tree-ssa-loop-prefetch.c 46.2 KB
Newer Older
Zdenek Dvorak committed
1
/* Array prefetching.
2
   Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
Zdenek Dvorak committed
3 4 5 6 7
   
This file is part of GCC.
   
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
8
Free Software Foundation; either version 3, or (at your option) any
Zdenek Dvorak committed
9 10 11 12 13 14 15 16
later version.
   
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
   
You should have received a copy of the GNU General Public License
17 18
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
Zdenek Dvorak committed
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "output.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "varray.h"
#include "expr.h"
#include "tree-pass.h"
#include "ggc.h"
#include "insn-config.h"
#include "recog.h"
#include "hashtab.h"
#include "tree-chrec.h"
#include "tree-scalar-evolution.h"
#include "toplev.h"
#include "params.h"
#include "langhooks.h"
47
#include "tree-inline.h"
48
#include "tree-data-ref.h"
49
#include "optabs.h"
Zdenek Dvorak committed
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

/* This pass inserts prefetch instructions to optimize cache usage during
   accesses to arrays in loops.  It processes loops sequentially and:

   1) Gathers all memory references in the single loop.
   2) For each of the references it decides when it is profitable to prefetch
      it.  To do it, we evaluate the reuse among the accesses, and determines
      two values: PREFETCH_BEFORE (meaning that it only makes sense to do
      prefetching in the first PREFETCH_BEFORE iterations of the loop) and
      PREFETCH_MOD (meaning that it only makes sense to prefetch in the
      iterations of the loop that are zero modulo PREFETCH_MOD).  For example
      (assuming cache line size is 64 bytes, char has size 1 byte and there
      is no hardware sequential prefetch):

      char *a;
      for (i = 0; i < max; i++)
	{
	  a[255] = ...;		(0)
	  a[i] = ...;		(1)
	  a[i + 64] = ...;	(2)
	  a[16*i] = ...;	(3)
	  a[187*i] = ...;	(4)
	  a[187*i + 50] = ...;	(5)
	}

       (0) obviously has PREFETCH_BEFORE 1
       (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
           location 64 iterations before it, and PREFETCH_MOD 64 (since
	   it hits the same cache line otherwise).
       (2) has PREFETCH_MOD 64
       (3) has PREFETCH_MOD 4
       (4) has PREFETCH_MOD 1.  We do not set PREFETCH_BEFORE here, since
           the cache line accessed by (4) is the same with probability only
	   7/32.
       (5) has PREFETCH_MOD 1 as well.

86 87 88 89
      Additionally, we use data dependence analysis to determine for each
      reference the distance till the first reuse; this information is used
      to determine the temporality of the issued prefetch instruction.

Zdenek Dvorak committed
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
   3) We determine how much ahead we need to prefetch.  The number of
      iterations needed is time to fetch / time spent in one iteration of
      the loop.  The problem is that we do not know either of these values,
      so we just make a heuristic guess based on a magic (possibly)
      target-specific constant and size of the loop.

   4) Determine which of the references we prefetch.  We take into account
      that there is a maximum number of simultaneous prefetches (provided
      by machine description).  We prefetch as many prefetches as possible
      while still within this bound (starting with those with lowest
      prefetch_mod, since they are responsible for most of the cache
      misses).
      
   5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
      and PREFETCH_BEFORE requirements (within some bounds), and to avoid
      prefetching nonaccessed memory.
      TODO -- actually implement peeling.
      
   6) We actually emit the prefetch instructions.  ??? Perhaps emit the
      prefetch instructions with guards in cases where 5) was not sufficient
      to satisfy the constraints?

   Some other TODO:
      -- write and use more general reuse analysis (that could be also used
	 in other cache aimed loop optimizations)
      -- make it behave sanely together with the prefetches given by user
	 (now we just ignore them; at the very least we should avoid
	 optimizing loops in that user put his own prefetches)
      -- we assume cache line size alignment of arrays; this could be
	 improved.  */

/* Magic constants follow.  These should be replaced by machine specific
   numbers.  */

/* True if write can be prefetched by a read prefetch.  */

#ifndef WRITE_CAN_USE_READ_PREFETCH
#define WRITE_CAN_USE_READ_PREFETCH 1
#endif

/* True if read can be prefetched by a write prefetch. */

#ifndef READ_CAN_USE_WRITE_PREFETCH
#define READ_CAN_USE_WRITE_PREFETCH 0
#endif

136 137 138
/* The size of the block loaded by a single prefetch.  Usually, this is
   the same as cache line size (at the moment, we only consider one level
   of cache hierarchy).  */
Zdenek Dvorak committed
139 140

#ifndef PREFETCH_BLOCK
141
#define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
Zdenek Dvorak committed
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
#endif

/* Do we have a forward hardware sequential prefetching?  */

#ifndef HAVE_FORWARD_PREFETCH
#define HAVE_FORWARD_PREFETCH 0
#endif

/* Do we have a backward hardware sequential prefetching?  */

#ifndef HAVE_BACKWARD_PREFETCH
#define HAVE_BACKWARD_PREFETCH 0
#endif

/* In some cases we are only able to determine that there is a certain
   probability that the two accesses hit the same cache line.  In this
   case, we issue the prefetches for both of them if this probability
159
   is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand.  */
Zdenek Dvorak committed
160 161 162 163 164 165 166 167 168

#ifndef ACCEPTABLE_MISS_RATE
#define ACCEPTABLE_MISS_RATE 50
#endif

#ifndef HAVE_prefetch
#define HAVE_prefetch 0
#endif

169 170
#define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
#define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
171 172 173 174 175 176 177 178

/* We consider a memory access nontemporal if it is not reused sooner than
   after L2_CACHE_SIZE_BYTES of memory are accessed.  However, we ignore
   accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
   so that we use nontemporal prefetches e.g. if single memory location
   is accessed several times in a single iteration of the loop.  */
#define NONTEMPORAL_FRACTION 16

179 180 181 182 183 184 185
/* In case we have to emit a memory fence instruction after the loop that
   uses nontemporal stores, this defines the builtin to use.  */

#ifndef FENCE_FOLLOWING_MOVNT
#define FENCE_FOLLOWING_MOVNT NULL_TREE
#endif

Zdenek Dvorak committed
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/* The group of references between that reuse may occur.  */

struct mem_ref_group
{
  tree base;			/* Base of the reference.  */
  HOST_WIDE_INT step;		/* Step of the reference.  */
  struct mem_ref *refs;		/* References in the group.  */
  struct mem_ref_group *next;	/* Next group of references.  */
};

/* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched.  */

#define PREFETCH_ALL		(~(unsigned HOST_WIDE_INT) 0)

/* The memory reference.  */

struct mem_ref
{
204
  gimple stmt;			/* Statement in that the reference appears.  */
Zdenek Dvorak committed
205 206 207 208 209 210 211 212 213
  tree mem;			/* The reference.  */
  HOST_WIDE_INT delta;		/* Constant offset of the reference.  */
  struct mem_ref_group *group;	/* The group of references it belongs to.  */
  unsigned HOST_WIDE_INT prefetch_mod;
				/* Prefetch only each PREFETCH_MOD-th
				   iteration.  */
  unsigned HOST_WIDE_INT prefetch_before;
				/* Prefetch only first PREFETCH_BEFORE
				   iterations.  */
214 215
  unsigned reuse_distance;	/* The amount of data accessed before the first
				   reuse of this value.  */
Zdenek Dvorak committed
216
  struct mem_ref *next;		/* The next reference in the group.  */
217 218 219 220 221 222
  unsigned write_p : 1;		/* Is it a write?  */
  unsigned independent_p : 1;	/* True if the reference is independent on
				   all other references inside the loop.  */
  unsigned issue_prefetch_p : 1;	/* Should we really issue the prefetch?  */
  unsigned storent_p : 1;	/* True if we changed the store to a
				   nontemporal one.  */
Zdenek Dvorak committed
223 224
};

225
/* Dumps information about reference REF to FILE.  */
Zdenek Dvorak committed
226 227 228 229 230 231 232 233 234 235 236 237

static void
dump_mem_ref (FILE *file, struct mem_ref *ref)
{
  fprintf (file, "Reference %p:\n", (void *) ref);

  fprintf (file, "  group %p (base ", (void *) ref->group);
  print_generic_expr (file, ref->group->base, TDF_SLIM);
  fprintf (file, ", step ");
  fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->group->step);
  fprintf (file, ")\n");

238
  fprintf (file, "  delta ");
Zdenek Dvorak committed
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
  fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->delta);
  fprintf (file, "\n");

  fprintf (file, "  %s\n", ref->write_p ? "write" : "read");

  fprintf (file, "\n");
}

/* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
   exist.  */

static struct mem_ref_group *
find_or_create_group (struct mem_ref_group **groups, tree base,
		      HOST_WIDE_INT step)
{
  struct mem_ref_group *group;

  for (; *groups; groups = &(*groups)->next)
    {
      if ((*groups)->step == step
	  && operand_equal_p ((*groups)->base, base, 0))
	return *groups;

      /* Keep the list of groups sorted by decreasing step.  */
      if ((*groups)->step < step)
	break;
    }

267
  group = XNEW (struct mem_ref_group);
Zdenek Dvorak committed
268 269 270 271 272 273 274 275 276 277 278 279 280
  group->base = base;
  group->step = step;
  group->refs = NULL;
  group->next = *groups;
  *groups = group;

  return group;
}

/* Records a memory reference MEM in GROUP with offset DELTA and write status
   WRITE_P.  The reference occurs in statement STMT.  */

static void
281
record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
Zdenek Dvorak committed
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
	    HOST_WIDE_INT delta, bool write_p)
{
  struct mem_ref **aref;

  /* Do not record the same address twice.  */
  for (aref = &group->refs; *aref; aref = &(*aref)->next)
    {
      /* It does not have to be possible for write reference to reuse the read
	 prefetch, or vice versa.  */
      if (!WRITE_CAN_USE_READ_PREFETCH
	  && write_p
	  && !(*aref)->write_p)
	continue;
      if (!READ_CAN_USE_WRITE_PREFETCH
	  && !write_p
	  && (*aref)->write_p)
	continue;

      if ((*aref)->delta == delta)
	return;
    }

304
  (*aref) = XNEW (struct mem_ref);
Zdenek Dvorak committed
305 306 307 308 309 310
  (*aref)->stmt = stmt;
  (*aref)->mem = mem;
  (*aref)->delta = delta;
  (*aref)->write_p = write_p;
  (*aref)->prefetch_before = PREFETCH_ALL;
  (*aref)->prefetch_mod = 1;
311
  (*aref)->reuse_distance = 0;
Zdenek Dvorak committed
312 313 314
  (*aref)->issue_prefetch_p = false;
  (*aref)->group = group;
  (*aref)->next = NULL;
315 316
  (*aref)->independent_p = false;
  (*aref)->storent_p = false;
Zdenek Dvorak committed
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346

  if (dump_file && (dump_flags & TDF_DETAILS))
    dump_mem_ref (dump_file, *aref);
}

/* Release memory references in GROUPS.  */

static void
release_mem_refs (struct mem_ref_group *groups)
{
  struct mem_ref_group *next_g;
  struct mem_ref *ref, *next_r;

  for (; groups; groups = next_g)
    {
      next_g = groups->next;
      for (ref = groups->refs; ref; ref = next_r)
	{
	  next_r = ref->next;
	  free (ref);
	}
      free (groups);
    }
}

/* A structure used to pass arguments to idx_analyze_ref.  */

struct ar_data
{
  struct loop *loop;			/* Loop of the reference.  */
347
  gimple stmt;				/* Statement of the reference.  */
Zdenek Dvorak committed
348 349 350 351 352 353 354 355 356 357
  HOST_WIDE_INT *step;			/* Step of the memory reference.  */
  HOST_WIDE_INT *delta;			/* Offset of the memory reference.  */
};

/* Analyzes a single INDEX of a memory reference to obtain information
   described at analyze_ref.  Callback for for_each_index.  */

static bool
idx_analyze_ref (tree base, tree *index, void *data)
{
358
  struct ar_data *ar_data = (struct ar_data *) data;
Zdenek Dvorak committed
359 360 361 362 363 364 365 366 367 368 369 370 371
  tree ibase, step, stepsize;
  HOST_WIDE_INT istep, idelta = 0, imult = 1;
  affine_iv iv;

  if (TREE_CODE (base) == MISALIGNED_INDIRECT_REF
      || TREE_CODE (base) == ALIGN_INDIRECT_REF)
    return false;

  if (!simple_iv (ar_data->loop, ar_data->stmt, *index, &iv, false))
    return false;
  ibase = iv.base;
  step = iv.step;

372 373 374
  if (!cst_and_fits_in_hwi (step))
    return false;
  istep = int_cst_value (step);
Zdenek Dvorak committed
375

