tree-if-conv.c 80.3 KB
Newer Older
1
/* If-conversion for vectorizer.
2
   Copyright (C) 2004-2018 Free Software Foundation, Inc.
3 4 5 6 7 8
   Contributed by Devang Patel <dpatel@apple.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
9
Software Foundation; either version 3, or (at your option) any later
10 11 12 13 14 15 16 17
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
18 19
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
20

21 22 23
/* This pass implements a tree level if-conversion of loops.  Its
   initial goal is to help the vectorizer to vectorize loops with
   conditions.
24 25 26

   A short description of if-conversion:

27
     o Decide if a loop is if-convertible or not.
28 29
     o Walk all loop basic blocks in breadth first order (BFS order).
       o Remove conditional statements (at the end of basic block)
30
         and propagate condition into destination basic blocks'
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
	 predicate list.
       o Replace modify expression with conditional modify expression
         using current basic block's condition.
     o Merge all basic blocks
       o Replace phi nodes with conditional modify expr
       o Merge all basic blocks into header

     Sample transformation:

     INPUT
     -----

     # i_23 = PHI <0(0), i_18(10)>;
     <L0>:;
     j_15 = A[i_23];
     if (j_15 > 41) goto <L1>; else goto <L17>;

     <L17>:;
     goto <bb 3> (<L3>);

     <L1>:;

     # iftmp.2_4 = PHI <0(8), 42(2)>;
     <L3>:;
     A[i_23] = iftmp.2_4;
     i_18 = i_23 + 1;
     if (i_18 <= 15) goto <L19>; else goto <L18>;

     <L19>:;
     goto <bb 1> (<L0>);

     <L18>:;

     OUTPUT
     ------

     # i_23 = PHI <0(0), i_18(10)>;
     <L0>:;
     j_15 = A[i_23];
70

71 72 73 74 75
     <L3>:;
     iftmp.2_4 = j_15 > 41 ? 42 : 0;
     A[i_23] = iftmp.2_4;
     i_18 = i_23 + 1;
     if (i_18 <= 15) goto <L19>; else goto <L18>;
76

77 78 79 80 81 82 83 84 85
     <L19>:;
     goto <bb 1> (<L0>);

     <L18>:;
*/

#include "config.h"
#include "system.h"
#include "coretypes.h"
86
#include "backend.h"
87
#include "rtl.h"
88
#include "tree.h"
89
#include "gimple.h"
90 91
#include "cfghooks.h"
#include "tree-pass.h"
92
#include "ssa.h"
93 94 95
#include "expmed.h"
#include "optabs-query.h"
#include "gimple-pretty-print.h"
96
#include "alias.h"
97
#include "fold-const.h"
98
#include "stor-layout.h"
99
#include "gimple-fold.h"
100
#include "gimplify.h"
101
#include "gimple-iterator.h"
102
#include "gimplify-me.h"
103 104
#include "tree-cfg.h"
#include "tree-into-ssa.h"
Andrew MacLeod committed
105
#include "tree-ssa.h"
106 107 108
#include "cfgloop.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
109 110
#include "tree-ssa-loop.h"
#include "tree-ssa-loop-niter.h"
111 112
#include "tree-ssa-loop-ivopts.h"
#include "tree-ssa-address.h"
113
#include "dbgcnt.h"
114
#include "tree-hash-traits.h"
115
#include "varasm.h"
116
#include "builtins.h"
117
#include "params.h"
118
#include "cfganal.h"
119 120 121 122 123 124

/* Only handle PHIs with no more arguments unless we are asked to by
   simd pragma.  */
#define MAX_PHI_ARG_NUM \
  ((unsigned) PARAM_VALUE (PARAM_MAX_TREE_IF_CONVERSION_PHI_ARGS))

125 126 127
/* Indicate if new load/store that needs to be predicated is introduced
   during if conversion.  */
static bool any_pred_load_store;
128

129 130 131 132 133 134
/* Indicate if there are any complicated PHIs that need to be handled in
   if-conversion.  Complicated PHI has more than two arguments and can't
   be degenerated to two arguments PHI.  See more information in comment
   before phi_convertible_by_degenerating_args.  */
static bool any_complicated_phi;

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
/* Hash for struct innermost_loop_behavior.  It depends on the user to
   free the memory.  */

struct innermost_loop_behavior_hash : nofree_ptr_hash <innermost_loop_behavior>
{
  static inline hashval_t hash (const value_type &);
  static inline bool equal (const value_type &,
			    const compare_type &);
};

inline hashval_t
innermost_loop_behavior_hash::hash (const value_type &e)
{
  hashval_t hash;

  hash = iterative_hash_expr (e->base_address, 0);
  hash = iterative_hash_expr (e->offset, hash);
  hash = iterative_hash_expr (e->init, hash);
  return iterative_hash_expr (e->step, hash);
}

inline bool
innermost_loop_behavior_hash::equal (const value_type &e1,
				     const compare_type &e2)
{
  if ((e1->base_address && !e2->base_address)
      || (!e1->base_address && e2->base_address)
      || (!e1->offset && e2->offset)
      || (e1->offset && !e2->offset)
      || (!e1->init && e2->init)
      || (e1->init && !e2->init)
      || (!e1->step && e2->step)
      || (e1->step && !e2->step))
    return false;

  if (e1->base_address && e2->base_address
      && !operand_equal_p (e1->base_address, e2->base_address, 0))
    return false;
  if (e1->offset && e2->offset
      && !operand_equal_p (e1->offset, e2->offset, 0))
    return false;
  if (e1->init && e2->init
      && !operand_equal_p (e1->init, e2->init, 0))
    return false;
  if (e1->step && e2->step
      && !operand_equal_p (e1->step, e2->step, 0))
    return false;

  return true;
}

186 187 188
/* List of basic blocks in if-conversion-suitable order.  */
static basic_block *ifc_bbs;

189 190 191
/* Hash table to store <DR's innermost loop behavior, DR> pairs.  */
static hash_map<innermost_loop_behavior_hash,
		data_reference_p> *innermost_DR_map;
192

193
/* Hash table to store <base reference, DR> pairs.  */
194 195
static hash_map<tree_operand_hash, data_reference_p> *baseref_DR_map;

196 197
/* Structure used to predicate basic blocks.  This is attached to the
   ->aux field of the BBs in the loop to be if-converted.  */
Trevor Saunders committed
198
struct bb_predicate {
199 200 201 202 203 204 205 206

  /* The condition under which this basic block is executed.  */
  tree predicate;

  /* PREDICATE is gimplified, and the sequence of statements is
     recorded here, in order to avoid the duplication of computations
     that occur in previous conditions.  See PR44483.  */
  gimple_seq predicate_gimplified_stmts;
Trevor Saunders committed
207
};
208 209 210 211 212 213 214 215 216 217 218 219 220 221

/* Returns true when the basic block BB has a predicate.  */

static inline bool
bb_has_predicate (basic_block bb)
{
  return bb->aux != NULL;
}

/* Returns the gimplified predicate for basic block BB.  */

static inline tree
bb_predicate (basic_block bb)
{
Trevor Saunders committed
222
  return ((struct bb_predicate *) bb->aux)->predicate;
223 224 225 226 227 228 229
}

/* Sets the gimplified predicate COND for basic block BB.  */

static inline void
set_bb_predicate (basic_block bb, tree cond)
{
230 231 232
  gcc_assert ((TREE_CODE (cond) == TRUTH_NOT_EXPR
	       && is_gimple_condexpr (TREE_OPERAND (cond, 0)))
	      || is_gimple_condexpr (cond));
Trevor Saunders committed
233
  ((struct bb_predicate *) bb->aux)->predicate = cond;
234 235 236 237 238 239 240 241
}

/* Returns the sequence of statements of the gimplification of the
   predicate for basic block BB.  */

static inline gimple_seq
bb_predicate_gimplified_stmts (basic_block bb)
{
Trevor Saunders committed
242
  return ((struct bb_predicate *) bb->aux)->predicate_gimplified_stmts;
243 244 245 246 247 248 249 250
}

/* Sets the sequence of statements STMTS of the gimplification of the
   predicate for basic block BB.  */

static inline void
set_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
{
Trevor Saunders committed
251
  ((struct bb_predicate *) bb->aux)->predicate_gimplified_stmts = stmts;
252 253 254 255 256 257 258 259
}

/* Adds the sequence of statements STMTS to the sequence of statements
   of the predicate for basic block BB.  */

static inline void
add_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
{
260
  gimple_seq_add_seq_without_update
Trevor Saunders committed
261
    (&(((struct bb_predicate *) bb->aux)->predicate_gimplified_stmts), stmts);
262 263 264 265 266 267 268
}

/* Initializes to TRUE the predicate of basic block BB.  */

static inline void
init_bb_predicate (basic_block bb)
{
Trevor Saunders committed
269
  bb->aux = XNEW (struct bb_predicate);
270
  set_bb_predicate_gimplified_stmts (bb, NULL);
271
  set_bb_predicate (bb, boolean_true_node);
272 273
}

274 275
/* Release the SSA_NAMEs associated with the predicate of basic block BB,
   but don't actually free it.  */
276 277

static inline void
278
release_bb_predicate (basic_block bb)
279
{
280
  gimple_seq stmts = bb_predicate_gimplified_stmts (bb);
281 282
  if (stmts)
    {
283 284 285 286
      if (flag_checking)
	for (gimple_stmt_iterator i = gsi_start (stmts);
	     !gsi_end_p (i); gsi_next (&i))
	  gcc_assert (! gimple_use_ops (gsi_stmt (i)));
287

288
      set_bb_predicate_gimplified_stmts (bb, NULL);
289
    }
290 291 292
}

/* Free the predicate of basic block BB.  */
293

294 295 296 297 298 299 300
static inline void
free_bb_predicate (basic_block bb)
{
  if (!bb_has_predicate (bb))
    return;

  release_bb_predicate (bb);
301 302 303 304
  free (bb->aux);
  bb->aux = NULL;
}

305
/* Reinitialize predicate of BB with the true predicate.  */
306 307 308 309

static inline void
reset_bb_predicate (basic_block bb)
{
310 311 312 313 314 315 316
  if (!bb_has_predicate (bb))
    init_bb_predicate (bb);
  else
    {
      release_bb_predicate (bb);
      set_bb_predicate (bb, boolean_true_node);
    }
317 318
}

319 320 321 322
/* Returns a new SSA_NAME of type TYPE that is assigned the value of
   the expression EXPR.  Inserts the statement created for this
   computation before GSI and leaves the iterator GSI at the same
   statement.  */
323

324 325
static tree
ifc_temp_var (tree type, tree expr, gimple_stmt_iterator *gsi)
326
{
327
  tree new_name = make_temp_ssa_name (type, NULL, "_ifc_");
328
  gimple *stmt = gimple_build_assign (new_name, expr);
329
  gimple_set_vuse (stmt, gimple_vuse (gsi_stmt (*gsi)));
330
  gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
331
  return new_name;
332 333
}

334 335 336 337 338
/* Return true when COND is a false predicate.  */

static inline bool
is_false_predicate (tree cond)
{
339 340 341
  return (cond != NULL_TREE
	  && (cond == boolean_false_node
	      || integer_zerop (cond)));
342 343
}

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
/* Return true when COND is a true predicate.  */

static inline bool
is_true_predicate (tree cond)
{
  return (cond == NULL_TREE
	  || cond == boolean_true_node
	  || integer_onep (cond));
}

/* Returns true when BB has a predicate that is not trivial: true or
   NULL_TREE.  */

static inline bool
is_predicated (basic_block bb)
{
360
  return !is_true_predicate (bb_predicate (bb));
361 362
}

