a-coorse.adb 36.8 KB
Newer Older
1 2 3 4
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT LIBRARY COMPONENTS                          --
--                                                                          --
5
--           A D A . C O N T A I N E R S . O R D E R E D _ S E T S          --
6 7 8
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
9
--          Copyright (C) 2004-2005 Free Software Foundation, Inc.          --
10 11 12 13 14 15 16 17 18 19 20 21 22
--                                                                          --
-- This specification is derived from the Ada Reference Manual for use with --
-- GNAT. The copyright notice above, and the license provisions that follow --
-- apply solely to the  contents of the part following the private keyword. --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 2,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT;  see file COPYING.  If not, write --
R. Kelley Cook committed
23 24
-- to  the  Free Software Foundation,  51  Franklin  Street,  Fifth  Floor, --
-- Boston, MA 02110-1301, USA.                                              --
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
--                                                                          --
-- As a special exception,  if other files  instantiate  generics from this --
-- unit, or you link  this unit with other files  to produce an executable, --
-- this  unit  does not  by itself cause  the resulting  executable  to  be --
-- covered  by the  GNU  General  Public  License.  This exception does not --
-- however invalidate  any other reasons why  the executable file  might be --
-- covered by the  GNU Public License.                                      --
--                                                                          --
-- This unit was originally developed by Matthew J Heaney.                  --
------------------------------------------------------------------------------

with Ada.Unchecked_Deallocation;

with Ada.Containers.Red_Black_Trees.Generic_Operations;
pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Operations);

with Ada.Containers.Red_Black_Trees.Generic_Keys;
pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Keys);

with Ada.Containers.Red_Black_Trees.Generic_Set_Operations;
pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Set_Operations);

package body Ada.Containers.Ordered_Sets is

   ------------------------------
   -- Access to Fields of Node --
   ------------------------------

   --  These subprograms provide functional notation for access to fields
   --  of a node, and procedural notation for modifiying these fields.

   function Color (Node : Node_Access) return Color_Type;
   pragma Inline (Color);

   function Left (Node : Node_Access) return Node_Access;
   pragma Inline (Left);

   function Parent (Node : Node_Access) return Node_Access;
   pragma Inline (Parent);

   function Right (Node : Node_Access) return Node_Access;
   pragma Inline (Right);

   procedure Set_Color (Node : Node_Access; Color : Color_Type);
   pragma Inline (Set_Color);

   procedure Set_Left (Node : Node_Access; Left : Node_Access);
   pragma Inline (Set_Left);

   procedure Set_Right (Node : Node_Access; Right : Node_Access);
   pragma Inline (Set_Right);

   procedure Set_Parent (Node : Node_Access; Parent : Node_Access);
   pragma Inline (Set_Parent);

   -----------------------
   -- Local Subprograms --
   -----------------------

   function Copy_Node (Source : Node_Access) return Node_Access;
   pragma Inline (Copy_Node);

   procedure Insert_With_Hint
     (Dst_Tree : in out Tree_Type;
      Dst_Hint : Node_Access;
      Src_Node : Node_Access;
      Dst_Node : out Node_Access);

   function Is_Equal_Node_Node (L, R : Node_Access) return Boolean;
   pragma Inline (Is_Equal_Node_Node);

   function Is_Greater_Element_Node
     (Left  : Element_Type;
      Right : Node_Access) return Boolean;
   pragma Inline (Is_Greater_Element_Node);

   function Is_Less_Element_Node
     (Left  : Element_Type;
      Right : Node_Access) return Boolean;
   pragma Inline (Is_Less_Element_Node);

   function Is_Less_Node_Node (L, R : Node_Access) return Boolean;
   pragma Inline (Is_Less_Node_Node);

109 110 111 112 113
   procedure Replace_Element
     (Tree : in out Tree_Type;
      Node : Node_Access;
      Item : Element_Type);

114 115 116 117
   --------------------------
   -- Local Instantiations --
   --------------------------

118 119 120
   procedure Free is
     new Ada.Unchecked_Deallocation (Node_Type, Node_Access);

121
   package Tree_Operations is
122
     new Red_Black_Trees.Generic_Operations (Tree_Types);
123

124 125
   procedure Delete_Tree is
      new Tree_Operations.Generic_Delete_Tree (Free);
126

