Line2D.java 34.7 KB
Newer Older
Tom Tromey committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
/* Line2D.java -- represents a line in 2-D space, plus operations on a line
   Copyright (C) 2000, 2001, 2002 Free Software Foundation

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.

Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from
or based on this library.  If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so.  If you do not wish to do so, delete this
exception statement from your version. */

package java.awt.geom;

import java.awt.Rectangle;
import java.awt.Shape;
import java.util.NoSuchElementException;

/**
 * Represents a directed line bewteen two points in (x,y) Cartesian space.
 * Remember, on-screen graphics have increasing x from left-to-right, and
 * increasing y from top-to-bottom. The storage is left to subclasses.
 *
 * @author Tom Tromey (tromey@cygnus.com)
 * @author Eric Blake (ebb9@email.byu.edu)
 * @author David Gilbert
 * @since 1.2
 * @status updated to 1.4
 */
public abstract class Line2D implements Shape, Cloneable
{
  /**
   * The default constructor.
   */
  protected Line2D()
  {
  }

  /**
   * Return the x coordinate of the first point.
   *
   * @return the starting x coordinate
   */
  public abstract double getX1();

  /**
   * Return the y coordinate of the first point.
   *
   * @return the starting y coordinate
   */
  public abstract double getY1();

  /**
   * Return the first point.
   *
   * @return the starting point
   */
  public abstract Point2D getP1();

  /**
   * Return the x coordinate of the second point.
   *
   * @return the ending x coordinate
   */
  public abstract double getX2();

  /**
   * Return the y coordinate of the second point.
   *
   * @return the ending y coordinate
   */
  public abstract double getY2();

  /**
   * Return the second point.
   *
   * @return the ending point
   */
  public abstract Point2D getP2();

  /**
   * Set the coordinates of the line to the given coordinates. Loss of
   * precision may occur due to rounding issues.
   *
   * @param x1 the first x coordinate
   * @param y1 the first y coordinate
   * @param x2 the second x coordinate
   * @param y2 the second y coordinate
   */
  public abstract void setLine(double x1, double y1, double x2, double y2);

  /**
   * Set the coordinates to the given points.
   *
   * @param p1 the first point
   * @param p2 the second point
   * @throws NullPointerException if either point is null
   */
  public void setLine(Point2D p1, Point2D p2)
  {
    setLine(p1.getX(), p1.getY(), p2.getX(), p2.getY());
  }

  /**
   * Set the coordinates to those of the given line.
   *
   * @param l the line to copy
   * @throws NullPointerException if l is null
   */
  public void setLine(Line2D l)
  {
    setLine(l.getX1(), l.getY1(), l.getX2(), l.getY2());
  }

  /**
   * Computes the relative rotation direction needed to pivot the line about
   * the first point in order to have the second point colinear with point p.
   * Because of floating point rounding, don't expect this to be a perfect
   * measure of colinearity. The answer is 1 if the line has a shorter rotation
   * in the direction of the positive X axis to the negative Y axis
   * (counter-clockwise in the default Java coordinate system), or -1 if the
   * shortest rotation is in the opposite direction (clockwise). If p
   * is already colinear, the return value is -1 if it lies beyond the first
   * point, 0 if it lies in the segment, or 1 if it lies beyond the second
   * point. If the first and second point are coincident, this returns 0.
   *
   * @param x1 the first x coordinate
   * @param y1 the first y coordinate
   * @param x2 the second x coordinate
   * @param y2 the second y coordinate
   * @param px the reference x coordinate
   * @param py the reference y coordinate
   * @return the relative rotation direction
   */
  public static int relativeCCW(double x1, double y1, double x2, double y2,
                                double px, double py)
  {
    if ((x1 == x2 && y1 == y2)
        || (x1 == px && y1 == py))
      return 0; // Coincident points.
    // Translate to the origin.
    x2 -= x1;
    y2 -= y1;
    px -= x1;
    py -= y1;
    double slope2 = y2 / x2;
    double slopep = py / px;
    if (slope2 == slopep || (x2 == 0 && px == 0))
      return y2 > 0 // Colinear.
        ? (py < 0 ? -1 : py > y2 ? 1 : 0)
        : (py > 0 ? -1 : py < y2 ? 1 : 0);
    if (x2 >= 0 && slope2 >= 0)
      return px >= 0 // Quadrant 1.
        ? (slope2 > slopep ? 1 : -1)
        : (slope2 < slopep ? 1 : -1);
    if (y2 > 0)
      return px < 0 // Quadrant 2.
        ? (slope2 > slopep ? 1 : -1)
        : (slope2 < slopep ? 1 : -1);
    if (slope2 >= 0.0)
      return px >= 0 // Quadrant 3.
        ? (slope2 < slopep ? 1 : -1)
        : (slope2 > slopep ? 1 : -1);
    return px < 0 // Quadrant 4.
      ? (slope2 < slopep ? 1 : -1)
      : (slope2 > slopep ? 1 : -1);
  }

