recog.c 80.3 KB
Newer Older
Richard Kenner committed
1
/* Subroutines used by or related to instruction recognition.
Jeff Law committed
2 3
   Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
   1999, 2000 Free Software Foundation, Inc.
Richard Kenner committed
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
Richard Kenner committed
19 20
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */
Richard Kenner committed
21 22 23


#include "config.h"
24
#include "system.h"
25
#include "rtl.h"
26
#include "tm_p.h"
Richard Kenner committed
27 28 29 30
#include "insn-config.h"
#include "insn-attr.h"
#include "insn-flags.h"
#include "insn-codes.h"
31
#include "hard-reg-set.h"
Richard Kenner committed
32 33
#include "recog.h"
#include "regs.h"
34
#include "function.h"
Richard Kenner committed
35 36
#include "flags.h"
#include "real.h"
Kaveh R. Ghazi committed
37
#include "toplev.h"
38
#include "basic-block.h"
39
#include "output.h"
Richard Kenner committed
40 41 42 43 44 45 46 47 48

#ifndef STACK_PUSH_CODE
#ifdef STACK_GROWS_DOWNWARD
#define STACK_PUSH_CODE PRE_DEC
#else
#define STACK_PUSH_CODE PRE_INC
#endif
#endif

49 50 51 52 53 54 55 56
#ifndef STACK_POP_CODE
#ifdef STACK_GROWS_DOWNWARD
#define STACK_POP_CODE POST_INC
#else
#define STACK_POP_CODE POST_DEC
#endif
#endif

57 58 59 60
static void validate_replace_rtx_1	PARAMS ((rtx *, rtx, rtx, rtx));
static rtx *find_single_use_1		PARAMS ((rtx, rtx *));
static rtx *find_constant_term_loc	PARAMS ((rtx *));
static int insn_invalid_p		PARAMS ((rtx));
Richard Kenner committed
61 62 63 64 65 66 67 68 69 70 71

/* Nonzero means allow operands to be volatile.
   This should be 0 if you are generating rtl, such as if you are calling
   the functions in optabs.c and expmed.c (most of the time).
   This should be 1 if all valid insns need to be recognized,
   such as in regclass.c and final.c and reload.c.

   init_recog and init_recog_no_volatile are responsible for setting this.  */

int volatile_ok;

72
struct recog_data recog_data;
73

74 75 76 77
/* Contains a vector of operand_alternative structures for every operand.
   Set up by preprocess_constraints.  */
struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];

Richard Kenner committed
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/* On return from `constrain_operands', indicate which alternative
   was satisfied.  */

int which_alternative;

/* Nonzero after end of reload pass.
   Set to 1 or 0 by toplev.c.
   Controls the significance of (SUBREG (MEM)).  */

int reload_completed;

/* Initialize data used by the function `recog'.
   This must be called once in the compilation of a function
   before any insn recognition may be done in the function.  */

void
init_recog_no_volatile ()
{
  volatile_ok = 0;
}

99
void
Richard Kenner committed
100 101 102 103 104 105 106
init_recog ()
{
  volatile_ok = 1;
}

/* Try recognizing the instruction INSN,
   and return the code number that results.
Richard Kenner committed
107
   Remember the code so that repeated calls do not
Richard Kenner committed
108 109 110 111 112 113 114 115 116 117 118
   need to spend the time for actual rerecognition.

   This function is the normal interface to instruction recognition.
   The automatically-generated function `recog' is normally called
   through this one.  (The only exception is in combine.c.)  */

int
recog_memoized (insn)
     rtx insn;
{
  if (INSN_CODE (insn) < 0)
Charles Hannum committed
119
    INSN_CODE (insn) = recog (PATTERN (insn), insn, NULL_PTR);
Richard Kenner committed
120 121 122 123 124 125 126 127 128 129
  return INSN_CODE (insn);
}

/* Check that X is an insn-body for an `asm' with operands
   and that the operands mentioned in it are legitimate.  */

int
check_asm_operands (x)
     rtx x;
{
130
  int noperands;
Richard Kenner committed
131
  rtx *operands;
132
  const char **constraints;
Richard Kenner committed
133 134
  int i;

135 136 137 138 139 140 141 142 143 144
  /* Post-reload, be more strict with things.  */
  if (reload_completed)
    {
      /* ??? Doh!  We've not got the wrapping insn.  Cook one up.  */
      extract_insn (make_insn_raw (x));
      constrain_operands (1);
      return which_alternative >= 0;
    }

  noperands = asm_noperands (x);
Richard Kenner committed
145 146 147 148 149 150
  if (noperands < 0)
    return 0;
  if (noperands == 0)
    return 1;

  operands = (rtx *) alloca (noperands * sizeof (rtx));
151
  constraints = (const char **) alloca (noperands * sizeof (char *));
152 153

  decode_asm_operands (x, operands, NULL_PTR, constraints, NULL_PTR);
Richard Kenner committed
154 155

  for (i = 0; i < noperands; i++)
156
    {
157
      const char *c = constraints[i];
158 159 160
      if (c[0] == '%')
	c++;
      if (ISDIGIT ((unsigned char)c[0]) && c[1] == '\0')
161 162 163 164 165
	c = constraints[c[0] - '0'];

      if (! asm_operand_ok (operands[i], c))
        return 0;
    }
Richard Kenner committed
166 167 168 169

  return 1;
}

170
/* Static data for the next two routines.  */
Richard Kenner committed
171

172 173 174 175 176 177 178
typedef struct change_t
{
  rtx object;
  int old_code;
  rtx *loc;
  rtx old;
} change_t;
Richard Kenner committed
179

180 181
static change_t *changes;
static int changes_allocated;
Richard Kenner committed
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

static int num_changes = 0;

/* Validate a proposed change to OBJECT.  LOC is the location in the rtl for
   at which NEW will be placed.  If OBJECT is zero, no validation is done,
   the change is simply made.

   Two types of objects are supported:  If OBJECT is a MEM, memory_address_p
   will be called with the address and mode as parameters.  If OBJECT is
   an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
   the change in place.

   IN_GROUP is non-zero if this is part of a group of changes that must be
   performed as a group.  In that case, the changes will be stored.  The
   function `apply_change_group' will validate and apply the changes.

   If IN_GROUP is zero, this is a single change.  Try to recognize the insn
   or validate the memory reference with the change applied.  If the result
   is not valid for the machine, suppress the change and return zero.
   Otherwise, perform the change and return 1.  */

int
validate_change (object, loc, new, in_group)
    rtx object;
    rtx *loc;
    rtx new;
    int in_group;
{
  rtx old = *loc;

  if (old == new || rtx_equal_p (old, new))
    return 1;

215
  if (in_group == 0 && num_changes != 0)
Richard Kenner committed
216 217 218 219 220
    abort ();

  *loc = new;

  /* Save the information describing this change.  */
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
  if (num_changes >= changes_allocated)
    {
      if (changes_allocated == 0)
	/* This value allows for repeated substitutions inside complex
	   indexed addresses, or changes in up to 5 insns.  */
	changes_allocated = MAX_RECOG_OPERANDS * 5;
      else
	changes_allocated *= 2;

      changes = 
	(change_t*) xrealloc (changes, 
			      sizeof (change_t) * changes_allocated); 
    }
  
  changes[num_changes].object = object;
  changes[num_changes].loc = loc;
  changes[num_changes].old = old;
Richard Kenner committed
238 239 240 241 242

  if (object && GET_CODE (object) != MEM)
    {
      /* Set INSN_CODE to force rerecognition of insn.  Save old code in
	 case invalid.  */
243
      changes[num_changes].old_code = INSN_CODE (object);
Richard Kenner committed
244 245 246 247 248 249 250 251 252 253 254 255 256 257
      INSN_CODE (object) = -1;
    }

  num_changes++;

  /* If we are making a group of changes, return 1.  Otherwise, validate the
     change group we made.  */

  if (in_group)
    return 1;
  else
    return apply_change_group ();
}

258 259 260 261 262 263 264 265 266 267
/* This subroutine of apply_change_group verifies whether the changes to INSN
   were valid; i.e. whether INSN can still be recognized.  */

static int
insn_invalid_p (insn)
     rtx insn;
{
  int icode = recog_memoized (insn);
  int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;

268 269 270
  if (is_asm && ! check_asm_operands (PATTERN (insn)))
    return 1;
  if (! is_asm && icode < 0)
271 272 273 274 275
    return 1;

  /* After reload, verify that all constraints are satisfied.  */
  if (reload_completed)
    {
276
      extract_insn (insn);
277

278
      if (! constrain_operands (1))
279 280 281 282 283 284
	return 1;
    }

  return 0;
}

Richard Kenner committed
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
/* Apply a group of changes previously issued with `validate_change'.
   Return 1 if all changes are valid, zero otherwise.  */

int
apply_change_group ()
{
  int i;

  /* The changes have been applied and all INSN_CODEs have been reset to force
     rerecognition.

     The changes are valid if we aren't given an object, or if we are
     given a MEM and it still is a valid address, or if this is in insn
     and it is recognized.  In the latter case, if reload has completed,
     we also require that the operands meet the constraints for
300
     the insn.  */
Richard Kenner committed
301 302 303

  for (i = 0; i < num_changes; i++)
    {
304
      rtx object = changes[i].object;
Richard Kenner committed
305 306 307 308 309 310 311 312 313

      if (object == 0)
	continue;

      if (GET_CODE (object) == MEM)
	{
	  if (! memory_address_p (GET_MODE (object), XEXP (object, 0)))
	    break;
	}
314
      else if (insn_invalid_p (object))
Richard Kenner committed
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	{
	  rtx pat = PATTERN (object);

	  /* Perhaps we couldn't recognize the insn because there were
	     extra CLOBBERs at the end.  If so, try to re-recognize
	     without the last CLOBBER (later iterations will cause each of
	     them to be eliminated, in turn).  But don't do this if we
	     have an ASM_OPERAND.  */
	  if (GET_CODE (pat) == PARALLEL
	      && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
	      && asm_noperands (PATTERN (object)) < 0)
	    {
	       rtx newpat;

	       if (XVECLEN (pat, 0) == 2)
		 newpat = XVECEXP (pat, 0, 0);
	       else
		 {
		   int j;

Jeff Law committed
335 336 337
		   newpat
		     = gen_rtx_PARALLEL (VOIDmode, 
					 gen_rtvec (XVECLEN (pat, 0) - 1));
Richard Kenner committed
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
		   for (j = 0; j < XVECLEN (newpat, 0); j++)
		     XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
		 }

	       /* Add a new change to this group to replace the pattern
		  with this new pattern.  Then consider this change
		  as having succeeded.  The change we added will
		  cause the entire call to fail if things remain invalid.