127 128 129 130
   function Copy_Tree is
      new Tree_Operations.Generic_Copy_Tree (Copy_Node, Delete_Tree);

   use Tree_Operations;
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

   function Is_Equal is
     new Tree_Operations.Generic_Equal (Is_Equal_Node_Node);

   package Element_Keys is
     new Red_Black_Trees.Generic_Keys
      (Tree_Operations     => Tree_Operations,
       Key_Type            => Element_Type,
       Is_Less_Key_Node    => Is_Less_Element_Node,
       Is_Greater_Key_Node => Is_Greater_Element_Node);

   package Set_Ops is
     new Generic_Set_Operations
      (Tree_Operations  => Tree_Operations,
       Insert_With_Hint => Insert_With_Hint,
       Copy_Tree        => Copy_Tree,
       Delete_Tree      => Delete_Tree,
       Is_Less          => Is_Less_Node_Node,
       Free             => Free);

   ---------
   -- "<" --
   ---------

   function "<" (Left, Right : Cursor) return Boolean is
   begin
      return Left.Node.Element < Right.Node.Element;
   end "<";

   function "<" (Left : Cursor; Right : Element_Type) return Boolean is
   begin
      return Left.Node.Element < Right;
   end "<";

   function "<" (Left : Element_Type; Right : Cursor) return Boolean is
   begin
      return Left < Right.Node.Element;
   end "<";

   ---------
   -- "=" --
   ---------

   function "=" (Left, Right : Set) return Boolean is
   begin
      return Is_Equal (Left.Tree, Right.Tree);
   end "=";

   ---------
   -- ">" --
   ---------

   function ">" (Left, Right : Cursor) return Boolean is
   begin
      --  L > R same as R < L

      return Right.Node.Element < Left.Node.Element;
   end ">";

   function ">" (Left : Element_Type; Right : Cursor) return Boolean is
   begin
      return Right.Node.Element < Left;
   end ">";

   function ">" (Left : Cursor; Right : Element_Type) return Boolean is
   begin
      return Right < Left.Node.Element;
   end ">";

   ------------
   -- Adjust --
   ------------

204 205
   procedure Adjust is
      new Tree_Operations.Generic_Adjust (Copy_Tree);
206

207
   procedure Adjust (Container : in out Set) is
208
   begin
209
      Adjust (Container.Tree);
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
   end Adjust;

   -------------
   -- Ceiling --
   -------------

   function Ceiling (Container : Set; Item : Element_Type) return Cursor is
      Node : constant Node_Access :=
               Element_Keys.Ceiling (Container.Tree, Item);

   begin
      if Node = null then
         return No_Element;
      end if;

225
      return Cursor'(Container'Unrestricted_Access, Node);
226 227 228 229 230 231
   end Ceiling;

   -----------
   -- Clear --
   -----------

232 233 234
   procedure Clear is
      new Tree_Operations.Generic_Clear (Delete_Tree);

235 236
   procedure Clear (Container : in out Set) is
   begin
237
      Clear (Container.Tree);
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
   end Clear;

   -----------
   -- Color --
   -----------

   function Color (Node : Node_Access) return Color_Type is
   begin
      return Node.Color;
   end Color;

   --------------
   -- Contains --
   --------------

   function Contains
     (Container : Set;
      Item      : Element_Type) return Boolean
   is
   begin
      return Find (Container, Item) /= No_Element;
   end Contains;

   ---------------
   -- Copy_Node --
   ---------------

   function Copy_Node (Source : Node_Access) return Node_Access is
      Target : constant Node_Access :=
                 new Node_Type'(Parent  => null,
                                Left    => null,
                                Right   => null,
                                Color   => Source.Color,
                                Element => Source.Element);
   begin
      return Target;
   end Copy_Node;

   ------------
   -- Delete --
   ------------

   procedure Delete (Container : in out Set; Position : in out Cursor) is
   begin
282 283
      if Position.Node = null then
         raise Constraint_Error;
284 285
      end if;

286
      if Position.Container /= Container'Unrestricted_Access then
287 288 289
         raise Program_Error;
      end if;

290
      Tree_Operations.Delete_Node_Sans_Free (Container.Tree, Position.Node);
291 292 293 294 295 296 297 298 299 300 301 302
      Free (Position.Node);
      Position.Container := null;
   end Delete;

   procedure Delete (Container : in out Set; Item : Element_Type) is
      X : Node_Access := Element_Keys.Find (Container.Tree, Item);

   begin
      if X = null then
         raise Constraint_Error;
      end if;

303
      Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X);
304 305 306 307 308 309 310 311
      Free (X);
   end Delete;

   ------------------
   -- Delete_First --
   ------------------

   procedure Delete_First (Container : in out Set) is
312 313 314
      Tree : Tree_Type renames Container.Tree;
      X    : Node_Access := Tree.First;