363 364 365 366 367 368
/* Parses the predicate COND and returns its comparison code and
   operands OP0 and OP1.  */

static enum tree_code
parse_predicate (tree cond, tree *op0, tree *op1)
{
369
  gimple *s;
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387

  if (TREE_CODE (cond) == SSA_NAME
      && is_gimple_assign (s = SSA_NAME_DEF_STMT (cond)))
    {
      if (TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
	{
	  *op0 = gimple_assign_rhs1 (s);
	  *op1 = gimple_assign_rhs2 (s);
	  return gimple_assign_rhs_code (s);
	}

      else if (gimple_assign_rhs_code (s) == TRUTH_NOT_EXPR)
	{
	  tree op = gimple_assign_rhs1 (s);
	  tree type = TREE_TYPE (op);
	  enum tree_code code = parse_predicate (op, op0, op1);

	  return code == ERROR_MARK ? ERROR_MARK
388
	    : invert_tree_comparison (code, HONOR_NANS (type));
389 390 391 392 393
	}

      return ERROR_MARK;
    }

394
  if (COMPARISON_CLASS_P (cond))
395 396 397 398 399 400 401 402 403
    {
      *op0 = TREE_OPERAND (cond, 0);
      *op1 = TREE_OPERAND (cond, 1);
      return TREE_CODE (cond);
    }

  return ERROR_MARK;
}

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
/* Returns the fold of predicate C1 OR C2 at location LOC.  */

static tree
fold_or_predicates (location_t loc, tree c1, tree c2)
{
  tree op1a, op1b, op2a, op2b;
  enum tree_code code1 = parse_predicate (c1, &op1a, &op1b);
  enum tree_code code2 = parse_predicate (c2, &op2a, &op2b);

  if (code1 != ERROR_MARK && code2 != ERROR_MARK)
    {
      tree t = maybe_fold_or_comparisons (code1, op1a, op1b,
					  code2, op2a, op2b);
      if (t)
	return t;
    }

  return fold_build2_loc (loc, TRUTH_OR_EXPR, boolean_type_node, c1, c2);
}

424 425 426 427 428 429 430 431
/* Returns either a COND_EXPR or the folded expression if the folded
   expression is a MIN_EXPR, a MAX_EXPR, an ABS_EXPR,
   a constant or a SSA_NAME. */

static tree
fold_build_cond_expr (tree type, tree cond, tree rhs, tree lhs)
{
  tree rhs1, lhs1, cond_expr;
432 433 434 435 436 437 438 439 440 441 442 443

  /* If COND is comparison r != 0 and r has boolean type, convert COND
     to SSA_NAME to accept by vect bool pattern.  */
  if (TREE_CODE (cond) == NE_EXPR)
    {
      tree op0 = TREE_OPERAND (cond, 0);
      tree op1 = TREE_OPERAND (cond, 1);
      if (TREE_CODE (op0) == SSA_NAME
	  && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
	  && (integer_zerop (op1)))
	cond = op0;
    }
444
  cond_expr = fold_ternary (COND_EXPR, type, cond, rhs, lhs);
445 446 447 448 449 450

  if (cond_expr == NULL_TREE)
    return build3 (COND_EXPR, type, cond, rhs, lhs);

  STRIP_USELESS_TYPE_CONVERSION (cond_expr);

451
  if (is_gimple_val (cond_expr))
452 453 454 455 456 457
    return cond_expr;

  if (TREE_CODE (cond_expr) == ABS_EXPR)
    {
      rhs1 = TREE_OPERAND (cond_expr, 1);
      STRIP_USELESS_TYPE_CONVERSION (rhs1);
458
      if (is_gimple_val (rhs1))
459 460 461 462 463 464 465 466 467 468
	return build1 (ABS_EXPR, type, rhs1);
    }

  if (TREE_CODE (cond_expr) == MIN_EXPR
      || TREE_CODE (cond_expr) == MAX_EXPR)
    {
      lhs1 = TREE_OPERAND (cond_expr, 0);
      STRIP_USELESS_TYPE_CONVERSION (lhs1);
      rhs1 = TREE_OPERAND (cond_expr, 1);
      STRIP_USELESS_TYPE_CONVERSION (rhs1);
469
      if (is_gimple_val (rhs1) && is_gimple_val (lhs1))
470 471 472 473 474
	return build2 (TREE_CODE (cond_expr), type, lhs1, rhs1);
    }
  return build3 (COND_EXPR, type, cond, rhs, lhs);
}

475
/* Add condition NC to the predicate list of basic block BB.  LOOP is
476 477 478
   the loop to be if-converted. Use predicate of cd-equivalent block
   for join bb if it exists: we call basic blocks bb1 and bb2 
   cd-equivalent if they are executed under the same condition.  */
479

480
static inline void
481
add_to_predicate_list (struct loop *loop, basic_block bb, tree nc)
482
{
483
  tree bc, *tp;
484
  basic_block dom_bb;
485 486 487 488

  if (is_true_predicate (nc))
    return;

489 490 491 492
  /* If dominance tells us this basic block is always executed,
     don't record any predicates for it.  */
  if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
    return;
493

494 495 496 497 498 499 500 501 502 503
  dom_bb = get_immediate_dominator (CDI_DOMINATORS, bb);
  /* We use notion of cd equivalence to get simpler predicate for
     join block, e.g. if join block has 2 predecessors with predicates
     p1 & p2 and p1 & !p2, we'd like to get p1 for it instead of
     p1 & p2 | p1 & !p2.  */
  if (dom_bb != loop->header
      && get_immediate_dominator (CDI_POST_DOMINATORS, dom_bb) == bb)
    {
      gcc_assert (flow_bb_inside_loop_p (loop, dom_bb));
      bc = bb_predicate (dom_bb);
504 505 506 507
      if (!is_true_predicate (bc))
	set_bb_predicate (bb, bc);
      else
	gcc_assert (is_true_predicate (bb_predicate (bb)));
508 509 510 511
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Use predicate of bb#%d for bb#%d\n",
		 dom_bb->index, bb->index);
      return;
512
    }
513 514 515

  if (!is_predicated (bb))
    bc = nc;
516 517 518
  else
    {
      bc = bb_predicate (bb);
519
      bc = fold_or_predicates (EXPR_LOCATION (bc), nc, bc);
520 521 522 523 524
      if (is_true_predicate (bc))
	{
	  reset_bb_predicate (bb);
	  return;
	}
525 526
    }

527 528 529 530 531 532
  /* Allow a TRUTH_NOT_EXPR around the main predicate.  */
  if (TREE_CODE (bc) == TRUTH_NOT_EXPR)
    tp = &TREE_OPERAND (bc, 0);
  else
    tp = &bc;
  if (!is_gimple_condexpr (*tp))
533 534
    {
      gimple_seq stmts;
535
      *tp = force_gimple_operand_1 (*tp, &stmts, is_gimple_condexpr, NULL_TREE);
536 537
      add_bb_predicate_gimplified_stmts (bb, stmts);
    }
538
  set_bb_predicate (bb, bc);
539 540
}

541 542 543
/* Add the condition COND to the previous condition PREV_COND, and add
   this to the predicate list of the destination of edge E.  LOOP is
   the loop to be if-converted.  */
544

545
static void
546
add_to_dst_predicate_list (struct loop *loop, edge e,
547
			   tree prev_cond, tree cond)
548 549
{
  if (!flow_bb_inside_loop_p (loop, e->dest))
550
    return;
551

552 553 554
  if (!is_true_predicate (prev_cond))
    cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
			prev_cond, cond);
555

556 557
  if (!dominated_by_p (CDI_DOMINATORS, loop->latch, e->dest))
    add_to_predicate_list (loop, e->dest, cond);
558
}
559

560
/* Return true if one of the successor edges of BB exits LOOP.  */
561

562 563 564 565 566
static bool
bb_with_exit_edge_p (struct loop *loop, basic_block bb)
{
  edge e;
  edge_iterator ei;
567

568 569
  FOR_EACH_EDGE (e, ei, bb->succs)
    if (loop_exit_edge_p (loop, e))
570
      return true;
571

572
  return false;
573
}
574

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
/* Given PHI which has more than two arguments, this function checks if
   it's if-convertible by degenerating its arguments.  Specifically, if
   below two conditions are satisfied:

     1) Number of PHI arguments with different values equals to 2 and one
	argument has the only occurrence.
     2) The edge corresponding to the unique argument isn't critical edge.

   Such PHI can be handled as PHIs have only two arguments.  For example,
   below PHI:

     res = PHI <A_1(e1), A_1(e2), A_2(e3)>;

   can be transformed into:

     res = (predicate of e3) ? A_2 : A_1;

   Return TRUE if it is the case, FALSE otherwise.  */

static bool
phi_convertible_by_degenerating_args (gphi *phi)
{
  edge e;
  tree arg, t1 = NULL, t2 = NULL;
  unsigned int i, i1 = 0, i2 = 0, n1 = 0, n2 = 0;
  unsigned int num_args = gimple_phi_num_args (phi);

  gcc_assert (num_args > 2);

  for (i = 0; i < num_args; i++)
    {
      arg = gimple_phi_arg_def (phi, i);
      if (t1 == NULL || operand_equal_p (t1, arg, 0))
	{
	  n1++;
	  i1 = i;
	  t1 = arg;
	}
      else if (t2 == NULL || operand_equal_p (t2, arg, 0))
	{
	  n2++;
	  i2 = i;
	  t2 = arg;
	}
      else
	return false;
    }

  if (n1 != 1 && n2 != 1)
    return false;

  /* Check if the edge corresponding to the unique arg is critical.  */
  e = gimple_phi_arg_edge (phi, (n1 == 1) ? i1 : i2);
  if (EDGE_COUNT (e->src->succs) > 1)
    return false;

  return true;
}

634
/* Return true when PHI is if-convertible.  PHI is part of loop LOOP
635 636 637
   and it belongs to basic block BB.  Note at this point, it is sure
   that PHI is if-convertible.  This function updates global variable
   ANY_COMPLICATED_PHI if PHI is complicated.  */
638 639

static bool
640
if_convertible_phi_p (struct loop *loop, basic_block bb, gphi *phi)
641 642 643 644
{
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "-------------------------\n");
645
      print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
646
    }
647

648 649 650 651
  if (bb != loop->header
      && gimple_phi_num_args (phi) > 2
      && !phi_convertible_by_degenerating_args (phi))
    any_complicated_phi = true;
652

653 654 655
  return true;
}

656 657 658 659
/* Records the status of a data reference.  This struct is attached to
   each DR->aux field.  */

struct ifc_dr {
660 661 662
  bool rw_unconditionally;
  bool w_unconditionally;
  bool written_at_least_once;
663

664 665 666
  tree rw_predicate;
  tree w_predicate;
  tree base_w_predicate;
667 668 669
};

#define IFC_DR(DR) ((struct ifc_dr *) (DR)->aux)
670
#define DR_BASE_W_UNCONDITIONALLY(DR) (IFC_DR (DR)->written_at_least_once)
671
#define DR_RW_UNCONDITIONALLY(DR) (IFC_DR (DR)->rw_unconditionally)
672
#define DR_W_UNCONDITIONALLY(DR) (IFC_DR (DR)->w_unconditionally)
673

674 675 676 677 678 679 680 681 682 683 684 685
/* Iterates over DR's and stores refs, DR and base refs, DR pairs in
   HASH tables.  While storing them in HASH table, it checks if the
   reference is unconditionally read or written and stores that as a flag
   information.  For base reference it checks if it is written atlest once
   unconditionally and stores it as flag information along with DR.
   In other words for every data reference A in STMT there exist other
   accesses to a data reference with the same base with predicates that
   add up (OR-up) to the true predicate: this ensures that the data
   reference A is touched (read or written) on every iteration of the
   if-converted loop.  */
static void
hash_memrefs_baserefs_and_store_DRs_read_written_info (data_reference_p a)
686 687
{

688 689
  data_reference_p *master_dr, *base_master_dr;
  tree base_ref = DR_BASE_OBJECT (a);
690
  innermost_loop_behavior *innermost = &DR_INNERMOST (a);
691 692
  tree ca = bb_predicate (gimple_bb (DR_STMT (a)));
  bool exist1, exist2;
693

694
  master_dr = &innermost_DR_map->get_or_insert (innermost, &exist1);
695
  if (!exist1)
696 697 698
    *master_dr = a;

  if (DR_IS_WRITE (a))
699
    {
700 701 702 703 704
      IFC_DR (*master_dr)->w_predicate
	= fold_or_predicates (UNKNOWN_LOCATION, ca,
			      IFC_DR (*master_dr)->w_predicate);
      if (is_true_predicate (IFC_DR (*master_dr)->w_predicate))
	DR_W_UNCONDITIONALLY (*master_dr) = true;
705
    }
706 707 708 709 710
  IFC_DR (*master_dr)->rw_predicate
    = fold_or_predicates (UNKNOWN_LOCATION, ca,
			  IFC_DR (*master_dr)->rw_predicate);
  if (is_true_predicate (IFC_DR (*master_dr)->rw_predicate))
    DR_RW_UNCONDITIONALLY (*master_dr) = true;
711

712
  if (DR_IS_WRITE (a))
713
    {
714 715
      base_master_dr = &baseref_DR_map->get_or_insert (base_ref, &exist2);
      if (!exist2)
716 717 718 719 720 721
	*base_master_dr = a;
      IFC_DR (*base_master_dr)->base_w_predicate
	= fold_or_predicates (UNKNOWN_LOCATION, ca,
			      IFC_DR (*base_master_dr)->base_w_predicate);
      if (is_true_predicate (IFC_DR (*base_master_dr)->base_w_predicate))
	DR_BASE_W_UNCONDITIONALLY (*base_master_dr) = true;
722
    }
723 724
}

