final.c 120 KB
Newer Older
1
/* Convert RTL to assembler code and output it, for GNU compiler.
Jeff Law committed
2
   Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3
   1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4
   Free Software Foundation, Inc.
5

6
This file is part of GCC.
7

8 9
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11
version.
12

13 14 15 16
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
17 18

You should have received a copy of the GNU General Public License
19 20
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

/* This is the final pass of the compiler.
   It looks at the rtl code for a function and outputs assembler code.

   Call `final_start_function' to output the assembler code for function entry,
   `final' to output assembler code for some RTL code,
   `final_end_function' to output assembler code for function exit.
   If a function is compiled in several pieces, each piece is
   output separately with `final'.

   Some optimizations are also done at this level.
   Move instructions that were made unnecessary by good register allocation
   are detected and omitted from the output.  (Though most of these
   are removed by the last jump pass.)

   Instructions to set the condition codes are omitted when it can be
   seen that the condition codes already had the desired values.

   In some cases it is sufficient if the inherited condition codes
   have related values, but this may require the following insn
   (the one that tests the condition codes) to be modified.

   The code for the function prologue and epilogue are generated
44 45
   directly in assembler by the target functions function_prologue and
   function_epilogue.  Those instructions never exist as rtl.  */
46 47

#include "config.h"
48
#include "system.h"
49 50
#include "coretypes.h"
#include "tm.h"
51 52 53

#include "tree.h"
#include "rtl.h"
54
#include "tm_p.h"
55 56 57 58 59 60 61 62
#include "regs.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "recog.h"
#include "conditions.h"
#include "flags.h"
#include "hard-reg-set.h"
#include "output.h"
Mike Stump committed
63
#include "except.h"
64
#include "function.h"
65 66
#include "rtl-error.h"
#include "toplev.h" /* exact_log2, floor_log2 */
Kaveh R. Ghazi committed
67
#include "reload.h"
68
#include "intl.h"
69
#include "basic-block.h"
70
#include "target.h"
71
#include "debug.h"
72
#include "expr.h"
73
#include "cfglayout.h"
74
#include "tree-pass.h"
75
#include "tree-flow.h"
76 77 78
#include "timevar.h"
#include "cgraph.h"
#include "coverage.h"
79
#include "df.h"
80
#include "vecprim.h"
81
#include "ggc.h"
82 83
#include "cfgloop.h"
#include "params.h"
84

85 86 87 88 89
#ifdef XCOFF_DEBUGGING_INFO
#include "xcoffout.h"		/* Needed for external data
				   declarations for e.g. AIX 4.x.  */
#endif

90 91 92 93
#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
#include "dwarf2out.h"
#endif

94 95 96 97
#ifdef DBX_DEBUGGING_INFO
#include "dbxout.h"
#endif

98 99 100 101
#ifdef SDB_DEBUGGING_INFO
#include "sdbout.h"
#endif

102 103
/* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
   So define a null default for it to save conditionalization later.  */
104 105 106 107 108 109 110 111 112 113 114
#ifndef CC_STATUS_INIT
#define CC_STATUS_INIT
#endif

/* How to start an assembler comment.  */
#ifndef ASM_COMMENT_START
#define ASM_COMMENT_START ";#"
#endif

/* Is the given character a logical line separator for the assembler?  */
#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
115
#define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
116 117
#endif

118 119 120 121
#ifndef JUMP_TABLES_IN_TEXT_SECTION
#define JUMP_TABLES_IN_TEXT_SECTION 0
#endif

122 123 124 125 126
/* Bitflags used by final_scan_insn.  */
#define SEEN_BB		1
#define SEEN_NOTE	2
#define SEEN_EMITTED	4

127
/* Last insn processed by final_scan_insn.  */
128 129
static rtx debug_insn;
rtx current_output_insn;
130 131 132 133

/* Line number of last NOTE.  */
static int last_linenum;

134 135 136 137 138 139
/* Last discriminator written to assembly.  */
static int last_discriminator;

/* Discriminator of current block.  */
static int discriminator;

140 141 142 143 144 145
/* Highest line number in current block.  */
static int high_block_linenum;

/* Likewise for function.  */
static int high_function_linenum;

146
/* Filename of last NOTE.  */
147
static const char *last_filename;
148

149 150 151 152
/* Override filename and line number.  */
static const char *override_filename;
static int override_linenum;

153 154
/* Whether to force emission of a line note before the next insn.  */
static bool force_source_line = false;
155

156
extern const int length_unit_log; /* This is defined in insn-attrtab.c.  */
157

158
/* Nonzero while outputting an `asm' with operands.
159
   This means that inconsistencies are the user's fault, so don't die.
160
   The precise value is the insn being output, to pass to error_for_asm.  */
161
rtx this_is_asm_operands;
162 163