315
   begin
316 317 318 319
      if X /= null then
         Tree_Operations.Delete_Node_Sans_Free (Tree, X);
         Free (X);
      end if;
320 321 322 323 324 325 326
   end Delete_First;

   -----------------
   -- Delete_Last --
   -----------------

   procedure Delete_Last (Container : in out Set) is
327 328
      Tree : Tree_Type renames Container.Tree;
      X    : Node_Access := Tree.Last;
329 330

   begin
331 332
      if X /= null then
         Tree_Operations.Delete_Node_Sans_Free (Tree, X);
333
         Free (X);
334 335
      end if;
   end Delete_Last;
336 337 338 339 340 341 342 343 344 345 346

   ----------------
   -- Difference --
   ----------------

   procedure Difference (Target : in out Set; Source : Set) is
   begin
      Set_Ops.Difference (Target.Tree, Source.Tree);
   end Difference;

   function Difference (Left, Right : Set) return Set is
347 348
      Tree : constant Tree_Type :=
               Set_Ops.Difference (Left.Tree, Right.Tree);
349
   begin
350
      return Set'(Controlled with Tree);
351 352 353 354 355 356 357 358 359 360 361
   end Difference;

   -------------
   -- Element --
   -------------

   function Element (Position : Cursor) return Element_Type is
   begin
      return Position.Node.Element;
   end Element;

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
   -------------------------
   -- Equivalent_Elements --
   -------------------------

   function Equivalent_Elements (Left, Right : Element_Type) return Boolean is
   begin
      if Left < Right
        or else Right < Left
      then
         return False;
      else
         return True;
      end if;
   end Equivalent_Elements;

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
   ---------------------
   -- Equivalent_Sets --
   ---------------------

   function Equivalent_Sets (Left, Right : Set) return Boolean is
      function Is_Equivalent_Node_Node (L, R : Node_Access) return Boolean;
      pragma Inline (Is_Equivalent_Node_Node);

      function Is_Equivalent is
         new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node);

      -----------------------------
      -- Is_Equivalent_Node_Node --
      -----------------------------

      function Is_Equivalent_Node_Node (L, R : Node_Access) return Boolean is
      begin
         if L.Element < R.Element then
            return False;
         elsif R.Element < L.Element then
            return False;
         else
            return True;
         end if;
      end Is_Equivalent_Node_Node;

   --  Start of processing for Equivalent_Sets

   begin
      return Is_Equivalent (Left.Tree, Right.Tree);
   end Equivalent_Sets;

409 410 411 412 413 414 415 416 417
   -------------
   -- Exclude --
   -------------

   procedure Exclude (Container : in out Set; Item : Element_Type) is
      X : Node_Access := Element_Keys.Find (Container.Tree, Item);

   begin
      if X /= null then
418
         Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X);
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
         Free (X);
      end if;
   end Exclude;

   ----------
   -- Find --
   ----------

   function Find (Container : Set; Item : Element_Type) return Cursor is
      Node : constant Node_Access :=
               Element_Keys.Find (Container.Tree, Item);

   begin
      if Node = null then
         return No_Element;
      end if;

436
      return Cursor'(Container'Unrestricted_Access, Node);
437 438 439 440 441 442 443 444 445 446 447 448
   end Find;

   -----------
   -- First --
   -----------

   function First (Container : Set) return Cursor is
   begin
      if Container.Tree.First = null then
         return No_Element;
      end if;

449
      return Cursor'(Container'Unrestricted_Access, Container.Tree.First);
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
   end First;

   -------------------
   -- First_Element --
   -------------------

   function First_Element (Container : Set) return Element_Type is
   begin
      return Container.Tree.First.Element;
   end First_Element;

   -----------
   -- Floor --
   -----------

   function Floor (Container : Set; Item : Element_Type) return Cursor is
      Node : constant Node_Access :=
               Element_Keys.Floor (Container.Tree, Item);

   begin
      if Node = null then
         return No_Element;
      end if;

474
      return Cursor'(Container'Unrestricted_Access, Node);
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
   end Floor;

   ------------------
   -- Generic_Keys --
   ------------------

   package body Generic_Keys is

      -----------------------
      -- Local Subprograms --
      -----------------------

      function Is_Greater_Key_Node
        (Left  : Key_Type;
         Right : Node_Access) return Boolean;
      pragma Inline (Is_Greater_Key_Node);

      function Is_Less_Key_Node
        (Left  : Key_Type;
         Right : Node_Access) return Boolean;
      pragma Inline (Is_Less_Key_Node);