		  Note that this can lose if a later change than the one
		  we are processing specified &XVECEXP (PATTERN (object), 0, X)
		  but this shouldn't occur.  */

	       validate_change (object, &PATTERN (object), newpat, 1);
	     }
	  else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
	    /* If this insn is a CLOBBER or USE, it is always valid, but is
	       never recognized.  */
	    continue;
	  else
	    break;
	}
    }

  if (i == num_changes)
    {
      num_changes = 0;
      return 1;
    }
  else
    {
      cancel_changes (0);
      return 0;
    }
}

/* Return the number of changes so far in the current group.   */

int
num_validated_changes ()
{
  return num_changes;
}

/* Retract the changes numbered NUM and up.  */

void
cancel_changes (num)
     int num;
{
  int i;

  /* Back out all the changes.  Do this in the opposite order in which
     they were made.  */
  for (i = num_changes - 1; i >= num; i--)
    {
394 395 396
      *changes[i].loc = changes[i].old;
      if (changes[i].object && GET_CODE (changes[i].object) != MEM)
	INSN_CODE (changes[i].object) = changes[i].old_code;
Richard Kenner committed
397 398 399 400 401 402 403 404 405 406 407 408 409
    }
  num_changes = num;
}

/* Replace every occurrence of FROM in X with TO.  Mark each change with
   validate_change passing OBJECT.  */

static void
validate_replace_rtx_1 (loc, from, to, object)
     rtx *loc;
     rtx from, to, object;
{
  register int i, j;
410
  register const char *fmt;
Richard Kenner committed
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
  register rtx x = *loc;
  enum rtx_code code = GET_CODE (x);

  /* X matches FROM if it is the same rtx or they are both referring to the
     same register in the same mode.  Avoid calling rtx_equal_p unless the
     operands look similar.  */

  if (x == from
      || (GET_CODE (x) == REG && GET_CODE (from) == REG
	  && GET_MODE (x) == GET_MODE (from)
	  && REGNO (x) == REGNO (from))
      || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
	  && rtx_equal_p (x, from)))
    {
      validate_change (object, loc, to, 1);
      return;
    }

  /* For commutative or comparison operations, try replacing each argument
     separately and seeing if we made any changes.  If so, put a constant
     argument last.*/
  if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
    {
      int prev_changes = num_changes;

      validate_replace_rtx_1 (&XEXP (x, 0), from, to, object);
      validate_replace_rtx_1 (&XEXP (x, 1), from, to, object);
      if (prev_changes != num_changes && CONSTANT_P (XEXP (x, 0)))
	{
	  validate_change (object, loc,
441 442 443 444
			   gen_rtx_fmt_ee (GET_RTX_CLASS (code) == 'c' ? code
					   : swap_condition (code),
					   GET_MODE (x), XEXP (x, 1),
					   XEXP (x, 0)),
Richard Kenner committed
445 446 447 448 449 450
			   1);
	  x = *loc;
	  code = GET_CODE (x);
	}
    }

451 452 453
  /* Note that if CODE's RTX_CLASS is "c" or "<" we will have already
     done the substitution, otherwise we won't.  */

Richard Kenner committed
454 455 456
  switch (code)
    {
    case PLUS:
Jeff Law committed
457
      /* If we have a PLUS whose second operand is now a CONST_INT, use
Richard Kenner committed
458 459
	 plus_constant to try to simplify it.  */
      if (GET_CODE (XEXP (x, 1)) == CONST_INT && XEXP (x, 1) == to)
460 461
	validate_change (object, loc, plus_constant (XEXP (x, 0), INTVAL (to)),
			 1);
Richard Kenner committed
462
      return;
463 464 465 466 467 468 469 470 471 472

    case MINUS:
      if (GET_CODE (to) == CONST_INT && XEXP (x, 1) == from)
	{
	  validate_change (object, loc,
			   plus_constant (XEXP (x, 0), - INTVAL (to)),
			   1);
	  return;
	}
      break;
Richard Kenner committed
473 474 475 476 477 478 479
      
    case ZERO_EXTEND:
    case SIGN_EXTEND:
      /* In these cases, the operation to be performed depends on the mode
	 of the operand.  If we are replacing the operand with a VOIDmode
	 constant, we lose the information.  So try to simplify the operation
	 in that case.  If it fails, substitute in something that we know
480
	 won't be recognized.  */
Richard Kenner committed
481 482 483 484 485 486 487 488 489
      if (GET_MODE (to) == VOIDmode
	  && (XEXP (x, 0) == from
	      || (GET_CODE (XEXP (x, 0)) == REG && GET_CODE (from) == REG
		  && GET_MODE (XEXP (x, 0)) == GET_MODE (from)
		  && REGNO (XEXP (x, 0)) == REGNO (from))))
	{
	  rtx new = simplify_unary_operation (code, GET_MODE (x), to,
					      GET_MODE (from));
	  if (new == 0)
490
	    new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
Richard Kenner committed
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513

	  validate_change (object, loc, new, 1);
	  return;
	}
      break;
	
    case SUBREG:
      /* If we have a SUBREG of a register that we are replacing and we are
	 replacing it with a MEM, make a new MEM and try replacing the
	 SUBREG with it.  Don't do this if the MEM has a mode-dependent address
	 or if we would be widening it.  */

      if (SUBREG_REG (x) == from
	  && GET_CODE (from) == REG
	  && GET_CODE (to) == MEM
	  && ! mode_dependent_address_p (XEXP (to, 0))
	  && ! MEM_VOLATILE_P (to)
	  && GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (GET_MODE (to)))
	{
	  int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
	  enum machine_mode mode = GET_MODE (x);
	  rtx new;

514 515 516 517
	  if (BYTES_BIG_ENDIAN)
	    offset += (MIN (UNITS_PER_WORD,
			    GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
		       - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
Richard Kenner committed
518

519
	  new = gen_rtx_MEM (mode, plus_constant (XEXP (to, 0), offset));
520
	  MEM_COPY_ATTRIBUTES (new, to);
Richard Kenner committed
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
	  validate_change (object, loc, new, 1);
	  return;
	}
      break;

    case ZERO_EXTRACT:
    case SIGN_EXTRACT:
      /* If we are replacing a register with memory, try to change the memory
	 to be the mode required for memory in extract operations (this isn't
	 likely to be an insertion operation; if it was, nothing bad will
	 happen, we might just fail in some cases).  */

      if (XEXP (x, 0) == from && GET_CODE (from) == REG && GET_CODE (to) == MEM
	  && GET_CODE (XEXP (x, 1)) == CONST_INT
	  && GET_CODE (XEXP (x, 2)) == CONST_INT
	  && ! mode_dependent_address_p (XEXP (to, 0))
	  && ! MEM_VOLATILE_P (to))
	{
	  enum machine_mode wanted_mode = VOIDmode;
	  enum machine_mode is_mode = GET_MODE (to);
	  int pos = INTVAL (XEXP (x, 2));

#ifdef HAVE_extzv
	  if (code == ZERO_EXTRACT)
545
	    {
546
	      wanted_mode = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
547 548 549
	      if (wanted_mode == VOIDmode)
		wanted_mode = word_mode;
	    }
Richard Kenner committed
550 551 552
#endif
#ifdef HAVE_extv
	  if (code == SIGN_EXTRACT)
553
	    {
554
	      wanted_mode = insn_data[(int) CODE_FOR_extv].operand[1].mode;
555 556 557
	      if (wanted_mode == VOIDmode)
		wanted_mode = word_mode;
	    }
Richard Kenner committed
558 559
#endif

560
	  /* If we have a narrower mode, we can do something.  */
Richard Kenner committed
561 562 563 564 565 566 567 568
	  if (wanted_mode != VOIDmode
	      && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
	    {
	      int offset = pos / BITS_PER_UNIT;
	      rtx newmem;

		  /* If the bytes and bits are counted differently, we
		     must adjust the offset.  */
569 570 571
	      if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
		offset = (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode)
			  - offset);
Richard Kenner committed
572 573 574

	      pos %= GET_MODE_BITSIZE (wanted_mode);

575 576
	      newmem = gen_rtx_MEM (wanted_mode,
				    plus_constant (XEXP (to, 0), offset));
577
	      MEM_COPY_ATTRIBUTES (newmem, to);
Richard Kenner committed
578

Charles Hannum committed
579
	      validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
Richard Kenner committed
580 581 582 583 584
	      validate_change (object, &XEXP (x, 0), newmem, 1);
	    }
	}

      break;
585 586 587
      
    default:
      break;
Richard Kenner committed
588 589
    }
      
590 591 592
  /* For commutative or comparison operations we've already performed
     replacements.  Don't try to perform them again.  */
  if (GET_RTX_CLASS (code) != '<' && GET_RTX_CLASS (code) != 'c')
Richard Kenner committed
593
    {
594 595 596 597 598 599 600 601 602
      fmt = GET_RTX_FORMAT (code);
      for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
        {
          if (fmt[i] == 'e')
            validate_replace_rtx_1 (&XEXP (x, i), from, to, object);
          else if (fmt[i] == 'E')
            for (j = XVECLEN (x, i) - 1; j >= 0; j--)
              validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object);
        }
Richard Kenner committed
603 604 605 606 607 608 609 610 611 612 613 614 615
    }
}

/* Try replacing every occurrence of FROM in INSN with TO.  After all
   changes have been made, validate by seeing if INSN is still valid.  */

int
validate_replace_rtx (from, to, insn)
     rtx from, to, insn;
{
  validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
  return apply_change_group ();
}
616

617 618 619 620 621 622 623 624 625 626
/* Try replacing every occurrence of FROM in INSN with TO.  After all
   changes have been made, validate by seeing if INSN is still valid.  */

void
validate_replace_rtx_group (from, to, insn)
     rtx from, to, insn;
{
  validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
}

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
/* Try replacing every occurrence of FROM in INSN with TO, avoiding
   SET_DESTs.  After all changes have been made, validate by seeing if
   INSN is still valid.  */

int
validate_replace_src (from, to, insn)
     rtx from, to, insn;
{
  if ((GET_CODE (insn) != INSN && GET_CODE (insn) != JUMP_INSN)
      || GET_CODE (PATTERN (insn)) != SET)
    abort ();

  validate_replace_rtx_1 (&SET_SRC (PATTERN (insn)), from, to, insn);
  if (GET_CODE (SET_DEST (PATTERN (insn))) == MEM)
    validate_replace_rtx_1 (&XEXP (SET_DEST (PATTERN (insn)), 0),
			    from, to, insn);
  return apply_change_group ();
}
Richard Kenner committed
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710

#ifdef HAVE_cc0
/* Return 1 if the insn using CC0 set by INSN does not contain
   any ordered tests applied to the condition codes.
   EQ and NE tests do not count.  */

int
next_insn_tests_no_inequality (insn)
     rtx insn;
{
  register rtx next = next_cc0_user (insn);

  /* If there is no next insn, we have to take the conservative choice.  */
  if (next == 0)
    return 0;

  return ((GET_CODE (next) == JUMP_INSN
	   || GET_CODE (next) == INSN
	   || GET_CODE (next) == CALL_INSN)
	  && ! inequality_comparisons_p (PATTERN (next)));
}

#if 0  /* This is useless since the insn that sets the cc's
	  must be followed immediately by the use of them.  */
/* Return 1 if the CC value set up by INSN is not used.  */

int
next_insns_test_no_inequality (insn)
     rtx insn;
{
  register rtx next = NEXT_INSN (insn);

  for (; next != 0; next = NEXT_INSN (next))
    {
      if (GET_CODE (next) == CODE_LABEL
	  || GET_CODE (next) == BARRIER)
	return 1;
      if (GET_CODE (next) == NOTE)
	continue;
      if (inequality_comparisons_p (PATTERN (next)))
	return 0;
      if (sets_cc0_p (PATTERN (next)) == 1)
	return 1;
      if (! reg_mentioned_p (cc0_rtx, PATTERN (next)))
	return 1;
    }
  return 1;
}
#endif
#endif

/* This is used by find_single_use to locate an rtx that contains exactly one
   use of DEST, which is typically either a REG or CC0.  It returns a
   pointer to the innermost rtx expression containing DEST.  Appearances of
   DEST that are being used to totally replace it are not counted.  */

static rtx *
find_single_use_1 (dest, loc)
     rtx dest;
     rtx *loc;
{
  rtx x = *loc;
  enum rtx_code code = GET_CODE (x);
  rtx *result = 0;
  rtx *this_result;
  int i;
711
  const char *fmt;
Richard Kenner committed
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743

  switch (code)
    {
    case CONST_INT:
    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_DOUBLE:
    case CLOBBER:
      return 0;

    case SET:
      /* If the destination is anything other than CC0, PC, a REG or a SUBREG
	 of a REG that occupies all of the REG, the insn uses DEST if
	 it is mentioned in the destination or the source.  Otherwise, we
	 need just check the source.  */
      if (GET_CODE (SET_DEST (x)) != CC0
	  && GET_CODE (SET_DEST (x)) != PC
	  && GET_CODE (SET_DEST (x)) != REG
	  && ! (GET_CODE (SET_DEST (x)) == SUBREG
		&& GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
		&& (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
		      + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
		    == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
			 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
	break;

      return find_single_use_1 (dest, &SET_SRC (x));

    case MEM:
    case SUBREG:
      return find_single_use_1 (dest, &XEXP (x, 0));
744 745 746
      
    default:
      break;
Richard Kenner committed
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
    }

  /* If it wasn't one of the common cases above, check each expression and
     vector of this code.  Look for a unique usage of DEST.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  if (dest == XEXP (x, i)
	      || (GET_CODE (dest) == REG && GET_CODE (XEXP (x, i)) == REG
		  && REGNO (dest) == REGNO (XEXP (x, i))))
	    this_result = loc;
	  else
	    this_result = find_single_use_1 (dest, &XEXP (x, i));

	  if (result == 0)
	    result = this_result;
	  else if (this_result)
	    /* Duplicate usage.  */
	    return 0;
	}
      else if (fmt[i] == 'E')
	{
	  int j;

	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	    {
	      if (XVECEXP (x, i, j) == dest
		  || (GET_CODE (dest) == REG
		      && GET_CODE (XVECEXP (x, i, j)) == REG
		      && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
		this_result = loc;
	      else
		this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));

	      if (result == 0)
		result = this_result;
	      else if (this_result)
		return 0;
	    }
	}
    }

  return result;
}

/* See if DEST, produced in INSN, is used only a single time in the
   sequel.  If so, return a pointer to the innermost rtx expression in which
   it is used.