  /**
   * Computes the relative rotation direction needed to pivot this line about
   * the first point in order to have the second point colinear with point p.
   * Because of floating point rounding, don't expect this to be a perfect
   * measure of colinearity. The answer is 1 if the line has a shorter rotation
   * in the direction of the positive X axis to the negative Y axis
   * (counter-clockwise in the default Java coordinate system), or -1 if the
   * shortest rotation is in the opposite direction (clockwise). If p
   * is already colinear, the return value is -1 if it lies beyond the first
   * point, 0 if it lies in the segment, or 1 if it lies beyond the second
   * point. If the first and second point are coincident, this returns 0.
   *
   * @param px the reference x coordinate
   * @param py the reference y coordinate
   * @return the relative rotation direction
   * @see #relativeCCW(double, double, double, double, double, double)
   */
  public int relativeCCW(double px, double py)
  {
    return relativeCCW(getX1(), getY1(), getX2(), getY2(), px, py);
  }

  /**
   * Computes the relative rotation direction needed to pivot this line about
   * the first point in order to have the second point colinear with point p.
   * Because of floating point rounding, don't expect this to be a perfect
   * measure of colinearity. The answer is 1 if the line has a shorter rotation
   * in the direction of the positive X axis to the negative Y axis
   * (counter-clockwise in the default Java coordinate system), or -1 if the
   * shortest rotation is in the opposite direction (clockwise). If p
   * is already colinear, the return value is -1 if it lies beyond the first
   * point, 0 if it lies in the segment, or 1 if it lies beyond the second
   * point. If the first and second point are coincident, this returns 0.
   *
   * @param p the reference point
   * @return the relative rotation direction
   * @throws NullPointerException if p is null
   * @see #relativeCCW(double, double, double, double, double, double)
   */
  public int relativeCCW(Point2D p)
  {
    return relativeCCW(getX1(), getY1(), getX2(), getY2(), p.getX(), p.getY());
  }

  /**
   * Computes twice the (signed) area of the triangle defined by the three
   * points.  This method is used for intersection testing.
241
   *
Tom Tromey committed
242 243 244 245 246 247
   * @param x1  the x-coordinate of the first point.
   * @param y1  the y-coordinate of the first point.
   * @param x2  the x-coordinate of the second point.
   * @param y2  the y-coordinate of the second point.
   * @param x3  the x-coordinate of the third point.
   * @param y3  the y-coordinate of the third point.
248
   *
Tom Tromey committed
249 250 251 252
   * @return Twice the area.
   */
  private static double area2(double x1, double y1,
                             double x2, double y2,
253
                             double x3, double y3)
Tom Tromey committed
254
  {
255
    return (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1);
Tom Tromey committed
256 257 258 259
  }

  /**
   * Returns <code>true</code> if (x3, y3) lies between (x1, y1) and (x2, y2),
260
   * and false otherwise,  This test assumes that the three points are
Tom Tromey committed
261
   * collinear, and is used for intersection testing.
262
   *
Tom Tromey committed
263 264 265 266 267 268
   * @param x1  the x-coordinate of the first point.
   * @param y1  the y-coordinate of the first point.
   * @param x2  the x-coordinate of the second point.
   * @param y2  the y-coordinate of the second point.
   * @param x3  the x-coordinate of the third point.
   * @param y3  the y-coordinate of the third point.
269
   *
Tom Tromey committed
270 271
   * @return A boolean.
   */
272 273 274
  private static boolean between(double x1, double y1,
                                double x2, double y2,
                                double x3, double y3)
Tom Tromey committed
275 276
  {
    if (x1 != x2) {
277
      return (x1 <= x3 && x3 <= x2) || (x1 >= x3 && x3 >= x2);
Tom Tromey committed
278 279
    }
    else {
280
      return (y1 <= y3 && y3 <= y2) || (y1 >= y3 && y3 >= y2);
Tom Tromey committed
281 282 283 284
    }
  }