Andrew Pinski committed
376
  if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
Zdenek Dvorak committed
377 378 379 380 381 382 383 384
      && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
    {
      idelta = int_cst_value (TREE_OPERAND (ibase, 1));
      ibase = TREE_OPERAND (ibase, 0);
    }
  if (cst_and_fits_in_hwi (ibase))
    {
      idelta += int_cst_value (ibase);
385
      ibase = build_int_cst (TREE_TYPE (ibase), 0);
Zdenek Dvorak committed
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    }

  if (TREE_CODE (base) == ARRAY_REF)
    {
      stepsize = array_ref_element_size (base);
      if (!cst_and_fits_in_hwi (stepsize))
	return false;
      imult = int_cst_value (stepsize);

      istep *= imult;
      idelta *= imult;
    }

  *ar_data->step += istep;
  *ar_data->delta += idelta;
  *index = ibase;

  return true;
}

406
/* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
Zdenek Dvorak committed
407
   STEP are integer constants and iter is number of iterations of LOOP.  The
408 409
   reference occurs in statement STMT.  Strips nonaddressable component
   references from REF_P.  */
Zdenek Dvorak committed
410 411

static bool
412
analyze_ref (struct loop *loop, tree *ref_p, tree *base,
Zdenek Dvorak committed
413
	     HOST_WIDE_INT *step, HOST_WIDE_INT *delta,
414
	     gimple stmt)
Zdenek Dvorak committed
415 416 417 418
{
  struct ar_data ar_data;
  tree off;
  HOST_WIDE_INT bit_offset;
419
  tree ref = *ref_p;
Zdenek Dvorak committed
420 421 422 423 424 425 426 427 428

  *step = 0;
  *delta = 0;

  /* First strip off the component references.  Ignore bitfields.  */
  if (TREE_CODE (ref) == COMPONENT_REF
      && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1)))
    ref = TREE_OPERAND (ref, 0);

429 430
  *ref_p = ref;

Zdenek Dvorak committed
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
  for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
    {
      off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
      bit_offset = TREE_INT_CST_LOW (off);
      gcc_assert (bit_offset % BITS_PER_UNIT == 0);
      
      *delta += bit_offset / BITS_PER_UNIT;
    }

  *base = unshare_expr (ref);
  ar_data.loop = loop;
  ar_data.stmt = stmt;
  ar_data.step = step;
  ar_data.delta = delta;
  return for_each_index (base, idx_analyze_ref, &ar_data);
}

/* Record a memory reference REF to the list REFS.  The reference occurs in
449 450
   LOOP in statement STMT and it is write if WRITE_P.  Returns true if the
   reference was recorded, false otherwise.  */
Zdenek Dvorak committed
451

452
static bool
Zdenek Dvorak committed
453
gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
454
			      tree ref, bool write_p, gimple stmt)
Zdenek Dvorak committed
455 456 457 458 459
{
  tree base;
  HOST_WIDE_INT step, delta;
  struct mem_ref_group *agrp;

460 461 462
  if (get_base_address (ref) == NULL)
    return false;

463
  if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
464
    return false;
Zdenek Dvorak committed
465 466 467 468 469

  /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
     are integer constants.  */
  agrp = find_or_create_group (refs, base, step);
  record_ref (agrp, stmt, ref, delta, write_p);
470 471

  return true;
Zdenek Dvorak committed
472 473
}

474 475
/* Record the suitable memory references in LOOP.  NO_OTHER_REFS is set to
   true if there are no other memory references inside the loop.  */
Zdenek Dvorak committed
476 477

static struct mem_ref_group *
478
gather_memory_references (struct loop *loop, bool *no_other_refs)
Zdenek Dvorak committed
479 480 481 482
{
  basic_block *body = get_loop_body_in_dom_order (loop);
  basic_block bb;
  unsigned i;
483 484 485
  gimple_stmt_iterator bsi;
  gimple stmt;
  tree lhs, rhs;
Zdenek Dvorak committed
486 487
  struct mem_ref_group *refs = NULL;

488 489
  *no_other_refs = true;

Zdenek Dvorak committed
490 491 492 493 494 495 496 497
  /* Scan the loop body in order, so that the former references precede the
     later ones.  */
  for (i = 0; i < loop->num_nodes; i++)
    {
      bb = body[i];
      if (bb->loop_father != loop)
	continue;

498
      for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
Zdenek Dvorak committed
499
	{
500
	  stmt = gsi_stmt (bsi);
501

502
	  if (gimple_code (stmt) != GIMPLE_ASSIGN)
503
	    {
504 505 506
	      if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)
		  || (is_gimple_call (stmt)
		      && !(gimple_call_flags (stmt) & ECF_CONST)))
507 508 509
		*no_other_refs = false;
	      continue;
	    }
Zdenek Dvorak committed
510

511 512
	  lhs = gimple_assign_lhs (stmt);
	  rhs = gimple_assign_rhs1 (stmt);
Zdenek Dvorak committed
513 514

	  if (REFERENCE_CLASS_P (rhs))
515 516
	    *no_other_refs &= gather_memory_references_ref (loop, &refs,
							    rhs, false, stmt);
Zdenek Dvorak committed
517
	  if (REFERENCE_CLASS_P (lhs))
518 519
	    *no_other_refs &= gather_memory_references_ref (loop, &refs,
							    lhs, true, stmt);
Zdenek Dvorak committed
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
	}
    }
  free (body);

  return refs;
}

/* Prune the prefetch candidate REF using the self-reuse.  */

static void
prune_ref_by_self_reuse (struct mem_ref *ref)
{
  HOST_WIDE_INT step = ref->group->step;
  bool backward = step < 0;

  if (step == 0)
    {
      /* Prefetch references to invariant address just once.  */
      ref->prefetch_before = 1;
      return;
    }

  if (backward)
    step = -step;

  if (step > PREFETCH_BLOCK)
    return;

  if ((backward && HAVE_BACKWARD_PREFETCH)
      || (!backward && HAVE_FORWARD_PREFETCH))
    {
      ref->prefetch_before = 1;
      return;
    }

  ref->prefetch_mod = PREFETCH_BLOCK / step;
}

/* Divides X by BY, rounding down.  */

static HOST_WIDE_INT
ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
{
  gcc_assert (by > 0);

  if (x >= 0)
    return x / by;
  else
    return (x + by - 1) / by;
}

/* Prune the prefetch candidate REF using the reuse with BY.
   If BY_IS_BEFORE is true, BY is before REF in the loop.  */

static void
prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
			  bool by_is_before)
{
  HOST_WIDE_INT step = ref->group->step;
  bool backward = step < 0;
  HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
  HOST_WIDE_INT delta = delta_b - delta_r;
  HOST_WIDE_INT hit_from;
  unsigned HOST_WIDE_INT prefetch_before, prefetch_block;

  if (delta == 0)
    {
      /* If the references has the same address, only prefetch the
	 former.  */
      if (by_is_before)
	ref->prefetch_before = 0;
      
      return;
    }

  if (!step)
    {
      /* If the reference addresses are invariant and fall into the
	 same cache line, prefetch just the first one.  */
      if (!by_is_before)
	return;

      if (ddown (ref->delta, PREFETCH_BLOCK)
	  != ddown (by->delta, PREFETCH_BLOCK))
	return;

      ref->prefetch_before = 0;
      return;
    }

  /* Only prune the reference that is behind in the array.  */
  if (backward)
    {
      if (delta > 0)
	return;