   If PLOC is non-zero, *PLOC is set to the insn containing the single use.

   This routine will return usually zero either before flow is called (because
   there will be no LOG_LINKS notes) or after reload (because the REG_DEAD
   note can't be trusted).

   If DEST is cc0_rtx, we look only at the next insn.  In that case, we don't
   care about REG_DEAD notes or LOG_LINKS.

   Otherwise, we find the single use by finding an insn that has a
   LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST.  If DEST is
   only referenced once in that insn, we know that it must be the first
   and last insn referencing DEST.  */

rtx *
find_single_use (dest, insn, ploc)
     rtx dest;
     rtx insn;
     rtx *ploc;
{
  rtx next;
  rtx *result;
  rtx link;

#ifdef HAVE_cc0
  if (dest == cc0_rtx)
    {
      next = NEXT_INSN (insn);
      if (next == 0
	  || (GET_CODE (next) != INSN && GET_CODE (next) != JUMP_INSN))
	return 0;

      result = find_single_use_1 (dest, &PATTERN (next));
      if (result && ploc)
	*ploc = next;
      return result;
    }
#endif

  if (reload_completed || reload_in_progress || GET_CODE (dest) != REG)
    return 0;

  for (next = next_nonnote_insn (insn);
       next != 0 && GET_CODE (next) != CODE_LABEL;
       next = next_nonnote_insn (next))
    if (GET_RTX_CLASS (GET_CODE (next)) == 'i' && dead_or_set_p (next, dest))
      {
	for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
	  if (XEXP (link, 0) == insn)
	    break;

	if (link)
	  {
	    result = find_single_use_1 (dest, &PATTERN (next));
	    if (ploc)
	      *ploc = next;
	    return result;
	  }
      }

  return 0;
}

/* Return 1 if OP is a valid general operand for machine mode MODE.
   This is either a register reference, a memory reference,
   or a constant.  In the case of a memory reference, the address
   is checked for general validity for the target machine.

   Register and memory references must have mode MODE in order to be valid,
   but some constants have no machine mode and are valid for any mode.

   If MODE is VOIDmode, OP is checked for validity for whatever mode
   it has.

   The main use of this function is as a predicate in match_operand
   expressions in the machine description.

876
   For an explanation of this function's behavior for registers of
Richard Kenner committed
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
   class NO_REGS, see the comment for `register_operand'.  */

int
general_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  register enum rtx_code code = GET_CODE (op);
  int mode_altering_drug = 0;

  if (mode == VOIDmode)
    mode = GET_MODE (op);

  /* Don't accept CONST_INT or anything similar
     if the caller wants something floating.  */
  if (GET_MODE (op) == VOIDmode && mode != VOIDmode
893 894
      && GET_MODE_CLASS (mode) != MODE_INT
      && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
Richard Kenner committed
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
    return 0;

  if (CONSTANT_P (op))
    return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode)
#ifdef LEGITIMATE_PIC_OPERAND_P
	    && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
#endif
	    && LEGITIMATE_CONSTANT_P (op));

  /* Except for certain constants with VOIDmode, already checked for,
     OP's mode must match MODE if MODE specifies a mode.  */

  if (GET_MODE (op) != mode)
    return 0;

  if (code == SUBREG)
    {
#ifdef INSN_SCHEDULING
      /* On machines that have insn scheduling, we want all memory
	 reference to be explicit, so outlaw paradoxical SUBREGs.  */
      if (GET_CODE (SUBREG_REG (op)) == MEM
	  && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
	return 0;
#endif

      op = SUBREG_REG (op);
      code = GET_CODE (op);
#if 0
      /* No longer needed, since (SUBREG (MEM...))
	 will load the MEM into a reload reg in the MEM's own mode.  */
      mode_altering_drug = 1;
#endif
    }

  if (code == REG)
    /* A register whose class is NO_REGS is not a general operand.  */
    return (REGNO (op) >= FIRST_PSEUDO_REGISTER
	    || REGNO_REG_CLASS (REGNO (op)) != NO_REGS);

  if (code == MEM)
    {
      register rtx y = XEXP (op, 0);
      if (! volatile_ok && MEM_VOLATILE_P (op))
	return 0;
939 940
      if (GET_CODE (y) == ADDRESSOF)
	return 1;
Richard Kenner committed
941 942 943 944
      /* Use the mem's mode, since it will be reloaded thus.  */
      mode = GET_MODE (op);
      GO_IF_LEGITIMATE_ADDRESS (mode, y, win);
    }
945 946 947 948 949 950

  /* Pretend this is an operand for now; we'll run force_operand
     on its replacement in fixup_var_refs_1.  */
  if (code == ADDRESSOF)
    return 1;

Richard Kenner committed
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
  return 0;

 win:
  if (mode_altering_drug)
    return ! mode_dependent_address_p (XEXP (op, 0));
  return 1;
}

/* Return 1 if OP is a valid memory address for a memory reference
   of mode MODE.

   The main use of this function is as a predicate in match_operand
   expressions in the machine description.  */

int
address_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return memory_address_p (mode, op);
}

/* Return 1 if OP is a register reference of mode MODE.
   If MODE is VOIDmode, accept a register in any mode.

   The main use of this function is as a predicate in match_operand
   expressions in the machine description.

   As a special exception, registers whose class is NO_REGS are
   not accepted by `register_operand'.  The reason for this change
   is to allow the representation of special architecture artifacts
   (such as a condition code register) without extending the rtl
   definitions.  Since registers of class NO_REGS cannot be used
   as registers in any case where register classes are examined,
   it is most consistent to keep this function from accepting them.  */

int
register_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  if (GET_MODE (op) != mode && mode != VOIDmode)
    return 0;

  if (GET_CODE (op) == SUBREG)
    {
      /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
	 because it is guaranteed to be reloaded into one.
	 Just make sure the MEM is valid in itself.
	 (Ideally, (SUBREG (MEM)...) should not exist after reload,
	 but currently it does result from (SUBREG (REG)...) where the
	 reg went on the stack.)  */
      if (! reload_completed && GET_CODE (SUBREG_REG (op)) == MEM)
	return general_operand (op, mode);
1005

1006
#ifdef CLASS_CANNOT_CHANGE_MODE
1007 1008
      if (GET_CODE (SUBREG_REG (op)) == REG
	  && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER
1009 1010 1011 1012
	  && (TEST_HARD_REG_BIT
	      (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
	       REGNO (SUBREG_REG (op))))
	  && CLASS_CANNOT_CHANGE_MODE_P (mode, GET_MODE (SUBREG_REG (op)))
1013 1014
	  && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op))) != MODE_COMPLEX_INT
	  && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op))) != MODE_COMPLEX_FLOAT)
1015 1016 1017
	return 0;
#endif

Richard Kenner committed
1018 1019 1020
      op = SUBREG_REG (op);
    }

Richard Kenner committed
1021 1022 1023 1024 1025
  /* If we have an ADDRESSOF, consider it valid since it will be
     converted into something that will not be a MEM. */
  if (GET_CODE (op) == ADDRESSOF)
    return 1;

Richard Kenner committed
1026 1027 1028 1029 1030 1031 1032
  /* We don't consider registers whose class is NO_REGS
     to be a register operand.  */
  return (GET_CODE (op) == REG
	  && (REGNO (op) >= FIRST_PSEUDO_REGISTER
	      || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
}

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
/* Return 1 for a register in Pmode; ignore the tested mode.  */

int
pmode_register_operand (op, mode)
     rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  return register_operand (op, Pmode);
}

Richard Kenner committed
1043 1044 1045 1046 1047 1048 1049 1050
/* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
   or a hard register.  */

int
scratch_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
1051 1052 1053 1054 1055 1056
  if (GET_MODE (op) != mode && mode != VOIDmode)
    return 0;

  return (GET_CODE (op) == SCRATCH
	  || (GET_CODE (op) == REG
	      && REGNO (op) < FIRST_PSEUDO_REGISTER));
Richard Kenner committed
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
}

/* Return 1 if OP is a valid immediate operand for mode MODE.

   The main use of this function is as a predicate in match_operand
   expressions in the machine description.  */

int
immediate_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  /* Don't accept CONST_INT or anything similar
     if the caller wants something floating.  */
  if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1072 1073
      && GET_MODE_CLASS (mode) != MODE_INT
      && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
Richard Kenner committed
1074 1075
    return 0;

1076 1077 1078 1079 1080 1081
  /* Accept CONSTANT_P_RTX, since it will be gone by CSE1 and
     result in 0/1.  It seems a safe assumption that this is
     in range for everyone.  */
  if (GET_CODE (op) == CONSTANT_P_RTX)
    return 1;

Richard Kenner committed
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
  return (CONSTANT_P (op)
	  && (GET_MODE (op) == mode || mode == VOIDmode
	      || GET_MODE (op) == VOIDmode)
#ifdef LEGITIMATE_PIC_OPERAND_P
	  && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
#endif
	  && LEGITIMATE_CONSTANT_P (op));
}

/* Returns 1 if OP is an operand that is a CONST_INT.  */

int
const_int_operand (op, mode)
     register rtx op;
Kaveh R. Ghazi committed
1096
     enum machine_mode mode ATTRIBUTE_UNUSED;
Richard Kenner committed
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
{
  return GET_CODE (op) == CONST_INT;
}

/* Returns 1 if OP is an operand that is a constant integer or constant
   floating-point number.  */

int
const_double_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  /* Don't accept CONST_INT or anything similar
     if the caller wants something floating.  */
  if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1112 1113
      && GET_MODE_CLASS (mode) != MODE_INT
      && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
Richard Kenner committed
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
    return 0;

  return ((GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT)
	  && (mode == VOIDmode || GET_MODE (op) == mode
	      || GET_MODE (op) == VOIDmode));
}

/* Return 1 if OP is a general operand that is not an immediate operand.  */

int
nonimmediate_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return (general_operand (op, mode) && ! CONSTANT_P (op));
}

/* Return 1 if OP is a register reference or immediate value of mode MODE.  */

int
nonmemory_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  if (CONSTANT_P (op))
    {
      /* Don't accept CONST_INT or anything similar
	 if the caller wants something floating.  */
      if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1143 1144
	  && GET_MODE_CLASS (mode) != MODE_INT
	  && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
Richard Kenner committed
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	return 0;

      return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode)
#ifdef LEGITIMATE_PIC_OPERAND_P
	      && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
#endif
	      && LEGITIMATE_CONSTANT_P (op));
    }

  if (GET_MODE (op) != mode && mode != VOIDmode)
    return 0;

  if (GET_CODE (op) == SUBREG)
    {
      /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
	 because it is guaranteed to be reloaded into one.
	 Just make sure the MEM is valid in itself.
	 (Ideally, (SUBREG (MEM)...) should not exist after reload,
	 but currently it does result from (SUBREG (REG)...) where the
	 reg went on the stack.)  */
      if (! reload_completed && GET_CODE (SUBREG_REG (op)) == MEM)
	return general_operand (op, mode);
      op = SUBREG_REG (op);
    }

  /* We don't consider registers whose class is NO_REGS
     to be a register operand.  */
  return (GET_CODE (op) == REG
	  && (REGNO (op) >= FIRST_PSEUDO_REGISTER
	      || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
}

/* Return 1 if OP is a valid operand that stands for pushing a
   value of mode MODE onto the stack.