  /**
285
   * Test if the line segment (x1,y1)-&gt;(x2,y2) intersects the line segment
Tom Tromey committed
286 287 288
   * (x3,y3)-&gt;(x4,y4).
   *
   * @param x1 the first x coordinate of the first segment
289
   * @param y1 the first y coordinate of the first segment
Tom Tromey committed
290 291 292 293 294 295 296 297 298 299 300 301 302 303
   * @param x2 the second x coordinate of the first segment
   * @param y2 the second y coordinate of the first segment
   * @param x3 the first x coordinate of the second segment
   * @param y3 the first y coordinate of the second segment
   * @param x4 the second x coordinate of the second segment
   * @param y4 the second y coordinate of the second segment
   * @return true if the segments intersect
   */
  public static boolean linesIntersect(double x1, double y1,
                                      double x2, double y2,
                                      double x3, double y3,
                                      double x4, double y4)
  {
    double a1, a2, a3, a4;
304

Tom Tromey committed
305
    // deal with special cases
306
    if ((a1 = area2(x1, y1, x2, y2, x3, y3)) == 0.0)
Tom Tromey committed
307 308 309
    {
      // check if p3 is between p1 and p2 OR
      // p4 is collinear also AND either between p1 and p2 OR at opposite ends
310
      if (between(x1, y1, x2, y2, x3, y3))
Tom Tromey committed
311 312 313
      {
        return true;
      }
314
      else
Tom Tromey committed
315
      {
316
        if (area2(x1, y1, x2, y2, x4, y4) == 0.0)
Tom Tromey committed
317
        {
318
          return between(x3, y3, x4, y4, x1, y1)
Tom Tromey committed
319 320 321 322 323 324 325
                 || between (x3, y3, x4, y4, x2, y2);
        }
        else {
          return false;
        }
      }
    }
326
    else if ((a2 = area2(x1, y1, x2, y2, x4, y4)) == 0.0)
Tom Tromey committed
327 328 329 330 331
    {
      // check if p4 is between p1 and p2 (we already know p3 is not
      // collinear)
      return between(x1, y1, x2, y2, x4, y4);
    }
332

Tom Tromey committed
333 334 335 336 337 338 339 340
    if ((a3 = area2(x3, y3, x4, y4, x1, y1)) == 0.0) {
      // check if p1 is between p3 and p4 OR
      // p2 is collinear also AND either between p1 and p2 OR at opposite ends
      if (between(x3, y3, x4, y4, x1, y1)) {
        return true;
      }
      else {
        if (area2(x3, y3, x4, y4, x2, y2) == 0.0) {
341
          return between(x1, y1, x2, y2, x3, y3)
Tom Tromey committed
342 343 344 345 346 347 348 349 350 351 352 353 354 355
                 || between (x1, y1, x2, y2, x4, y4);
        }
        else {
          return false;
        }
      }
    }
    else if ((a4 = area2(x3, y3, x4, y4, x2, y2)) == 0.0) {
      // check if p2 is between p3 and p4 (we already know p1 is not
      // collinear)
      return between(x3, y3, x4, y4, x2, y2);
    }
    else {  // test for regular intersection
      return ((a1 > 0.0) ^ (a2 > 0.0)) && ((a3 > 0.0) ^ (a4 > 0.0));
356
    }
Tom Tromey committed
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
  }