      /* Transform the data so that we may assume that the accesses
	 are forward.  */
      delta = - delta;
      step = -step;
      delta_r = PREFETCH_BLOCK - 1 - delta_r;
      delta_b = PREFETCH_BLOCK - 1 - delta_b;
    }
  else
    {
      if (delta < 0)
	return;
    }

  /* Check whether the two references are likely to hit the same cache
     line, and how distant the iterations in that it occurs are from
     each other.  */

  if (step <= PREFETCH_BLOCK)
    {
      /* The accesses are sure to meet.  Let us check when.  */
      hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
      prefetch_before = (hit_from - delta_r + step - 1) / step;

      if (prefetch_before < ref->prefetch_before)
	ref->prefetch_before = prefetch_before;

      return;
    }

  /* A more complicated case.  First let us ensure that size of cache line
     and step are coprime (here we assume that PREFETCH_BLOCK is a power
     of two.  */
  prefetch_block = PREFETCH_BLOCK;
  while ((step & 1) == 0
	 && prefetch_block > 1)
    {
      step >>= 1;
      prefetch_block >>= 1;
      delta >>= 1;
    }

  /* Now step > prefetch_block, and step and prefetch_block are coprime.
     Determine the probability that the accesses hit the same cache line.  */

  prefetch_before = delta / step;
  delta %= step;
  if ((unsigned HOST_WIDE_INT) delta
      <= (prefetch_block * ACCEPTABLE_MISS_RATE / 1000))
    {
      if (prefetch_before < ref->prefetch_before)
	ref->prefetch_before = prefetch_before;

      return;
    }

  /* Try also the following iteration.  */
  prefetch_before++;
  delta = step - delta;
  if ((unsigned HOST_WIDE_INT) delta
      <= (prefetch_block * ACCEPTABLE_MISS_RATE / 1000))
    {
      if (prefetch_before < ref->prefetch_before)
	ref->prefetch_before = prefetch_before;

      return;
    }

  /* The ref probably does not reuse by.  */
  return;
}

/* Prune the prefetch candidate REF using the reuses with other references
   in REFS.  */

static void
prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
{
  struct mem_ref *prune_by;
  bool before = true;

  prune_ref_by_self_reuse (ref);

  for (prune_by = refs; prune_by; prune_by = prune_by->next)
    {
      if (prune_by == ref)
	{
	  before = false;
	  continue;
	}

      if (!WRITE_CAN_USE_READ_PREFETCH
	  && ref->write_p
	  && !prune_by->write_p)
	continue;
      if (!READ_CAN_USE_WRITE_PREFETCH
	  && !ref->write_p
	  && prune_by->write_p)
	continue;

      prune_ref_by_group_reuse (ref, prune_by, before);
    }
}

/* Prune the prefetch candidates in GROUP using the reuse analysis.  */

static void
prune_group_by_reuse (struct mem_ref_group *group)
{
  struct mem_ref *ref_pruned;

  for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
    {
      prune_ref_by_reuse (ref_pruned, group->refs);

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Reference %p:", (void *) ref_pruned);

	  if (ref_pruned->prefetch_before == PREFETCH_ALL
	      && ref_pruned->prefetch_mod == 1)
	    fprintf (dump_file, " no restrictions");
	  else if (ref_pruned->prefetch_before == 0)
	    fprintf (dump_file, " do not prefetch");
	  else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
	    fprintf (dump_file, " prefetch once");
	  else
	    {
	      if (ref_pruned->prefetch_before != PREFETCH_ALL)
		{
		  fprintf (dump_file, " prefetch before ");
		  fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
			   ref_pruned->prefetch_before);
		}
	      if (ref_pruned->prefetch_mod != 1)
		{
		  fprintf (dump_file, " prefetch mod ");
		  fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
			   ref_pruned->prefetch_mod);
		}
	    }
	  fprintf (dump_file, "\n");
	}
    }
}

/* Prune the list of prefetch candidates GROUPS using the reuse analysis.  */

static void
prune_by_reuse (struct mem_ref_group *groups)
{
  for (; groups; groups = groups->next)
    prune_group_by_reuse (groups);
}

/* Returns true if we should issue prefetch for REF.  */

static bool
should_issue_prefetch_p (struct mem_ref *ref)
{
  /* For now do not issue prefetches for only first few of the
     iterations.  */
  if (ref->prefetch_before != PREFETCH_ALL)
    return false;

780 781 782 783
  /* Do not prefetch nontemporal stores.  */
  if (ref->storent_p)
    return false;

Zdenek Dvorak committed
784 785 786 787 788 789 790 791 792 793 794 795 796
  return true;
}

/* Decide which of the prefetch candidates in GROUPS to prefetch.
   AHEAD is the number of iterations to prefetch ahead (which corresponds
   to the number of simultaneous instances of one prefetch running at a
   time).  UNROLL_FACTOR is the factor by that the loop is going to be
   unrolled.  Returns true if there is anything to prefetch.  */

static bool
schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
		     unsigned ahead)
{
797 798
  unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
  unsigned slots_per_prefetch;
Zdenek Dvorak committed
799 800 801
  struct mem_ref *ref;
  bool any = false;

802 803
  /* At most SIMULTANEOUS_PREFETCHES should be running at the same time.  */
  remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
Zdenek Dvorak committed
804

805 806 807 808
  /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
     AHEAD / UNROLL_FACTOR iterations of the unrolled loop.  In each iteration,
     it will need a prefetch slot.  */
  slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
Zdenek Dvorak committed
809
  if (dump_file && (dump_flags & TDF_DETAILS))
810 811
    fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
	     slots_per_prefetch);
Zdenek Dvorak committed
812 813 814 815