   The main use of this function is as a predicate in match_operand
   expressions in the machine description.  */

int
push_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) != MEM)
    return 0;

1191
  if (mode != VOIDmode && GET_MODE (op) != mode)
Richard Kenner committed
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
    return 0;

  op = XEXP (op, 0);

  if (GET_CODE (op) != STACK_PUSH_CODE)
    return 0;

  return XEXP (op, 0) == stack_pointer_rtx;
}

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
/* Return 1 if OP is a valid operand that stands for popping a
   value of mode MODE off the stack.

   The main use of this function is as a predicate in match_operand
   expressions in the machine description.  */

int
pop_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) != MEM)
    return 0;

1216
  if (mode != VOIDmode && GET_MODE (op) != mode)
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
    return 0;

  op = XEXP (op, 0);

  if (GET_CODE (op) != STACK_POP_CODE)
    return 0;

  return XEXP (op, 0) == stack_pointer_rtx;
}

Richard Kenner committed
1227 1228 1229 1230
/* Return 1 if ADDR is a valid memory address for mode MODE.  */

int
memory_address_p (mode, addr)
1231
     enum machine_mode mode ATTRIBUTE_UNUSED;
Richard Kenner committed
1232 1233
     register rtx addr;
{
1234 1235 1236
  if (GET_CODE (addr) == ADDRESSOF)
    return 1;
  
Richard Kenner committed
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
  GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
  return 0;

 win:
  return 1;
}

/* Return 1 if OP is a valid memory reference with mode MODE,
   including a valid address.

   The main use of this function is as a predicate in match_operand
   expressions in the machine description.  */

int
memory_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  rtx inner;

  if (! reload_completed)
    /* Note that no SUBREG is a memory operand before end of reload pass,
       because (SUBREG (MEM...)) forces reloading into a register.  */
    return GET_CODE (op) == MEM && general_operand (op, mode);

  if (mode != VOIDmode && GET_MODE (op) != mode)
    return 0;

  inner = op;
  if (GET_CODE (inner) == SUBREG)
    inner = SUBREG_REG (inner);

  return (GET_CODE (inner) == MEM && general_operand (op, mode));
}

/* Return 1 if OP is a valid indirect memory reference with mode MODE;
   that is, a memory reference whose address is a general_operand.  */

int
indirect_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  /* Before reload, a SUBREG isn't in memory (see memory_operand, above).  */
  if (! reload_completed
      && GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == MEM)
    {
      register int offset = SUBREG_WORD (op) * UNITS_PER_WORD;
      rtx inner = SUBREG_REG (op);

1287 1288 1289
      if (BYTES_BIG_ENDIAN)
	offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (op)))
		   - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (inner))));
Richard Kenner committed
1290

1291 1292 1293
      if (mode != VOIDmode && GET_MODE (op) != mode)
	return 0;

Richard Kenner committed
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
      /* The only way that we can have a general_operand as the resulting
	 address is if OFFSET is zero and the address already is an operand
	 or if the address is (plus Y (const_int -OFFSET)) and Y is an
	 operand.  */

      return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
	      || (GET_CODE (XEXP (inner, 0)) == PLUS
		  && GET_CODE (XEXP (XEXP (inner, 0), 1)) == CONST_INT
		  && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
		  && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
    }

  return (GET_CODE (op) == MEM
	  && memory_operand (op, mode)
	  && general_operand (XEXP (op, 0), Pmode));
}

/* Return 1 if this is a comparison operator.  This allows the use of
   MATCH_OPERATOR to recognize all the branch insns.  */

int
comparison_operator (op, mode)
    register rtx op;
    enum machine_mode mode;
{
  return ((mode == VOIDmode || GET_MODE (op) == mode)
	  && GET_RTX_CLASS (GET_CODE (op)) == '<');
}

/* If BODY is an insn body that uses ASM_OPERANDS,
   return the number of operands (both input and output) in the insn.
   Otherwise return -1.  */

int
asm_noperands (body)
     rtx body;
{
  if (GET_CODE (body) == ASM_OPERANDS)
    /* No output operands: return number of input operands.  */
    return ASM_OPERANDS_INPUT_LENGTH (body);
  if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
    /* Single output operand: BODY is (set OUTPUT (asm_operands ...)).  */
    return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body)) + 1;
  else if (GET_CODE (body) == PARALLEL
	   && GET_CODE (XVECEXP (body, 0, 0)) == SET
	   && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
    {
      /* Multiple output operands, or 1 output plus some clobbers:
	 body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...].  */
      int i;
      int n_sets;

      /* Count backwards through CLOBBERs to determine number of SETs.  */
      for (i = XVECLEN (body, 0); i > 0; i--)
	{
	  if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
	    break;
	  if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
	    return -1;
	}

      /* N_SETS is now number of output operands.  */
      n_sets = i;

      /* Verify that all the SETs we have
	 came from a single original asm_operands insn
	 (so that invalid combinations are blocked).  */
      for (i = 0; i < n_sets; i++)
	{
	  rtx elt = XVECEXP (body, 0, i);
	  if (GET_CODE (elt) != SET)
	    return -1;
	  if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
	    return -1;
	  /* If these ASM_OPERANDS rtx's came from different original insns
	     then they aren't allowed together.  */
	  if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
	      != ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body, 0, 0))))
	    return -1;
	}
      return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)))
	      + n_sets);
    }
  else if (GET_CODE (body) == PARALLEL
	   && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
    {
      /* 0 outputs, but some clobbers:
	 body is [(asm_operands ...) (clobber (reg ...))...].  */
      int i;

      /* Make sure all the other parallel things really are clobbers.  */
      for (i = XVECLEN (body, 0) - 1; i > 0; i--)
	if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
	  return -1;

      return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
    }
  else
    return -1;
}

/* Assuming BODY is an insn body that uses ASM_OPERANDS,
   copy its operands (both input and output) into the vector OPERANDS,
   the locations of the operands within the insn into the vector OPERAND_LOCS,
   and the constraints for the operands into CONSTRAINTS.
   Write the modes of the operands into MODES.
   Return the assembler-template.

   If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
   we don't store that info.  */

1405
const char *
Richard Kenner committed
1406 1407 1408 1409
decode_asm_operands (body, operands, operand_locs, constraints, modes)
     rtx body;
     rtx *operands;
     rtx **operand_locs;
1410
     const char **constraints;
Richard Kenner committed
1411 1412 1413 1414
     enum machine_mode *modes;
{
  register int i;
  int noperands;
1415
  const char *template = 0;
Richard Kenner committed
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536

  if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
    {
      rtx asmop = SET_SRC (body);
      /* Single output operand: BODY is (set OUTPUT (asm_operands ....)).  */

      noperands = ASM_OPERANDS_INPUT_LENGTH (asmop) + 1;

      for (i = 1; i < noperands; i++)
	{
	  if (operand_locs)
	    operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i - 1);
	  if (operands)
	    operands[i] = ASM_OPERANDS_INPUT (asmop, i - 1);
	  if (constraints)
	    constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i - 1);
	  if (modes)
	    modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i - 1);
	}

      /* The output is in the SET.
	 Its constraint is in the ASM_OPERANDS itself.  */
      if (operands)
	operands[0] = SET_DEST (body);
      if (operand_locs)
	operand_locs[0] = &SET_DEST (body);
      if (constraints)
	constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
      if (modes)
	modes[0] = GET_MODE (SET_DEST (body));
      template = ASM_OPERANDS_TEMPLATE (asmop);
    }
  else if (GET_CODE (body) == ASM_OPERANDS)
    {
      rtx asmop = body;
      /* No output operands: BODY is (asm_operands ....).  */

      noperands = ASM_OPERANDS_INPUT_LENGTH (asmop);

      /* The input operands are found in the 1st element vector.  */
      /* Constraints for inputs are in the 2nd element vector.  */
      for (i = 0; i < noperands; i++)
	{
	  if (operand_locs)
	    operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
	  if (operands)
	    operands[i] = ASM_OPERANDS_INPUT (asmop, i);
	  if (constraints)
	    constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
	  if (modes)
	    modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
	}
      template = ASM_OPERANDS_TEMPLATE (asmop);
    }
  else if (GET_CODE (body) == PARALLEL
	   && GET_CODE (XVECEXP (body, 0, 0)) == SET)
    {
      rtx asmop = SET_SRC (XVECEXP (body, 0, 0));
      int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs.  */
      int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
      int nout = 0;		/* Does not include CLOBBERs.  */

      /* At least one output, plus some CLOBBERs.  */

      /* The outputs are in the SETs.
	 Their constraints are in the ASM_OPERANDS itself.  */
      for (i = 0; i < nparallel; i++)
	{
	  if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
	    break;		/* Past last SET */
	  
	  if (operands)
	    operands[i] = SET_DEST (XVECEXP (body, 0, i));
	  if (operand_locs)
	    operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
	  if (constraints)
	    constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
	  if (modes)
	    modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
	  nout++;
	}

      for (i = 0; i < nin; i++)
	{
	  if (operand_locs)
	    operand_locs[i + nout] = &ASM_OPERANDS_INPUT (asmop, i);
	  if (operands)
	    operands[i + nout] = ASM_OPERANDS_INPUT (asmop, i);
	  if (constraints)
	    constraints[i + nout] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
	  if (modes)
	    modes[i + nout] = ASM_OPERANDS_INPUT_MODE (asmop, i);
	}

      template = ASM_OPERANDS_TEMPLATE (asmop);
    }
  else if (GET_CODE (body) == PARALLEL
	   && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
    {
      /* No outputs, but some CLOBBERs.  */

      rtx asmop = XVECEXP (body, 0, 0);
      int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);

      for (i = 0; i < nin; i++)
	{
	  if (operand_locs)
	    operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
	  if (operands)
	    operands[i] = ASM_OPERANDS_INPUT (asmop, i);
	  if (constraints)
	    constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
	  if (modes)
	    modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
	}

      template = ASM_OPERANDS_TEMPLATE (asmop);
    }

  return template;
}
1537

1538 1539
/* Check if an asm_operand matches it's constraints. 
   Return > 0 if ok, = 0 if bad, < 0 if inconclusive.  */
1540 1541 1542 1543 1544 1545

int
asm_operand_ok (op, constraint)
     rtx op;
     const char *constraint;
{
1546 1547
  int result = 0;

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
  /* Use constrain_operands after reload.  */
  if (reload_completed)
    abort ();

  while (*constraint)
    {
      switch (*constraint++)
	{
	case '=':
	case '+':
	case '*':
	case '%':
	case '?':
	case '!':
	case '#':
	case '&':
	case ',':
	  break;

	case '0': case '1': case '2': case '3': case '4':
	case '5': case '6': case '7': case '8': case '9':
1569 1570 1571 1572 1573
	  /* For best results, our caller should have given us the
	     proper matching constraint, but we can't actually fail
	     the check if they didn't.  Indicate that results are
	     inconclusive.  */
	  result = -1;
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	  break;

	case 'p':
	  if (address_operand (op, VOIDmode))
	    return 1;
	  break;

	case 'm':
	case 'V': /* non-offsettable */
	  if (memory_operand (op, VOIDmode))
	    return 1;
	  break;

	case 'o': /* offsettable */
	  if (offsettable_nonstrict_memref_p (op))
	    return 1;
	  break;

	case '<':
1593 1594 1595 1596 1597 1598 1599
	  /* ??? Before flow, auto inc/dec insns are not supposed to exist,
	     excepting those that expand_call created.  Further, on some
	     machines which do not have generalized auto inc/dec, an inc/dec
	     is not a memory_operand.