  /**
   * Test if this line intersects the line given by (x1,y1)-&gt;(x2,y2).
   *
   * @param x1 the first x coordinate of the other segment
   * @param y1 the first y coordinate of the other segment
   * @param x2 the second x coordinate of the other segment
   * @param y2 the second y coordinate of the other segment
   * @return true if the segments intersect
   * @see #linesIntersect(double, double, double, double,
   *                      double, double, double, double)
   */
  public boolean intersectsLine(double x1, double y1, double x2, double y2)
  {
    return linesIntersect(getX1(), getY1(), getX2(), getY2(),
                          x1, y1, x2, y2);
  }

  /**
   * Test if this line intersects the given line.
   *
   * @param l the other segment
   * @return true if the segments intersect
   * @throws NullPointerException if l is null
   * @see #linesIntersect(double, double, double, double,
   *                      double, double, double, double)
   */
  public boolean intersectsLine(Line2D l)
  {
    return linesIntersect(getX1(), getY1(), getX2(), getY2(),
                          l.getX1(), l.getY1(), l.getX2(), l.getY2());
  }

  /**
   * Measures the square of the shortest distance from the reference point
   * to a point on the line segment. If the point is on the segment, the
   * result will be 0.
   *
   * @param x1 the first x coordinate of the segment
   * @param y1 the first y coordinate of the segment
   * @param x2 the second x coordinate of the segment
   * @param y2 the second y coordinate of the segment
   * @param px the x coordinate of the point
   * @param py the y coordinate of the point
   * @return the square of the distance from the point to the segment
   * @see #ptSegDist(double, double, double, double, double, double)
   * @see #ptLineDistSq(double, double, double, double, double, double)
   */
  public static double ptSegDistSq(double x1, double y1, double x2, double y2,
                                   double px, double py)
  {
    double pd2 = (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);

    double x, y;
    if (pd2 == 0)
      {
        // Points are coincident.
        x = x1;
        y = y2;
      }
    else
      {
        double u = ((px - x1) * (x2 - x1) + (py - y1) * (y2 - y1)) / pd2;

        if (u < 0)
          {
            // "Off the end"
            x = x1;
            y = y1;
          }
        else if (u > 1.0)
          {
            x = x2;
            y = y2;
          }
        else
          {
            x = x1 + u * (x2 - x1);
            y = y1 + u * (y2 - y1);
          }
      }

    return (x - px) * (x - px) + (y - py) * (y - py);
  }

  /**
   * Measures the shortest distance from the reference point to a point on
   * the line segment. If the point is on the segment, the result will be 0.
   *
   * @param x1 the first x coordinate of the segment
   * @param y1 the first y coordinate of the segment
   * @param x2 the second x coordinate of the segment
   * @param y2 the second y coordinate of the segment
   * @param px the x coordinate of the point
   * @param py the y coordinate of the point
   * @return the distance from the point to the segment
   * @see #ptSegDistSq(double, double, double, double, double, double)
   * @see #ptLineDist(double, double, double, double, double, double)
   */
  public static double ptSegDist(double x1, double y1, double x2, double y2,
                                 double px, double py)
  {
    return Math.sqrt(ptSegDistSq(x1, y1, x2, y2, px, py));
  }

  /**
   * Measures the square of the shortest distance from the reference point
   * to a point on this line segment. If the point is on the segment, the
   * result will be 0.
   *
   * @param px the x coordinate of the point
   * @param py the y coordinate of the point
   * @return the square of the distance from the point to the segment
   * @see #ptSegDistSq(double, double, double, double, double, double)
   */
  public double ptSegDistSq(double px, double py)
  {
    return ptSegDistSq(getX1(), getY1(), getX2(), getY2(), px, py);
  }

  /**
   * Measures the square of the shortest distance from the reference point
   * to a point on this line segment. If the point is on the segment, the
   * result will be 0.
   *
   * @param p the point
   * @return the square of the distance from the point to the segment
   * @throws NullPointerException if p is null
   * @see #ptSegDistSq(double, double, double, double, double, double)
   */
  public double ptSegDistSq(Point2D p)
  {
    return ptSegDistSq(getX1(), getY1(), getX2(), getY2(), p.getX(), p.getY());
  }

  /**
   * Measures the shortest distance from the reference point to a point on
   * this line segment. If the point is on the segment, the result will be 0.
   *
   * @param px the x coordinate of the point
   * @param py the y coordinate of the point
   * @return the distance from the point to the segment
   * @see #ptSegDist(double, double, double, double, double, double)
   */
  public double ptSegDist(double px, double py)
  {
    return ptSegDist(getX1(), getY1(), getX2(), getY2(), px, py);
  }