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
/* Return TRUE if can prove the index IDX of an array reference REF is
   within array bound.  Return false otherwise.  */

static bool
idx_within_array_bound (tree ref, tree *idx, void *dta)
{
  bool overflow;
  widest_int niter, valid_niter, delta, wi_step;
  tree ev, init, step;
  tree low, high;
  struct loop *loop = (struct loop*) dta;

  /* Only support within-bound access for array references.  */
  if (TREE_CODE (ref) != ARRAY_REF)
    return false;

  /* For arrays at the end of the structure, we are not guaranteed that they
     do not really extend over their declared size.  However, for arrays of
     size greater than one, this is unlikely to be intended.  */
  if (array_at_struct_end_p (ref))
    return false;

  ev = analyze_scalar_evolution (loop, *idx);
  ev = instantiate_parameters (loop, ev);
  init = initial_condition (ev);
  step = evolution_part_in_loop_num (ev, loop->num);

  if (!init || TREE_CODE (init) != INTEGER_CST
      || (step && TREE_CODE (step) != INTEGER_CST))
    return false;

  low = array_ref_low_bound (ref);
  high = array_ref_up_bound (ref);

  /* The case of nonconstant bounds could be handled, but it would be
     complicated.  */
  if (TREE_CODE (low) != INTEGER_CST
      || !high || TREE_CODE (high) != INTEGER_CST)
    return false;

  /* Check if the intial idx is within bound.  */
  if (wi::to_widest (init) < wi::to_widest (low)
      || wi::to_widest (init) > wi::to_widest (high))
    return false;

  /* The idx is always within bound.  */
  if (!step || integer_zerop (step))
    return true;

  if (!max_loop_iterations (loop, &niter))
    return false;

  if (wi::to_widest (step) < 0)
    {
      delta = wi::to_widest (init) - wi::to_widest (low);
      wi_step = -wi::to_widest (step);
    }
  else
    {
      delta = wi::to_widest (high) - wi::to_widest (init);
      wi_step = wi::to_widest (step);
    }

  valid_niter = wi::div_floor (delta, wi_step, SIGNED, &overflow);
  /* The iteration space of idx is within array bound.  */
  if (!overflow && niter <= valid_niter)
    return true;

  return false;
}

/* Return TRUE if ref is a within bound array reference.  */

static bool
ref_within_array_bound (gimple *stmt, tree ref)
{
  struct loop *loop = loop_containing_stmt (stmt);

  gcc_assert (loop != NULL);
  return for_each_index (&ref, idx_within_array_bound, loop);
}


/* Given a memory reference expression T, return TRUE if base object
   it refers to is writable.  The base object of a memory reference
   is the main object being referenced, which is returned by function
   get_base_address.  */

static bool
base_object_writable (tree ref)
{
  tree base_tree = get_base_address (ref);

  return (base_tree
	  && DECL_P (base_tree)
	  && decl_binds_to_current_def_p (base_tree)
	  && !TREE_READONLY (base_tree));
}

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
/* Return true when the memory references of STMT won't trap in the
   if-converted code.  There are two things that we have to check for:

   - writes to memory occur to writable memory: if-conversion of
   memory writes transforms the conditional memory writes into
   unconditional writes, i.e. "if (cond) A[i] = foo" is transformed
   into "A[i] = cond ? foo : A[i]", and as the write to memory may not
   be executed at all in the original code, it may be a readonly
   memory.  To check that A is not const-qualified, we check that
   there exists at least an unconditional write to A in the current
   function.

   - reads or writes to memory are valid memory accesses for every
   iteration.  To check that the memory accesses are correctly formed
   and that we are allowed to read and write in these locations, we
   check that the memory accesses to be if-converted occur at every
840 841 842 843 844 845 846 847 848
   iteration unconditionally.

   Returns true for the memory reference in STMT, same memory reference
   is read or written unconditionally atleast once and the base memory
   reference is written unconditionally once.  This is to check reference
   will not write fault.  Also retuns true if the memory reference is
   unconditionally read once then we are conditionally writing to memory
   which is defined as read and write and is bound to the definition
   we are seeing.  */
849
static bool
850
ifcvt_memrefs_wont_trap (gimple *stmt, vec<data_reference_p> drs)
851
{
852 853 854 855
  data_reference_p *master_dr, *base_master_dr;
  data_reference_p a = drs[gimple_uid (stmt) - 1];

  tree base = DR_BASE_OBJECT (a);
856
  innermost_loop_behavior *innermost = &DR_INNERMOST (a);
857 858

  gcc_assert (DR_STMT (a) == stmt);
859 860
  gcc_assert (DR_BASE_ADDRESS (a) || DR_OFFSET (a)
              || DR_INIT (a) || DR_STEP (a));
861

862 863
  master_dr = innermost_DR_map->get (innermost);
  gcc_assert (master_dr != NULL);
864 865 866

  base_master_dr = baseref_DR_map->get (base);

867 868 869 870
  /* If a is unconditionally written to it doesn't trap.  */
  if (DR_W_UNCONDITIONALLY (*master_dr))
    return true;

871 872 873 874 875 876 877
  /* If a is unconditionally accessed then ...

     Even a is conditional access, we can treat it as an unconditional
     one if it's an array reference and all its index are within array
     bound.  */
  if (DR_RW_UNCONDITIONALLY (*master_dr)
      || ref_within_array_bound (stmt, DR_REF (a)))
878
    {
879 880 881 882 883 884
      /* an unconditional read won't trap.  */
      if (DR_IS_READ (a))
	return true;

      /* an unconditionaly write won't trap if the base is written
         to unconditionally.  */
885
      if (base_master_dr
886
	  && DR_BASE_W_UNCONDITIONALLY (*base_master_dr))
887
	return PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES);
888 889 890
      /* or the base is known to be not readonly.  */
      else if (base_object_writable (DR_REF (a)))
	return PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES);
891
    }
892

893
  return false;
894 895
}

896 897 898 899
/* Return true if STMT could be converted into a masked load or store
   (conditional load or store based on a mask computed from bb predicate).  */

static bool
900
ifcvt_can_use_mask_load_store (gimple *stmt)
901 902
{
  tree lhs, ref;
903
  machine_mode mode;
904 905 906
  basic_block bb = gimple_bb (stmt);
  bool is_load;

907
  if (!(flag_tree_loop_vectorize || bb->loop_father->force_vectorize)
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
      || bb->loop_father->dont_vectorize
      || !gimple_assign_single_p (stmt)
      || gimple_has_volatile_ops (stmt))
    return false;

  /* Check whether this is a load or store.  */
  lhs = gimple_assign_lhs (stmt);
  if (gimple_store_p (stmt))
    {
      if (!is_gimple_val (gimple_assign_rhs1 (stmt)))
	return false;
      is_load = false;
      ref = lhs;
    }
  else if (gimple_assign_load_p (stmt))
    {
      is_load = true;
      ref = gimple_assign_rhs1 (stmt);
    }
  else
    return false;

  if (may_be_nonaddressable_p (ref))
    return false;

  /* Mask should be integer mode of the same size as the load/store
     mode.  */
  mode = TYPE_MODE (TREE_TYPE (lhs));
936
  if (!int_mode_for_mode (mode).exists () || VECTOR_MODE_P (mode))
937 938
    return false;

939
  if (can_vec_mask_load_store_p (mode, VOIDmode, is_load))
940 941 942 943 944
    return true;

  return false;
}

945 946
/* Return true when STMT is if-convertible.

947
   GIMPLE_ASSIGN statement is not if-convertible if,
948 949
   - it is not movable,
   - it could trap,
950
   - LHS is not var decl.  */
951 952

static bool
953
if_convertible_gimple_assign_stmt_p (gimple *stmt,
954
				     vec<data_reference_p> refs)
955
{
956
  tree lhs = gimple_assign_lhs (stmt);
Revital Eres committed
957

958 959 960
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "-------------------------\n");
961
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
962
    }
963

964 965 966
  if (!is_gimple_reg_type (TREE_TYPE (lhs)))
    return false;

Revital Eres committed
967
  /* Some of these constrains might be too conservative.  */
968 969
  if (stmt_ends_bb_p (stmt)
      || gimple_has_volatile_ops (stmt)
Revital Eres committed
970 971
      || (TREE_CODE (lhs) == SSA_NAME
          && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
972
      || gimple_has_side_effects (stmt))
973 974
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
Revital Eres committed
975
        fprintf (dump_file, "stmt not suitable for ifcvt\n");
976 977 978
      return false;
    }

979 980 981 982 983
  /* tree-into-ssa.c uses GF_PLF_1, so avoid it, because
     in between if_convertible_loop_p and combine_blocks
     we can perform loop versioning.  */
  gimple_set_plf (stmt, GF_PLF_2, false);

984 985 986 987
  if ((! gimple_vuse (stmt)
       || gimple_could_trap_p_1 (stmt, false, false)
       || ! ifcvt_memrefs_wont_trap (stmt, refs))
      && gimple_could_trap_p (stmt))
988
    {
989 990 991
      if (ifcvt_can_use_mask_load_store (stmt))
	{
	  gimple_set_plf (stmt, GF_PLF_2, true);
992
	  any_pred_load_store = true;
993 994
	  return true;
	}
995 996 997 998 999
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "tree could trap...\n");
      return false;
    }

1000 1001 1002
  /* When if-converting stores force versioning, likewise if we
     ended up generating store data races.  */
  if (gimple_vdef (stmt))
1003
    any_pred_load_store = true;
1004 1005 1006 1007

  return true;
}

1008 1009 1010
/* Return true when STMT is if-convertible.

   A statement is if-convertible if:
Rainer Orth committed
1011
   - it is an if-convertible GIMPLE_ASSIGN,
1012 1013
   - it is a GIMPLE_LABEL or a GIMPLE_COND,
   - it is builtins call.  */
1014 1015

static bool
1016
if_convertible_stmt_p (gimple *stmt, vec<data_reference_p> refs)
1017
{
1018
  switch (gimple_code (stmt))
1019
    {
1020
    case GIMPLE_LABEL:
1021
    case GIMPLE_DEBUG:
1022 1023
    case GIMPLE_COND:
      return true;
1024

1025
    case GIMPLE_ASSIGN:
1026
      return if_convertible_gimple_assign_stmt_p (stmt, refs);
1027

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
    case GIMPLE_CALL:
      {
	tree fndecl = gimple_call_fndecl (stmt);
	if (fndecl)
	  {
	    int flags = gimple_call_flags (stmt);
	    if ((flags & ECF_CONST)
		&& !(flags & ECF_LOOPING_CONST_OR_PURE)
		/* We can only vectorize some builtins at the moment,
		   so restrict if-conversion to those.  */
		&& DECL_BUILT_IN (fndecl))
	      return true;
	  }
	return false;
      }

1044 1045 1046 1047 1048
    default:
      /* Don't know what to do with 'em so don't do anything.  */
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "don't know what to do\n");
1049
	  print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1050 1051 1052 1053 1054 1055 1056
	}
      return false;
    }

  return true;
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
/* Assumes that BB has more than 1 predecessors.
   Returns false if at least one successor is not on critical edge
   and true otherwise.  */

static inline bool
all_preds_critical_p (basic_block bb)
{
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, bb->preds)
    if (EDGE_COUNT (e->src->succs) == 1)
      return false;
  return true;
}

/* Returns true if at least one successor in on critical edge.  */
static inline bool
has_pred_critical_p (basic_block bb)
{
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, bb->preds)
    if (EDGE_COUNT (e->src->succs) > 1)
      return true;
  return false;
}

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
/* Return true when BB is if-convertible.  This routine does not check
   basic block's statements and phis.

   A basic block is not if-convertible if:
   - it is non-empty and it is after the exit block (in BFS order),
   - it is after the exit block but before the latch,
   - its edges are not normal.