      --------------------------
      -- Local Instantiations --
      --------------------------

      package Key_Keys is
        new Red_Black_Trees.Generic_Keys
          (Tree_Operations     => Tree_Operations,
           Key_Type            => Key_Type,
           Is_Less_Key_Node    => Is_Less_Key_Node,
           Is_Greater_Key_Node => Is_Greater_Key_Node);

      -------------
      -- Ceiling --
      -------------

      function Ceiling (Container : Set; Key : Key_Type) return Cursor is
         Node : constant Node_Access :=
                  Key_Keys.Ceiling (Container.Tree, Key);

      begin
         if Node = null then
            return No_Element;
         end if;

521
         return Cursor'(Container'Unrestricted_Access, Node);
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
      end Ceiling;

      --------------
      -- Contains --
      --------------

      function Contains (Container : Set; Key : Key_Type) return Boolean is
      begin
         return Find (Container, Key) /= No_Element;
      end Contains;

      ------------
      -- Delete --
      ------------

      procedure Delete (Container : in out Set; Key : Key_Type) is
         X : Node_Access := Key_Keys.Find (Container.Tree, Key);

      begin
         if X = null then
            raise Constraint_Error;
         end if;

         Delete_Node_Sans_Free (Container.Tree, X);
         Free (X);
      end Delete;

      -------------
      -- Element --
      -------------

      function Element
        (Container : Set;
         Key       : Key_Type) return Element_Type
      is
         Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key);
558

559 560 561 562
      begin
         return Node.Element;
      end Element;

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
      ---------------------
      -- Equivalent_Keys --
      ---------------------

      function Equivalent_Keys (Left, Right : Key_Type) return Boolean is
      begin
         if Left < Right
           or else Right < Left
         then
            return False;
         else
            return True;
         end if;
      end Equivalent_Keys;

578 579 580 581 582 583
      -------------
      -- Exclude --
      -------------

      procedure Exclude (Container : in out Set; Key : Key_Type) is
         X : Node_Access := Key_Keys.Find (Container.Tree, Key);
584

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
      begin
         if X /= null then
            Delete_Node_Sans_Free (Container.Tree, X);
            Free (X);
         end if;
      end Exclude;

      ----------
      -- Find --
      ----------

      function Find (Container : Set; Key : Key_Type) return Cursor is
         Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key);

      begin
         if Node = null then
            return No_Element;
         end if;

604
         return Cursor'(Container'Unrestricted_Access, Node);
605 606 607 608 609 610 611 612 613 614 615 616 617 618
      end Find;

      -----------
      -- Floor --
      -----------

      function Floor (Container : Set; Key : Key_Type) return Cursor is
         Node : constant Node_Access := Key_Keys.Floor (Container.Tree, Key);

      begin
         if Node = null then
            return No_Element;
         end if;

619
         return Cursor'(Container'Unrestricted_Access, Node);
620 621 622 623 624 625 626 627 628 629 630
      end Floor;

      -------------------------
      -- Is_Greater_Key_Node --
      -------------------------

      function Is_Greater_Key_Node
        (Left  : Key_Type;
         Right : Node_Access) return Boolean
      is
      begin
631
         return Key (Right.Element) < Left;
632 633 634 635 636 637 638 639 640 641 642
      end Is_Greater_Key_Node;

      ----------------------
      -- Is_Less_Key_Node --
      ----------------------

      function Is_Less_Key_Node
        (Left  : Key_Type;
         Right : Node_Access) return Boolean
      is
      begin
643
         return Left < Key (Right.Element);
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
      end Is_Less_Key_Node;

      ---------
      -- Key --
      ---------

      function Key (Position : Cursor) return Key_Type is
      begin
         return Key (Position.Node.Element);
      end Key;

      -------------
      -- Replace --
      -------------

659 660 661 662 663 664
      procedure Replace
        (Container : in out Set;
         Key       : Key_Type;
         New_Item  : Element_Type)
      is
         Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key);
665

666 667 668 669
      begin
         if Node = null then
            raise Constraint_Error;
         end if;
670

671 672
         Replace_Element (Container.Tree, Node, New_Item);
      end Replace;
673

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
      -----------------------------------
      -- Update_Element_Preserving_Key --
      -----------------------------------

      procedure Update_Element_Preserving_Key
        (Container : in out Set;
         Position  : Cursor;
         Process   : not null access procedure (Element : in out Element_Type))
      is
         Tree : Tree_Type renames Container.Tree;

      begin
         if Position.Node = null then
            raise Constraint_Error;
         end if;

         if Position.Container /= Container'Unrestricted_Access then
            raise Program_Error;
         end if;

         declare
            E : Element_Type renames Position.Node.Element;
696
            K : constant Key_Type := Key (E);
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716

