st.c 15.8 KB
Newer Older
Jeff Law committed
1
/* st.c -- Implementation File (module.c template V1.0)
2
   Copyright (C) 1995, 2003 Free Software Foundation, Inc.
3
   Contributed by James Craig Burley.
Jeff Law committed
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

This file is part of GNU Fortran.

GNU Fortran is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Fortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Fortran; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

   Related Modules:
      None

   Description:
      The high-level input level to statement handling for the rest of the
      FFE.  ffest_first is the first state for the lexer to invoke to start
      a statement.  A statement normally starts with a NUMBER token (to indicate
      a label def) followed by a NAME token (to indicate what kind of statement
      it is), though of course the NUMBER token may be omitted.	 ffest_first
      gathers the first NAME token and returns a state of ffest_second_,
      where the trailing underscore means "internal to ffest" and thus outside
      users should not depend on this.	ffest_second_ then looks at the second
      token in conjunction with the first, decides what possible statements are
      meant, and tries each possible statement in turn, from most likely to
      least likely.  A successful attempt currently is recorded, and further
      successful attempts by other possibilities raise an assertion error in
      ffest_confirmed (this is to detect ambiguities).	A failure in an
      attempt is signaled by calling ffest_ffebad_start; this results in the
      next token sent by ffest_save_ (the intermediary when more than one
      possible statement exists) being EOS to shut down processing and the next
      possibility tried.

      When all possibilities have been tried, the successful one is retried with
      inhibition turned off (FALSE) as reported by ffest_is_inhibited().  If
      there is no successful one, the first one is retried so the user gets to
      see the error messages.

      In the future, after syntactic bugs have been reasonably shaken out and
      ambiguities thus detected, the first successful possibility will be
      enabled (inhibited goes FALSE) as soon as it confirms success by calling
      ffest_confirmed, thus retrying the possibility will not be necessary.

      The only complication in all this is that expression handling is
      happening while possibilities are inhibited.  It is up to the expression
      handler, conceptually, to not make any changes to its knowledge base for
      variable names and so on when inhibited that cannot be undone if
      the current possibility fails (shuts down via ffest_ffebad_start).  In
      fact, this business is handled not be ffeexpr, but by lower levels.

      ffesta functions serve only to provide information used in syntactic
      processing of possible statements, and thus may not make changes to the
      knowledge base for variables and such.

      ffestb functions perform the syntactic analysis for possible statements,
      and thus again may not make changes to the knowledge base except under the
      auspices of ffeexpr and its subordinates, changes which can be undone when
      necessary.

      ffestc functions perform the semantic analysis for the chosen statement,
      and thus may change the knowledge base as necessary since they are invoked
      by ffestb functions only after a given statement is confirmed and
      enabled.	Note, however, that a few ffestc functions (identified by
      their statement names rather than grammar numbers) indicate valid forms
      that are, outside of any context, ambiguous, such as ELSE WHERE and
      PRIVATE; these functions should make a quick decision as to what is
      intended and dispatch to the appropriate specific ffestc function.

      ffestd functions actually implement statements.  When called, the
      statement is considered valid and is either an executable statement or
      a nonexecutable statement with direct-output results.  For example, CALL,
      GOTO, and assignment statements pass through ffestd because they are
      executable; DATA statements pass through because they map directly to the
      output file (or at least might so map); ENTRY statements also pass through
      because they essentially affect code generation in an immediate way;
      whereas INTEGER, SAVE, and SUBROUTINE statements do not go through
      ffestd functions because they merely update the knowledge base.

   Modifications:
*/

/* Include files. */

#include "proj.h"
#include "st.h"
#include "bad.h"
#include "lex.h"
#include "sta.h"
#include "stb.h"
#include "stc.h"
#include "std.h"
#include "ste.h"
#include "stp.h"
#include "str.h"
#include "sts.h"
#include "stt.h"
#include "stu.h"
#include "stv.h"
#include "stw.h"

/* Externals defined here. */


/* Simple definitions and enumerations. */


/* Internal typedefs. */


/* Private include files. */


/* Internal structure definitions. */


/* Static objects accessed by functions in this module. */


/* Static functions (internal). */


/* Internal macros. */


/* ffest_confirmed -- Confirm current possibility as only one

   ffest_confirmed();

   Sets the confirmation flag.	During debugging for ambiguous constructs,
   asserts that the confirmation flag for a previous possibility has not
   yet been set.  */

void
144
ffest_confirmed (void)
Jeff Law committed
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
{
  ffesta_confirmed ();
}

/* ffest_eof -- End of (non-INCLUDEd) source file

   ffest_eof();

   Call after piping tokens through ffest_first, where the most recent
   token sent through must be EOS.