   EXIT_BB is the basic block containing the exit of the LOOP.  BB is
   inside LOOP.  */
1096

1097
static bool
1098
if_convertible_bb_p (struct loop *loop, basic_block bb, basic_block exit_bb)
1099 1100
{
  edge e;
1101
  edge_iterator ei;
1102 1103 1104

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "----------[%d]-------------\n", bb->index);
1105

1106 1107 1108
  if (EDGE_COUNT (bb->succs) > 2)
    return false;

1109
  if (exit_bb)
1110 1111 1112 1113 1114 1115 1116 1117 1118
    {
      if (bb != loop->latch)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "basic block after exit bb but before latch\n");
	  return false;
	}
      else if (!empty_block_p (bb))
	{
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "non empty basic block after exit bb\n");
	  return false;
	}
      else if (bb == loop->latch
	       && bb != exit_bb
	       && !dominated_by_p (CDI_DOMINATORS, bb, exit_bb))
	  {
	    if (dump_file && (dump_flags & TDF_DETAILS))
	      fprintf (dump_file, "latch is not dominated by exit_block\n");
	    return false;
	  }
    }

  /* Be less adventurous and handle only normal edges.  */
  FOR_EACH_EDGE (e, ei, bb->succs)
1135
    if (e->flags & (EDGE_EH | EDGE_ABNORMAL | EDGE_IRREDUCIBLE_LOOP))
1136 1137
      {
	if (dump_file && (dump_flags & TDF_DETAILS))
1138
	  fprintf (dump_file, "Difficult to handle edges\n");
1139 1140 1141 1142 1143 1144
	return false;
      }

  return true;
}

1145 1146
/* Return true when all predecessor blocks of BB are visited.  The
   VISITED bitmap keeps track of the visited blocks.  */
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

static bool
pred_blocks_visited_p (basic_block bb, bitmap *visited)
{
  edge e;
  edge_iterator ei;
  FOR_EACH_EDGE (e, ei, bb->preds)
    if (!bitmap_bit_p (*visited, e->src->index))
      return false;

  return true;
}

/* Get body of a LOOP in suitable order for if-conversion.  It is
   caller's responsibility to deallocate basic block list.
   If-conversion suitable order is, breadth first sort (BFS) order
   with an additional constraint: select a block only if all its
   predecessors are already selected.  */

static basic_block *
get_loop_body_in_if_conv_order (const struct loop *loop)
{
  basic_block *blocks, *blocks_in_bfs_order;
  basic_block bb;
  bitmap visited;
  unsigned int index = 0;
  unsigned int visited_count = 0;

  gcc_assert (loop->num_nodes);
1176
  gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

  blocks = XCNEWVEC (basic_block, loop->num_nodes);
  visited = BITMAP_ALLOC (NULL);

  blocks_in_bfs_order = get_loop_body_in_bfs_order (loop);

  index = 0;
  while (index < loop->num_nodes)
    {
      bb = blocks_in_bfs_order [index];

      if (bb->flags & BB_IRREDUCIBLE_LOOP)
	{
	  free (blocks_in_bfs_order);
	  BITMAP_FREE (visited);
	  free (blocks);
	  return NULL;
	}

      if (!bitmap_bit_p (visited, bb->index))
	{
	  if (pred_blocks_visited_p (bb, &visited)
	      || bb == loop->header)
	    {
	      /* This block is now visited.  */
	      bitmap_set_bit (visited, bb->index);
	      blocks[visited_count++] = bb;
	    }
1205
	}
1206

1207
      index++;
1208

1209 1210 1211 1212 1213 1214 1215 1216
      if (index == loop->num_nodes
	  && visited_count != loop->num_nodes)
	/* Not done yet.  */
	index = 0;
    }
  free (blocks_in_bfs_order);
  BITMAP_FREE (visited);
  return blocks;
1217 1218
}

1219 1220 1221
/* Returns true when the analysis of the predicates for all the basic
   blocks in LOOP succeeded.

1222
   predicate_bbs first allocates the predicates of the basic blocks.
1223 1224 1225 1226 1227
   These fields are then initialized with the tree expressions
   representing the predicates under which a basic block is executed
   in the LOOP.  As the loop->header is executed at each iteration, it
   has the "true" predicate.  Other statements executed under a
   condition are predicated with that condition, for example
1228 1229 1230 1231 1232 1233

   | if (x)
   |   S1;
   | else
   |   S2;

1234 1235
   S1 will be predicated with "x", and
   S2 will be predicated with "!x".  */
1236

1237
static void
1238 1239 1240 1241 1242
predicate_bbs (loop_p loop)
{
  unsigned int i;

  for (i = 0; i < loop->num_nodes; i++)
1243
    init_bb_predicate (ifc_bbs[i]);
1244 1245 1246

  for (i = 0; i < loop->num_nodes; i++)
    {
1247 1248
      basic_block bb = ifc_bbs[i];
      tree cond;
1249
      gimple *stmt;
1250

1251 1252 1253 1254
      /* The loop latch and loop exit block are always executed and
	 have no extra conditions to be processed: skip them.  */
      if (bb == loop->latch
	  || bb_with_exit_edge_p (loop, bb))
1255
	{
1256
	  reset_bb_predicate (bb);
1257 1258 1259 1260
	  continue;
	}

      cond = bb_predicate (bb);
1261 1262
      stmt = last_stmt (bb);
      if (stmt && gimple_code (stmt) == GIMPLE_COND)
1263
	{
1264 1265 1266
	  tree c2;
	  edge true_edge, false_edge;
	  location_t loc = gimple_location (stmt);
1267
	  tree c = build2_loc (loc, gimple_cond_code (stmt),
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
				    boolean_type_node,
				    gimple_cond_lhs (stmt),
				    gimple_cond_rhs (stmt));

	  /* Add new condition into destination's predicate list.  */
	  extract_true_false_edges_from_block (gimple_bb (stmt),
					       &true_edge, &false_edge);

	  /* If C is true, then TRUE_EDGE is taken.  */
	  add_to_dst_predicate_list (loop, true_edge, unshare_expr (cond),
				     unshare_expr (c));

	  /* If C is false, then FALSE_EDGE is taken.  */
	  c2 = build1_loc (loc, TRUTH_NOT_EXPR, boolean_type_node,
			   unshare_expr (c));
	  add_to_dst_predicate_list (loop, false_edge,
				     unshare_expr (cond), c2);

	  cond = NULL_TREE;
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
	}

      /* If current bb has only one successor, then consider it as an
	 unconditional goto.  */
      if (single_succ_p (bb))
	{
	  basic_block bb_n = single_succ (bb);

	  /* The successor bb inherits the predicate of its
	     predecessor.  If there is no predicate in the predecessor
	     bb, then consider the successor bb as always executed.  */
	  if (cond == NULL_TREE)
	    cond = boolean_true_node;

1301
	  add_to_predicate_list (loop, bb_n, cond);
1302 1303 1304 1305
	}
    }

  /* The loop header is always executed.  */
1306
  reset_bb_predicate (loop->header);
1307 1308
  gcc_assert (bb_predicate_gimplified_stmts (loop->header) == NULL
	      && bb_predicate_gimplified_stmts (loop->latch) == NULL);
1309 1310
}

Yuri Rumyantsev committed
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
/* Build region by adding loop pre-header and post-header blocks.  */

static vec<basic_block>
build_region (struct loop *loop)
{
  vec<basic_block> region = vNULL;
  basic_block exit_bb = NULL;

  gcc_assert (ifc_bbs);
  /* The first element is loop pre-header.  */
  region.safe_push (loop_preheader_edge (loop)->src);

  for (unsigned int i = 0; i < loop->num_nodes; i++)
    {
      basic_block bb = ifc_bbs[i];
      region.safe_push (bb);
      /* Find loop postheader.  */
      edge e;
      edge_iterator ei;
      FOR_EACH_EDGE (e, ei, bb->succs)
	if (loop_exit_edge_p (loop, e))
	  {
	      exit_bb = e->dest;
	      break;
	  }
    }
  /* The last element is loop post-header.  */
  gcc_assert (exit_bb);
  region.safe_push (exit_bb);
  return region;
}

1343 1344 1345
/* Return true when LOOP is if-convertible.  This is a helper function
   for if_convertible_loop_p.  REFS and DDRS are initialized and freed
   in if_convertible_loop_p.  */
1346 1347

static bool
1348
if_convertible_loop_p_1 (struct loop *loop, vec<data_reference_p> *refs)
1349 1350
{
  unsigned int i;
1351
  basic_block exit_bb = NULL;
Yuri Rumyantsev committed
1352
  vec<basic_block> region;
1353

1354
  if (find_data_references_in_loop (loop, refs) == chrec_dont_know)
1355
    return false;
1356

1357 1358 1359 1360 1361 1362 1363
  calculate_dominance_info (CDI_DOMINATORS);

  /* Allow statements that can be handled during if-conversion.  */
  ifc_bbs = get_loop_body_in_if_conv_order (loop);
  if (!ifc_bbs)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
Sebastian Pop committed
1364
	fprintf (dump_file, "Irreducible loop\n");
1365 1366
      return false;
    }
1367

1368 1369
  for (i = 0; i < loop->num_nodes; i++)
    {
1370
      basic_block bb = ifc_bbs[i];
1371

1372
      if (!if_convertible_bb_p (loop, bb, exit_bb))
1373 1374
	return false;

1375 1376 1377 1378
      if (bb_with_exit_edge_p (loop, bb))
	exit_bb = bb;
    }

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
  for (i = 0; i < loop->num_nodes; i++)
    {
      basic_block bb = ifc_bbs[i];
      gimple_stmt_iterator gsi;

      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	switch (gimple_code (gsi_stmt (gsi)))
	  {
	  case GIMPLE_LABEL:
	  case GIMPLE_ASSIGN:
	  case GIMPLE_CALL:
	  case GIMPLE_DEBUG:
	  case GIMPLE_COND:
1392
	    gimple_set_uid (gsi_stmt (gsi), 0);
1393 1394 1395 1396 1397
	    break;
	  default:
	    return false;
	  }
    }
1398

1399
  data_reference_p dr;
1400

1401 1402
  innermost_DR_map
	  = new hash_map<innermost_loop_behavior_hash, data_reference_p>;
1403 1404
  baseref_DR_map = new hash_map<tree_operand_hash, data_reference_p>;

Yuri Rumyantsev committed
1405 1406 1407 1408
  /* Compute post-dominator tree locally.  */
  region = build_region (loop);
  calculate_dominance_info_for_region (CDI_POST_DOMINATORS, region);

1409 1410
  predicate_bbs (loop);

Yuri Rumyantsev committed
1411 1412 1413 1414
  /* Free post-dominator tree since it is not used after predication.  */
  free_dominance_info_for_region (cfun, CDI_POST_DOMINATORS, region);
  region.release ();

1415 1416
  for (i = 0; refs->iterate (i, &dr); i++)
    {
1417 1418
      tree ref = DR_REF (dr);

1419
      dr->aux = XNEW (struct ifc_dr);
1420 1421 1422 1423 1424 1425
      DR_BASE_W_UNCONDITIONALLY (dr) = false;
      DR_RW_UNCONDITIONALLY (dr) = false;
      DR_W_UNCONDITIONALLY (dr) = false;
      IFC_DR (dr)->rw_predicate = boolean_false_node;
      IFC_DR (dr)->w_predicate = boolean_false_node;
      IFC_DR (dr)->base_w_predicate = boolean_false_node;
1426 1427
      if (gimple_uid (DR_STMT (dr)) == 0)
	gimple_set_uid (DR_STMT (dr), i + 1);
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442

      /* If DR doesn't have innermost loop behavior or it's a compound
         memory reference, we synthesize its innermost loop behavior
         for hashing.  */
      if (TREE_CODE (ref) == COMPONENT_REF
          || TREE_CODE (ref) == IMAGPART_EXPR
          || TREE_CODE (ref) == REALPART_EXPR
          || !(DR_BASE_ADDRESS (dr) || DR_OFFSET (dr)
	       || DR_INIT (dr) || DR_STEP (dr)))
        {
          while (TREE_CODE (ref) == COMPONENT_REF
	         || TREE_CODE (ref) == IMAGPART_EXPR
	         || TREE_CODE (ref) == REALPART_EXPR)
	    ref = TREE_OPERAND (ref, 0);

1443 1444
	  memset (&DR_INNERMOST (dr), 0, sizeof (DR_INNERMOST (dr)));
	  DR_BASE_ADDRESS (dr) = ref;
1445
        }
1446
      hash_memrefs_baserefs_and_store_DRs_read_written_info (dr);
1447 1448
    }

1449 1450 1451 1452 1453
  for (i = 0; i < loop->num_nodes; i++)
    {
      basic_block bb = ifc_bbs[i];
      gimple_stmt_iterator itr;

1454
      /* Check the if-convertibility of statements in predicated BBs.  */
1455
      if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1456
	for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
1457
	  if (!if_convertible_stmt_p (gsi_stmt (itr), *refs))
1458
	    return false;
1459 1460
    }

1461 1462 1463 1464 1465
  /* Checking PHIs needs to be done after stmts, as the fact whether there
     are any masked loads or stores affects the tests.  */
  for (i = 0; i < loop->num_nodes; i++)
    {
      basic_block bb = ifc_bbs[i];
1466
      gphi_iterator itr;
1467 1468

      for (itr = gsi_start_phis (bb); !gsi_end_p (itr); gsi_next (&itr))
1469
	if (!if_convertible_phi_p (loop, bb, itr.phi ()))
1470 1471 1472
	  return false;
    }

1473
  if (dump_file)
Sebastian Pop committed
1474
    fprintf (dump_file, "Applying if-conversion\n");
1475 1476 1477 1478

  return true;
}

1479 1480 1481 1482 1483 1484 1485 1486 1487
/* Return true when LOOP is if-convertible.
   LOOP is if-convertible if:
   - it is innermost,
   - it has two or more basic blocks,
   - it has only one exit,
   - loop header is not the exit edge,
   - if its basic blocks and phi nodes are if convertible.  */

static bool
1488
if_convertible_loop_p (struct loop *loop)
1489 1490 1491 1492
{
  edge e;
  edge_iterator ei;
  bool res = false;
1493
  vec<data_reference_p> refs;
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524

