jn.go 7.21 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package math

/*
	Bessel function of the first and second kinds of order n.
*/

// The original C code and the long comment below are
// from FreeBSD's /usr/src/lib/msun/src/e_jn.c and
13
// came with this notice. The go code is a simplified
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
// version of the original C.
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
// __ieee754_jn(n, x), __ieee754_yn(n, x)
// floating point Bessel's function of the 1st and 2nd kind
// of order n
//
// Special cases:
//      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
//      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
// Note 2. About jn(n,x), yn(n,x)
//      For n=0, j0(x) is called,
//      for n=1, j1(x) is called,
//      for n<x, forward recursion is used starting
//      from values of j0(x) and j1(x).
//      for n>x, a continued fraction approximation to
//      j(n,x)/j(n-1,x) is evaluated and then backward
//      recursion is used starting from a supposed value
//      for j(n,x). The resulting value of j(0,x) is
//      compared with the actual value to correct the
//      supposed value of j(n,x).
//
//      yn(n,x) is similar in all respects, except
//      that forward recursion is used for all
//      values of n>1.

// Jn returns the order-n Bessel function of the first kind.
//
// Special cases are:
//	Jn(n, ±Inf) = 0
//	Jn(n, NaN) = NaN
func Jn(n int, x float64) float64 {
	const (
		TwoM29 = 1.0 / (1 << 29) // 2**-29 0x3e10000000000000
		Two302 = 1 << 302        // 2**302 0x52D0000000000000
	)
	// special cases
	switch {
60
	case IsNaN(x):
61
		return x
62
	case IsInf(x, 0):
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
		return 0
	}
	// J(-n, x) = (-1)**n * J(n, x), J(n, -x) = (-1)**n * J(n, x)
	// Thus, J(-n, x) = J(n, -x)

	if n == 0 {
		return J0(x)
	}
	if x == 0 {
		return 0
	}
	if n < 0 {
		n, x = -n, -x
	}
	if n == 1 {
		return J1(x)
	}
	sign := false
	if x < 0 {
		x = -x
		if n&1 == 1 {
			sign = true // odd n and negative x
		}
	}
	var b float64
	if float64(n) <= x {
		// Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
		if x >= Two302 { // x > 2**302

			// (x >> n**2)
			//          Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
			//          Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
			//          Let s=sin(x), c=cos(x),
			//              xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
			//
			//                 n    sin(xn)*sqt2    cos(xn)*sqt2
			//              ----------------------------------
			//                 0     s-c             c+s
			//                 1    -s-c            -c+s
			//                 2    -s+c            -c-s
			//                 3     s+c             c-s

			var temp float64
			switch n & 3 {
			case 0:
				temp = Cos(x) + Sin(x)
			case 1:
				temp = -Cos(x) + Sin(x)
			case 2:
				temp = -Cos(x) - Sin(x)
			case 3:
				temp = Cos(x) - Sin(x)
			}
			b = (1 / SqrtPi) * temp / Sqrt(x)
		} else {
			b = J1(x)
			for i, a := 1, J0(x); i < n; i++ {
				a, b = b, b*(float64(i+i)/x)-a // avoid underflow
			}
		}
	} else {
		if x < TwoM29 { // x < 2**-29
			// x is tiny, return the first Taylor expansion of J(n,x)
			// J(n,x) = 1/n!*(x/2)**n  - ...

			if n > 33 { // underflow
				b = 0
			} else {
				temp := x * 0.5
				b = temp
133
				a := 1.0
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
				for i := 2; i <= n; i++ {
					a *= float64(i) // a = n!
					b *= temp       // b = (x/2)**n
				}
				b /= a
			}
		} else {
			// use backward recurrence
			//                      x      x**2      x**2
			//  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
			//                      2n  - 2(n+1) - 2(n+2)
			//
			//                      1      1        1
			//  (for large x)   =  ----  ------   ------   .....
			//                      2n   2(n+1)   2(n+2)
			//                      -- - ------ - ------ -
			//                       x     x         x
			//
			// Let w = 2n/x and h=2/x, then the above quotient
			// is equal to the continued fraction:
			//                  1
			//      = -----------------------
			//                     1
			//         w - -----------------
			//                        1
			//              w+h - ---------
			//                     w+2h - ...
			//
			// To determine how many terms needed, let
			// Q(0) = w, Q(1) = w(w+h) - 1,
			// Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
			// When Q(k) > 1e4	good for single
			// When Q(k) > 1e9	good for double
			// When Q(k) > 1e17	good for quadruple