   20-Feb-91  JCB  1.1
      Put new EOF token in ffesta_tokens[0], not NULL, because too much
      code expects something there for error reporting and the like.  Also,
      do basically the same things ffest_second and ffesta_zero do for
      processing a statement (make and destroy pools, et cetera).  */

void
163
ffest_eof (void)
Jeff Law committed
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
{
  ffesta_eof ();
}

/* ffest_ffebad_here_current_stmt -- ffebad_here with ptr to current stmt

   ffest_ffebad_here_current_stmt(0);

   Outsiders can call this fn if they have no more convenient place to
   point to (via a token or pair of ffewhere objects) and they know a
   current, useful statement is being evaluted by ffest (i.e. they are
   being called from ffestb, ffestc, ffestd, ... functions).  */

void
ffest_ffebad_here_current_stmt (ffebadIndex i)
{
  ffesta_ffebad_here_current_stmt (i);
}

/* ffest_ffebad_here_doiter -- Calls ffebad_here with ptr to DO iter var

   ffesymbol s;
   // call ffebad_start first, of course.
   ffest_ffebad_here_doiter(0,s);
   // call ffebad_finish afterwards, naturally.

   Searches the stack of blocks backwards for a DO loop that has s
   as its iteration variable, then calls ffebad_here with pointers to
   that particular reference to the variable.  Crashes if the DO loop
   can't be found.  */

void
ffest_ffebad_here_doiter (ffebadIndex i, ffesymbol s)
{
  ffestc_ffebad_here_doiter (i, s);
}

/* ffest_ffebad_start -- Start a possibly inhibited error report

   if (ffest_ffebad_start(FFEBAD_SOME_ERROR))
       {
       ffebad_here, ffebad_string ...;
       ffebad_finish();
       }

   Call if the error might indicate that ffest is evaluating the wrong
   statement form, instead of calling ffebad_start directly.  If ffest
   is choosing between forms, it will return FALSE, send an EOS/SEMICOLON
   token through as the next token (if the current one isn't already one
   of those), and try another possible form.  Otherwise, ffebad_start is
   called with the argument and TRUE returned.	*/

bool
ffest_ffebad_start (ffebad errnum)
{
  return ffesta_ffebad_start (errnum);
}

/* ffest_first -- Parse the first token in a statement

   return ffest_first;	// to lexer.  */

ffelexHandler
ffest_first (ffelexToken t)
{
  return ffesta_first (t);
}

/* ffest_init_0 -- Initialize for entire image invocation

   ffest_init_0();

   Call just once per invocation of the compiler (not once per invocation
   of the front end).

   Gets memory for the list of possibles once and for all, since this
   list never gets larger than a certain size (FFEST_maxPOSSIBLES_)
   and is not particularly large.  Initializes the array of pointers to
   this list.  Initializes the executable and nonexecutable lists.  */

void
245
ffest_init_0 (void)
Jeff Law committed
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
{
  ffesta_init_0 ();
  ffestb_init_0 ();
  ffestc_init_0 ();
  ffestd_init_0 ();
  ffeste_init_0 ();
  ffestp_init_0 ();
  ffestr_init_0 ();
  ffests_init_0 ();
  ffestt_init_0 ();
  ffestu_init_0 ();
  ffestv_init_0 ();
  ffestw_init_0 ();
}

/* ffest_init_1 -- Initialize for entire image invocation

   ffest_init_1();

   Call just once per invocation of the compiler (not once per invocation
   of the front end).