  /* For now we just take memory references one by one and issue
     prefetches for as many as possible.  The groups are sorted
     starting with the largest step, since the references with
816
     large step are more likely to cause many cache misses.  */
Zdenek Dvorak committed
817 818 819 820 821 822 823

  for (; groups; groups = groups->next)
    for (ref = groups->refs; ref; ref = ref->next)
      {
	if (!should_issue_prefetch_p (ref))
	  continue;

824 825 826 827
	/* If we need to prefetch the reference each PREFETCH_MOD iterations,
	   and we unroll the loop UNROLL_FACTOR times, we need to insert
	   ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
	   iteration.  */
Zdenek Dvorak committed
828 829
	n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
			/ ref->prefetch_mod);
830 831 832 833 834 835 836 837
	prefetch_slots = n_prefetches * slots_per_prefetch;

	/* If more than half of the prefetches would be lost anyway, do not
	   issue the prefetch.  */
	if (2 * remaining_prefetch_slots < prefetch_slots)
	  continue;

	ref->issue_prefetch_p = true;
Zdenek Dvorak committed
838

839 840 841
	if (remaining_prefetch_slots <= prefetch_slots)
	  return true;
	remaining_prefetch_slots -= prefetch_slots;
Zdenek Dvorak committed
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
	any = true;
      }

  return any;
}

/* Determine whether there is any reference suitable for prefetching
   in GROUPS.  */

static bool
anything_to_prefetch_p (struct mem_ref_group *groups)
{
  struct mem_ref *ref;

  for (; groups; groups = groups->next)
    for (ref = groups->refs; ref; ref = ref->next)
      if (should_issue_prefetch_p (ref))
	return true;

  return false;
}

/* Issue prefetches for the reference REF into loop as decided before.
   HEAD is the number of iterations to prefetch ahead.  UNROLL_FACTOR
866
   is the factor by which LOOP was unrolled.  */
Zdenek Dvorak committed
867 868 869 870 871

static void
issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
{
  HOST_WIDE_INT delta;
872 873 874
  tree addr, addr_base, write_p, local;
  gimple prefetch;
  gimple_stmt_iterator bsi;
Zdenek Dvorak committed
875
  unsigned n_prefetches, ap;
876
  bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
Zdenek Dvorak committed
877 878

  if (dump_file && (dump_flags & TDF_DETAILS))
879 880 881
    fprintf (dump_file, "Issued%s prefetch for %p.\n",
	     nontemporal ? " nontemporal" : "",
	     (void *) ref);
Zdenek Dvorak committed
882

883
  bsi = gsi_for_stmt (ref->stmt);
Zdenek Dvorak committed
884 885 886 887

  n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
		  / ref->prefetch_mod);
  addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
888 889
  addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
					true, NULL, true, GSI_SAME_STMT);
890
  write_p = ref->write_p ? integer_one_node : integer_zero_node;
891
  local = build_int_cst (integer_type_node, nontemporal ? 0 : 3);
Zdenek Dvorak committed
892 893 894 895 896

  for (ap = 0; ap < n_prefetches; ap++)
    {
      /* Determine the address to prefetch.  */
      delta = (ahead + ap * ref->prefetch_mod) * ref->group->step;
Andrew Pinski committed
897 898
      addr = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node,
			  addr_base, size_int (delta));
899 900
      addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
				       true, GSI_SAME_STMT);
Zdenek Dvorak committed
901 902

      /* Create the prefetch instruction.  */
903 904 905
      prefetch = gimple_build_call (built_in_decls[BUILT_IN_PREFETCH],
				    3, addr, write_p, local);
      gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
Zdenek Dvorak committed
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
    }
}

/* Issue prefetches for the references in GROUPS into loop as decided before.
   HEAD is the number of iterations to prefetch ahead.  UNROLL_FACTOR is the
   factor by that LOOP was unrolled.  */

static void
issue_prefetches (struct mem_ref_group *groups,
		  unsigned unroll_factor, unsigned ahead)
{
  struct mem_ref *ref;

  for (; groups; groups = groups->next)
    for (ref = groups->refs; ref; ref = ref->next)
      if (ref->issue_prefetch_p)
	issue_prefetch_ref (ref, unroll_factor, ahead);
}

925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
/* Returns true if REF is a memory write for that a nontemporal store insn
   can be used.  */

static bool
nontemporal_store_p (struct mem_ref *ref)
{
  enum machine_mode mode;
  enum insn_code code;

  /* REF must be a write that is not reused.  We require it to be independent
     on all other memory references in the loop, as the nontemporal stores may
     be reordered with respect to other memory references.  */
  if (!ref->write_p
      || !ref->independent_p
      || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
    return false;

  /* Check that we have the storent instruction for the mode.  */
  mode = TYPE_MODE (TREE_TYPE (ref->mem));
  if (mode == BLKmode)
    return false;

947
  code = optab_handler (storent_optab, mode)->insn_code;
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
  return code != CODE_FOR_nothing;
}

/* If REF is a nontemporal store, we mark the corresponding modify statement
   and return true.  Otherwise, we return false.  */

static bool
mark_nontemporal_store (struct mem_ref *ref)
{
  if (!nontemporal_store_p (ref))
    return false;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
	     (void *) ref);

964
  gimple_assign_set_nontemporal_move (ref->stmt, true);
965 966 967 968 969 970 971 972 973 974 975 976
  ref->storent_p = true;

  return true;
}

/* Issue a memory fence instruction after LOOP.  */

static void
emit_mfence_after_loop (struct loop *loop)
{
  VEC (edge, heap) *exits = get_loop_exit_edges (loop);
  edge exit;
977 978
  gimple call;
  gimple_stmt_iterator bsi;
979 980 981 982
  unsigned i;

  for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
    {
983
      call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
984 985 986 987 988 989

      if (!single_pred_p (exit->dest)
	  /* If possible, we prefer not to insert the fence on other paths
	     in cfg.  */
	  && !(exit->flags & EDGE_ABNORMAL))
	split_loop_exit_edge (exit);
990
      bsi = gsi_after_labels (exit->dest);
991

992
      gsi_insert_before (&bsi, call, GSI_NEW_STMT);
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
      mark_virtual_ops_for_renaming (call);
    }

  VEC_free (edge, heap, exits);
  update_ssa (TODO_update_ssa_only_virtuals);
}

/* Returns true if we can use storent in loop, false otherwise.  */

static bool
may_use_storent_in_loop_p (struct loop *loop)
{
  bool ret = true;

  if (loop->inner != NULL)
    return false;

  /* If we must issue a mfence insn after using storent, check that there
     is a suitable place for it at each of the loop exits.  */
  if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
    {
      VEC (edge, heap) *exits = get_loop_exit_edges (loop);
      unsigned i;
      edge exit;

      for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
	if ((exit->flags & EDGE_ABNORMAL)
	    && exit->dest == EXIT_BLOCK_PTR)
	  ret = false;

