#x2019;s start
     * point.
     */
1000 1001 1002 1003
    public double getY1()
    {
      return y1;
    }
1004 1005 1006 1007 1008


    /**
     * Returns the curve&#x2019;s start point.
     */
1009 1010 1011 1012 1013
    public Point2D getP1()
    {
      return new Point2D.Double(x1, y1);
    }

1014 1015 1016 1017 1018

    /**
     * Returns the <i>x</i> coordinate of the curve&#x2019;s control
     * point.
     */
1019 1020 1021 1022
    public double getCtrlX()
    {
      return ctrlx;
    }
1023 1024 1025 1026 1027 1028


    /**
     * Returns the <i>y</i> coordinate of the curve&#x2019;s control
     * point.
     */
1029 1030 1031 1032
    public double getCtrlY()
    {
      return ctrly;
    }
1033 1034 1035 1036 1037


    /**
     * Returns the curve&#x2019;s control point.
     */
1038 1039 1040 1041 1042
    public Point2D getCtrlPt()
    {
      return new Point2D.Double(ctrlx, ctrly);
    }

1043 1044 1045 1046 1047

    /**
     * Returns the <i>x</i> coordinate of the curve&#x2019;s end
     * point.
     */
1048 1049 1050 1051
    public double getX2()
    {
      return x2;
    }
1052 1053 1054 1055 1056 1057


    /**
     * Returns the <i>y</i> coordinate of the curve&#x2019;s end
     * point.
     */
1058 1059 1060 1061
    public double getY2()
    {
      return y2;
    }
1062 1063 1064 1065 1066


    /**
     * Returns the curve&#x2019;s end point.
     */
1067 1068 1069 1070 1071
    public Point2D getP2()
    {
      return new Point2D.Double(x2, y2);
    }

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093

    /**
     * Changes the geometry of the curve.
     *
     * @param x1 the <i>x</i> coordinate of the curve&#x2019;s new
     * start point.
     *
     * @param y1 the <i>y</i> coordinate of the curve&#x2019;s new
     * start point.
     *
     * @param cx the <i>x</i> coordinate of the curve&#x2019;s new
     * control point.
     *
     * @param cy the <i>y</i> coordinate of the curve&#x2019;s new
     * control point.
     *
     * @param x2 the <i>x</i> coordinate of the curve&#x2019;s new
     * end point.
     *
     * @param y2 the <i>y</i> coordinate of the curve&#x2019;s new
     * end point.
     */
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
    public void setCurve(double x1, double y1, double cx, double cy,
                         double x2, double y2)
    {
      this.x1 = x1;
      this.y1 = y1;
      ctrlx = cx;
      ctrly = cy;
      this.x2 = x2;
      this.y2 = y2;
    }
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115


    /**
     * Determines the smallest rectangle that encloses the
     * curve&#x2019;s start, end and control point. As the
     * illustration below shows, the invisible control point may cause
     * the bounds to be much larger than the area that is actually
     * covered by the curve.
     *
     * <p><img src="doc-files/QuadCurve2D-2.png" width="350" height="180"
     * alt="An illustration of the bounds of a QuadCurve2D" />
     */
1116 1117 1118 1119 1120 1121 1122 1123
    public Rectangle2D getBounds2D()
    {
      double nx1 = Math.min(Math.min(x1, ctrlx), x2);
      double ny1 = Math.min(Math.min(y1, ctrly), y2);
      double nx2 = Math.max(Math.max(x1, ctrlx), x2);
      double ny2 = Math.max(Math.max(y1, ctrly), y2);
      return new Rectangle2D.Double(nx1, ny1, nx2 - nx1, ny2 - ny1);
    }
1124 1125
  }

1126 1127

  /**
1128 1129 1130 1131 1132 1133 1134 1135
   * A two-dimensional curve that is parameterized with a quadratic
   * function and stores coordinate values in single-precision
   * floating-point format.
   *
   * @see QuadCurve2D.Double
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   * @author Sascha Brawer (brawer@dandelis.ch)
1136
   */
1137 1138
  public static class Float
    extends QuadCurve2D
1139
  {
1140 1141 1142
    /**
     * The <i>x</i> coordinate of the curve&#x2019;s start point.
     */
1143
    public float x1;
1144 1145 1146 1147 1148


    /**
     * The <i>y</i> coordinate of the curve&#x2019;s start point.
     */
1149
    public float y1;
1150 1151 1152 1153 1154


    /**
     * The <i>x</i> coordinate of the curve&#x2019;s control point.
     */
1155
    public float ctrlx;
1156 1157 1158 1159 1160


    /**
     * The <i>y</i> coordinate of the curve&#x2019;s control point.
     */
1161
    public float ctrly;
1162 1163 1164 1165 1166


    /**
     * The <i>x</i> coordinate of the curve&#x2019;s end point.
     */
1167
    public float x2;
1168 1169 1170 1171 1172


    /**
     * The <i>y</i> coordinate of the curve&#x2019;s end point.
     */
1173 1174
    public float y2;

1175 1176 1177 1178 1179 1180

    /**
     * Constructs a new QuadCurve2D that stores its coordinate values
     * in single-precision floating-point format. All points are
     * initially at position (0, 0).
     */
1181 1182 1183 1184
    public Float()
    {
    }