            B : Natural renames Tree.Busy;
            L : Natural renames Tree.Lock;

         begin
            B := B + 1;
            L := L + 1;

            begin
               Process (E);
            exception
               when others =>
                  L := L - 1;
                  B := B - 1;
                  raise;
            end;

            L := L - 1;
            B := B - 1;

717
            if Equivalent_Keys (K, Key (E)) then
718 719 720 721 722 723 724 725 726 727 728 729 730
               return;
            end if;
         end;

         declare
            X : Node_Access := Position.Node;
         begin
            Tree_Operations.Delete_Node_Sans_Free (Tree, X);
            Free (X);
         end;

         raise Program_Error;
      end Update_Element_Preserving_Key;
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754

   end Generic_Keys;

   -----------------
   -- Has_Element --
   -----------------

   function Has_Element (Position : Cursor) return Boolean is
   begin
      return Position /= No_Element;
   end Has_Element;

   -------------
   -- Include --
   -------------

   procedure Include (Container : in out Set; New_Item : Element_Type) is
      Position : Cursor;
      Inserted : Boolean;

   begin
      Insert (Container, New_Item, Position, Inserted);

      if not Inserted then
755 756 757 758
         if Container.Tree.Lock > 0 then
            raise Program_Error;
         end if;

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
         Position.Node.Element := New_Item;
      end if;
   end Include;

   ------------
   -- Insert --
   ------------

   procedure Insert
     (Container : in out Set;
      New_Item  : Element_Type;
      Position  : out Cursor;
      Inserted  : out Boolean)
   is
      function New_Node return Node_Access;
      pragma Inline (New_Node);

      procedure Insert_Post is
        new Element_Keys.Generic_Insert_Post (New_Node);

      procedure Insert_Sans_Hint is
        new Element_Keys.Generic_Conditional_Insert (Insert_Post);

      --------------
      -- New_Node --
      --------------

      function New_Node return Node_Access is
         Node : constant Node_Access :=
                  new Node_Type'(Parent => null,
                                 Left   => null,
                                 Right  => null,
                                 Color  => Red,
                                 Element => New_Item);
      begin
         return Node;
      end New_Node;

   --  Start of processing for Insert

   begin
      Insert_Sans_Hint
        (Container.Tree,
         New_Item,
         Position.Node,
         Inserted);

806
      Position.Container := Container'Unrestricted_Access;
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
   end Insert;

   procedure Insert
     (Container : in out Set;
      New_Item  : Element_Type)
   is
      Position : Cursor;
      Inserted : Boolean;

   begin
      Insert (Container, New_Item, Position, Inserted);

      if not Inserted then
         raise Constraint_Error;
      end if;
   end Insert;

   ----------------------
   -- Insert_With_Hint --
   ----------------------

   procedure Insert_With_Hint
     (Dst_Tree : in out Tree_Type;
      Dst_Hint : Node_Access;
      Src_Node : Node_Access;
      Dst_Node : out Node_Access)
   is
      Success : Boolean;

      function New_Node return Node_Access;
      pragma Inline (New_Node);

      procedure Insert_Post is
        new Element_Keys.Generic_Insert_Post (New_Node);

      procedure Insert_Sans_Hint is
        new Element_Keys.Generic_Conditional_Insert (Insert_Post);

      procedure Local_Insert_With_Hint is
        new Element_Keys.Generic_Conditional_Insert_With_Hint
          (Insert_Post,
           Insert_Sans_Hint);

      --------------
      -- New_Node --
      --------------

      function New_Node return Node_Access is
         Node : constant Node_Access :=
           new Node_Type'(Parent  => null,
                          Left    => null,
                          Right   => null,
                          Color   => Red,
                          Element => Src_Node.Element);
      begin
         return Node;
      end New_Node;

   --  Start of processing for Insert_With_Hint

   begin
      Local_Insert_With_Hint
        (Dst_Tree,
         Dst_Hint,
         Src_Node.Element,
         Dst_Node,
         Success);
   end Insert_With_Hint;

   ------------------
   -- Intersection --
   ------------------

   procedure Intersection (Target : in out Set; Source : Set) is
   begin
      Set_Ops.Intersection (Target.Tree, Source.Tree);
   end Intersection;

   function Intersection (Left, Right : Set) return Set is
886 887
      Tree : constant Tree_Type :=
               Set_Ops.Intersection (Left.Tree, Right.Tree);
888
   begin
889
      return Set'(Controlled with Tree);
890 891 892 893 894 895 896 897
   end Intersection;

   --------------
   -- Is_Empty --
   --------------

   function Is_Empty (Container : Set) return Boolean is
   begin
898
      return Container.Tree.Length = 0;
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
   end Is_Empty;