      VEC_free (edge, heap, exits);
    }

  return ret;
}

/* Marks nontemporal stores in LOOP.  GROUPS contains the description of memory
   references in the loop.  */

static void
mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
{
  struct mem_ref *ref;
  bool any = false;

  if (!may_use_storent_in_loop_p (loop))
    return;

  for (; groups; groups = groups->next)
    for (ref = groups->refs; ref; ref = ref->next)
      any |= mark_nontemporal_store (ref);

  if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
    emit_mfence_after_loop (loop);
}

Zdenek Dvorak committed
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
/* Determines whether we can profitably unroll LOOP FACTOR times, and if
   this is the case, fill in DESC by the description of number of
   iterations.  */

static bool
should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
		      unsigned factor)
{
  if (!can_unroll_loop_p (loop, factor, desc))
    return false;

  /* We only consider loops without control flow for unrolling.  This is not
     a hard restriction -- tree_unroll_loop works with arbitrary loops
     as well; but the unrolling/prefetching is usually more profitable for
     loops consisting of a single basic block, and we want to limit the
     code growth.  */
  if (loop->num_nodes > 2)
    return false;

  return true;
}

/* Determine the coefficient by that unroll LOOP, from the information
   contained in the list of memory references REFS.  Description of
1073 1074 1075
   umber of iterations of LOOP is stored to DESC.  NINSNS is the number of
   insns of the LOOP.  EST_NITER is the estimated number of iterations of
   the loop, or -1 if no estimate is available.  */
Zdenek Dvorak committed
1076 1077 1078

static unsigned
determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
1079 1080
			 unsigned ninsns, struct tree_niter_desc *desc,
			 HOST_WIDE_INT est_niter)
Zdenek Dvorak committed
1081
{
1082 1083
  unsigned upper_bound;
  unsigned nfactor, factor, mod_constraint;
Zdenek Dvorak committed
1084 1085 1086
  struct mem_ref_group *agp;
  struct mem_ref *ref;

1087 1088 1089 1090 1091 1092 1093 1094
  /* First check whether the loop is not too large to unroll.  We ignore
     PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
     from unrolling them enough to make exactly one cache line covered by each
     iteration.  Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
     us from unrolling the loops too many times in cases where we only expect
     gains from better scheduling and decreasing loop overhead, which is not
     the case here.  */
  upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
1095 1096 1097 1098 1099 1100

  /* If we unrolled the loop more times than it iterates, the unrolled version
     of the loop would be never entered.  */
  if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
    upper_bound = est_niter;

1101
  if (upper_bound <= 1)
Zdenek Dvorak committed
1102 1103
    return 1;

1104 1105 1106
  /* Choose the factor so that we may prefetch each cache just once,
     but bound the unrolling by UPPER_BOUND.  */
  factor = 1;
Zdenek Dvorak committed
1107 1108
  for (agp = refs; agp; agp = agp->next)
    for (ref = agp->refs; ref; ref = ref->next)
1109 1110 1111 1112 1113 1114 1115
      if (should_issue_prefetch_p (ref))
	{
	  mod_constraint = ref->prefetch_mod;
	  nfactor = least_common_multiple (mod_constraint, factor);
	  if (nfactor <= upper_bound)
	    factor = nfactor;
	}
Zdenek Dvorak committed
1116 1117 1118 1119 1120 1121 1122

  if (!should_unroll_loop_p (loop, desc, factor))
    return 1;

  return factor;
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
/* Returns the total volume of the memory references REFS, taking into account
   reuses in the innermost loop and cache line size.  TODO -- we should also
   take into account reuses across the iterations of the loops in the loop
   nest.  */

static unsigned
volume_of_references (struct mem_ref_group *refs)
{
  unsigned volume = 0;
  struct mem_ref_group *gr;
  struct mem_ref *ref;

  for (gr = refs; gr; gr = gr->next)
    for (ref = gr->refs; ref; ref = ref->next)
      {
	/* Almost always reuses another value?  */
	if (ref->prefetch_before != PREFETCH_ALL)
	  continue;

	/* If several iterations access the same cache line, use the size of
	   the line divided by this number.  Otherwise, a cache line is
	   accessed in each iteration.  TODO -- in the latter case, we should
	   take the size of the reference into account, rounding it up on cache
	   line size multiple.  */
	volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
      }
  return volume;
}

/* Returns the volume of memory references accessed across VEC iterations of
   loops, whose sizes are described in the LOOP_SIZES array.  N is the number
   of the loops in the nest (length of VEC and LOOP_SIZES vectors).  */

static unsigned
volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
{
  unsigned i;

  for (i = 0; i < n; i++)
    if (vec[i] != 0)
      break;

  if (i == n)
    return 0;

  gcc_assert (vec[i] > 0);

  /* We ignore the parts of the distance vector in subloops, since usually
     the numbers of iterations are much smaller.  */
  return loop_sizes[i] * vec[i];
}

/* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
   at the position corresponding to the loop of the step.  N is the depth
   of the considered loop nest, and, LOOP is its innermost loop.  */

static void
add_subscript_strides (tree access_fn, unsigned stride,
		       HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
{
  struct loop *aloop;
  tree step;
  HOST_WIDE_INT astep;
  unsigned min_depth = loop_depth (loop) - n;

  while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
    {
      aloop = get_chrec_loop (access_fn);
      step = CHREC_RIGHT (access_fn);
      access_fn = CHREC_LEFT (access_fn);

      if ((unsigned) loop_depth (aloop) <= min_depth)
	continue;

      if (host_integerp (step, 0))
	astep = tree_low_cst (step, 0);
      else
	astep = L1_CACHE_LINE_SIZE;

      strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;

    }
}

/* Returns the volume of memory references accessed between two consecutive
   self-reuses of the reference DR.  We consider the subscripts of DR in N
   loops, and LOOP_SIZES contains the volumes of accesses in each of the
   loops.  LOOP is the innermost loop of the current loop nest.  */

static unsigned
self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
		     struct loop *loop)
{
  tree stride, access_fn;
  HOST_WIDE_INT *strides, astride;
  VEC (tree, heap) *access_fns;
  tree ref = DR_REF (dr);
  unsigned i, ret = ~0u;

  /* In the following example:

     for (i = 0; i < N; i++)
       for (j = 0; j < N; j++)
         use (a[j][i]);
     the same cache line is accessed each N steps (except if the change from
     i to i + 1 crosses the boundary of the cache line).  Thus, for self-reuse,
     we cannot rely purely on the results of the data dependence analysis.