/* Number of operands of this insn, for an `asm' with operands.  */
164
static unsigned int insn_noperands;
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

/* Compare optimization flag.  */

static rtx last_ignored_compare = 0;

/* Assign a unique number to each insn that is output.
   This can be used to generate unique local labels.  */

static int insn_counter = 0;

#ifdef HAVE_cc0
/* This variable contains machine-dependent flags (defined in tm.h)
   set and examined by output routines
   that describe how to interpret the condition codes properly.  */

CC_STATUS cc_status;

/* During output of an insn, this contains a copy of cc_status
   from before the insn.  */

CC_STATUS cc_prev_status;
#endif

188
/* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen.  */
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

static int block_depth;

/* Nonzero if have enabled APP processing of our assembler output.  */

static int app_on;

/* If we are outputting an insn sequence, this contains the sequence rtx.
   Zero otherwise.  */

rtx final_sequence;

#ifdef ASSEMBLER_DIALECT

/* Number of the assembler dialect to use, starting at 0.  */
static int dialect_number;
#endif

207 208 209
/* Nonnull if the insn currently being emitted was a COND_EXEC pattern.  */
rtx current_insn_predicate;

210 211 212
/* True if printing into -fdump-final-insns= dump.  */   
bool final_insns_dump_p;

213
#ifdef HAVE_ATTR_length
214 215 216 217
static int asm_insn_count (rtx);
#endif
static void profile_function (FILE *);
static void profile_after_prologue (FILE *);
218
static bool notice_source_line (rtx, bool *);
219
static rtx walk_alter_subreg (rtx *, bool *);
220 221 222 223
static void output_asm_name (void);
static void output_alternate_entry_point (FILE *, rtx);
static tree get_mem_expr_from_op (rtx, int *);
static void output_asm_operand_names (rtx *, int *, int);
224
#ifdef LEAF_REGISTERS
225
static void leaf_renumber_regs (rtx);
226 227
#endif
#ifdef HAVE_cc0
228
static int alter_cond (rtx);
229
#endif
230
#ifndef ADDR_VEC_ALIGN
231
static int final_addr_vec_align (rtx);
232
#endif
233
#ifdef HAVE_ATTR_length
234
static int align_fuzz (rtx, rtx, int, unsigned);
235
#endif
236 237 238 239

/* Initialize data in final at the beginning of a compilation.  */

void
240
init_final (const char *filename ATTRIBUTE_UNUSED)
241 242 243 244 245 246 247 248 249
{
  app_on = 0;
  final_sequence = 0;

#ifdef ASSEMBLER_DIALECT
  dialect_number = ASSEMBLER_DIALECT;
#endif
}

250
/* Default target function prologue and epilogue assembler output.
251

252 253 254
   If not overridden for epilogue code, then the function body itself
   contains return instructions wherever needed.  */
void
255 256
default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
			       HOST_WIDE_INT size ATTRIBUTE_UNUSED)
257 258 259
{
}

260 261
/* Default target hook that outputs nothing to a stream.  */
void
262
no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
263 264 265
{
}

266 267 268 269
/* Enable APP processing of subsequent output.
   Used before the output from an `asm' statement.  */

void
270
app_enable (void)
271 272 273
{
  if (! app_on)
    {
Kaveh R. Ghazi committed
274
      fputs (ASM_APP_ON, asm_out_file);
275 276 277 278 279 280 281 282
      app_on = 1;
    }
}

/* Disable APP processing of subsequent output.
   Called from varasm.c before most kinds of output.  */

void
283
app_disable (void)
284 285 286
{
  if (app_on)
    {
Kaveh R. Ghazi committed
287
      fputs (ASM_APP_OFF, asm_out_file);
288 289 290 291
      app_on = 0;
    }
}

Kazu Hirata committed
292
/* Return the number of slots filled in the current
293 294 295 296 297
   delayed branch sequence (we don't count the insn needing the
   delay slot).   Zero if not in a delayed branch sequence.  */

#ifdef DELAY_SLOTS
int
298
dbr_sequence_length (void)
299 300 301 302 303 304 305 306 307 308 309 310 311 312
{
  if (final_sequence != 0)
    return XVECLEN (final_sequence, 0) - 1;
  else
    return 0;
}
#endif

/* The next two pages contain routines used to compute the length of an insn
   and to shorten branches.  */

/* Arrays for insn lengths, and addresses.  The latter is referenced by
   `insn_current_length'.  */

313
static int *insn_lengths;
314

315
VEC(int,heap) *insn_addresses_;
316

317 318 319
/* Max uid for which the above arrays are valid.  */
static int insn_lengths_max_uid;

320 321 322
/* Address of insn being processed.  Used by `insn_current_length'.  */
int insn_current_address;