  /**
   * Measures the shortest distance from the reference point to a point on
   * this line segment. If the point is on the segment, the result will be 0.
   *
   * @param p the point
   * @return the distance from the point to the segment
   * @throws NullPointerException if p is null
   * @see #ptSegDist(double, double, double, double, double, double)
   */
  public double ptSegDist(Point2D p)
  {
    return ptSegDist(getX1(), getY1(), getX2(), getY2(), p.getX(), p.getY());
  }

  /**
   * Measures the square of the shortest distance from the reference point
   * to a point on the infinite line extended from the segment. If the point
   * is on the segment, the result will be 0. If the segment is length 0,
   * the distance is to the common endpoint.
   *
   * @param x1 the first x coordinate of the segment
   * @param y1 the first y coordinate of the segment
   * @param x2 the second x coordinate of the segment
   * @param y2 the second y coordinate of the segment
   * @param px the x coordinate of the point
   * @param py the y coordinate of the point
   * @return the square of the distance from the point to the extended line
   * @see #ptLineDist(double, double, double, double, double, double)
   * @see #ptSegDistSq(double, double, double, double, double, double)
   */
  public static double ptLineDistSq(double x1, double y1, double x2, double y2,
                                    double px, double py)
  {
    double pd2 = (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);

    double x, y;
    if (pd2 == 0)
      {
        // Points are coincident.
        x = x1;
        y = y2;
      }
    else
      {
        double u = ((px - x1) * (x2 - x1) + (py - y1) * (y2 - y1)) / pd2;
        x = x1 + u * (x2 - x1);
        y = y1 + u * (y2 - y1);
      }

    return (x - px) * (x - px) + (y - py) * (y - py);
  }

  /**
   * Measures the shortest distance from the reference point to a point on
   * the infinite line extended from the segment. If the point is on the
   * segment, the result will be 0. If the segment is length 0, the distance
   * is to the common endpoint.
   *
   * @param x1 the first x coordinate of the segment
   * @param y1 the first y coordinate of the segment
   * @param x2 the second x coordinate of the segment
   * @param y2 the second y coordinate of the segment
   * @param px the x coordinate of the point
   * @param py the y coordinate of the point
   * @return the distance from the point to the extended line
   * @see #ptLineDistSq(double, double, double, double, double, double)
   * @see #ptSegDist(double, double, double, double, double, double)
   */
  public static double ptLineDist(double x1, double y1,
                                   double x2, double y2,
                                   double px, double py)
  {
    return Math.sqrt(ptLineDistSq(x1, y1, x2, y2, px, py));
  }

  /**
   * Measures the square of the shortest distance from the reference point
   * to a point on the infinite line extended from this segment. If the point
   * is on the segment, the result will be 0. If the segment is length 0,
   * the distance is to the common endpoint.
   *
   * @param px the x coordinate of the point
   * @param py the y coordinate of the point
   * @return the square of the distance from the point to the extended line
   * @see #ptLineDistSq(double, double, double, double, double, double)
   */
  public double ptLineDistSq(double px, double py)
  {
    return ptLineDistSq(getX1(), getY1(), getX2(), getY2(), px, py);
  }

  /**
   * Measures the square of the shortest distance from the reference point
   * to a point on the infinite line extended from this segment. If the point
   * is on the segment, the result will be 0. If the segment is length 0,
   * the distance is to the common endpoint.
   *
   * @param p the point
   * @return the square of the distance from the point to the extended line
   * @throws NullPointerException if p is null
   * @see #ptLineDistSq(double, double, double, double, double, double)
   */
  public double ptLineDistSq(Point2D p)
  {
    return ptLineDistSq(getX1(), getY1(), getX2(), getY2(),
                        p.getX(), p.getY());
  }