   Gets memory for the list of possibles once and for all, since this
   list never gets larger than a certain size (FFEST_maxPOSSIBLES_)
   and is not particularly large.  Initializes the array of pointers to
   this list.  Initializes the executable and nonexecutable lists.  */

void
274
ffest_init_1 (void)
Jeff Law committed
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
{
  ffesta_init_1 ();
  ffestb_init_1 ();
  ffestc_init_1 ();
  ffestd_init_1 ();
  ffeste_init_1 ();
  ffestp_init_1 ();
  ffestr_init_1 ();
  ffests_init_1 ();
  ffestt_init_1 ();
  ffestu_init_1 ();
  ffestv_init_1 ();
  ffestw_init_1 ();
}

/* ffest_init_2 -- Initialize for entire image invocation

   ffest_init_2();

   Call just once per invocation of the compiler (not once per invocation
   of the front end).

   Gets memory for the list of possibles once and for all, since this
   list never gets larger than a certain size (FFEST_maxPOSSIBLES_)
   and is not particularly large.  Initializes the array of pointers to
   this list.  Initializes the executable and nonexecutable lists.  */

void
303
ffest_init_2 (void)
Jeff Law committed
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
{
  ffesta_init_2 ();
  ffestb_init_2 ();
  ffestc_init_2 ();
  ffestd_init_2 ();
  ffeste_init_2 ();
  ffestp_init_2 ();
  ffestr_init_2 ();
  ffests_init_2 ();
  ffestt_init_2 ();
  ffestu_init_2 ();
  ffestv_init_2 ();
  ffestw_init_2 ();
}

/* ffest_init_3 -- Initialize for any program unit

   ffest_init_3();  */

void
324
ffest_init_3 (void)
Jeff Law committed
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
{
  ffesta_init_3 ();
  ffestb_init_3 ();
  ffestc_init_3 ();
  ffestd_init_3 ();
  ffeste_init_3 ();
  ffestp_init_3 ();
  ffestr_init_3 ();
  ffests_init_3 ();
  ffestt_init_3 ();
  ffestu_init_3 ();
  ffestv_init_3 ();
  ffestw_init_3 ();

  ffestw_display_state ();
}

/* ffest_init_4 -- Initialize for statement functions

   ffest_init_4();  */

void
347
ffest_init_4 (void)
Jeff Law committed
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
{
  ffesta_init_4 ();
  ffestb_init_4 ();
  ffestc_init_4 ();
  ffestd_init_4 ();
  ffeste_init_4 ();
  ffestp_init_4 ();
  ffestr_init_4 ();
  ffests_init_4 ();
  ffestt_init_4 ();
  ffestu_init_4 ();
  ffestv_init_4 ();
  ffestw_init_4 ();
}

/* Test whether ENTRY statement is valid.

   Returns TRUE if current program unit is known to be FUNCTION or SUBROUTINE.
   Else returns FALSE.  */

bool
369
ffest_is_entry_valid (void)
Jeff Law committed
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
{
  return ffesta_is_entry_valid;
}

/* ffest_is_inhibited -- Test whether the current possibility is inhibited

   if (!ffest_is_inhibited())
       // implement the statement.

   Just make sure the current possibility has been confirmed.  If anyone
   really needs to test whether the current possibility is inhibited prior
   to confirming it, that indicates a need to begin statement processing
   before it is certain that the given possibility is indeed the statement
   to be processed.  As of this writing, there does not appear to be such
   a need.  If there is, then when confirming a statement would normally
   immediately disable the inhibition (whereas currently we leave the
   confirmed statement disabled until we've tried the other possibilities,
   to check for ambiguities), we must check to see if the possibility has
   already tested for inhibition prior to confirmation and, if so, maintain
   inhibition until the end of the statement (which may be forced right
   away) and then rerun the entire statement from the beginning.  Otherwise,
   initial calls to ffestb functions won't have been made, but subsequent
   calls (after confirmation) will, which is wrong.  Of course, this all
   applies only to those statements implemented via multiple calls to
   ffestb, although if a statement requiring only a single ffestb call
   tested for inhibition prior to confirmation, it would likely mean that
   the ffestb call would be completely dropped without this mechanism.	*/

bool
399
ffest_is_inhibited (void)
Jeff Law committed
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
{
  return ffesta_is_inhibited ();
}

/* ffest_seen_first_exec -- Test whether first executable stmt has been seen

   if (ffest_seen_first_exec())
       // No more spec stmts can be seen.