   ------------------------
   -- Is_Equal_Node_Node --
   ------------------------

   function Is_Equal_Node_Node (L, R : Node_Access) return Boolean is
   begin
      return L.Element = R.Element;
   end Is_Equal_Node_Node;

   -----------------------------
   -- Is_Greater_Element_Node --
   -----------------------------

   function Is_Greater_Element_Node
     (Left  : Element_Type;
      Right : Node_Access) return Boolean
   is
   begin
      --  Compute e > node same as node < e

      return Right.Element < Left;
   end Is_Greater_Element_Node;

   --------------------------
   -- Is_Less_Element_Node --
   --------------------------

   function Is_Less_Element_Node
     (Left  : Element_Type;
      Right : Node_Access) return Boolean
   is
   begin
      return Left < Right.Element;
   end Is_Less_Element_Node;

   -----------------------
   -- Is_Less_Node_Node --
   -----------------------

   function Is_Less_Node_Node (L, R : Node_Access) return Boolean is
   begin
      return L.Element < R.Element;
   end Is_Less_Node_Node;

   ---------------
   -- Is_Subset --
   ---------------

   function Is_Subset (Subset : Set; Of_Set : Set) return Boolean is
   begin
      return Set_Ops.Is_Subset (Subset => Subset.Tree, Of_Set => Of_Set.Tree);
   end Is_Subset;

   -------------
   -- Iterate --
   -------------

   procedure Iterate
     (Container : Set;
      Process   : not null access procedure (Position : Cursor))
   is
      procedure Process_Node (Node : Node_Access);
      pragma Inline (Process_Node);

      procedure Local_Iterate is
        new Tree_Operations.Generic_Iteration (Process_Node);

      ------------------
      -- Process_Node --
      ------------------

      procedure Process_Node (Node : Node_Access) is
      begin
974
         Process (Cursor'(Container'Unrestricted_Access, Node));
975 976
      end Process_Node;

977 978 979
      T : Tree_Type renames Container.Tree'Unrestricted_Access.all;
      B : Natural renames T.Busy;

980 981 982
   --  Start of prccessing for Iterate

   begin
983 984 985 986 987 988 989 990 991 992 993
      B := B + 1;

      begin
         Local_Iterate (T);
      exception
         when others =>
            B := B - 1;
            raise;
      end;

      B := B - 1;
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
   end Iterate;

   ----------
   -- Last --
   ----------

   function Last (Container : Set) return Cursor is
   begin
      if Container.Tree.Last = null then
         return No_Element;
      end if;

1006
      return Cursor'(Container'Unrestricted_Access, Container.Tree.Last);
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
   end Last;

   ------------------
   -- Last_Element --
   ------------------

   function Last_Element (Container : Set) return Element_Type is
   begin
      return Container.Tree.Last.Element;
   end Last_Element;

   ----------
   -- Left --
   ----------

   function Left (Node : Node_Access) return Node_Access is
   begin
      return Node.Left;
   end Left;

   ------------
   -- Length --
   ------------

   function Length (Container : Set) return Count_Type is
   begin
      return Container.Tree.Length;
   end Length;

   ----------
   -- Move --
   ----------

1040 1041 1042
   procedure Move is
      new Tree_Operations.Generic_Move (Clear);

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
   procedure Move (Target : in out Set; Source : in out Set) is
   begin
      Move (Target => Target.Tree, Source => Source.Tree);
   end Move;

   ----------
   -- Next --
   ----------

   function Next (Position : Cursor) return Cursor is
   begin
      if Position = No_Element then
         return No_Element;
      end if;

      declare
         Node : constant Node_Access :=
1060 1061
                  Tree_Operations.Next (Position.Node);

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
      begin
         if Node = null then
            return No_Element;
         end if;

         return Cursor'(Position.Container, Node);
      end;
   end Next;

   procedure Next (Position : in out Cursor) is
   begin
      Position := Next (Position);
   end Next;

   -------------
   -- Overlap --
   -------------

   function Overlap (Left, Right : Set) return Boolean is
   begin
      return Set_Ops.Overlap (Left.Tree, Right.Tree);
   end Overlap;

   ------------
   -- Parent --
   ------------

   function Parent (Node : Node_Access) return Node_Access is
   begin
      return Node.Parent;
   end Parent;

   --------------
   -- Previous --
   --------------

   function Previous (Position : Cursor) return Cursor is
   begin
      if Position = No_Element then
         return No_Element;
      end if;

      declare
         Node : constant Node_Access :=
                  Tree_Operations.Previous (Position.Node);

      begin
         if Node = null then
            return No_Element;
         end if;

         return Cursor'(Position.Container, Node);
      end;
   end Previous;

   procedure Previous (Position : in out Cursor) is
   begin
      Position := Previous (Position);
   end Previous;