  /**
   * Measures the shortest distance from the reference point to a point on
   * the infinite line extended from this segment. If the point is on the
   * segment, the result will be 0. If the segment is length 0, the distance
   * is to the common endpoint.
   *
   * @param px the x coordinate of the point
   * @param py the y coordinate of the point
   * @return the distance from the point to the extended line
   * @see #ptLineDist(double, double, double, double, double, double)
   */
  public double ptLineDist(double px, double py)
  {
    return ptLineDist(getX1(), getY1(), getX2(), getY2(), px, py);
  }

  /**
   * Measures the shortest distance from the reference point to a point on
   * the infinite line extended from this segment. If the point is on the
   * segment, the result will be 0. If the segment is length 0, the distance
   * is to the common endpoint.
   *
   * @param p the point
   * @return the distance from the point to the extended line
   * @throws NullPointerException if p is null
   * @see #ptLineDist(double, double, double, double, double, double)
   */
  public double ptLineDist(Point2D p)
  {
    return ptLineDist(getX1(), getY1(), getX2(), getY2(), p.getX(), p.getY());
  }

  /**
   * Test if a point is contained inside the line. Since a line has no area,
   * this returns false.
   *
   * @param x the x coordinate
   * @param y the y coordinate
   * @return false; the line does not contain points
   */
  public boolean contains(double x, double y)
  {
    return false;
  }

  /**
   * Test if a point is contained inside the line. Since a line has no area,
   * this returns false.
   *
   * @param p the point
   * @return false; the line does not contain points
   */
  public boolean contains(Point2D p)
  {
    return false;
  }

  /**
   * Tests if this line intersects the interior of the specified rectangle.
   *
   * @param x the x coordinate of the rectangle
   * @param y the y coordinate of the rectangle
   * @param w the width of the rectangle
   * @param h the height of the rectangle
   * @return true if the line intersects the rectangle
   */
  public boolean intersects(double x, double y, double w, double h)
  {
    if (w <= 0 || h <= 0)
      return false;
    double x1 = getX1();
    double y1 = getY1();
    double x2 = getX2();
    double y2 = getY2();

    if (x1 >= x && x1 <= x + w && y1 >= y && y1 <= y + h)
      return true;
    if (x2 >= x && x2 <= x + w && y2 >= y && y2 <= y + h)
      return true;

    double x3 = x + w;
    double y3 = y + h;

    return (linesIntersect(x1, y1, x2, y2, x, y, x, y3)
            || linesIntersect(x1, y1, x2, y2, x, y3, x3, y3)
            || linesIntersect(x1, y1, x2, y2, x3, y3, x3, y)
            || linesIntersect(x1, y1, x2, y2, x3, y, x, y));
  }

  /**
   * Tests if this line intersects the interior of the specified rectangle.
   *
   * @param r the rectangle
   * @return true if the line intersects the rectangle
   * @throws NullPointerException if r is null
   */
  public boolean intersects(Rectangle2D r)
  {
    return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
  }

  /**
   * Tests if the line contains a rectangle. Since lines have no area, this
   * always returns false.
   *
   * @param x the x coordinate of the rectangle
   * @param y the y coordinate of the rectangle
   * @param w the width of the rectangle
   * @param h the height of the rectangle
   * @return false; the line does not contain points
   */
  public boolean contains(double x, double y, double w, double h)
  {
    return false;
  }

  /**
   * Tests if the line contains a rectangle. Since lines have no area, this
   * always returns false.
   *
   * @param r the rectangle
   * @return false; the line does not contain points
   */
  public boolean contains(Rectangle2D r)
  {
    return false;
  }

  /**
   * Gets a bounding box (not necessarily minimal) for this line.
   *
   * @return the integer bounding box
   * @see #getBounds2D()
   */
  public Rectangle getBounds()
  {
    return getBounds2D().getBounds();
  }