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

    /**
     * Constructs a new QuadCurve2D that stores its coordinate values
     * in single-precision floating-point format, specifying the
     * initial position of each point.
     *
     * @param x1 the <i>x</i> coordinate of the curve&#x2019;s start
     * point.
     *
     * @param y1 the <i>y</i> coordinate of the curve&#x2019;s start
     * point.
     *
     * @param cx the <i>x</i> coordinate of the curve&#x2019;s control
     * point.
     *
     * @param cy the <i>y</i> coordinate of the curve&#x2019;s control
     * point.
     *
     * @param x2 the <i>x</i> coordinate of the curve&#x2019;s end
     * point.
     *
     * @param y2 the <i>y</i> coordinate of the curve&#x2019;s end
     * point.
     */
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
    public Float(float x1, float y1, float cx, float cy,
                 float x2, float y2)
    {
      this.x1 = x1;
      this.y1 = y1;
      ctrlx = cx;
      ctrly = cy;
      this.x2 = x2;
      this.y2 = y2;
    }

1220 1221 1222 1223 1224

    /**
     * Returns the <i>x</i> coordinate of the curve&#x2019;s start
     * point.
     */
1225 1226 1227 1228
    public double getX1()
    {
      return x1;
    }
1229 1230 1231 1232 1233 1234


    /**
     * Returns the <i>y</i> coordinate of the curve&#x2019;s start
     * point.
     */
1235 1236 1237 1238
    public double getY1()
    {
      return y1;
    }
1239 1240 1241 1242 1243


    /**
     * Returns the curve&#x2019;s start point.
     */
1244 1245 1246 1247 1248
    public Point2D getP1()
    {
      return new Point2D.Float(x1, y1);
    }

1249 1250 1251 1252 1253

    /**
     * Returns the <i>x</i> coordinate of the curve&#x2019;s control
     * point.
     */
1254 1255 1256 1257
    public double getCtrlX()
    {
      return ctrlx;
    }
1258 1259 1260 1261 1262 1263


    /**
     * Returns the <i>y</i> coordinate of the curve&#x2019;s control
     * point.
     */
1264 1265 1266 1267
    public double getCtrlY()
    {
      return ctrly;
    }
1268 1269 1270 1271 1272


    /**
     * Returns the curve&#x2019;s control point.
     */
1273 1274 1275 1276 1277
    public Point2D getCtrlPt()
    {
      return new Point2D.Float(ctrlx, ctrly);
    }

1278 1279 1280 1281 1282

    /**
     * Returns the <i>x</i> coordinate of the curve&#x2019;s end
     * point.
     */
1283 1284 1285 1286
    public double getX2()
    {
      return x2;
    }
1287 1288 1289 1290 1291 1292


    /**
     * Returns the <i>y</i> coordinate of the curve&#x2019;s end
     * point.
     */
1293 1294 1295 1296
    public double getY2()
    {
      return y2;
    }
1297 1298 1299 1300 1301


    /**
     * Returns the curve&#x2019;s end point.
     */
1302 1303 1304 1305 1306
    public Point2D getP2()
    {
      return new Point2D.Float(x2, y2);
    }

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329

    /**
     * Changes the geometry of the curve, specifying coordinate values
     * as double-precision floating-point numbers.
     *
     * @param x1 the <i>x</i> coordinate of the curve&#x2019;s new
     * start point.
     *
     * @param y1 the <i>y</i> coordinate of the curve&#x2019;s new
     * start point.
     *
     * @param cx the <i>x</i> coordinate of the curve&#x2019;s new
     * control point.
     *
     * @param cy the <i>y</i> coordinate of the curve&#x2019;s new
     * control point.
     *
     * @param x2 the <i>x</i> coordinate of the curve&#x2019;s new
     * end point.
     *
     * @param y2 the <i>y</i> coordinate of the curve&#x2019;s new
     * end point.
     */
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
    public void setCurve(double x1, double y1, double cx, double cy,
                         double x2, double y2)
    {
      this.x1 = (float) x1;
      this.y1 = (float) y1;
      ctrlx = (float) cx;
      ctrly = (float) cy;
      this.x2 = (float) x2;
      this.y2 = (float) y2;
    }
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363


    /**
     * Changes the geometry of the curve, specifying coordinate values
     * as single-precision floating-point numbers.
     *
     * @param x1 the <i>x</i> coordinate of the curve&#x2019;s new
     * start point.
     *
     * @param y1 the <i>y</i> coordinate of the curve&#x2019;s new
     * start point.
     *
     * @param cx the <i>x</i> coordinate of the curve&#x2019;s new
     * control point.
     *
     * @param cy the <i>y</i> coordinate of the curve&#x2019;s new
     * control point.
     *
     * @param x2 the <i>x</i> coordinate of the curve&#x2019;s new
     * end point.
     *
     * @param y2 the <i>y</i> coordinate of the curve&#x2019;s new
     * end point.
     */
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
    public void setCurve(float x1, float y1, float cx, float cy,
                         float x2, float y2)
    {
      this.x1 = x1;
      this.y1 = y1;
      ctrlx = cx;
      ctrly = cy;
      this.x2 = x2;
      this.y2 = y2;
    }
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385


    /**
     * Determines the smallest rectangle that encloses the
     * curve&#x2019;s start, end and control point. As the
     * illustration below shows, the invisible control point may cause
     * the bounds to be much larger than the area that is actually
     * covered by the curve.
     *
     * <p><img src="doc-files/QuadCurve2D-2.png" width="350" height="180"
     * alt="An illustration of the bounds of a QuadCurve2D" />
     */
1386 1387 1388 1389 1390 1391 1392 1393
    public Rectangle2D getBounds2D()
    {
      float nx1 = (float) Math.min(Math.min(x1, ctrlx), x2);
      float ny1 = (float) Math.min(Math.min(y1, ctrly), y2);
      float nx2 = (float) Math.max(Math.max(x1, ctrlx), x2);
      float ny2 = (float) Math.max(Math.max(y1, ctrly), y2);
      return new Rectangle2D.Float(nx1, ny1, nx2 - nx1, ny2 - ny1);
    }
1394 1395
  }
}