     Instead, we compute the stride of the reference in each loop, and consider
     the innermost loop in that the stride is less than cache size.  */

  strides = XCNEWVEC (HOST_WIDE_INT, n);
  access_fns = DR_ACCESS_FNS (dr);

  for (i = 0; VEC_iterate (tree, access_fns, i, access_fn); i++)
    {
      /* Keep track of the reference corresponding to the subscript, so that we
	 know its stride.  */
      while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
	ref = TREE_OPERAND (ref, 0);
      
      if (TREE_CODE (ref) == ARRAY_REF)
	{
	  stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
	  if (host_integerp (stride, 1))
	    astride = tree_low_cst (stride, 1);
	  else
	    astride = L1_CACHE_LINE_SIZE;

	  ref = TREE_OPERAND (ref, 0);
	}
      else
	astride = 1;

      add_subscript_strides (access_fn, astride, strides, n, loop);
    }

  for (i = n; i-- > 0; )
    {
      unsigned HOST_WIDE_INT s;

      s = strides[i] < 0 ?  -strides[i] : strides[i];

      if (s < (unsigned) L1_CACHE_LINE_SIZE
	  && (loop_sizes[i]
	      > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
	{
	  ret = loop_sizes[i];
	  break;
	}
    }

  free (strides);
  return ret;
}

/* Determines the distance till the first reuse of each reference in REFS
1280 1281
   in the loop nest of LOOP.  NO_OTHER_REFS is true if there are no other
   memory references in the loop.  */
1282 1283

static void
1284 1285
determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
			   bool no_other_refs)
1286 1287 1288 1289 1290
{
  struct loop *nest, *aloop;
  VEC (data_reference_p, heap) *datarefs = NULL;
  VEC (ddr_p, heap) *dependences = NULL;
  struct mem_ref_group *gr;
1291
  struct mem_ref *ref, *refb;
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
  VEC (loop_p, heap) *vloops = NULL;
  unsigned *loop_data_size;
  unsigned i, j, n;
  unsigned volume, dist, adist;
  HOST_WIDE_INT vol;
  data_reference_p dr;
  ddr_p dep;

  if (loop->inner)
    return;

  /* Find the outermost loop of the loop nest of loop (we require that
     there are no sibling loops inside the nest).  */
  nest = loop;
  while (1)
    {
      aloop = loop_outer (nest);

      if (aloop == current_loops->tree_root
	  || aloop->inner->next)
	break;

      nest = aloop;
    }

  /* For each loop, determine the amount of data accessed in each iteration.
     We use this to estimate whether the reference is evicted from the
     cache before its reuse.  */
  find_loop_nest (nest, &vloops);
  n = VEC_length (loop_p, vloops);
  loop_data_size = XNEWVEC (unsigned, n);
  volume = volume_of_references (refs);
  i = n;
  while (i-- != 0)
    {
      loop_data_size[i] = volume;
      /* Bound the volume by the L2 cache size, since above this bound,
	 all dependence distances are equivalent.  */
      if (volume > L2_CACHE_SIZE_BYTES)
	continue;

      aloop = VEC_index (loop_p, vloops, i);
      vol = estimated_loop_iterations_int (aloop, false);
      if (vol < 0)
	vol = expected_loop_iterations (aloop);
      volume *= vol;
    }

  /* Prepare the references in the form suitable for data dependence
1341
     analysis.  We ignore unanalyzable data references (the results
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
     are used just as a heuristics to estimate temporality of the
     references, hence we do not need to worry about correctness).  */
  for (gr = refs; gr; gr = gr->next)
    for (ref = gr->refs; ref; ref = ref->next)
      {
	dr = create_data_ref (nest, ref->mem, ref->stmt, !ref->write_p);

	if (dr)
	  {
	    ref->reuse_distance = volume;
	    dr->aux = ref;
	    VEC_safe_push (data_reference_p, heap, datarefs, dr);
	  }
1355 1356
	else
	  no_other_refs = false;
1357 1358 1359 1360 1361
      }

  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
    {
      dist = self_reuse_distance (dr, loop_data_size, n, loop);
1362
      ref = (struct mem_ref *) dr->aux;
1363 1364
      if (ref->reuse_distance > dist)
	ref->reuse_distance = dist;
1365 1366 1367

      if (no_other_refs)
	ref->independent_p = true;
1368 1369 1370 1371 1372 1373 1374 1375 1376
    }

  compute_all_dependences (datarefs, &dependences, vloops, true);

  for (i = 0; VEC_iterate (ddr_p, dependences, i, dep); i++)
    {
      if (DDR_ARE_DEPENDENT (dep) == chrec_known)
	continue;

1377 1378
      ref = (struct mem_ref *) DDR_A (dep)->aux;
      refb = (struct mem_ref *) DDR_B (dep)->aux;
1379

1380 1381 1382
      if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
	  || DDR_NUM_DIST_VECTS (dep) == 0)
	{
1383
	  /* If the dependence cannot be analyzed, assume that there might be
1384 1385
	     a reuse.  */
	  dist = 0;
1386 1387 1388
      
	  ref->independent_p = false;
	  refb->independent_p = false;
1389 1390 1391
	}
      else
	{
1392
	  /* The distance vectors are normalized to be always lexicographically
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
	     positive, hence we cannot tell just from them whether DDR_A comes
	     before DDR_B or vice versa.  However, it is not important,
	     anyway -- if DDR_A is close to DDR_B, then it is either reused in
	     DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
	     in cache (and marking it as nontemporal would not affect
	     anything).  */

	  dist = volume;
	  for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
	    {
	      adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
					     loop_data_size, n);

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	      /* If this is a dependence in the innermost loop (i.e., the
		 distances in all superloops are zero) and it is not
		 the trivial self-dependence with distance zero, record that
		 the references are not completely independent.  */
	      if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
		  && (ref != refb
		      || DDR_DIST_VECT (dep, j)[n-1] != 0))
		{
		  ref->independent_p = false;
		  refb->independent_p = false;
		}

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	      /* Ignore accesses closer than
		 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
	      	 so that we use nontemporal prefetches e.g. if single memory
		 location is accessed several times in a single iteration of
		 the loop.  */
	      if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
		continue;

	      if (adist < dist)
		dist = adist;
	    }
	}

      if (ref->reuse_distance > dist)
	ref->reuse_distance = dist;
1433 1434
      if (refb->reuse_distance > dist)
	refb->reuse_distance = dist;
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
    }

  free_dependence_relations (dependences);
  free_data_refs (datarefs);
  free (loop_data_size);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Reuse distances:\n");
      for (gr = refs; gr; gr = gr->next)
	for (ref = gr->refs; ref; ref = ref->next)
	  fprintf (dump_file, " ref %p distance %u\n",
		   (void *) ref, ref->reuse_distance);
    }
}