  /**
   * Return a path iterator, possibly applying a transform on the result. This
   * iterator is not threadsafe.
   *
   * @param at the transform, or null
   * @return a new path iterator
   */
  public PathIterator getPathIterator(final AffineTransform at)
  {
    return new PathIterator()
    {
      /** Current coordinate. */
      private int current = 0;

      public int getWindingRule()
      {
        return WIND_NON_ZERO;
      }

      public boolean isDone()
      {
        return current >= 2;
      }

      public void next()
      {
        current++;
      }

      public int currentSegment(float[] coords)
      {
        int result;
        switch (current)
          {
          case 0:
            coords[0] = (float) getX1();
            coords[1] = (float) getY1();
            result = SEG_MOVETO;
            break;
          case 1:
            coords[0] = (float) getX2();
            coords[1] = (float) getY2();
            result = SEG_LINETO;
            break;
          default:
            throw new NoSuchElementException("line iterator out of bounds");
          }
        if (at != null)
          at.transform(coords, 0, coords, 0, 1);
        return result;
      }

      public int currentSegment(double[] coords)
      {
        int result;
        switch (current)
          {
          case 0:
            coords[0] = getX1();
            coords[1] = getY1();
            result = SEG_MOVETO;
            break;
          case 1:
            coords[0] = getX2();
            coords[1] = getY2();
            result = SEG_LINETO;
            break;
          default:
            throw new NoSuchElementException("line iterator out of bounds");
          }
        if (at != null)
          at.transform(coords, 0, coords, 0, 1);
        return result;
      }
    };
  }

  /**
   * Return a flat path iterator, possibly applying a transform on the result.
   * This iterator is not threadsafe.
   *
   * @param at the transform, or null
   * @param flatness ignored, since lines are already flat
   * @return a new path iterator
   * @see #getPathIterator(AffineTransform)
   */
  public PathIterator getPathIterator(AffineTransform at, double flatness)
  {
    return getPathIterator(at);
  }

  /**
   * Create a new line of the same run-time type with the same contents as
   * this one.
   *
   * @return the clone
   *
   * @exception OutOfMemoryError If there is not enough memory available.
   *
   * @since 1.2
   */
  public Object clone()
  {
    try
      {
        return super.clone();
      }
    catch (CloneNotSupportedException e)
      {
        throw (Error) new InternalError().initCause(e); // Impossible
      }
  }

  /**
   * This class defines a point in <code>double</code> precision.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   * @since 1.2
   * @status updated to 1.4
   */
  public static class Double extends Line2D
  {
    /** The x coordinate of the first point. */
    public double x1;

    /** The y coordinate of the first point. */
    public double y1;

    /** The x coordinate of the second point. */
    public double x2;

    /** The y coordinate of the second point. */
    public double y2;

    /**
     * Construct the line segment (0,0)-&gt;(0,0).
     */
    public Double()
    {
    }

    /**
     * Construct the line segment with the specified points.
     *
     * @param x1 the x coordinate of the first point
     * @param y1 the y coordinate of the first point
     * @param x2 the x coordinate of the second point
     * @param y2 the y coordinate of the second point
     */
    public Double(double x1, double y1, double x2, double y2)
    {
      this.x1 = x1;
      this.y1 = y1;
      this.x2 = x2;
      this.y2 = y2;
    }

    /**
     * Construct the line segment with the specified points.
     *
     * @param p1 the first point
     * @param p2 the second point
     * @throws NullPointerException if either point is null
     */
    public Double(Point2D p1, Point2D p2)
    {
      x1 = p1.getX();
      y1 = p1.getY();
      x2 = p2.getX();
      y2 = p2.getY();
    }

    /**
     * Return the x coordinate of the first point.
     *
     * @return the value of x1
     */
    public double getX1()
    {
      return x1;
    }

    /**
     * Return the y coordinate of the first point.
     *
     * @return the value of y1
     */
    public double getY1()
    {
      return y1;
    }

    /**
     * Return the first point.
     *
     * @return the point (x1,y1)
     */
    public Point2D getP1()
    {
      return new Point2D.Double(x1, y1);
    }

    /**
     * Return the x coordinate of the second point.
     *
     * @return the value of x2
     */
    public double getX2()
    {
      return x2;
    }

    /**
     * Return the y coordinate of the second point.
     *
     * @return the value of y2
     */
    public double getY2()
    {
      return y2;
    }

    /**
     * Return the second point.
     *
     * @return the point (x2,y2)
     */
    public Point2D getP2()
    {
      return new Point2D.Double(x2, y2);
    }