			// determine k
			w := float64(n+n) / x
			h := 2 / x
			q0 := w
			z := w + h
			q1 := w*z - 1
			k := 1
			for q1 < 1e9 {
				k += 1
				z += h
				q0, q1 = q1, z*q1-q0
			}
			m := n + n
182
			t := 0.0
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
			for i := 2 * (n + k); i >= m; i -= 2 {
				t = 1 / (float64(i)/x - t)
			}
			a := t
			b = 1
			//  estimate log((2/x)**n*n!) = n*log(2/x)+n*ln(n)
			//  Hence, if n*(log(2n/x)) > ...
			//  single 8.8722839355e+01
			//  double 7.09782712893383973096e+02
			//  long double 1.1356523406294143949491931077970765006170e+04
			//  then recurrent value may overflow and the result is
			//  likely underflow to zero

			tmp := float64(n)
			v := 2 / x
198
			tmp = tmp * Log(Abs(v*tmp))
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
			if tmp < 7.09782712893383973096e+02 {
				for i := n - 1; i > 0; i-- {
					di := float64(i + i)
					a, b = b, b*di/x-a
				}
			} else {
				for i := n - 1; i > 0; i-- {
					di := float64(i + i)
					a, b = b, b*di/x-a
					// scale b to avoid spurious overflow
					if b > 1e100 {
						a /= b
						t /= b
						b = 1
					}
				}
			}
			b = t * J0(x) / b
		}
	}
	if sign {
		return -b
	}
	return b
}

// Yn returns the order-n Bessel function of the second kind.
//
// Special cases are:
//	Yn(n, +Inf) = 0
//	Yn(n > 0, 0) = -Inf
//	Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even
//	Y1(n, x < 0) = NaN
//	Y1(n, NaN) = NaN
func Yn(n int, x float64) float64 {
	const Two302 = 1 << 302 // 2**302 0x52D0000000000000
	// special cases
	switch {
237
	case x < 0 || IsNaN(x):
238
		return NaN()
239
	case IsInf(x, 1):
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
		return 0
	}

	if n == 0 {
		return Y0(x)
	}
	if x == 0 {
		if n < 0 && n&1 == 1 {
			return Inf(1)
		}
		return Inf(-1)
	}
	sign := false
	if n < 0 {
		n = -n
		if n&1 == 1 {
			sign = true // sign true if n < 0 && |n| odd
		}
	}
	if n == 1 {
		if sign {
			return -Y1(x)
		}
		return Y1(x)
	}
	var b float64
	if x >= Two302 { // x > 2**302
		// (x >> n**2)
		//	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
		//	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
		//	    Let s=sin(x), c=cos(x),
		//		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
		//
		//		   n	sin(xn)*sqt2	cos(xn)*sqt2
		//		----------------------------------
		//		   0	 s-c		 c+s
		//		   1	-s-c 		-c+s
		//		   2	-s+c		-c-s
		//		   3	 s+c		 c-s

		var temp float64
		switch n & 3 {
		case 0:
			temp = Sin(x) - Cos(x)
		case 1:
			temp = -Sin(x) - Cos(x)
		case 2:
			temp = -Sin(x) + Cos(x)
		case 3:
			temp = Sin(x) + Cos(x)
		}
		b = (1 / SqrtPi) * temp / Sqrt(x)
	} else {
		a := Y0(x)
		b = Y1(x)
		// quit if b is -inf
296
		for i := 1; i < n && !IsInf(b, -1); i++ {
297 298 299 300 301 302 303 304
			a, b = b, (float64(i+i)/x)*b-a
		}
	}
	if sign {
		return -b
	}
	return b
}