PriorityQueue.java 8.51 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/* PriorityQueue.java -- Unbounded priority queue
   Copyright (C) 2004, 2005 Free Software Foundation, Inc.

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.

Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from
or based on this library.  If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so.  If you do not wish to do so, delete this
exception statement from your version. */


package java.util;

import java.io.Serializable;

/**
 * @author Tom Tromey (tromey@redhat.com)
 * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
 * @since 1.5
 */
public class PriorityQueue<E> extends AbstractQueue<E> implements Serializable
{
  private static final int DEFAULT_CAPACITY = 11;

  private static final long serialVersionUID = -7720805057305804111L;

  /** Number of elements actually used in the storage array.  */
  int used;

  /**
   * This is the storage for the underlying binomial heap.
   * The idea is, each node is less than or equal to its children.
   * A node at index N (0-based) has two direct children, at
   * nodes 2N+1 and 2N+2.
   */
  E[] storage;

  /**
   * The comparator we're using, or null for natural ordering.
   */
  Comparator<? super E> comparator;

  public PriorityQueue()
  {
    this(DEFAULT_CAPACITY, null);
  }

  public PriorityQueue(Collection<? extends E> c)
  {
    this(Math.max(1, (int) (1.1 * c.size())), null);

    // Special case where we can find the comparator to use.
    if (c instanceof SortedSet)
      {
82 83 84 85 86 87 88 89 90 91
        SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
        this.comparator = (Comparator<? super E>) ss.comparator();
        // We can insert the elements directly, since they are sorted.
        int i = 0;
        for (E val : ss)
          {
            if (val == null)
              throw new NullPointerException();
            storage[i++] = val;
          }
92 93 94
      }
    else if (c instanceof PriorityQueue)
      {
95 96 97 98
        PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
        this.comparator = (Comparator<? super E>)pq.comparator();
        // We can just copy the contents.
        System.arraycopy(pq.storage, 0, storage, 0, pq.storage.length);
99 100 101 102 103 104 105 106 107 108 109 110 111
      }

    addAll(c);
  }

  public PriorityQueue(int cap)
  {
    this(cap, null);
  }

  public PriorityQueue(int cap, Comparator<? super E> comp)
  {
    if (cap < 1)
112
      throw new IllegalArgumentException();
113 114 115 116 117 118 119 120
    this.used = 0;
    this.storage = (E[]) new Object[cap];
    this.comparator = comp;
  }

  public PriorityQueue(PriorityQueue<? extends E> c)
  {
    this(Math.max(1, (int) (1.1 * c.size())),
121
         (Comparator<? super E>)c.comparator());
122 123 124 125 126 127 128
    // We can just copy the contents.
    System.arraycopy(c.storage, 0, storage, 0, c.storage.length);
  }

  public PriorityQueue(SortedSet<? extends E> c)
  {
    this(Math.max(1, (int) (1.1 * c.size())),
129
         (Comparator<? super E>)c.comparator());
130 131 132 133
    // We can insert the elements directly, since they are sorted.
    int i = 0;
    for (E val : c)
      {
134 135 136
        if (val == null)
          throw new NullPointerException();
        storage[i++] = val;
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
      }
  }

  public void clear()
  {
    Arrays.fill(storage, null);
    used = 0;
  }

  public Comparator<? super E> comparator()
  {
    return comparator;
  }

  public Iterator<E> iterator()
  {
    return new Iterator<E>()
    {
      int index = -1;
      int count = 0;

      public boolean hasNext()
      {
160
        return count < used;
161 162 163 164
      }

      public E next()
      {
165 166 167 168 169
        while (storage[++index] == null)
          ;

        ++count;
        return storage[index];
170 171 172 173
      }

      public void remove()
      {
174 175
        PriorityQueue.this.remove(index);
        index--;
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
      }
    };
  }

  public boolean offer(E o)
  {
    if (o == null)
      throw new NullPointerException();

    int slot = findSlot(-1);

    storage[slot] = o;
    ++used;
    bubbleUp(slot);

    return true;
  }

  public E peek()
  {
    return used == 0 ? null : storage[0];
  }

  public E poll()
  {
    if (used == 0)
      return null;
    E result = storage[0];
    remove(0);
    return result;
  }

  public boolean remove(Object o)
  {
    if (o != null)
      {
212 213 214 215 216 217 218 219
        for (int i = 0; i < storage.length; ++i)
          {
            if (o.equals(storage[i]))
              {
                remove(i);
                return true;
              }
          }
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
      }
    return false;
  }

  public int size()
  {
    return used;
  }

  // It is more efficient to implement this locally -- less searching
  // for free slots.
  public boolean addAll(Collection<? extends E> c)
  {
    if (c == this)
      throw new IllegalArgumentException();

    int newSlot = -1;
    int save = used;
    for (E val : c)
      {
240 241 242 243 244 245
        if (val == null)
          throw new NullPointerException();
        newSlot = findSlot(newSlot);
        storage[newSlot] = val;
        ++used;
        bubbleUp(newSlot);
246 247 248 249 250 251 252 253 254 255
      }

    return save != used;
  }

  int findSlot(int start)
  {
    int slot;
    if (used == storage.length)
      {
256 257
        resize();
        slot = used;
258 259 260
      }
    else
      {
261 262 263 264 265 266
        for (slot = start + 1; slot < storage.length; ++slot)
          {
            if (storage[slot] == null)
              break;
          }
        // We'll always find a slot.
267 268 269 270 271 272 273 274 275 276 277
      }
    return slot;
  }

  void remove(int index)
  {
    // Remove the element at INDEX.  We do this by finding the least
    // child and moving it into place, then iterating until we reach
    // the bottom of the tree.
    while (storage[index] != null)
      {
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
        int child = 2 * index + 1;

        // See if we went off the end.
        if (child >= storage.length)
          {
            storage[index] = null;
            break;
          }

        // Find which child we want to promote.  If one is not null,
        // we pick it.  If both are null, it doesn't matter, we're
        // about to leave.  If neither is null, pick the lesser.
        if (child + 1 >= storage.length || storage[child + 1] == null)
          {
            // Nothing.
          }
        else if (storage[child] == null
                 || (Collections.compare(storage[child], storage[child + 1],
                                         comparator) > 0))
          ++child;
        storage[index] = storage[child];
        index = child;
300 301 302 303 304 305 306 307 308 309
      }
    --used;
  }

  void bubbleUp(int index)
  {
    // The element at INDEX was inserted into a blank spot.  Now move
    // it up the tree to its natural resting place.
    while (index > 0)
      {
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
        // This works regardless of whether we're at 2N+1 or 2N+2.
        int parent = (index - 1) / 2;
        if (Collections.compare(storage[parent], storage[index], comparator)
            <= 0)
          {
            // Parent is the same or smaller than this element, so the
            // invariant is preserved.  Note that if the new element
            // is smaller than the parent, then it is necessarily
            // smaller than the parent's other child.
            break;
          }

        E temp = storage[index];
        storage[index] = storage[parent];
        storage[parent] = temp;

        index = parent;
327 328 329 330 331 332 333 334 335 336
      }
  }

  void resize()
  {
    E[] new_data = (E[]) new Object[2 * storage.length];
    System.arraycopy(storage, 0, new_data, 0, storage.length);
    storage = new_data;
  }
}