  /* Handle only innermost loop.  */
  if (!loop || loop->inner)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "not innermost loop\n");
      return false;
    }

  /* If only one block, no need for if-conversion.  */
  if (loop->num_nodes <= 2)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "less than 2 basic blocks\n");
      return false;
    }

  /* More than one loop exit is too much to handle.  */
  if (!single_exit (loop))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "multiple exits\n");
      return false;
    }

  /* If one of the loop header's edge is an exit edge then do not
     apply if-conversion.  */
  FOR_EACH_EDGE (e, ei, loop->header->succs)
    if (loop_exit_edge_p (loop, e))
      return false;

1525
  refs.create (5);
1526
  res = if_convertible_loop_p_1 (loop, &refs);
1527

1528 1529 1530 1531
  data_reference_p dr;
  unsigned int i;
  for (i = 0; refs.iterate (i, &dr); i++)
    free (dr->aux);
1532

1533
  free_data_refs (refs);
1534

1535 1536
  delete innermost_DR_map;
  innermost_DR_map = NULL;
1537 1538 1539 1540

  delete baseref_DR_map;
  baseref_DR_map = NULL;

1541 1542 1543
  return res;
}

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
/* Returns true if def-stmt for phi argument ARG is simple increment/decrement
   which is in predicated basic block.
   In fact, the following PHI pattern is searching:
      loop-header:
	reduc_1 = PHI <..., reduc_2>
      ...
	if (...)
	  reduc_3 = ...
	reduc_2 = PHI <reduc_1, reduc_3>

1554 1555 1556
   ARG_0 and ARG_1 are correspondent PHI arguments.
   REDUC, OP0 and OP1 contain reduction stmt and its operands.
   EXTENDED is true if PHI has > 2 arguments.  */
1557 1558

static bool
1559
is_cond_scalar_reduction (gimple *phi, gimple **reduc, tree arg_0, tree arg_1,
1560
			  tree *op0, tree *op1, bool extended)
1561 1562
{
  tree lhs, r_op1, r_op2;
1563 1564
  gimple *stmt;
  gimple *header_phi = NULL;
1565
  enum tree_code reduction_op;
1566 1567
  basic_block bb = gimple_bb (phi);
  struct loop *loop = bb->loop_father;
1568
  edge latch_e = loop_latch_edge (loop);
1569 1570
  imm_use_iterator imm_iter;
  use_operand_p use_p;
1571 1572 1573
  edge e;
  edge_iterator ei;
  bool result = false;
1574 1575 1576
  if (TREE_CODE (arg_0) != SSA_NAME || TREE_CODE (arg_1) != SSA_NAME)
    return false;

1577
  if (!extended && gimple_code (SSA_NAME_DEF_STMT (arg_0)) == GIMPLE_PHI)
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
    {
      lhs = arg_1;
      header_phi = SSA_NAME_DEF_STMT (arg_0);
      stmt = SSA_NAME_DEF_STMT (arg_1);
    }
  else if (gimple_code (SSA_NAME_DEF_STMT (arg_1)) == GIMPLE_PHI)
    {
      lhs = arg_0;
      header_phi = SSA_NAME_DEF_STMT (arg_1);
      stmt = SSA_NAME_DEF_STMT (arg_0);
    }
  else
    return false;
  if (gimple_bb (header_phi) != loop->header)
    return false;

  if (PHI_ARG_DEF_FROM_EDGE (header_phi, latch_e) != PHI_RESULT (phi))
    return false;

  if (gimple_code (stmt) != GIMPLE_ASSIGN
      || gimple_has_volatile_ops (stmt))
    return false;

1601 1602 1603
  if (!flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
    return false;

1604 1605 1606
  if (!is_predicated (gimple_bb (stmt)))
    return false;

1607
  /* Check that stmt-block is predecessor of phi-block.  */
1608 1609 1610 1611 1612 1613 1614
  FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
    if (e->dest == bb)
      {
	result = true;
	break;
      }
  if (!result)
1615 1616
    return false;

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
  if (!has_single_use (lhs))
    return false;

  reduction_op = gimple_assign_rhs_code (stmt);
  if (reduction_op != PLUS_EXPR && reduction_op != MINUS_EXPR)
    return false;
  r_op1 = gimple_assign_rhs1 (stmt);
  r_op2 = gimple_assign_rhs2 (stmt);

  /* Make R_OP1 to hold reduction variable.  */
  if (r_op2 == PHI_RESULT (header_phi)
      && reduction_op == PLUS_EXPR)
1629
    std::swap (r_op1, r_op2);
1630 1631 1632
  else if (r_op1 != PHI_RESULT (header_phi))
    return false;

1633 1634 1635
  /* Check that R_OP1 is used in reduction stmt or in PHI only.  */
  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, r_op1)
    {
1636
      gimple *use_stmt = USE_STMT (use_p);
1637 1638 1639 1640 1641 1642 1643 1644
      if (is_gimple_debug (use_stmt))
	continue;
      if (use_stmt == stmt)
	continue;
      if (gimple_code (use_stmt) != GIMPLE_PHI)
	return false;
    }

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
  *op0 = r_op1; *op1 = r_op2;
  *reduc = stmt;
  return true;
}

/* Converts conditional scalar reduction into unconditional form, e.g.
     bb_4
       if (_5 != 0) goto bb_5 else goto bb_6
     end_bb_4
     bb_5
       res_6 = res_13 + 1;
     end_bb_5
     bb_6
       # res_2 = PHI <res_13(4), res_6(5)>
     end_bb_6

   will be converted into sequence
    _ifc__1 = _5 != 0 ? 1 : 0;
    res_2 = res_13 + _ifc__1;
  Argument SWAP tells that arguments of conditional expression should be
  swapped.
  Returns rhs of resulting PHI assignment.  */

static tree
1669
convert_scalar_cond_reduction (gimple *reduc, gimple_stmt_iterator *gsi,
1670 1671 1672
			       tree cond, tree op0, tree op1, bool swap)
{
  gimple_stmt_iterator stmt_it;
1673
  gimple *new_assign;
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
  tree rhs;
  tree rhs1 = gimple_assign_rhs1 (reduc);
  tree tmp = make_temp_ssa_name (TREE_TYPE (rhs1), NULL, "_ifc_");
  tree c;
  tree zero = build_zero_cst (TREE_TYPE (rhs1));

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Found cond scalar reduction.\n");
      print_gimple_stmt (dump_file, reduc, 0, TDF_SLIM);
    }

  /* Build cond expression using COND and constant operand
     of reduction rhs.  */
  c = fold_build_cond_expr (TREE_TYPE (rhs1),
			    unshare_expr (cond),
			    swap ? zero : op1,
			    swap ? op1 : zero);

  /* Create assignment stmt and insert it at GSI.  */
  new_assign = gimple_build_assign (tmp, c);
  gsi_insert_before (gsi, new_assign, GSI_SAME_STMT);
  /* Build rhs for unconditional increment/decrement.  */
  rhs = fold_build2 (gimple_assign_rhs_code (reduc),
		     TREE_TYPE (rhs1), op0, tmp);

  /* Delete original reduction stmt.  */
  stmt_it = gsi_for_stmt (reduc);
  gsi_remove (&stmt_it, true);
  release_defs (reduc);
  return rhs;
}

1707
/* Produce condition for all occurrences of ARG in PHI node.  */
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725

static tree
gen_phi_arg_condition (gphi *phi, vec<int> *occur,
		       gimple_stmt_iterator *gsi)
{
  int len;
  int i;
  tree cond = NULL_TREE;
  tree c;
  edge e;

  len = occur->length ();
  gcc_assert (len > 0);
  for (i = 0; i < len; i++)
    {
      e = gimple_phi_arg_edge (phi, (*occur)[i]);
      c = bb_predicate (e->src);
      if (is_true_predicate (c))
1726 1727 1728 1729
	{
	  cond = c;
	  break;
	}
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
      c = force_gimple_operand_gsi_1 (gsi, unshare_expr (c),
				      is_gimple_condexpr, NULL_TREE,
				      true, GSI_SAME_STMT);
      if (cond != NULL_TREE)
	{
	  /* Must build OR expression.  */
	  cond = fold_or_predicates (EXPR_LOCATION (c), c, cond);
	  cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (cond),
					     is_gimple_condexpr, NULL_TREE,
					     true, GSI_SAME_STMT);
	}
      else
	cond = c;
    }
  gcc_assert (cond != NULL_TREE);
  return cond;
}

1748 1749 1750 1751 1752 1753 1754 1755
/* Local valueization callback that follows all-use SSA edges.  */

static tree
ifcvt_follow_ssa_use_edges (tree val)
{
  return val;
}

1756
/* Replace a scalar PHI node with a COND_EXPR using COND as condition.
1757
   This routine can handle PHI nodes with more than two arguments.
1758 1759

   For example,
1760
     S1: A = PHI <x1(1), x2(5)>
1761 1762
   is converted into,
     S2: A = cond ? x1 : x2;
1763 1764

   The generated code is inserted at GSI that points to the top of
1765 1766 1767 1768
   basic block's statement list.
   If PHI node has more than two arguments a chain of conditional
   expression is produced.  */

1769 1770

static void
1771
predicate_scalar_phi (gphi *phi, gimple_stmt_iterator *gsi)
1772
{
1773
  gimple *new_stmt = NULL, *reduc;
1774 1775 1776 1777 1778
  tree rhs, res, arg0, arg1, op0, op1, scev;
  tree cond;
  unsigned int index0;
  unsigned int max, args_len;
  edge e;
1779
  basic_block bb;
1780
  unsigned int i;
H.J. Lu committed
1781

1782
  res = gimple_phi_result (phi);
1783
  if (virtual_operand_p (res))
1784 1785
    return;

1786
  if ((rhs = degenerate_phi_result (phi))
1787 1788 1789 1790
      || ((scev = analyze_scalar_evolution (gimple_bb (phi)->loop_father,
					    res))
	  && !chrec_contains_undetermined (scev)
	  && scev != res
1791
	  && (rhs = gimple_phi_arg_def (phi, 0))))
1792
    {
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Degenerate phi!\n");
	  print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
	}
      new_stmt = gimple_build_assign (res, rhs);
      gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
      update_stmt (new_stmt);
      return;
    }
1803

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
  bb = gimple_bb (phi);
  if (EDGE_COUNT (bb->preds) == 2)
    {
      /* Predicate ordinary PHI node with 2 arguments.  */
      edge first_edge, second_edge;
      basic_block true_bb;
      first_edge = EDGE_PRED (bb, 0);
      second_edge = EDGE_PRED (bb, 1);
      cond = bb_predicate (first_edge->src);
      if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
1814
	std::swap (first_edge, second_edge);
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
      if (EDGE_COUNT (first_edge->src->succs) > 1)
	{
	  cond = bb_predicate (second_edge->src);
	  if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
	    cond = TREE_OPERAND (cond, 0);
	  else
	    first_edge = second_edge;
	}
      else
	cond = bb_predicate (first_edge->src);
      /* Gimplify the condition to a valid cond-expr conditonal operand.  */
      cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (cond),
					 is_gimple_condexpr, NULL_TREE,
					 true, GSI_SAME_STMT);
      true_bb = first_edge->src;
1830 1831
      if (EDGE_PRED (bb, 1)->src == true_bb)
	{
1832 1833
	  arg0 = gimple_phi_arg_def (phi, 1);
	  arg1 = gimple_phi_arg_def (phi, 0);
1834 1835 1836
	}
      else
	{
1837 1838
	  arg0 = gimple_phi_arg_def (phi, 0);
	  arg1 = gimple_phi_arg_def (phi, 1);
1839
	}
1840 1841
      if (is_cond_scalar_reduction (phi, &reduc, arg0, arg1,
				    &op0, &op1, false))
1842 1843 1844 1845 1846 1847
	/* Convert reduction stmt into vectorizable form.  */
	rhs = convert_scalar_cond_reduction (reduc, gsi, cond, op0, op1,
					     true_bb != gimple_bb (reduc));
      else
	/* Build new RHS using selected condition and arguments.  */
	rhs = fold_build_cond_expr (TREE_TYPE (res), unshare_expr (cond),
1848 1849 1850
				    arg0, arg1);
      new_stmt = gimple_build_assign (res, rhs);
      gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
1851
      gimple_stmt_iterator new_gsi = gsi_for_stmt (new_stmt);
1852 1853 1854 1855 1856
      if (fold_stmt (&new_gsi, ifcvt_follow_ssa_use_edges))
	{
	  new_stmt = gsi_stmt (new_gsi);
	  update_stmt (new_stmt);
	}
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "new phi replacement stmt\n");
	  print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
	}
      return;
    }