	     Match any memory and hope things are resolved after reload.  */

1600
	  if (GET_CODE (op) == MEM
1601 1602
	      && (1
		  || GET_CODE (XEXP (op, 0)) == PRE_DEC
1603 1604 1605 1606 1607 1608
                  || GET_CODE (XEXP (op, 0)) == POST_DEC))
	    return 1;
	  break;

	case '>':
	  if (GET_CODE (op) == MEM
1609 1610
	      && (1
		  || GET_CODE (XEXP (op, 0)) == PRE_INC
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
                  || GET_CODE (XEXP (op, 0)) == POST_INC))
	    return 1;
	  break;

	case 'E':
#ifndef REAL_ARITHMETIC
	  /* Match any floating double constant, but only if
	     we can examine the bits of it reliably.  */
	  if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
	       || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
	      && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
	    break;
#endif
	  /* FALLTHRU */

	case 'F':
	  if (GET_CODE (op) == CONST_DOUBLE)
	    return 1;
	  break;

	case 'G':
	  if (GET_CODE (op) == CONST_DOUBLE
	      && CONST_DOUBLE_OK_FOR_LETTER_P (op, 'G'))
	    return 1;
	  break;
	case 'H':
	  if (GET_CODE (op) == CONST_DOUBLE
	      && CONST_DOUBLE_OK_FOR_LETTER_P (op, 'H'))
	    return 1;
	  break;

	case 's':
	  if (GET_CODE (op) == CONST_INT
	      || (GET_CODE (op) == CONST_DOUBLE
		  && GET_MODE (op) == VOIDmode))
	    break;
	  /* FALLTHRU */

	case 'i':
	  if (CONSTANT_P (op)
#ifdef LEGITIMATE_PIC_OPERAND_P
	      && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
#endif
	      )
	    return 1;
	  break;

	case 'n':
	  if (GET_CODE (op) == CONST_INT
	      || (GET_CODE (op) == CONST_DOUBLE
		  && GET_MODE (op) == VOIDmode))
	    return 1;
	  break;

	case 'I':
	  if (GET_CODE (op) == CONST_INT
	      && CONST_OK_FOR_LETTER_P (INTVAL (op), 'I'))
	    return 1;
	  break;
	case 'J':
	  if (GET_CODE (op) == CONST_INT
	      && CONST_OK_FOR_LETTER_P (INTVAL (op), 'J'))
	    return 1;
	  break;
	case 'K':
	  if (GET_CODE (op) == CONST_INT
	      && CONST_OK_FOR_LETTER_P (INTVAL (op), 'K'))
	    return 1;
	  break;
	case 'L':
	  if (GET_CODE (op) == CONST_INT
	      && CONST_OK_FOR_LETTER_P (INTVAL (op), 'L'))
	    return 1;
	  break;
	case 'M':
	  if (GET_CODE (op) == CONST_INT
	      && CONST_OK_FOR_LETTER_P (INTVAL (op), 'M'))
	    return 1;
	  break;
	case 'N':
	  if (GET_CODE (op) == CONST_INT
	      && CONST_OK_FOR_LETTER_P (INTVAL (op), 'N'))
	    return 1;
	  break;
	case 'O':
	  if (GET_CODE (op) == CONST_INT
	      && CONST_OK_FOR_LETTER_P (INTVAL (op), 'O'))
	    return 1;
	  break;
	case 'P':
	  if (GET_CODE (op) == CONST_INT
	      && CONST_OK_FOR_LETTER_P (INTVAL (op), 'P'))
	    return 1;
	  break;

	case 'X':
	  return 1;

	case 'g':
	  if (general_operand (op, VOIDmode))
	    return 1;
	  break;

#ifdef EXTRA_CONSTRAINT
	case 'Q':
	  if (EXTRA_CONSTRAINT (op, 'Q'))
	    return 1;
	  break;
	case 'R':
	  if (EXTRA_CONSTRAINT (op, 'R'))
	    return 1;
	  break;
	case 'S':
	  if (EXTRA_CONSTRAINT (op, 'S'))
	    return 1;
	  break;
	case 'T':
	  if (EXTRA_CONSTRAINT (op, 'T'))
	    return 1;
	  break;
	case 'U':
	  if (EXTRA_CONSTRAINT (op, 'U'))
	    return 1;
	  break;
#endif

	case 'r':
	default:
	  if (GET_MODE (op) == BLKmode)
	    break;
	  if (register_operand (op, VOIDmode))
	    return 1;
	  break;
	}
    }

1747
  return result;
1748
}
Richard Kenner committed
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846

/* Given an rtx *P, if it is a sum containing an integer constant term,
   return the location (type rtx *) of the pointer to that constant term.
   Otherwise, return a null pointer.  */

static rtx *
find_constant_term_loc (p)
     rtx *p;
{
  register rtx *tem;
  register enum rtx_code code = GET_CODE (*p);

  /* If *P IS such a constant term, P is its location.  */

  if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
      || code == CONST)
    return p;

  /* Otherwise, if not a sum, it has no constant term.  */

  if (GET_CODE (*p) != PLUS)
    return 0;

  /* If one of the summands is constant, return its location.  */

  if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
      && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
    return p;

  /* Otherwise, check each summand for containing a constant term.  */

  if (XEXP (*p, 0) != 0)
    {
      tem = find_constant_term_loc (&XEXP (*p, 0));
      if (tem != 0)
	return tem;
    }

  if (XEXP (*p, 1) != 0)
    {
      tem = find_constant_term_loc (&XEXP (*p, 1));
      if (tem != 0)
	return tem;
    }

  return 0;
}

/* Return 1 if OP is a memory reference
   whose address contains no side effects
   and remains valid after the addition
   of a positive integer less than the
   size of the object being referenced.

   We assume that the original address is valid and do not check it.

   This uses strict_memory_address_p as a subroutine, so
   don't use it before reload.  */

int
offsettable_memref_p (op)
     rtx op;
{
  return ((GET_CODE (op) == MEM)
	  && offsettable_address_p (1, GET_MODE (op), XEXP (op, 0)));
}

/* Similar, but don't require a strictly valid mem ref:
   consider pseudo-regs valid as index or base regs.  */

int
offsettable_nonstrict_memref_p (op)
     rtx op;
{
  return ((GET_CODE (op) == MEM)
	  && offsettable_address_p (0, GET_MODE (op), XEXP (op, 0)));
}

/* Return 1 if Y is a memory address which contains no side effects
   and would remain valid after the addition of a positive integer
   less than the size of that mode.

   We assume that the original address is valid and do not check it.
   We do check that it is valid for narrower modes.

   If STRICTP is nonzero, we require a strictly valid address,
   for the sake of use in reload.c.  */

int
offsettable_address_p (strictp, mode, y)
     int strictp;
     enum machine_mode mode;
     register rtx y;
{
  register enum rtx_code ycode = GET_CODE (y);
  register rtx z;
  rtx y1 = y;
  rtx *y2;
1847
  int (*addressp) PARAMS ((enum machine_mode, rtx)) =
1848
    (strictp ? strict_memory_address_p : memory_address_p);
1849
  unsigned int mode_sz = GET_MODE_SIZE (mode);
Richard Kenner committed
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859

  if (CONSTANT_ADDRESS_P (y))
    return 1;

  /* Adjusting an offsettable address involves changing to a narrower mode.
     Make sure that's OK.  */

  if (mode_dependent_address_p (y))
    return 0;

1860 1861 1862 1863 1864 1865 1866
  /* ??? How much offset does an offsettable BLKmode reference need?
     Clearly that depends on the situation in which it's being used.
     However, the current situation in which we test 0xffffffff is
     less than ideal.  Caveat user.  */
  if (mode_sz == 0)
    mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;

Richard Kenner committed
1867 1868 1869 1870 1871 1872 1873 1874
  /* If the expression contains a constant term,
     see if it remains valid when max possible offset is added.  */

  if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
    {
      int good;

      y1 = *y2;
1875
      *y2 = plus_constant (*y2, mode_sz - 1);
Richard Kenner committed
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
      /* Use QImode because an odd displacement may be automatically invalid
	 for any wider mode.  But it should be valid for a single byte.  */
      good = (*addressp) (QImode, y);

      /* In any case, restore old contents of memory.  */
      *y2 = y1;
      return good;
    }

  if (ycode == PRE_DEC || ycode == PRE_INC
      || ycode == POST_DEC || ycode == POST_INC)
    return 0;

  /* The offset added here is chosen as the maximum offset that
     any instruction could need to add when operating on something
     of the specified mode.  We assume that if Y and Y+c are
     valid addresses then so is Y+d for all 0<d<c.  */

1894
  z = plus_constant_for_output (y, mode_sz - 1);
Richard Kenner committed
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908

  /* Use QImode because an odd displacement may be automatically invalid
     for any wider mode.  But it should be valid for a single byte.  */
  return (*addressp) (QImode, z);
}

/* Return 1 if ADDR is an address-expression whose effect depends
   on the mode of the memory reference it is used in.