323 324 325
/* Address of insn being processed in previous iteration.  */
int insn_last_address;

326
/* known invariant alignment of insn being processed.  */
327 328
int insn_current_align;

329 330 331 332 333 334 335 336 337
/* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
   gives the next following alignment insn that increases the known
   alignment, or NULL_RTX if there is no such insn.
   For any alignment obtained this way, we can again index uid_align with
   its uid to obtain the next following align that in turn increases the
   alignment, till we reach NULL_RTX; the sequence obtained this way
   for each insn we'll call the alignment chain of this insn in the following
   comments.  */

Kazu Hirata committed
338 339
struct label_alignment
{
340 341 342 343 344 345 346
  short alignment;
  short max_skip;
};

static rtx *uid_align;
static int *uid_shuid;
static struct label_alignment *label_align;
347

348 349 350
/* Indicate that branch shortening hasn't yet been done.  */

void
351
init_insn_lengths (void)
352
{
353 354 355 356 357 358 359 360 361
  if (uid_shuid)
    {
      free (uid_shuid);
      uid_shuid = 0;
    }
  if (insn_lengths)
    {
      free (insn_lengths);
      insn_lengths = 0;
362
      insn_lengths_max_uid = 0;
363
    }
364 365 366
#ifdef HAVE_ATTR_length
  INSN_ADDRESSES_FREE ();
#endif
367 368 369 370 371
  if (uid_align)
    {
      free (uid_align);
      uid_align = 0;
    }
372 373 374
}

/* Obtain the current length of an insn.  If branch shortening has been done,
375
   get its actual length.  Otherwise, use FALLBACK_FN to calculate the
376 377 378 379
   length.  */
static inline int
get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
		   int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
380 381 382 383 384 385
{
#ifdef HAVE_ATTR_length
  rtx body;
  int i;
  int length = 0;

386
  if (insn_lengths_max_uid > INSN_UID (insn))
387 388 389 390 391 392 393
    return insn_lengths[INSN_UID (insn)];
  else
    switch (GET_CODE (insn))
      {
      case NOTE:
      case BARRIER:
      case CODE_LABEL:
394
      case DEBUG_INSN:
395 396 397
	return 0;

      case CALL_INSN:
398
	length = fallback_fn (insn);
399 400 401 402
	break;

      case JUMP_INSN:
	body = PATTERN (insn);
Kazu Hirata committed
403
	if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
404
	  {
405 406
	    /* Alignment is machine-dependent and should be handled by
	       ADDR_VEC_ALIGN.  */
407 408
	  }
	else
409
	  length = fallback_fn (insn);
410 411 412 413 414 415 416 417
	break;

      case INSN:
	body = PATTERN (insn);
	if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
	  return 0;

	else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
418
	  length = asm_insn_count (body) * fallback_fn (insn);
419 420
	else if (GET_CODE (body) == SEQUENCE)
	  for (i = 0; i < XVECLEN (body, 0); i++)
421
	    length += get_attr_length_1 (XVECEXP (body, 0, i), fallback_fn);
422
	else
423
	  length = fallback_fn (insn);
424 425 426 427
	break;

      default:
	break;
428 429 430 431 432 433 434 435
      }

#ifdef ADJUST_INSN_LENGTH
  ADJUST_INSN_LENGTH (insn, length);
#endif
  return length;
#else /* not HAVE_ATTR_length */
  return 0;
436 437
#define insn_default_length 0
#define insn_min_length 0
438 439
#endif /* not HAVE_ATTR_length */
}
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455

/* Obtain the current length of an insn.  If branch shortening has been done,
   get its actual length.  Otherwise, get its maximum length.  */
int
get_attr_length (rtx insn)
{
  return get_attr_length_1 (insn, insn_default_length);
}

/* Obtain the current length of an insn.  If branch shortening has been done,
   get its actual length.  Otherwise, get its minimum length.  */
int
get_attr_min_length (rtx insn)
{
  return get_attr_length_1 (insn, insn_min_length);
}
456

457 458 459 460 461 462 463
/* Code to handle alignment inside shorten_branches.  */

/* Here is an explanation how the algorithm in align_fuzz can give
   proper results:

   Call a sequence of instructions beginning with alignment point X
   and continuing until the next alignment point `block X'.  When `X'
Kazu Hirata committed
464
   is used in an expression, it means the alignment value of the
465
   alignment point.
Kazu Hirata committed
466

467 468 469
   Call the distance between the start of the first insn of block X, and
   the end of the last insn of block X `IX', for the `inner size of X'.
   This is clearly the sum of the instruction lengths.
Kazu Hirata committed
470

471 472
   Likewise with the next alignment-delimited block following X, which we
   shall call block Y.
Kazu Hirata committed
473