  /* Create hashmap for PHI node which contain vector of argument indexes
     having the same value.  */
  bool swap = false;
1869
  hash_map<tree_operand_hash, auto_vec<int> > phi_arg_map;
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
  unsigned int num_args = gimple_phi_num_args (phi);
  int max_ind = -1;
  /* Vector of different PHI argument values.  */
  auto_vec<tree> args (num_args);

  /* Compute phi_arg_map.  */
  for (i = 0; i < num_args; i++)
    {
      tree arg;

      arg = gimple_phi_arg_def (phi, i);
      if (!phi_arg_map.get (arg))
	args.quick_push (arg);
      phi_arg_map.get_or_insert (arg).safe_push (i);
    }

  /* Determine element with max number of occurrences.  */
  max_ind = -1;
  max = 1;
  args_len = args.length ();
  for (i = 0; i < args_len; i++)
    {
      unsigned int len;
      if ((len = phi_arg_map.get (args[i])->length ()) > max)
	{
	  max_ind = (int) i;
	  max = len;
	}
    }

  /* Put element with max number of occurences to the end of ARGS.  */
  if (max_ind != -1 && max_ind +1 != (int) args_len)
1902
    std::swap (args[args_len - 1], args[max_ind]);
1903

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
  /* Handle one special case when number of arguments with different values
     is equal 2 and one argument has the only occurrence.  Such PHI can be
     handled as if would have only 2 arguments.  */
  if (args_len == 2 && phi_arg_map.get (args[0])->length () == 1)
    {
      vec<int> *indexes;
      indexes = phi_arg_map.get (args[0]);
      index0 = (*indexes)[0];
      arg0 = args[0];
      arg1 = args[1];
      e = gimple_phi_arg_edge (phi, index0);
      cond = bb_predicate (e->src);
      if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
	{
	  swap = true;
	  cond = TREE_OPERAND (cond, 0);
	}
      /* Gimplify the condition to a valid cond-expr conditonal operand.  */
      cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (cond),
					 is_gimple_condexpr, NULL_TREE,
					 true, GSI_SAME_STMT);
      if (!(is_cond_scalar_reduction (phi, &reduc, arg0 , arg1,
				      &op0, &op1, true)))
	rhs = fold_build_cond_expr (TREE_TYPE (res), unshare_expr (cond),
				    swap? arg1 : arg0,
				    swap? arg0 : arg1);
      else
	/* Convert reduction stmt into vectorizable form.  */
	rhs = convert_scalar_cond_reduction (reduc, gsi, cond, op0, op1,
					     swap);
      new_stmt = gimple_build_assign (res, rhs);
      gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
      update_stmt (new_stmt);
    }
  else
    {
      /* Common case.  */
      vec<int> *indexes;
      tree type = TREE_TYPE (gimple_phi_result (phi));
      tree lhs;
      arg1 = args[1];
      for (i = 0; i < args_len; i++)
	{
	  arg0 = args[i];
	  indexes = phi_arg_map.get (args[i]);
	  if (i != args_len - 1)
	    lhs = make_temp_ssa_name (type, NULL, "_ifc_");
	  else
	    lhs = res;
	  cond = gen_phi_arg_condition (phi, indexes, gsi);
	  rhs = fold_build_cond_expr (type, unshare_expr (cond),
				      arg0, arg1);
	  new_stmt = gimple_build_assign (lhs, rhs);
	  gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
	  update_stmt (new_stmt);
	  arg1 = lhs;
	}
    }
1962 1963 1964

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
1965
      fprintf (dump_file, "new extended phi replacement stmt\n");
1966
      print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
1967 1968 1969
    }
}

1970
/* Replaces in LOOP all the scalar phi nodes other than those in the
1971
   LOOP->header block with conditional modify expressions.  */
1972 1973

static void
1974
predicate_all_scalar_phis (struct loop *loop)
1975 1976 1977 1978 1979 1980 1981
{
  basic_block bb;
  unsigned int orig_loop_num_nodes = loop->num_nodes;
  unsigned int i;

  for (i = 1; i < orig_loop_num_nodes; i++)
    {
1982 1983 1984
      gphi *phi;
      gimple_stmt_iterator gsi;
      gphi_iterator phi_gsi;
1985
      bb = ifc_bbs[i];
1986

1987
      if (bb == loop->header)
1988 1989
	continue;

1990
      phi_gsi = gsi_start_phis (bb);
1991 1992
      if (gsi_end_p (phi_gsi))
	continue;
1993

1994 1995
      gsi = gsi_after_labels (bb);
      while (!gsi_end_p (phi_gsi))
1996
	{
1997
	  phi = phi_gsi.phi ();
1998 1999 2000 2001 2002 2003 2004
	  if (virtual_operand_p (gimple_phi_result (phi)))
	    gsi_next (&phi_gsi);
	  else
	    {
	      predicate_scalar_phi (phi, &gsi);
	      remove_phi_node (&phi_gsi, false);
	    }
2005 2006 2007 2008
	}
    }
}

2009 2010 2011 2012
/* Insert in each basic block of LOOP the statements produced by the
   gimplification of the predicates.  */

static void
2013
insert_gimplified_predicates (loop_p loop)
2014 2015 2016 2017 2018 2019
{
  unsigned int i;

  for (i = 0; i < loop->num_nodes; i++)
    {
      basic_block bb = ifc_bbs[i];
2020
      gimple_seq stmts;
2021 2022
      if (!is_predicated (bb))
	gcc_assert (bb_predicate_gimplified_stmts (bb) == NULL);
2023 2024 2025 2026 2027 2028 2029 2030 2031
      if (!is_predicated (bb))
	{
	  /* Do not insert statements for a basic block that is not
	     predicated.  Also make sure that the predicate of the
	     basic block is set to true.  */
	  reset_bb_predicate (bb);
	  continue;
	}

2032
      stmts = bb_predicate_gimplified_stmts (bb);
2033 2034
      if (stmts)
	{
2035
	  if (any_pred_load_store)
2036 2037 2038 2039 2040 2041 2042
	    {
	      /* Insert the predicate of the BB just after the label,
		 as the if-conversion of memory writes will use this
		 predicate.  */
	      gimple_stmt_iterator gsi = gsi_after_labels (bb);
	      gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
	    }
2043
	  else
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
	    {
	      /* Insert the predicate of the BB at the end of the BB
		 as this would reduce the register pressure: the only
		 use of this predicate will be in successor BBs.  */
	      gimple_stmt_iterator gsi = gsi_last_bb (bb);

	      if (gsi_end_p (gsi)
		  || stmt_ends_bb_p (gsi_stmt (gsi)))
		gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
	      else
		gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
	    }
2056 2057 2058 2059 2060 2061 2062

	  /* Once the sequence is code generated, set it to NULL.  */
	  set_bb_predicate_gimplified_stmts (bb, NULL);
	}
    }
}

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
/* Helper function for predicate_mem_writes. Returns index of existent
   mask if it was created for given SIZE and -1 otherwise.  */

static int
mask_exists (int size, vec<int> vec)
{
  unsigned int ix;
  int v;
  FOR_EACH_VEC_ELT (vec, ix, v)
    if (v == size)
      return (int) ix;
  return -1;
}

2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
/* Predicate each write to memory in LOOP.

   This function transforms control flow constructs containing memory
   writes of the form:

   | for (i = 0; i < N; i++)
   |   if (cond)
   |     A[i] = expr;

   into the following form that does not contain control flow:

   | for (i = 0; i < N; i++)
   |   A[i] = cond ? expr : A[i];

   The original CFG looks like this:

   | bb_0
   |   i = 0
   | end_bb_0
   |
   | bb_1
   |   if (i < N) goto bb_5 else goto bb_2
   | end_bb_1
   |
   | bb_2
   |   cond = some_computation;
   |   if (cond) goto bb_3 else goto bb_4
   | end_bb_2
   |
   | bb_3
   |   A[i] = expr;
   |   goto bb_4
   | end_bb_3
   |
   | bb_4
   |   goto bb_1
   | end_bb_4

   insert_gimplified_predicates inserts the computation of the COND
   expression at the beginning of the destination basic block:

   | bb_0
   |   i = 0
   | end_bb_0
   |
   | bb_1
   |   if (i < N) goto bb_5 else goto bb_2
   | end_bb_1
   |
   | bb_2
   |   cond = some_computation;
   |   if (cond) goto bb_3 else goto bb_4
   | end_bb_2
   |
   | bb_3
   |   cond = some_computation;
   |   A[i] = expr;
   |   goto bb_4
   | end_bb_3
   |
   | bb_4
   |   goto bb_1
   | end_bb_4

   predicate_mem_writes is then predicating the memory write as follows:

   | bb_0
   |   i = 0
   | end_bb_0
   |
   | bb_1
   |   if (i < N) goto bb_5 else goto bb_2
   | end_bb_1
   |
   | bb_2
   |   if (cond) goto bb_3 else goto bb_4
   | end_bb_2
   |
   | bb_3
   |   cond = some_computation;
   |   A[i] = cond ? expr : A[i];
   |   goto bb_4
   | end_bb_3
   |
   | bb_4
   |   goto bb_1
   | end_bb_4

   and finally combine_blocks removes the basic block boundaries making
   the loop vectorizable:

   | bb_0
   |   i = 0
   |   if (i < N) goto bb_5 else goto bb_1
   | end_bb_0
   |
   | bb_1
   |   cond = some_computation;
   |   A[i] = cond ? expr : A[i];
   |   if (i < N) goto bb_5 else goto bb_4
   | end_bb_1
   |
   | bb_4
   |   goto bb_1
   | end_bb_4
*/

static void
predicate_mem_writes (loop_p loop)
{
  unsigned int i, orig_loop_num_nodes = loop->num_nodes;
2188 2189
  auto_vec<int, 1> vect_sizes;
  auto_vec<tree, 1> vect_masks;
2190 2191 2192 2193 2194 2195

  for (i = 1; i < orig_loop_num_nodes; i++)
    {
      gimple_stmt_iterator gsi;
      basic_block bb = ifc_bbs[i];
      tree cond = bb_predicate (bb);
2196
      bool swap;
2197
      gimple *stmt;
2198
      int index;
2199

2200
      if (is_true_predicate (cond))
2201 2202
	continue;

2203 2204 2205 2206 2207 2208 2209
      swap = false;
      if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
	{
	  swap = true;
	  cond = TREE_OPERAND (cond, 0);
	}

2210 2211 2212
      vect_sizes.truncate (0);
      vect_masks.truncate (0);

2213 2214 2215 2216
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
	{
	  if (!gimple_assign_single_p (stmt = gsi_stmt (gsi)))
	    ;
2217 2218
	  else if (is_false_predicate (cond)
		   && gimple_vdef (stmt))
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
	    {
	      unlink_stmt_vdef (stmt);
	      gsi_remove (&gsi, true);
	      release_defs (stmt);
	      continue;
	    }
	  else if (gimple_plf (stmt, GF_PLF_2))
	    {
	      tree lhs = gimple_assign_lhs (stmt);
	      tree rhs = gimple_assign_rhs1 (stmt);
	      tree ref, addr, ptr, mask;
	      gcall *new_stmt;
	      gimple_seq stmts = NULL;
2232 2233 2234 2235
	      machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
	      /* We checked before setting GF_PLF_2 that an equivalent
		 integer mode exists.  */
	      int bitsize = GET_MODE_BITSIZE (mode).to_constant ();
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
	      ref = TREE_CODE (lhs) == SSA_NAME ? rhs : lhs;
	      mark_addressable (ref);
	      addr = force_gimple_operand_gsi (&gsi, build_fold_addr_expr (ref),
					       true, NULL_TREE, true,
					       GSI_SAME_STMT);
	      if (!vect_sizes.is_empty ()
		  && (index = mask_exists (bitsize, vect_sizes)) != -1)
		/* Use created mask.  */
		mask = vect_masks[index];
	      else
		{
		  if (COMPARISON_CLASS_P (cond))
		    mask = gimple_build (&stmts, TREE_CODE (cond),
					 boolean_type_node,
					 TREE_OPERAND (cond, 0),
					 TREE_OPERAND (cond, 1));
		  else
2253
		    mask = cond;
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285

		  if (swap)
		    {
		      tree true_val
			= constant_boolean_node (true, TREE_TYPE (mask));
		      mask = gimple_build (&stmts, BIT_XOR_EXPR,
					   TREE_TYPE (mask), mask, true_val);
		    }
		  gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);