    /**
     * Set this line to the given points.
     *
     * @param x1 the new x coordinate of the first point
     * @param y1 the new y coordinate of the first point
     * @param x2 the new x coordinate of the second point
     * @param y2 the new y coordinate of the second point
     */
    public void setLine(double x1, double y1, double x2, double y2)
    {
      this.x1 = x1;
      this.y1 = y1;
      this.x2 = x2;
      this.y2 = y2;
    }

    /**
     * Return the exact bounds of this line segment.
     *
     * @return the bounding box
     */
    public Rectangle2D getBounds2D()
    {
      double x = Math.min(x1, x2);
      double y = Math.min(y1, y2);
      double w = Math.abs(x1 - x2);
      double h = Math.abs(y1 - y2);
      return new Rectangle2D.Double(x, y, w, h);
    }
  } // class Double

  /**
   * This class defines a point in <code>float</code> precision.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   * @since 1.2
   * @status updated to 1.4
   */
  public static class Float extends Line2D
  {
    /** The x coordinate of the first point. */
    public float x1;

    /** The y coordinate of the first point. */
    public float y1;

    /** The x coordinate of the second point. */
    public float x2;

    /** The y coordinate of the second point. */
    public float y2;

    /**
     * Construct the line segment (0,0)-&gt;(0,0).
     */
    public Float()
    {
    }

    /**
     * Construct the line segment with the specified points.
     *
     * @param x1 the x coordinate of the first point
     * @param y1 the y coordinate of the first point
     * @param x2 the x coordinate of the second point
     * @param y2 the y coordinate of the second point
     */
    public Float(float x1, float y1, float x2, float y2)
    {
      this.x1 = x1;
      this.y1 = y1;
      this.x2 = x2;
      this.y2 = y2;
    }

    /**
     * Construct the line segment with the specified points.
     *
     * @param p1 the first point
     * @param p2 the second point
     * @throws NullPointerException if either point is null
     */
    public Float(Point2D p1, Point2D p2)
    {
      x1 = (float) p1.getX();
      y1 = (float) p1.getY();
      x2 = (float) p2.getX();
      y2 = (float) p2.getY();
    }

    /**
     * Return the x coordinate of the first point.
     *
     * @return the value of x1
     */
    public double getX1()
    {
      return x1;
    }

    /**
     * Return the y coordinate of the first point.
     *
     * @return the value of y1
     */
    public double getY1()
    {
      return y1;
    }

    /**
     * Return the first point.
     *
     * @return the point (x1,y1)
     */
    public Point2D getP1()
    {
      return new Point2D.Float(x1, y1);
    }

    /**
     * Return the x coordinate of the second point.
     *
     * @return the value of x2
     */
    public double getX2()
    {
      return x2;
    }

    /**
     * Return the y coordinate of the second point.
     *
     * @return the value of y2
     */
    public double getY2()
    {
      return y2;
    }

    /**
     * Return the second point.
     *
     * @return the point (x2,y2)
     */
    public Point2D getP2()
    {
      return new Point2D.Float(x2, y2);
    }

    /**
     * Set this line to the given points.
     *
     * @param x1 the new x coordinate of the first point
     * @param y1 the new y coordinate of the first point
     * @param x2 the new x coordinate of the second point
     * @param y2 the new y coordinate of the second point
     */
    public void setLine(double x1, double y1, double x2, double y2)
    {
      this.x1 = (float) x1;
      this.y1 = (float) y1;
      this.x2 = (float) x2;
      this.y2 = (float) y2;
    }

    /**
     * Set this line to the given points.
     *
     * @param x1 the new x coordinate of the first point
     * @param y1 the new y coordinate of the first point
     * @param x2 the new x coordinate of the second point
     * @param y2 the new y coordinate of the second point
     */
    public void setLine(float x1, float y1, float x2, float y2)
    {
      this.x1 = x1;
      this.y1 = y1;
      this.x2 = x2;
      this.y2 = y2;
    }

    /**
     * Return the exact bounds of this line segment.
     *
     * @return the bounding box
     */
    public Rectangle2D getBounds2D()
    {
      float x = Math.min(x1, x2);
      float y = Math.min(y1, y2);
      float w = Math.abs(x1 - x2);
      float h = Math.abs(y1 - y2);
      return new Rectangle2D.Float(x, y, w, h);
    }
  } // class Float
} // class Line2D