   Autoincrement addressing is a typical example of mode-dependence
   because the amount of the increment depends on the mode.  */

int
mode_dependent_address_p (addr)
Kaveh R. Ghazi committed
1909
  rtx addr ATTRIBUTE_UNUSED; /* Maybe used in GO_IF_MODE_DEPENDENT_ADDRESS. */
Richard Kenner committed
1910 1911 1912
{
  GO_IF_MODE_DEPENDENT_ADDRESS (addr, win);
  return 0;
Kaveh R. Ghazi committed
1913 1914
  /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
 win: ATTRIBUTE_UNUSED_LABEL
Richard Kenner committed
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
  return 1;
}

/* Return 1 if OP is a general operand
   other than a memory ref with a mode dependent address.  */

int
mode_independent_operand (op, mode)
     enum machine_mode mode;
     rtx op;
{
  rtx addr;

  if (! general_operand (op, mode))
    return 0;

  if (GET_CODE (op) != MEM)
    return 1;

  addr = XEXP (op, 0);
  GO_IF_MODE_DEPENDENT_ADDRESS (addr, lose);
  return 1;
Kaveh R. Ghazi committed
1937 1938
  /* Label `lose' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
 lose: ATTRIBUTE_UNUSED_LABEL
Richard Kenner committed
1939 1940 1941
  return 0;
}

1942 1943 1944 1945
/* Given an operand OP that is a valid memory reference which
   satisfies offsettable_memref_p, return a new memory reference whose
   address has been adjusted by OFFSET.  OFFSET should be positive and
   less than the size of the object referenced.  */
Richard Kenner committed
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

rtx
adj_offsettable_operand (op, offset)
     rtx op;
     int offset;
{
  register enum rtx_code code = GET_CODE (op);

  if (code == MEM) 
    {
      register rtx y = XEXP (op, 0);
      register rtx new;

      if (CONSTANT_ADDRESS_P (y))
	{
Jeff Law committed
1961 1962
	  new = gen_rtx_MEM (GET_MODE (op),
			     plus_constant_for_output (y, offset));
1963
	  MEM_COPY_ATTRIBUTES (new, op);
Richard Kenner committed
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	  return new;
	}

      if (GET_CODE (y) == PLUS)
	{
	  rtx z = y;
	  register rtx *const_loc;

	  op = copy_rtx (op);
	  z = XEXP (op, 0);
	  const_loc = find_constant_term_loc (&z);
	  if (const_loc)
	    {
	      *const_loc = plus_constant_for_output (*const_loc, offset);
	      return op;
	    }
	}

1982
      new = gen_rtx_MEM (GET_MODE (op), plus_constant_for_output (y, offset));
1983
      MEM_COPY_ATTRIBUTES (new, op);
Richard Kenner committed
1984 1985 1986 1987 1988
      return new;
    }
  abort ();
}

1989 1990
/* Analyze INSN and fill in recog_data.  */

1991 1992 1993 1994 1995 1996 1997 1998 1999
void
extract_insn (insn)
     rtx insn;
{
  int i;
  int icode;
  int noperands;
  rtx body = PATTERN (insn);

2000 2001 2002
  recog_data.n_operands = 0;
  recog_data.n_alternatives = 0;
  recog_data.n_dups = 0;
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

  switch (GET_CODE (body))
    {
    case USE:
    case CLOBBER:
    case ASM_INPUT:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return;

    case SET:
    case PARALLEL:
    case ASM_OPERANDS:
2016
      recog_data.n_operands = noperands = asm_noperands (body);
2017 2018 2019 2020 2021 2022 2023 2024 2025
      if (noperands >= 0)
	{
	  /* This insn is an `asm' with operands.  */

	  /* expand_asm_operands makes sure there aren't too many operands.  */
	  if (noperands > MAX_RECOG_OPERANDS)
	    abort ();

	  /* Now get the operand values and constraints out of the insn.  */
2026 2027 2028 2029
	  decode_asm_operands (body, recog_data.operand,
			       recog_data.operand_loc,
			       recog_data.constraints,
			       recog_data.operand_mode);
2030 2031
	  if (noperands > 0)
	    {
2032 2033
	      const char *p =  recog_data.constraints[0];
	      recog_data.n_alternatives = 1;
2034
	      while (*p)
2035
		recog_data.n_alternatives += (*p++ == ',');
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	    }
	  break;
	}

      /* FALLTHROUGH */

    default:
      /* Ordinary insn: recognize it, get the operands via insn_extract
	 and get the constraints.  */

      icode = recog_memoized (insn);
      if (icode < 0)
	fatal_insn_not_found (insn);

2050 2051 2052
      recog_data.n_operands = noperands = insn_data[icode].n_operands;
      recog_data.n_alternatives = insn_data[icode].n_alternatives;
      recog_data.n_dups = insn_data[icode].n_dups;
2053 2054 2055 2056 2057

      insn_extract (insn);

      for (i = 0; i < noperands; i++)
	{
2058 2059
	  recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
	  recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2060 2061
	}
    }
2062
  for (i = 0; i < noperands; i++)
2063 2064 2065 2066
    recog_data.operand_type[i]
      = (recog_data.constraints[i][0] == '=' ? OP_OUT
	 : recog_data.constraints[i][0] == '+' ? OP_INOUT
	 : OP_IN);
2067

2068
  if (recog_data.n_alternatives > MAX_RECOG_ALTERNATIVES)
2069
    abort ();
2070 2071
}

2072 2073 2074 2075 2076 2077 2078 2079
/* After calling extract_insn, you can use this function to extract some
   information from the constraint strings into a more usable form.
   The collected data is stored in recog_op_alt.  */
void
preprocess_constraints ()
{
  int i;

2080
  memset (recog_op_alt, 0, sizeof recog_op_alt);
2081
  for (i = 0; i < recog_data.n_operands; i++)
2082 2083 2084
    {
      int j;
      struct operand_alternative *op_alt;
2085
      const char *p = recog_data.constraints[i];
2086 2087 2088

      op_alt = recog_op_alt[i];

2089
      for (j = 0; j < recog_data.n_alternatives; j++)
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
	{
	  op_alt[j].class = NO_REGS;
	  op_alt[j].constraint = p;
	  op_alt[j].matches = -1;
	  op_alt[j].matched = -1;

	  if (*p == '\0' || *p == ',')
	    {
	      op_alt[j].anything_ok = 1;
	      continue;
	    }

	  for (;;)
	    {
	      char c = *p++;
	      if (c == '#')
		do
		  c = *p++;
		while (c != ',' && c != '\0');
	      if (c == ',' || c == '\0')
		break;

	      switch (c)
		{
		case '=': case '+': case '*': case '%':
		case 'E': case 'F': case 'G': case 'H':
		case 's': case 'i': case 'n':
		case 'I': case 'J': case 'K': case 'L':
		case 'M': case 'N': case 'O': case 'P':
#ifdef EXTRA_CONSTRAINT
		case 'Q': case 'R': case 'S': case 'T': case 'U':
#endif
		  /* These don't say anything we care about.  */
		  break;

		case '?':
		  op_alt[j].reject += 6;
		  break;
		case '!':
		  op_alt[j].reject += 600;
		  break;
		case '&':
		  op_alt[j].earlyclobber = 1;
		  break;		  

		case '0': case '1': case '2': case '3': case '4':
		case '5': case '6': case '7': case '8': case '9':
		  op_alt[j].matches = c - '0';
2138
		  recog_op_alt[op_alt[j].matches][j].matched = i;
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
		  break;

		case 'm':
		  op_alt[j].memory_ok = 1;
		  break;
		case '<':
		  op_alt[j].decmem_ok = 1;
		  break;
		case '>':
		  op_alt[j].incmem_ok = 1;
		  break;
		case 'V':
		  op_alt[j].nonoffmem_ok = 1;
		  break;
		case 'o':
		  op_alt[j].offmem_ok = 1;
		  break;
		case 'X':
		  op_alt[j].anything_ok = 1;
		  break;

		case 'p':
		  op_alt[j].class = reg_class_subunion[(int) op_alt[j].class][(int) BASE_REG_CLASS];
		  break;

		case 'g': case 'r':
		  op_alt[j].class = reg_class_subunion[(int) op_alt[j].class][(int) GENERAL_REGS];
		  break;

		default:
Kaveh R. Ghazi committed
2169
		  op_alt[j].class = reg_class_subunion[(int) op_alt[j].class][(int) REG_CLASS_FROM_LETTER ((unsigned char)c)];
2170 2171 2172 2173 2174 2175 2176
		  break;
		}
	    }
	}
    }
}
 
2177
/* Check the operands of an insn against the insn's operand constraints
Richard Kenner committed
2178
   and return 1 if they are valid.
2179 2180
   The information about the insn's operands, constraints, operand modes
   etc. is obtained from the global variables set up by extract_insn.
Richard Kenner committed
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209

   WHICH_ALTERNATIVE is set to a number which indicates which
   alternative of constraints was matched: 0 for the first alternative,
   1 for the next, etc.

   In addition, when two operands are match
   and it happens that the output operand is (reg) while the
   input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
   make the output operand look like the input.
   This is because the output operand is the one the template will print.

   This is used in final, just before printing the assembler code and by
   the routines that determine an insn's attribute.

   If STRICT is a positive non-zero value, it means that we have been
   called after reload has been completed.  In that case, we must
   do all checks strictly.  If it is zero, it means that we have been called
   before reload has completed.  In that case, we first try to see if we can
   find an alternative that matches strictly.  If not, we try again, this
   time assuming that reload will fix up the insn.  This provides a "best
   guess" for the alternative and is used to compute attributes of insns prior
   to reload.  A negative value of STRICT is used for this internal call.  */

struct funny_match
{
  int this, other;
};

int
2210
constrain_operands (strict)
Richard Kenner committed
2211 2212
     int strict;
{
2213
  const char *constraints[MAX_RECOG_OPERANDS];
2214 2215
  int matching_operands[MAX_RECOG_OPERANDS];
  int earlyclobber[MAX_RECOG_OPERANDS];
Richard Kenner committed
2216 2217 2218 2219 2220
  register int c;

  struct funny_match funny_match[MAX_RECOG_OPERANDS];
  int funny_match_index;

2221
  if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
Richard Kenner committed
2222 2223
    return 1;

2224
  for (c = 0; c < recog_data.n_operands; c++)
2225
    {
2226
      constraints[c] = recog_data.constraints[c];
2227 2228
      matching_operands[c] = -1;
    }
Richard Kenner committed
2229 2230 2231

  which_alternative = 0;

2232
  while (which_alternative < recog_data.n_alternatives)
Richard Kenner committed
2233 2234 2235 2236 2237
    {
      register int opno;
      int lose = 0;
      funny_match_index = 0;

2238
      for (opno = 0; opno < recog_data.n_operands; opno++)
Richard Kenner committed
2239
	{
2240
	  register rtx op = recog_data.operand[opno];
Richard Kenner committed
2241
	  enum machine_mode mode = GET_MODE (op);
2242
	  register const char *p = constraints[opno];
Richard Kenner committed
2243 2244 2245 2246
	  int offset = 0;
	  int win = 0;
	  int val;

2247 2248
	  earlyclobber[opno] = 0;

2249
	  /* A unary operator may be accepted by the predicate, but it
2250
	     is irrelevant for matching constraints.  */
2251 2252 2253
	  if (GET_RTX_CLASS (GET_CODE (op)) == '1')
	    op = XEXP (op, 0);

Richard Kenner committed
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
	  if (GET_CODE (op) == SUBREG)
	    {
	      if (GET_CODE (SUBREG_REG (op)) == REG
		  && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
		offset = SUBREG_WORD (op);
	      op = SUBREG_REG (op);
	    }

	  /* An empty constraint or empty alternative
	     allows anything which matched the pattern.  */
	  if (*p == 0 || *p == ',')
	    win = 1;

	  while (*p && (c = *p++) != ',')
	    switch (c)
	      {
Jeff Law committed
2270 2271
	      case '?':  case '!': case '*':  case '%':
	      case '=':  case '+':
Richard Kenner committed
2272 2273
		break;

2274 2275 2276 2277 2278 2279 2280
	      case '#':
		/* Ignore rest of this alternative as far as
		   constraint checking is concerned.  */
		while (*p && *p != ',')
		  p++;
		break;

2281 2282 2283 2284
	      case '&':
		earlyclobber[opno] = 1;
		break;

Jeff Law committed
2285 2286 2287
	      case '0':  case '1':  case '2':  case '3':  case '4':
	      case '5':  case '6':  case '7':  case '8':  case '9':

Richard Kenner committed
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
		/* This operand must be the same as a previous one.
		   This kind of constraint is used for instructions such
		   as add when they take only two operands.

		   Note that the lower-numbered operand is passed first.