Zdenek Dvorak committed
1451
/* Issue prefetch instructions for array references in LOOP.  Returns
1452
   true if the LOOP was unrolled.  */
Zdenek Dvorak committed
1453 1454

static bool
1455
loop_prefetch_arrays (struct loop *loop)
Zdenek Dvorak committed
1456 1457
{
  struct mem_ref_group *refs;
1458 1459
  unsigned ahead, ninsns, time, unroll_factor;
  HOST_WIDE_INT est_niter;
Zdenek Dvorak committed
1460
  struct tree_niter_desc desc;
1461
  bool unrolled = false, no_other_refs;
Zdenek Dvorak committed
1462

1463 1464 1465 1466 1467 1468 1469
  if (!maybe_hot_bb_p (loop->header))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "  ignored (cold area)\n");
      return false;
    }

Zdenek Dvorak committed
1470
  /* Step 1: gather the memory references.  */
1471
  refs = gather_memory_references (loop, &no_other_refs);
Zdenek Dvorak committed
1472 1473 1474 1475 1476 1477 1478

  /* Step 2: estimate the reuse effects.  */
  prune_by_reuse (refs);

  if (!anything_to_prefetch_p (refs))
    goto fail;

1479
  determine_loop_nest_reuse (loop, refs, no_other_refs);
1480

Zdenek Dvorak committed
1481 1482
  /* Step 3: determine the ahead and unroll factor.  */

1483 1484 1485 1486 1487
  /* FIXME: the time should be weighted by the probabilities of the blocks in
     the loop body.  */
  time = tree_num_loop_insns (loop, &eni_time_weights);
  ahead = (PREFETCH_LATENCY + time - 1) / time;
  est_niter = estimated_loop_iterations_int (loop, false);
Zdenek Dvorak committed
1488

1489 1490 1491 1492
  /* The prefetches will run for AHEAD iterations of the original loop.  Unless
     the loop rolls at least AHEAD times, prefetching the references does not
     make sense.  */
  if (est_niter >= 0 && est_niter <= (HOST_WIDE_INT) ahead)
1493 1494 1495 1496 1497 1498 1499
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Not prefetching -- loop estimated to roll only %d times\n",
		 (int) est_niter);
      goto fail;
    }
Zdenek Dvorak committed
1500

1501 1502
  mark_nontemporal_stores (loop, refs);

1503 1504 1505 1506 1507 1508
  ninsns = tree_num_loop_insns (loop, &eni_size_weights);
  unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
					   est_niter);
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Ahead %d, unroll factor %d\n", ahead, unroll_factor);

Zdenek Dvorak committed
1509 1510 1511 1512 1513 1514 1515 1516
  /* Step 4: what to prefetch?  */
  if (!schedule_prefetches (refs, unroll_factor, ahead))
    goto fail;

  /* Step 5: unroll the loop.  TODO -- peeling of first and last few
     iterations so that we do not issue superfluous prefetches.  */
  if (unroll_factor != 1)
    {
1517
      tree_unroll_loop (loop, unroll_factor,
Zdenek Dvorak committed
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
			single_dom_exit (loop), &desc);
      unrolled = true;
    }

  /* Step 6: issue the prefetches.  */
  issue_prefetches (refs, unroll_factor, ahead);

fail:
  release_mem_refs (refs);
  return unrolled;
}

1530
/* Issue prefetch instructions for array references in loops.  */
Zdenek Dvorak committed
1531

1532
unsigned int
1533
tree_ssa_prefetch_arrays (void)
Zdenek Dvorak committed
1534
{
1535
  loop_iterator li;
Zdenek Dvorak committed
1536 1537
  struct loop *loop;
  bool unrolled = false;
1538
  int todo_flags = 0;
Zdenek Dvorak committed
1539 1540 1541 1542 1543 1544 1545

  if (!HAVE_prefetch
      /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
	 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
	 of processor costs and i486 does not have prefetch, but
	 -march=pentium4 causes HAVE_prefetch to be true.  Ugh.  */
      || PREFETCH_BLOCK == 0)
1546
    return 0;
Zdenek Dvorak committed
1547

1548 1549 1550 1551 1552 1553 1554
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Prefetching parameters:\n");
      fprintf (dump_file, "    simultaneous prefetches: %d\n",
	       SIMULTANEOUS_PREFETCHES);
      fprintf (dump_file, "    prefetch latency: %d\n", PREFETCH_LATENCY);
      fprintf (dump_file, "    prefetch block size: %d\n", PREFETCH_BLOCK);
1555 1556
      fprintf (dump_file, "    L1 cache size: %d lines, %d kB\n",
	       L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
1557
      fprintf (dump_file, "    L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
1558
      fprintf (dump_file, "    L2 cache size: %d kB\n", L2_CACHE_SIZE);
1559 1560 1561
      fprintf (dump_file, "\n");
    }

Zdenek Dvorak committed
1562 1563 1564 1565 1566 1567 1568 1569
  initialize_original_copy_tables ();

  if (!built_in_decls[BUILT_IN_PREFETCH])
    {
      tree type = build_function_type (void_type_node,
				       tree_cons (NULL_TREE,
						  const_ptr_type_node,
						  NULL_TREE));
1570 1571 1572
      tree decl = add_builtin_function ("__builtin_prefetch", type,
					BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
					NULL, NULL_TREE);
Zdenek Dvorak committed
1573 1574 1575 1576 1577 1578 1579 1580
      DECL_IS_NOVOPS (decl) = true;
      built_in_decls[BUILT_IN_PREFETCH] = decl;
    }

  /* We assume that size of cache line is a power of two, so verify this
     here.  */
  gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);

1581
  FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
Zdenek Dvorak committed
1582 1583 1584 1585
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Processing loop %d:\n", loop->num);

1586
      unrolled |= loop_prefetch_arrays (loop);
Zdenek Dvorak committed
1587 1588 1589 1590 1591 1592 1593 1594

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "\n\n");
    }

  if (unrolled)
    {
      scev_reset ();
1595
      todo_flags |= TODO_cleanup_cfg;
Zdenek Dvorak committed
1596 1597 1598
    }

  free_original_copy_tables ();
1599
  return todo_flags;
Zdenek Dvorak committed
1600
}