   In a case where, say, the first statement is PARAMETER(A)=B, FALSE
   will be returned while the PARAMETER statement is being run, and TRUE
   will be returned if it doesn't confirm and the assignment statement
   is being run.  */

bool
415
ffest_seen_first_exec (void)
Jeff Law committed
416 417 418 419 420 421 422 423
{
  return ffesta_seen_first_exec;
}

/* Shut down current parsing possibility, but without bothering the
   user with a diagnostic if we're not inhibited.  */

void
424
ffest_shutdown (void)
Jeff Law committed
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
{
  ffesta_shutdown ();
}

/* ffest_sym_end_transition -- Update symbol info just before end of unit

   ffesymbol s;
   ffest_sym_end_transition(s);	 */

ffesymbol
ffest_sym_end_transition (ffesymbol s)
{
  return ffestu_sym_end_transition (s);
}

/* ffest_sym_exec_transition -- Update symbol just before first exec stmt

   ffesymbol s;
   ffest_sym_exec_transition(s);  */

ffesymbol
ffest_sym_exec_transition (ffesymbol s)
{
  return ffestu_sym_exec_transition (s);
}

/* ffest_terminate_0 -- Terminate for entire image invocation

   ffest_terminate_0();	 */

void
456
ffest_terminate_0 (void)
Jeff Law committed
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
{
  ffesta_terminate_0 ();
  ffestb_terminate_0 ();
  ffestc_terminate_0 ();
  ffestd_terminate_0 ();
  ffeste_terminate_0 ();
  ffestp_terminate_0 ();
  ffestr_terminate_0 ();
  ffests_terminate_0 ();
  ffestt_terminate_0 ();
  ffestu_terminate_0 ();
  ffestv_terminate_0 ();
  ffestw_terminate_0 ();
}

/* ffest_terminate_1 -- Terminate for source file

   ffest_terminate_1();	 */

void
477
ffest_terminate_1 (void)
Jeff Law committed
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
{
  ffesta_terminate_1 ();
  ffestb_terminate_1 ();
  ffestc_terminate_1 ();
  ffestd_terminate_1 ();
  ffeste_terminate_1 ();
  ffestp_terminate_1 ();
  ffestr_terminate_1 ();
  ffests_terminate_1 ();
  ffestt_terminate_1 ();
  ffestu_terminate_1 ();
  ffestv_terminate_1 ();
  ffestw_terminate_1 ();
}

/* ffest_terminate_2 -- Terminate for outer program unit

   ffest_terminate_2();	 */

void
498
ffest_terminate_2 (void)
Jeff Law committed
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
{
  ffesta_terminate_2 ();
  ffestb_terminate_2 ();
  ffestc_terminate_2 ();
  ffestd_terminate_2 ();
  ffeste_terminate_2 ();
  ffestp_terminate_2 ();
  ffestr_terminate_2 ();
  ffests_terminate_2 ();
  ffestt_terminate_2 ();
  ffestu_terminate_2 ();
  ffestv_terminate_2 ();
  ffestw_terminate_2 ();
}

/* ffest_terminate_3 -- Terminate for any program unit

   ffest_terminate_3();	 */

void
519
ffest_terminate_3 (void)
Jeff Law committed
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
{
  ffesta_terminate_3 ();
  ffestb_terminate_3 ();
  ffestc_terminate_3 ();
  ffestd_terminate_3 ();
  ffeste_terminate_3 ();
  ffestp_terminate_3 ();
  ffestr_terminate_3 ();
  ffests_terminate_3 ();
  ffestt_terminate_3 ();
  ffestu_terminate_3 ();
  ffestv_terminate_3 ();
  ffestw_terminate_3 ();
}

/* ffest_terminate_4 -- Terminate for statement functions

   ffest_terminate_4();	 */

void
540
ffest_terminate_4 (void)
Jeff Law committed
541 542 543 544 545 546 547 548 549 550 551 552 553 554
{
  ffesta_terminate_4 ();
  ffestb_terminate_4 ();
  ffestc_terminate_4 ();
  ffestd_terminate_4 ();
  ffeste_terminate_4 ();
  ffestp_terminate_4 ();
  ffestr_terminate_4 ();
  ffests_terminate_4 ();
  ffestt_terminate_4 ();
  ffestu_terminate_4 ();
  ffestv_terminate_4 ();
  ffestw_terminate_4 ();
}