		   If we are not testing strictly, assume that this constraint
		   will be satisfied.  */
		if (strict < 0)
		  val = 1;
		else
2299
		  {
2300 2301
		    rtx op1 = recog_data.operand[c - '0'];
		    rtx op2 = recog_data.operand[opno];
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311

	            /* A unary operator may be accepted by the predicate,
		       but it is irrelevant for matching constraints.  */
	            if (GET_RTX_CLASS (GET_CODE (op1)) == '1')
	              op1 = XEXP (op1, 0);
	            if (GET_RTX_CLASS (GET_CODE (op2)) == '1')
	              op2 = XEXP (op2, 0);

		    val = operands_match_p (op1, op2);
		  }
Richard Kenner committed
2312

2313 2314 2315
		matching_operands[opno] = c - '0';
		matching_operands[c - '0'] = opno;

Richard Kenner committed
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
		if (val != 0)
		  win = 1;
		/* If output is *x and input is *--x,
		   arrange later to change the output to *--x as well,
		   since the output op is the one that will be printed.  */
		if (val == 2 && strict > 0)
		  {
		    funny_match[funny_match_index].this = opno;
		    funny_match[funny_match_index++].other = c - '0';
		  }
		break;

	      case 'p':
		/* p is used for address_operands.  When we are called by
Richard Kenner committed
2330 2331 2332
		   gen_reload, no one will have checked that the address is
		   strictly valid, i.e., that all pseudos requiring hard regs
		   have gotten them.  */
Richard Kenner committed
2333
		if (strict <= 0
2334
		    || (strict_memory_address_p (recog_data.operand_mode[opno],
2335
						 op)))
Richard Kenner committed
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
		  win = 1;
		break;

		/* No need to check general_operand again;
		   it was done in insn-recog.c.  */
	      case 'g':
		/* Anything goes unless it is a REG and really has a hard reg
		   but the hard reg is not in the class GENERAL_REGS.  */
		if (strict < 0
		    || GENERAL_REGS == ALL_REGS
		    || GET_CODE (op) != REG
2347 2348
		    || (reload_in_progress
			&& REGNO (op) >= FIRST_PSEUDO_REGISTER)
Richard Kenner committed
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
		    || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
		  win = 1;
		break;

	      case 'r':
		if (strict < 0
		    || (strict == 0
			&& GET_CODE (op) == REG
			&& REGNO (op) >= FIRST_PSEUDO_REGISTER)
		    || (strict == 0 && GET_CODE (op) == SCRATCH)
		    || (GET_CODE (op) == REG
2360 2361
			&& ((GENERAL_REGS == ALL_REGS
			     && REGNO (op) < FIRST_PSEUDO_REGISTER)
Richard Kenner committed
2362 2363 2364 2365 2366 2367
			    || reg_fits_class_p (op, GENERAL_REGS,
						 offset, mode))))
		  win = 1;
		break;

	      case 'X':
Mike Stump committed
2368 2369 2370
		/* This is used for a MATCH_SCRATCH in the cases when
		   we don't actually need anything.  So anything goes
		   any time.  */
Richard Kenner committed
2371 2372 2373 2374 2375 2376
		win = 1;
		break;

	      case 'm':
		if (GET_CODE (op) == MEM
		    /* Before reload, accept what reload can turn into mem.  */
2377 2378 2379 2380
		    || (strict < 0 && CONSTANT_P (op))
		    /* During reload, accept a pseudo  */
		    || (reload_in_progress && GET_CODE (op) == REG
			&& REGNO (op) >= FIRST_PSEUDO_REGISTER))
Richard Kenner committed
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
		  win = 1;
		break;

	      case '<':
		if (GET_CODE (op) == MEM
		    && (GET_CODE (XEXP (op, 0)) == PRE_DEC
			|| GET_CODE (XEXP (op, 0)) == POST_DEC))
		  win = 1;
		break;

	      case '>':
		if (GET_CODE (op) == MEM
		    && (GET_CODE (XEXP (op, 0)) == PRE_INC
			|| GET_CODE (XEXP (op, 0)) == POST_INC))
		  win = 1;
		break;

	      case 'E':
2399
#ifndef REAL_ARITHMETIC
Richard Kenner committed
2400 2401 2402
		/* Match any CONST_DOUBLE, but only if
		   we can examine the bits of it reliably.  */
		if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
Charles Hannum committed
2403
		     || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
2404
		    && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
Richard Kenner committed
2405
		  break;
2406
#endif
Richard Kenner committed
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
		if (GET_CODE (op) == CONST_DOUBLE)
		  win = 1;
		break;

	      case 'F':
		if (GET_CODE (op) == CONST_DOUBLE)
		  win = 1;
		break;

	      case 'G':
	      case 'H':
		if (GET_CODE (op) == CONST_DOUBLE
		    && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
		  win = 1;
		break;

	      case 's':
		if (GET_CODE (op) == CONST_INT
		    || (GET_CODE (op) == CONST_DOUBLE
			&& GET_MODE (op) == VOIDmode))
		  break;
	      case 'i':
		if (CONSTANT_P (op))
		  win = 1;
		break;

	      case 'n':
		if (GET_CODE (op) == CONST_INT
		    || (GET_CODE (op) == CONST_DOUBLE
			&& GET_MODE (op) == VOIDmode))
		  win = 1;
		break;

	      case 'I':
	      case 'J':
	      case 'K':
	      case 'L':
	      case 'M':
	      case 'N':
	      case 'O':
	      case 'P':
		if (GET_CODE (op) == CONST_INT
		    && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
		  win = 1;
		break;

#ifdef EXTRA_CONSTRAINT
              case 'Q':
              case 'R':
              case 'S':
              case 'T':
              case 'U':
		if (EXTRA_CONSTRAINT (op, c))
		  win = 1;
		break;
#endif

	      case 'V':
		if (GET_CODE (op) == MEM
2466 2467 2468 2469 2470 2471
		    && ((strict > 0 && ! offsettable_memref_p (op))
			|| (strict < 0
			    && !(CONSTANT_P (op) || GET_CODE (op) == MEM))
			|| (reload_in_progress
			    && !(GET_CODE (op) == REG
				 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
Richard Kenner committed
2472 2473 2474 2475 2476 2477 2478 2479
		  win = 1;
		break;

	      case 'o':
		if ((strict > 0 && offsettable_memref_p (op))
		    || (strict == 0 && offsettable_nonstrict_memref_p (op))
		    /* Before reload, accept what reload can handle.  */
		    || (strict < 0
2480 2481 2482 2483
			&& (CONSTANT_P (op) || GET_CODE (op) == MEM))
		    /* During reload, accept a pseudo  */
		    || (reload_in_progress && GET_CODE (op) == REG
			&& REGNO (op) >= FIRST_PSEUDO_REGISTER))
Richard Kenner committed
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
		  win = 1;
		break;

	      default:
		if (strict < 0
		    || (strict == 0
			&& GET_CODE (op) == REG
			&& REGNO (op) >= FIRST_PSEUDO_REGISTER)
		    || (strict == 0 && GET_CODE (op) == SCRATCH)
		    || (GET_CODE (op) == REG
			&& reg_fits_class_p (op, REG_CLASS_FROM_LETTER (c),
					     offset, mode)))
		  win = 1;
	      }

	  constraints[opno] = p;
	  /* If this operand did not win somehow,
	     this alternative loses.  */
	  if (! win)
	    lose = 1;
	}
      /* This alternative won; the operands are ok.
	 Change whichever operands this alternative says to change.  */
      if (! lose)
	{
2509 2510 2511 2512 2513 2514
	  int opno, eopno;

	  /* See if any earlyclobber operand conflicts with some other
	     operand.  */

	  if (strict > 0)
2515
	    for (eopno = 0; eopno < recog_data.n_operands; eopno++)
2516 2517 2518 2519
	      /* Ignore earlyclobber operands now in memory,
		 because we would often report failure when we have
		 two memory operands, one of which was formerly a REG.  */
	      if (earlyclobber[eopno]
2520 2521 2522 2523
		  && GET_CODE (recog_data.operand[eopno]) == REG)
		for (opno = 0; opno < recog_data.n_operands; opno++)
		  if ((GET_CODE (recog_data.operand[opno]) == MEM
		       || recog_data.operand_type[opno] != OP_OUT)
2524
		      && opno != eopno
Mike Stump committed
2525
		      /* Ignore things like match_operator operands.  */
2526
		      && *recog_data.constraints[opno] != 0
2527
		      && ! (matching_operands[opno] == eopno
2528 2529 2530 2531
			    && operands_match_p (recog_data.operand[opno],
						 recog_data.operand[eopno]))
		      && ! safe_from_earlyclobber (recog_data.operand[opno],
						   recog_data.operand[eopno]))
2532 2533 2534
		    lose = 1;

	  if (! lose)
Richard Kenner committed
2535
	    {
2536 2537
	      while (--funny_match_index >= 0)
		{
2538 2539
		  recog_data.operand[funny_match[funny_match_index].other]
		    = recog_data.operand[funny_match[funny_match_index].this];
2540 2541 2542
		}

	      return 1;
Richard Kenner committed
2543 2544 2545 2546 2547 2548 2549 2550 2551
	    }
	}

      which_alternative++;
    }

  /* If we are about to reject this, but we are not to test strictly,
     try a very loose test.  Only return failure if it fails also.  */
  if (strict == 0)
2552
    return constrain_operands (-1);
Richard Kenner committed
2553 2554 2555 2556 2557
  else
    return 0;
}

/* Return 1 iff OPERAND (assumed to be a REG rtx)
2558
   is a hard reg in class CLASS when its regno is offset by OFFSET
Richard Kenner committed
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
   and changed to mode MODE.
   If REG occupies multiple hard regs, all of them must be in CLASS.  */

int
reg_fits_class_p (operand, class, offset, mode)
     rtx operand;
     register enum reg_class class;
     int offset;
     enum machine_mode mode;
{
  register int regno = REGNO (operand);
  if (regno < FIRST_PSEUDO_REGISTER
      && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
			    regno + offset))
    {
      register int sr;
      regno += offset;
      for (sr = HARD_REGNO_NREGS (regno, mode) - 1;
	   sr > 0; sr--)
	if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
				 regno + sr))
	  break;
      return sr == 0;
    }

  return 0;
}
2586

2587
/* Split all insns in the function.  If UPD_LIFE, update life info after.  */
2588 2589

void
2590 2591
split_all_insns (upd_life)
     int upd_life;
2592
{
2593 2594 2595 2596 2597 2598 2599
  sbitmap blocks;
  int changed;
  int i;

  blocks = sbitmap_alloc (n_basic_blocks);
  sbitmap_zero (blocks);
  changed = 0;
2600

2601
  for (i = n_basic_blocks - 1; i >= 0; --i)
2602
    {
2603 2604
      basic_block bb = BASIC_BLOCK (i);
      rtx insn, next;
2605

2606
      for (insn = bb->head; insn ; insn = next)
2607
	{
2608
	  rtx set;
2609

2610 2611 2612 2613 2614
	  /* Can't use `next_real_insn' because that might go across
	     CODE_LABELS and short-out basic blocks.  */
	  next = NEXT_INSN (insn);
	  if (GET_CODE (insn) != INSN)
	    ;
2615

2616 2617 2618
	  /* Don't split no-op move insns.  These should silently
	     disappear later in final.  Splitting such insns would
	     break the code that handles REG_NO_CONFLICT blocks.  */
2619

2620 2621
	  else if ((set = single_set (insn)) != NULL
		   && rtx_equal_p (SET_SRC (set), SET_DEST (set)))
2622
	    {
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
	      /* Nops get in the way while scheduling, so delete them
		 now if register allocation has already been done.  It
		 is too risky to try to do this before register
		 allocation, and there are unlikely to be very many
		 nops then anyways.  */
	      if (reload_completed)
		{
		  PUT_CODE (insn, NOTE);
		  NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
		  NOTE_SOURCE_FILE (insn) = 0;
		}
2634
	    }
2635
	  else
2636
	    {
2637 2638 2639 2640 2641
	      /* Split insns here to get max fine-grain parallelism.  */
	      rtx first = PREV_INSN (insn);
	      rtx last = try_split (PATTERN (insn), insn, 1);

	      if (last != insn)
2642
		{
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
		  SET_BIT (blocks, i);
		  changed = 1;