		  /* Save mask and its size for further use.  */
		  vect_sizes.safe_push (bitsize);
		  vect_masks.safe_push (mask);
		}
	      ptr = build_int_cst (reference_alias_ptr_type (ref),
				   get_object_alignment (ref));
	      /* Copy points-to info if possible.  */
	      if (TREE_CODE (addr) == SSA_NAME && !SSA_NAME_PTR_INFO (addr))
		copy_ref_info (build2 (MEM_REF, TREE_TYPE (ref), addr, ptr),
			       ref);
	      if (TREE_CODE (lhs) == SSA_NAME)
		{
		  new_stmt
		    = gimple_build_call_internal (IFN_MASK_LOAD, 3, addr,
						  ptr, mask);
		  gimple_call_set_lhs (new_stmt, lhs);
		  gimple_set_vuse (new_stmt, gimple_vuse (stmt));
		}
	      else
		{
		  new_stmt
		    = gimple_build_call_internal (IFN_MASK_STORE, 4, addr, ptr,
2286
						  mask, rhs);
2287 2288 2289 2290 2291
		  gimple_set_vuse (new_stmt, gimple_vuse (stmt));
		  gimple_set_vdef (new_stmt, gimple_vdef (stmt));
		  SSA_NAME_DEF_STMT (gimple_vdef (new_stmt)) = new_stmt;
		}
	      gimple_call_set_nothrow (new_stmt, true);
2292

2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
	      gsi_replace (&gsi, new_stmt, true);
	    }
	  else if (gimple_vdef (stmt))
	    {
	      tree lhs = gimple_assign_lhs (stmt);
	      tree rhs = gimple_assign_rhs1 (stmt);
	      tree type = TREE_TYPE (lhs);

	      lhs = ifc_temp_var (type, unshare_expr (lhs), &gsi);
	      rhs = ifc_temp_var (type, unshare_expr (rhs), &gsi);
	      if (swap)
		std::swap (lhs, rhs);
	      cond = force_gimple_operand_gsi_1 (&gsi, unshare_expr (cond),
						 is_gimple_condexpr, NULL_TREE,
						 true, GSI_SAME_STMT);
	      rhs = fold_build_cond_expr (type, unshare_expr (cond), rhs, lhs);
	      gimple_assign_set_rhs1 (stmt, ifc_temp_var (type, rhs, &gsi));
	      update_stmt (stmt);
	    }
	  gsi_next (&gsi);
	}
2314 2315 2316
    }
}

2317
/* Remove all GIMPLE_CONDs and GIMPLE_LABELs of all the basic blocks
2318 2319
   other than the exit and latch of the LOOP.  Also resets the
   GIMPLE_DEBUG information.  */
2320 2321 2322 2323 2324 2325 2326 2327 2328

static void
remove_conditions_and_labels (loop_p loop)
{
  gimple_stmt_iterator gsi;
  unsigned int i;

  for (i = 0; i < loop->num_nodes; i++)
    {
2329
      basic_block bb = ifc_bbs[i];
2330 2331 2332 2333 2334 2335

      if (bb_with_exit_edge_p (loop, bb)
        || bb == loop->latch)
      continue;

      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
	switch (gimple_code (gsi_stmt (gsi)))
	  {
	  case GIMPLE_COND:
	  case GIMPLE_LABEL:
	    gsi_remove (&gsi, true);
	    break;

	  case GIMPLE_DEBUG:
	    /* ??? Should there be conditional GIMPLE_DEBUG_BINDs?  */
	    if (gimple_debug_bind_p (gsi_stmt (gsi)))
	      {
		gimple_debug_bind_reset_value (gsi_stmt (gsi));
		update_stmt (gsi_stmt (gsi));
	      }
	    gsi_next (&gsi);
	    break;

	  default:
	    gsi_next (&gsi);
	  }
2356 2357 2358
    }
}

Sebastian Pop committed
2359 2360
/* Combine all the basic blocks from LOOP into one or two super basic
   blocks.  Replace PHI nodes with conditional modify expressions.  */
2361 2362

static void
2363
combine_blocks (struct loop *loop)
2364 2365 2366 2367
{
  basic_block bb, exit_bb, merge_target_bb;
  unsigned int orig_loop_num_nodes = loop->num_nodes;
  unsigned int i;
2368 2369
  edge e;
  edge_iterator ei;
2370

2371
  remove_conditions_and_labels (loop);
2372
  insert_gimplified_predicates (loop);
2373 2374
  predicate_all_scalar_phis (loop);

2375
  if (any_pred_load_store)
2376
    predicate_mem_writes (loop);
2377

2378 2379
  /* Merge basic blocks: first remove all the edges in the loop,
     except for those from the exit block.  */
2380
  exit_bb = NULL;
2381
  bool *predicated = XNEWVEC (bool, orig_loop_num_nodes);
2382 2383 2384
  for (i = 0; i < orig_loop_num_nodes; i++)
    {
      bb = ifc_bbs[i];
2385
      predicated[i] = !is_true_predicate (bb_predicate (bb));
2386
      free_bb_predicate (bb);
2387 2388
      if (bb_with_exit_edge_p (loop, bb))
	{
2389
	  gcc_assert (exit_bb == NULL);
2390 2391 2392 2393
	  exit_bb = bb;
	}
    }
  gcc_assert (exit_bb != loop->latch);
2394 2395 2396 2397 2398

  for (i = 1; i < orig_loop_num_nodes; i++)
    {
      bb = ifc_bbs[i];

2399
      for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));)
2400
	{
2401 2402 2403 2404 2405 2406
	  if (e->src == exit_bb)
	    ei_next (&ei);
	  else
	    remove_edge (e);
	}
    }
2407

2408 2409 2410 2411
  if (exit_bb != NULL)
    {
      if (exit_bb != loop->header)
	{
2412
	  /* Connect this node to loop header.  */
2413
	  make_single_succ_edge (loop->header, exit_bb, EDGE_FALLTHRU);
2414
	  set_immediate_dominator (CDI_DOMINATORS, exit_bb, loop->header);
2415 2416
	}

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
      /* Redirect non-exit edges to loop->latch.  */
      FOR_EACH_EDGE (e, ei, exit_bb->succs)
	{
	  if (!loop_exit_edge_p (loop, e))
	    redirect_edge_and_branch (e, loop->latch);
	}
      set_immediate_dominator (CDI_DOMINATORS, loop->latch, exit_bb);
    }
  else
    {
2427
      /* If the loop does not have an exit, reconnect header and latch.  */
2428 2429 2430
      make_edge (loop->header, loop->latch, EDGE_FALLTHRU);
      set_immediate_dominator (CDI_DOMINATORS, loop->latch, loop->header);
    }
2431

2432
  merge_target_bb = loop->header;
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446

  /* Get at the virtual def valid for uses starting at the first block
     we merge into the header.  Without a virtual PHI the loop has the
     same virtual use on all stmts.  */
  gphi *vphi = get_virtual_phi (loop->header);
  tree last_vdef = NULL_TREE;
  if (vphi)
    {
      last_vdef = gimple_phi_result (vphi);
      for (gimple_stmt_iterator gsi = gsi_start_bb (loop->header);
	   ! gsi_end_p (gsi); gsi_next (&gsi))
	if (gimple_vdef (gsi_stmt (gsi)))
	  last_vdef = gimple_vdef (gsi_stmt (gsi));
    }
2447 2448
  for (i = 1; i < orig_loop_num_nodes; i++)
    {
2449 2450
      gimple_stmt_iterator gsi;
      gimple_stmt_iterator last;
2451

2452
      bb = ifc_bbs[i];
2453

2454 2455
      if (bb == exit_bb || bb == loop->latch)
	continue;
2456

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
      /* We release virtual PHIs late because we have to propagate them
         out using the current VUSE.  The def might be the one used
	 after the loop.  */
      vphi = get_virtual_phi (bb);
      if (vphi)
	{
	  imm_use_iterator iter;
	  use_operand_p use_p;
	  gimple *use_stmt;
	  FOR_EACH_IMM_USE_STMT (use_stmt, iter, gimple_phi_result (vphi))
	    {
	      FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
		SET_USE (use_p, last_vdef);
	    }
	  gsi = gsi_for_stmt (vphi); 
	  remove_phi_node (&gsi, true);
	}

2475 2476 2477
      /* Make stmts member of loop->header and clear range info from all stmts
	 in BB which is now no longer executed conditional on a predicate we
	 could have derived it from.  */
2478
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2479
	{
2480
	  gimple *stmt = gsi_stmt (gsi);
2481
	  gimple_set_bb (stmt, merge_target_bb);
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
	  /* Update virtual operands.  */
	  if (last_vdef)
	    {
	      use_operand_p use_p = ssa_vuse_operand (stmt);
	      if (use_p
		  && USE_FROM_PTR (use_p) != last_vdef)
		SET_USE (use_p, last_vdef);
	      if (gimple_vdef (stmt))
		last_vdef = gimple_vdef (stmt);
	    }
2492 2493 2494 2495 2496 2497 2498 2499
	  if (predicated[i])
	    {
	      ssa_op_iter i;
	      tree op;
	      FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
		reset_flow_sensitive_info (op);
	    }
	}
2500 2501

      /* Update stmt list.  */
2502
      last = gsi_last_bb (merge_target_bb);
2503
      gsi_insert_seq_after_without_update (&last, bb_seq (bb), GSI_NEW_STMT);
2504
      set_bb_seq (bb, NULL);
2505

2506
      delete_basic_block (bb);
2507
    }
2508

2509 2510
  /* If possible, merge loop header to the block with the exit edge.
     This reduces the number of basic blocks to two, to please the
2511
     vectorizer that handles only loops with two nodes.  */
2512
  if (exit_bb
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
      && exit_bb != loop->header)
    {
      /* We release virtual PHIs late because we have to propagate them
         out using the current VUSE.  The def might be the one used
	 after the loop.  */
      vphi = get_virtual_phi (exit_bb);
      if (vphi)
	{
	  imm_use_iterator iter;
	  use_operand_p use_p;
	  gimple *use_stmt;
	  FOR_EACH_IMM_USE_STMT (use_stmt, iter, gimple_phi_result (vphi))
	    {
	      FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
		SET_USE (use_p, last_vdef);
	    }
	  gimple_stmt_iterator gsi = gsi_for_stmt (vphi); 
	  remove_phi_node (&gsi, true);
	}

      if (can_merge_blocks_p (loop->header, exit_bb))
	merge_blocks (loop->header, exit_bb);
    }
2536 2537 2538

  free (ifc_bbs);
  ifc_bbs = NULL;
2539
  free (predicated);
2540 2541
}

2542 2543
/* Version LOOP before if-converting it; the original loop
   will be if-converted, the new copy of the loop will not,
2544 2545
   and the LOOP_VECTORIZED internal call will be guarding which
   loop to execute.  The vectorizer pass will fold this
2546 2547 2548 2549 2550
   internal call into either true or false. 

   Note that this function intentionally invalidates profile.  Both edges
   out of LOOP_VECTORIZED must have 100% probability so the profile remains
   consistent after the condition is folded in the vectorizer.  */
2551

2552
static struct loop *
2553 2554 2555
version_loop_for_if_conversion (struct loop *loop)
{
  basic_block cond_bb;
2556
  tree cond = make_ssa_name (boolean_type_node);
2557
  struct loop *new_loop;
2558
  gimple *g;
2559
  gimple_stmt_iterator gsi;
2560
  unsigned int save_length;
2561 2562 2563 2564 2565 2566

  g = gimple_build_call_internal (IFN_LOOP_VECTORIZED, 2,
				  build_int_cst (integer_type_node, loop->num),
				  integer_zero_node);
  gimple_call_set_lhs (g, cond);

2567
  /* Save BB->aux around loop_version as that uses the same field.  */
2568 2569 2570
  save_length = loop->inner ? loop->inner->num_nodes : loop->num_nodes;
  void **saved_preds = XALLOCAVEC (void *, save_length);
  for (unsigned i = 0; i < save_length; i++)
2571 2572
    saved_preds[i] = ifc_bbs[i]->aux;

2573
  initialize_original_copy_tables ();
2574 2575
  /* At this point we invalidate porfile confistency until IFN_LOOP_VECTORIZED
     is re-merged in the vectorizer.  */
2576
  new_loop = loop_version (loop, cond, &cond_bb,
2577 2578
			   profile_probability::always (),
			   profile_probability::always (),
2579 2580
			   profile_probability::always (),
			   profile_probability::always (), true);
2581
  free_original_copy_tables ();
2582

2583
  for (unsigned i = 0; i < save_length; i++)
2584 2585
    ifc_bbs[i]->aux = saved_preds[i];

2586
  if (new_loop == NULL)
2587
    return NULL;
2588

2589
  new_loop->dont_vectorize = true;
2590
  new_loop->force_vectorize = false;
2591 2592 2593 2594
  gsi = gsi_last_bb (cond_bb);
  gimple_call_set_arg (g, 1, build_int_cst (integer_type_node, new_loop->num));
  gsi_insert_before (&gsi, g, GSI_SAME_STMT);
  update_ssa (TODO_update_ssa);
2595
  return new_loop;
2596 2597
}

2598 2599 2600 2601 2602 2603 2604 2605
/* Return true when LOOP satisfies the follow conditions that will
   allow it to be recognized by the vectorizer for outer-loop
   vectorization:
    - The loop is not the root node of the loop tree.
    - The loop has exactly one inner loop.
    - The loop has a single exit.
    - The loop header has a single successor, which is the inner
      loop header.
2606 2607
    - Each of the inner and outer loop latches have a single
      predecessor.
2608 2609 2610 2611 2612 2613 2614
    - The loop exit block has a single predecessor, which is the
      inner loop's exit block.  */

static bool
versionable_outer_loop_p (struct loop *loop)
{
  if (!loop_outer (loop)
2615
      || loop->dont_vectorize
2616 2617 2618 2619
      || !loop->inner
      || loop->inner->next
      || !single_exit (loop)
      || !single_succ_p (loop->header)
2620 2621 2622
      || single_succ (loop->header) != loop->inner->header
      || !single_pred_p (loop->latch)
      || !single_pred_p (loop->inner->latch))
2623
    return false;
2624

2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
  basic_block outer_exit = single_pred (loop->latch);
  basic_block inner_exit = single_pred (loop->inner->latch);

  if (!single_pred_p (outer_exit) || single_pred (outer_exit) != inner_exit)
    return false;

  if (dump_file)
    fprintf (dump_file, "Found vectorizable outer loop for versioning\n");

  return true;
}

2637 2638 2639 2640 2641 2642 2643
/* Performs splitting of critical edges.  Skip splitting and return false
   if LOOP will not be converted because:

     - LOOP is not well formed.
     - LOOP has PHI with more than MAX_PHI_ARG_NUM arguments.