   -------------------
   -- Query_Element --
   -------------------

   procedure Query_Element
     (Position : Cursor;
      Process  : not null access procedure (Element : Element_Type))
   is
1130 1131 1132 1133 1134 1135 1136 1137
      E : Element_Type renames Position.Node.Element;

      S : Set renames Position.Container.all;
      T : Tree_Type renames S.Tree'Unrestricted_Access.all;

      B : Natural renames T.Busy;
      L : Natural renames T.Lock;

1138
   begin
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
      B := B + 1;
      L := L + 1;

      begin
         Process (E);
      exception
         when others =>
            L := L - 1;
            B := B - 1;
            raise;
      end;

      L := L - 1;
      B := B - 1;
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
   end Query_Element;

   ----------
   -- Read --
   ----------

   procedure Read
     (Stream    : access Root_Stream_Type'Class;
      Container : out Set)
   is
1163 1164 1165
      function Read_Node
        (Stream : access Root_Stream_Type'Class) return Node_Access;
      pragma Inline (Read_Node);
1166

1167 1168
      procedure Read is
         new Tree_Operations.Generic_Read (Clear, Read_Node);
1169

1170 1171 1172
      ---------------
      -- Read_Node --
      ---------------
1173

1174 1175 1176
      function Read_Node
        (Stream : access Root_Stream_Type'Class) return Node_Access
      is
1177 1178 1179
         Node : Node_Access := new Node_Type;

      begin
1180
         Element_Type'Read (Stream, Node.Element);
1181
         return Node;
1182 1183 1184 1185 1186 1187

      exception
         when others =>
            Free (Node);
            raise;
      end Read_Node;
1188 1189 1190 1191

   --  Start of processing for Read

   begin
1192
      Read (Stream, Container.Tree);
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
   end Read;

   -------------
   -- Replace --
   -------------

   procedure Replace (Container : in out Set; New_Item : Element_Type) is
      Node : constant Node_Access :=
               Element_Keys.Find (Container.Tree, New_Item);

   begin
      if Node = null then
         raise Constraint_Error;
      end if;

1208 1209 1210 1211
      if Container.Tree.Lock > 0 then
         raise Program_Error;
      end if;

1212 1213 1214 1215 1216 1217 1218
      Node.Element := New_Item;
   end Replace;

   ---------------------
   -- Replace_Element --
   ---------------------

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
   procedure Replace_Element
     (Tree : in out Tree_Type;
      Node : Node_Access;
      Item : Element_Type)
   is
   begin
      if Item < Node.Element
        or else Node.Element < Item
      then
         null;
      else
         if Tree.Lock > 0 then
            raise Program_Error;
         end if;

         Node.Element := Item;
         return;
      end if;

      Tree_Operations.Delete_Node_Sans_Free (Tree, Node);  -- Checks busy-bit

      Insert_New_Item : declare
         function New_Node return Node_Access;
         pragma Inline (New_Node);

         procedure Insert_Post is
            new Element_Keys.Generic_Insert_Post (New_Node);

         procedure Insert is
            new Element_Keys.Generic_Conditional_Insert (Insert_Post);

         --------------
         -- New_Node --
         --------------

         function New_Node return Node_Access is
         begin
            Node.Element := Item;
            return Node;
         end New_Node;

         Result   : Node_Access;
         Inserted : Boolean;

      --  Start of processing for Insert_New_Item

      begin
         Insert
           (Tree    => Tree,
            Key     => Item,
            Node    => Result,
            Success => Inserted);  --  TODO: change param name

         if Inserted then
            pragma Assert (Result = Node);
            return;
         end if;
      exception
         when others =>
            null;  -- Assignment must have failed
      end Insert_New_Item;

      Reinsert_Old_Element : declare
         function New_Node return Node_Access;
         pragma Inline (New_Node);

         procedure Insert_Post is
            new Element_Keys.Generic_Insert_Post (New_Node);

         procedure Insert is
            new Element_Keys.Generic_Conditional_Insert (Insert_Post);

         --------------
         -- New_Node --
         --------------

         function New_Node return Node_Access is
         begin
            return Node;
         end New_Node;

         Result   : Node_Access;
         Inserted : Boolean;