		  /* try_split returns the NOTE that INSN became.  */
		  first = NEXT_INSN (first);
		  PUT_CODE (insn, NOTE);
		  NOTE_SOURCE_FILE (insn) = 0;
		  NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;

		  if (insn == bb->end)
		    {
		      bb->end = last;
		      break;
		    }
2657 2658
		}
	    }
2659 2660 2661

	  if (insn == bb->end)
	    break;
2662 2663
	}

2664 2665 2666 2667 2668 2669
      /* ??? When we're called from just after reload, the CFG is in bad
	 shape, and we may have fallen off the end.  This could be fixed
	 by having reload not try to delete unreachable code.  Otherwise
	 assert we found the end insn.  */
      if (insn == NULL && upd_life)
	abort ();
2670
    }
2671 2672 2673

  if (changed && upd_life)
    {
2674
      compute_bb_for_insn (get_max_uid ());
2675
      count_or_remove_death_notes (blocks, 1);
2676
      update_life_info (blocks, UPDATE_LIFE_LOCAL, PROP_DEATH_NOTES);
2677 2678 2679
    }

  sbitmap_free (blocks);
2680
}
2681 2682

#ifdef HAVE_peephole2
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
struct peep2_insn_data
{
  rtx insn;
  regset live_before;
};

static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
static int peep2_current;

/* A non-insn marker indicating the last insn of the block.
   The live_before regset for this element is correct, indicating
   global_live_at_end for the block.  */
#define PEEP2_EOB	pc_rtx

/* Return the Nth non-note insn after `current', or return NULL_RTX if it
   does not exist.  Used by the recognizer to find the next insn to match
   in a multi-insn pattern.  */
2700

2701
rtx
2702
peep2_next_insn (n)
2703 2704
     int n;
{
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
  if (n >= MAX_INSNS_PER_PEEP2 + 1)
    abort ();

  n += peep2_current;
  if (n >= MAX_INSNS_PER_PEEP2 + 1)
    n -= MAX_INSNS_PER_PEEP2 + 1;

  if (peep2_insn_data[n].insn == PEEP2_EOB)
    return NULL_RTX;
  return peep2_insn_data[n].insn;
}

/* Return true if REGNO is dead before the Nth non-note insn
   after `current'.  */

int
peep2_regno_dead_p (ofs, regno)
     int ofs;
     int regno;
{
  if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
    abort ();

  ofs += peep2_current;
  if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
    ofs -= MAX_INSNS_PER_PEEP2 + 1;

  if (peep2_insn_data[ofs].insn == NULL_RTX)
    abort ();

  return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
}

/* Similarly for a REG.  */

int
peep2_reg_dead_p (ofs, reg)
     int ofs;
     rtx reg;
{
  int regno, n;

  if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
    abort ();

  ofs += peep2_current;
  if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
    ofs -= MAX_INSNS_PER_PEEP2 + 1;

  if (peep2_insn_data[ofs].insn == NULL_RTX)
    abort ();

  regno = REGNO (reg);
  n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
  while (--n >= 0)
    if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
      return 0;
  return 1;
}

/* Try to find a hard register of mode MODE, matching the register class in
   CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
   remains available until the end of LAST_INSN.  LAST_INSN may be NULL_RTX,
   in which case the only condition is that the register must be available
   before CURRENT_INSN.
   Registers that already have bits set in REG_SET will not be considered.

   If an appropriate register is available, it will be returned and the
   corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
   returned.  */

rtx
peep2_find_free_register (from, to, class_str, mode, reg_set)
     int from, to;
     const char *class_str;
     enum machine_mode mode;
     HARD_REG_SET *reg_set;
{
  static int search_ofs;
  enum reg_class class;
  HARD_REG_SET live;
  int i;

  if (from >= MAX_INSNS_PER_PEEP2 + 1 || to >= MAX_INSNS_PER_PEEP2 + 1)
    abort ();

  from += peep2_current;
  if (from >= MAX_INSNS_PER_PEEP2 + 1)
    from -= MAX_INSNS_PER_PEEP2 + 1;
  to += peep2_current;
  if (to >= MAX_INSNS_PER_PEEP2 + 1)
    to -= MAX_INSNS_PER_PEEP2 + 1;

  if (peep2_insn_data[from].insn == NULL_RTX)
    abort ();
  REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);

  while (from != to)
2803
    {
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
      HARD_REG_SET this_live;

      if (++from >= MAX_INSNS_PER_PEEP2 + 1)
	from = 0;
      if (peep2_insn_data[from].insn == NULL_RTX)
	abort ();
      REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before);
      IOR_HARD_REG_SET (live, this_live);
    }

  class = (class_str[0] == 'r' ? GENERAL_REGS
	   : REG_CLASS_FROM_LETTER (class_str[0]));

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      int raw_regno, regno, success, j;

      /* Distribute the free registers as much as possible.  */
      raw_regno = search_ofs + i;
      if (raw_regno >= FIRST_PSEUDO_REGISTER)
	raw_regno -= FIRST_PSEUDO_REGISTER;
#ifdef REG_ALLOC_ORDER
      regno = reg_alloc_order[raw_regno];
#else
      regno = raw_regno;
#endif

      /* Don't allocate fixed registers.  */
      if (fixed_regs[regno])
	continue;
      /* Make sure the register is of the right class.  */
      if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno))
	continue;
      /* And can support the mode we need.  */
      if (! HARD_REGNO_MODE_OK (regno, mode))
	continue;
      /* And that we don't create an extra save/restore.  */
      if (! call_used_regs[regno] && ! regs_ever_live[regno])
	continue;
      /* And we don't clobber traceback for noreturn functions.  */
      if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
	  && (! reload_completed || frame_pointer_needed))
	continue;

      success = 1;
      for (j = HARD_REGNO_NREGS (regno, mode) - 1; j >= 0; j--)
	{
	  if (TEST_HARD_REG_BIT (*reg_set, regno + j)
	      || TEST_HARD_REG_BIT (live, regno + j))
	    {
	      success = 0;
	      break;
	    }
	}
      if (success)
2859
	{
2860 2861
	  for (j = HARD_REGNO_NREGS (regno, mode) - 1; j >= 0; j--)
	    SET_HARD_REG_BIT (*reg_set, regno + j);
2862

2863 2864 2865 2866
	  /* Start the next search with the next register.  */
	  if (++raw_regno >= FIRST_PSEUDO_REGISTER)
	    raw_regno = 0;
	  search_ofs = raw_regno;
2867

2868
	  return gen_rtx_REG (mode, regno);
2869
	}
2870 2871
    }

2872 2873
  search_ofs = 0;
  return NULL_RTX;
2874 2875 2876
}

/* Perform the peephole2 optimization pass. */
2877

2878 2879 2880 2881
void
peephole2_optimize (dump_file)
     FILE *dump_file ATTRIBUTE_UNUSED;
{
2882
  regset_head rs_heads[MAX_INSNS_PER_PEEP2 + 2];
2883
  rtx insn, prev;
2884 2885 2886
  regset live;
  int i, b;
#ifdef HAVE_conditional_execution
2887
  sbitmap blocks;
2888 2889
  int changed;
#endif
2890

2891 2892 2893 2894
  /* Initialize the regsets we're going to use.  */
  for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
    peep2_insn_data[i].live_before = INITIALIZE_REG_SET (rs_heads[i]);
  live = INITIALIZE_REG_SET (rs_heads[i]);
2895

2896
#ifdef HAVE_conditional_execution
2897 2898 2899
  blocks = sbitmap_alloc (n_basic_blocks);
  sbitmap_zero (blocks);
  changed = 0;
2900 2901 2902
#else
  count_or_remove_death_notes (NULL, 1);
#endif
2903

2904
  for (b = n_basic_blocks - 1; b >= 0; --b)
2905
    {
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
      basic_block bb = BASIC_BLOCK (b);
      struct propagate_block_info *pbi;

      /* Indicate that all slots except the last holds invalid data.  */
      for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
	peep2_insn_data[i].insn = NULL_RTX;

      /* Indicate that the last slot contains live_after data.  */
      peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
      peep2_current = MAX_INSNS_PER_PEEP2;
2916

2917 2918 2919 2920 2921 2922 2923 2924 2925
      /* Start up propagation.  */
      COPY_REG_SET (live, bb->global_live_at_end);
      COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);

#ifdef HAVE_conditional_execution
      pbi = init_propagate_block_info (bb, live, NULL, 0);
#else
      pbi = init_propagate_block_info (bb, live, NULL, PROP_DEATH_NOTES);
#endif
2926

2927 2928 2929
      for (insn = bb->end; ; insn = prev)
	{
	  prev = PREV_INSN (insn);
2930
	  if (INSN_P (insn))
2931
	    {
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
	      rtx try;
	      int match_len;

	      /* Record this insn.  */
	      if (--peep2_current < 0)
		peep2_current = MAX_INSNS_PER_PEEP2;
	      peep2_insn_data[peep2_current].insn = insn;
	      propagate_one_insn (pbi, insn);
	      COPY_REG_SET (peep2_insn_data[peep2_current].live_before, live);

	      /* Match the peephole.  */
	      try = peephole2_insns (PATTERN (insn), insn, &match_len);
2944 2945
	      if (try != NULL)
		{
2946 2947 2948 2949 2950 2951
		  i = match_len + peep2_current;
		  if (i >= MAX_INSNS_PER_PEEP2 + 1)
		    i -= MAX_INSNS_PER_PEEP2 + 1;

		  /* Replace the old sequence with the new.  */
		  flow_delete_insn_chain (insn, peep2_insn_data[i].insn);
2952 2953
		  try = emit_insn_after (try, prev);

2954 2955
		  /* Adjust the basic block boundaries.  */
		  if (peep2_insn_data[i].insn == bb->end)
2956 2957 2958 2959
		    bb->end = try;
		  if (insn == bb->head)
		    bb->head = NEXT_INSN (prev);

2960 2961 2962 2963 2964 2965 2966
#ifdef HAVE_conditional_execution
		  /* With conditional execution, we cannot back up the
		     live information so easily, since the conditional
		     death data structures are not so self-contained.
		     So record that we've made a modification to this
		     block and update life information at the end.  */
		  SET_BIT (blocks, b);
2967
		  changed = 1;
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998

		  for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
		    peep2_insn_data[i].insn = NULL_RTX;
		  peep2_insn_data[peep2_current].insn = PEEP2_EOB;
#else
		  /* Back up lifetime information past the end of the
		     newly created sequence.  */
		  if (++i >= MAX_INSNS_PER_PEEP2 + 1)
		    i = 0;
		  COPY_REG_SET (live, peep2_insn_data[i].live_before);

		  /* Update life information for the new sequence.  */
		  do
		    {
		      if (INSN_P (try))
			{
			  if (--i < 0)
			    i = MAX_INSNS_PER_PEEP2;
			  peep2_insn_data[i].insn = try;
			  propagate_one_insn (pbi, try);
			  COPY_REG_SET (peep2_insn_data[i].live_before, live);
			}
		      try = PREV_INSN (try);
		    }
		  while (try != prev);

		  /* ??? Should verify that LIVE now matches what we
		     had before the new sequence.  */

		  peep2_current = i;
#endif
2999
		}
3000
	    }
3001 3002 3003

	  if (insn == bb->head)
	    break;
3004
	}
3005 3006

      free_propagate_block_info (pbi);
3007 3008
    }

3009 3010 3011
  for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
    FREE_REG_SET (peep2_insn_data[i].live_before);
  FREE_REG_SET (live);
3012

3013
#ifdef HAVE_conditional_execution
3014
  count_or_remove_death_notes (blocks, 1);
3015
  update_life_info (blocks, UPDATE_LIFE_LOCAL, PROP_DEATH_NOTES);
3016
  sbitmap_free (blocks);
3017
#endif
3018 3019
}
#endif /* HAVE_peephole2 */