   Last restriction is valid only if AGGRESSIVE_IF_CONV is false.  */
2644 2645

static bool
2646
ifcvt_split_critical_edges (struct loop *loop, bool aggressive_if_conv)
2647 2648 2649 2650 2651
{
  basic_block *body;
  basic_block bb;
  unsigned int num = loop->num_nodes;
  unsigned int i;
2652
  gimple *stmt;
2653 2654
  edge e;
  edge_iterator ei;
2655
  auto_vec<edge> critical_edges;
2656

2657 2658
  /* Loop is not well formed.  */
  if (num <= 2 || loop->inner || !single_exit (loop))
2659 2660 2661 2662 2663 2664
    return false;

  body = get_loop_body (loop);
  for (i = 0; i < num; i++)
    {
      bb = body[i];
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
      if (!aggressive_if_conv
	  && phi_nodes (bb)
	  && EDGE_COUNT (bb->preds) > MAX_PHI_ARG_NUM)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file,
		     "BB %d has complicated PHI with more than %u args.\n",
		     bb->index, MAX_PHI_ARG_NUM);

	  free (body);
	  return false;
	}
      if (bb == loop->latch || bb_with_exit_edge_p (loop, bb))
2678
	continue;
2679

2680 2681
      stmt = last_stmt (bb);
      /* Skip basic blocks not ending with conditional branch.  */
2682
      if (!stmt || gimple_code (stmt) != GIMPLE_COND)
2683
	continue;
2684

2685 2686
      FOR_EACH_EDGE (e, ei, bb->succs)
	if (EDGE_CRITICAL_P (e) && e->dest->loop_father == loop)
2687
	  critical_edges.safe_push (e);
2688 2689
    }
  free (body);
2690 2691 2692 2693 2694 2695 2696 2697 2698

  while (critical_edges.length () > 0)
    {
      e = critical_edges.pop ();
      /* Don't split if bb can be predicated along non-critical edge.  */
      if (EDGE_COUNT (e->dest->preds) > 2 || all_preds_critical_p (e->dest))
	split_edge (e);
    }

2699 2700 2701 2702 2703 2704 2705 2706 2707
  return true;
}

/* Delete redundant statements produced by predication which prevents
   loop vectorization.  */

static void
ifcvt_local_dce (basic_block bb)
{
2708 2709 2710
  gimple *stmt;
  gimple *stmt1;
  gimple *phi;
2711
  gimple_stmt_iterator gsi;
2712
  auto_vec<gimple *> worklist;
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
  enum gimple_code code;
  use_operand_p use_p;
  imm_use_iterator imm_iter;

  worklist.create (64);
  /* Consider all phi as live statements.  */
  for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      phi = gsi_stmt (gsi);
      gimple_set_plf (phi, GF_PLF_2, true);
      worklist.safe_push (phi);
    }
2725
  /* Consider load/store statements, CALL and COND as live.  */
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      stmt = gsi_stmt (gsi);
      if (gimple_store_p (stmt)
	  || gimple_assign_load_p (stmt)
	  || is_gimple_debug (stmt))
	{
	  gimple_set_plf (stmt, GF_PLF_2, true);
	  worklist.safe_push (stmt);
	  continue;
	}
      code = gimple_code (stmt);
      if (code == GIMPLE_COND || code == GIMPLE_CALL)
	{
	  gimple_set_plf (stmt, GF_PLF_2, true);
	  worklist.safe_push (stmt);
	  continue;
	}
      gimple_set_plf (stmt, GF_PLF_2, false);

      if (code == GIMPLE_ASSIGN)
	{
	  tree lhs = gimple_assign_lhs (stmt);
	  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
	    {
	      stmt1 = USE_STMT (use_p);
	      if (gimple_bb (stmt1) != bb)
		{
		  gimple_set_plf (stmt, GF_PLF_2, true);
		  worklist.safe_push (stmt);
		  break;
		}
	    }
	}
    }
  /* Propagate liveness through arguments of live stmt.  */
  while (worklist.length () > 0)
    {
      ssa_op_iter iter;
      use_operand_p use_p;
      tree use;

      stmt = worklist.pop ();
      FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
	{
	  use = USE_FROM_PTR (use_p);
	  if (TREE_CODE (use) != SSA_NAME)
	    continue;
	  stmt1 = SSA_NAME_DEF_STMT (use);
	  if (gimple_bb (stmt1) != bb
	      || gimple_plf (stmt1, GF_PLF_2))
	    continue;
	  gimple_set_plf (stmt1, GF_PLF_2, true);
	  worklist.safe_push (stmt1);
	}
    }
  /* Delete dead statements.  */
  gsi = gsi_start_bb (bb);
  while (!gsi_end_p (gsi))
    {
      stmt = gsi_stmt (gsi);
      if (gimple_plf (stmt, GF_PLF_2))
	{
	  gsi_next (&gsi);
	  continue;
	}
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Delete dead stmt in bb#%d\n", bb->index);
	  print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
	}
      gsi_remove (&gsi, true);
      release_defs (stmt);
    }
}

2802 2803 2804 2805
/* If-convert LOOP when it is legal.  For the moment this pass has no
   profitability analysis.  Returns non-zero todo flags when something
   changed.  */

2806
unsigned int
Sebastian Pop committed
2807
tree_if_conversion (struct loop *loop)
2808
{
2809
  unsigned int todo = 0;
2810
  bool aggressive_if_conv;
2811
  struct loop *rloop;
2812

2813 2814
 again:
  rloop = NULL;
2815
  ifc_bbs = NULL;
2816
  any_pred_load_store = false;
2817
  any_complicated_phi = false;
2818

2819 2820 2821
  /* Apply more aggressive if-conversion when loop or its outer loop were
     marked with simd pragma.  When that's the case, we try to if-convert
     loop containing PHIs with more than MAX_PHI_ARG_NUM arguments.  */
2822 2823 2824 2825 2826 2827 2828 2829
  aggressive_if_conv = loop->force_vectorize;
  if (!aggressive_if_conv)
    {
      struct loop *outer_loop = loop_outer (loop);
      if (outer_loop && outer_loop->force_vectorize)
	aggressive_if_conv = true;
    }

2830 2831
  if (!ifcvt_split_critical_edges (loop, aggressive_if_conv))
    goto cleanup;
2832

2833
  if (!if_convertible_loop_p (loop)
2834
      || !dbg_cnt (if_conversion_tree))
2835
    goto cleanup;
2836

2837
  if ((any_pred_load_store || any_complicated_phi)
2838
      && ((!flag_tree_loop_vectorize && !loop->force_vectorize)
2839 2840 2841
	  || loop->dont_vectorize))
    goto cleanup;

2842
  /* Since we have no cost model, always version loops unless the user
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
     specified -ftree-loop-if-convert or unless versioning is required.
     Either version this loop, or if the pattern is right for outer-loop
     vectorization, version the outer loop.  In the latter case we will
     still if-convert the original inner loop.  */
  if (any_pred_load_store
      || any_complicated_phi
      || flag_tree_loop_if_convert != 1)
    {
      struct loop *vloop
	= (versionable_outer_loop_p (loop_outer (loop))
	   ? loop_outer (loop) : loop);
2854 2855
      struct loop *nloop = version_loop_for_if_conversion (vloop);
      if (nloop == NULL)
2856
	goto cleanup;
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
      if (vloop != loop)
	{
	  /* If versionable_outer_loop_p decided to version the
	     outer loop, version also the inner loop of the non-vectorized
	     loop copy.  So we transform:
	      loop1
		loop2
	     into:
	      if (LOOP_VECTORIZED (1, 3))
		{
		  loop1
		    loop2
		}
	      else
		loop3 (copy of loop1)
		  if (LOOP_VECTORIZED (4, 5))
		    loop4 (copy of loop2)
		  else
		    loop5 (copy of loop4)  */
	  gcc_assert (nloop->inner && nloop->inner->next == NULL);
	  rloop = nloop->inner;
	}
2879
    }
2880

2881 2882 2883
  /* Now all statements are if-convertible.  Combine all the basic
     blocks into one huge basic block doing the if-conversion
     on-the-fly.  */
2884
  combine_blocks (loop);
2885

2886
  /* Delete dead predicate computations.  */
2887
  ifcvt_local_dce (loop->header);
2888

2889
  todo |= TODO_cleanup_cfg;
2890

2891 2892 2893
 cleanup:
  if (ifc_bbs)
    {
2894 2895 2896 2897 2898
      unsigned int i;

      for (i = 0; i < loop->num_nodes; i++)
	free_bb_predicate (ifc_bbs[i]);

2899 2900 2901
      free (ifc_bbs);
      ifc_bbs = NULL;
    }
2902 2903 2904 2905 2906
  if (rloop != NULL)
    {
      loop = rloop;
      goto again;
    }
2907

2908
  return todo;
2909 2910 2911 2912
}

/* Tree if-conversion pass management.  */

2913 2914 2915
namespace {

const pass_data pass_data_if_conversion =
2916
{
2917 2918 2919
  GIMPLE_PASS, /* type */
  "ifcvt", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
2920
  TV_TREE_LOOP_IFCVT, /* tv_id */
2921 2922 2923 2924
  ( PROP_cfg | PROP_ssa ), /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
2925
  0, /* todo_flags_finish */
2926
};
2927

2928
class pass_if_conversion : public gimple_opt_pass
2929 2930
{
public:
2931 2932
  pass_if_conversion (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_if_conversion, ctxt)
2933 2934 2935
  {}

  /* opt_pass methods: */
2936
  virtual bool gate (function *);
2937
  virtual unsigned int execute (function *);
2938 2939 2940

}; // class pass_if_conversion

2941 2942 2943 2944 2945
bool
pass_if_conversion::gate (function *fun)
{
  return (((flag_tree_loop_vectorize || fun->has_force_vectorize_loops)
	   && flag_tree_loop_if_convert != 0)
2946
	  || flag_tree_loop_if_convert == 1);
2947 2948
}

2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
unsigned int
pass_if_conversion::execute (function *fun)
{
  struct loop *loop;
  unsigned todo = 0;

  if (number_of_loops (fun) <= 1)
    return 0;

  FOR_EACH_LOOP (loop, 0)
    if (flag_tree_loop_if_convert == 1
	|| ((flag_tree_loop_vectorize || loop->force_vectorize)
	    && !loop->dont_vectorize))
      todo |= tree_if_conversion (loop);

2964 2965 2966 2967 2968 2969
  if (todo)
    {
      free_numbers_of_iterations_estimates (fun);
      scev_reset ();
    }

2970 2971 2972 2973 2974 2975
  if (flag_checking)
    {
      basic_block bb;
      FOR_EACH_BB_FN (bb, fun)
	gcc_assert (!bb->aux);
    }
2976 2977 2978 2979

  return todo;
}

2980 2981
} // anon namespace

2982 2983 2984 2985 2986
gimple_opt_pass *
make_pass_if_conversion (gcc::context *ctxt)
{
  return new pass_if_conversion (ctxt);
}