      --  Start of processing for Reinsert_Old_Element

      begin
         Insert
           (Tree    => Tree,
            Key     => Node.Element,
            Node    => Result,
            Success => Inserted);  --  TODO: change param name
      exception
         when others =>
            null;  -- Assignment must have failed
      end Reinsert_Old_Element;

      raise Program_Error;
   end Replace_Element;

   procedure Replace_Element
1320
     (Container : in out Set;
1321
      Position  : Cursor;
1322
      New_Item  : Element_Type)
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
   is
   begin
      if Position.Node = null then
         raise Constraint_Error;
      end if;

      if Position.Container /= Container'Unrestricted_Access then
         raise Program_Error;
      end if;

1333
      Replace_Element (Container.Tree, Position.Node, New_Item);
1334
   end Replace_Element;
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355

   ---------------------
   -- Reverse_Iterate --
   ---------------------

   procedure Reverse_Iterate
     (Container : Set;
      Process   : not null access procedure (Position : Cursor))
   is
      procedure Process_Node (Node : Node_Access);
      pragma Inline (Process_Node);

      procedure Local_Reverse_Iterate is
         new Tree_Operations.Generic_Reverse_Iteration (Process_Node);

      ------------------
      -- Process_Node --
      ------------------

      procedure Process_Node (Node : Node_Access) is
      begin
1356
         Process (Cursor'(Container'Unrestricted_Access, Node));
1357 1358
      end Process_Node;

1359 1360 1361
      T : Tree_Type renames Container.Tree'Unrestricted_Access.all;
      B : Natural renames T.Busy;

1362 1363 1364
   --  Start of processing for Reverse_Iterate

   begin
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
      B := B + 1;

      begin
         Local_Reverse_Iterate (T);
      exception
         when others =>
            B := B - 1;
            raise;
      end;

      B := B - 1;
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
   end Reverse_Iterate;

   -----------
   -- Right --
   -----------

   function Right (Node : Node_Access) return Node_Access is
   begin
      return Node.Right;
   end Right;

   ---------------
   -- Set_Color --
   ---------------

   procedure Set_Color (Node : Node_Access; Color : Color_Type) is
   begin
      Node.Color := Color;
   end Set_Color;

   --------------
   -- Set_Left --
   --------------

   procedure Set_Left (Node : Node_Access; Left : Node_Access) is
   begin
      Node.Left := Left;
   end Set_Left;

   ----------------
   -- Set_Parent --
   ----------------

   procedure Set_Parent (Node : Node_Access; Parent : Node_Access) is
   begin
      Node.Parent := Parent;
   end Set_Parent;

   ---------------
   -- Set_Right --
   ---------------

   procedure Set_Right (Node : Node_Access; Right : Node_Access) is
   begin
      Node.Right := Right;
   end Set_Right;

   --------------------------
   -- Symmetric_Difference --
   --------------------------

   procedure Symmetric_Difference (Target : in out Set; Source : Set) is
   begin
      Set_Ops.Symmetric_Difference (Target.Tree, Source.Tree);
   end Symmetric_Difference;

   function Symmetric_Difference (Left, Right : Set) return Set is
1433 1434
      Tree : constant Tree_Type :=
               Set_Ops.Symmetric_Difference (Left.Tree, Right.Tree);
1435
   begin
1436
      return Set'(Controlled with Tree);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
   end Symmetric_Difference;

   -----------
   -- Union --
   -----------

   procedure Union (Target : in out Set; Source : Set) is
   begin
      Set_Ops.Union (Target.Tree, Source.Tree);
   end Union;

   function Union (Left, Right : Set) return Set is
1449 1450
      Tree : constant Tree_Type :=
               Set_Ops.Union (Left.Tree, Right.Tree);
1451
   begin
1452
      return Set'(Controlled with Tree);
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
   end Union;

   -----------
   -- Write --
   -----------

   procedure Write
     (Stream    : access Root_Stream_Type'Class;
      Container : Set)
   is
1463 1464 1465 1466
      procedure Write_Node
        (Stream : access Root_Stream_Type'Class;
         Node   : Node_Access);
      pragma Inline (Write_Node);
1467

1468 1469
      procedure Write is
         new Tree_Operations.Generic_Write (Write_Node);
1470

1471 1472 1473
      ----------------
      -- Write_Node --
      ----------------
1474

1475 1476 1477 1478
      procedure Write_Node
        (Stream : access Root_Stream_Type'Class;
         Node   : Node_Access)
      is
1479 1480
      begin
         Element_Type'Write (Stream, Node.Element);
1481
      end Write_Node;
1482 1483 1484 1485

   --  Start of processing for Write

   begin
1486
      Write (Stream, Container.Tree);
1487 1488 1489
   end Write;

end Ada.Containers.Ordered_Sets;