474 475
   Call the distance between the start of the first insn of block X, and
   the start of the first insn of block Y `OX', for the `outer size of X'.
Kazu Hirata committed
476

477
   The estimated padding is then OX - IX.
Kazu Hirata committed
478

479
   OX can be safely estimated as
Kazu Hirata committed
480

481 482 483 484
           if (X >= Y)
                   OX = round_up(IX, Y)
           else
                   OX = round_up(IX, X) + Y - X
Kazu Hirata committed
485

486 487
   Clearly est(IX) >= real(IX), because that only depends on the
   instruction lengths, and those being overestimated is a given.
Kazu Hirata committed
488

489 490
   Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
   we needn't worry about that when thinking about OX.
Kazu Hirata committed
491

492 493 494 495 496 497 498
   When X >= Y, the alignment provided by Y adds no uncertainty factor
   for branch ranges starting before X, so we can just round what we have.
   But when X < Y, we don't know anything about the, so to speak,
   `middle bits', so we have to assume the worst when aligning up from an
   address mod X to one mod Y, which is Y - X.  */

#ifndef LABEL_ALIGN
499
#define LABEL_ALIGN(LABEL) align_labels_log
500 501
#endif

502
#ifndef LABEL_ALIGN_MAX_SKIP
503
#define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
504 505
#endif

506
#ifndef LOOP_ALIGN
507
#define LOOP_ALIGN(LABEL) align_loops_log
508 509
#endif

510
#ifndef LOOP_ALIGN_MAX_SKIP
511
#define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
512 513
#endif

514
#ifndef LABEL_ALIGN_AFTER_BARRIER
515
#define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
516 517
#endif

518
#ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
519 520 521 522 523 524 525 526
#define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
#endif

#ifndef JUMP_ALIGN
#define JUMP_ALIGN(LABEL) align_jumps_log
#endif

#ifndef JUMP_ALIGN_MAX_SKIP
527
#define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
528 529
#endif

530
#ifndef ADDR_VEC_ALIGN
531
static int
532
final_addr_vec_align (rtx addr_vec)
533
{
534
  int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
535 536 537

  if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
    align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
538
  return exact_log2 (align);
539 540

}
Kazu Hirata committed
541

542 543 544 545 546 547 548 549 550
#define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
#endif

#ifndef INSN_LENGTH_ALIGNMENT
#define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
#endif

#define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])

551
static int min_labelno, max_labelno;
552 553

#define LABEL_TO_ALIGNMENT(LABEL) \
554 555 556 557
  (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)

#define LABEL_TO_MAX_SKIP(LABEL) \
  (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
558 559

/* For the benefit of port specific code do this also as a function.  */
Kazu Hirata committed
560

561
int
562
label_to_alignment (rtx label)
563
{
564 565 566 567 568 569 570 571 572 573 574
  if (CODE_LABEL_NUMBER (label) <= max_labelno)
    return LABEL_TO_ALIGNMENT (label);
  return 0;
}

int
label_to_max_skip (rtx label)
{
  if (CODE_LABEL_NUMBER (label) <= max_labelno)
    return LABEL_TO_MAX_SKIP (label);
  return 0;
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
}

#ifdef HAVE_ATTR_length
/* The differences in addresses
   between a branch and its target might grow or shrink depending on
   the alignment the start insn of the range (the branch for a forward
   branch or the label for a backward branch) starts out on; if these
   differences are used naively, they can even oscillate infinitely.
   We therefore want to compute a 'worst case' address difference that
   is independent of the alignment the start insn of the range end
   up on, and that is at least as large as the actual difference.
   The function align_fuzz calculates the amount we have to add to the
   naively computed difference, by traversing the part of the alignment
   chain of the start insn of the range that is in front of the end insn
   of the range, and considering for each alignment the maximum amount
   that it might contribute to a size increase.

   For casesi tables, we also want to know worst case minimum amounts of
   address difference, in case a machine description wants to introduce
   some common offset that is added to all offsets in a table.
595
   For this purpose, align_fuzz with a growth argument of 0 computes the
596 597 598 599 600 601 602 603 604
   appropriate adjustment.  */

/* Compute the maximum delta by which the difference of the addresses of
   START and END might grow / shrink due to a different address for start
   which changes the size of alignment insns between START and END.
   KNOWN_ALIGN_LOG is the alignment known for START.
   GROWTH should be ~0 if the objective is to compute potential code size
   increase, and 0 if the objective is to compute potential shrink.
   The return value is undefined for any other value of GROWTH.  */
Kazu Hirata committed
605

606
static int
607
align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
608 609 610 611 612 613 614 615 616 617 618 619
{
  int uid = INSN_UID (start);
  rtx align_label;
  int known_align = 1 << known_align_log;
  int end_shuid = INSN_SHUID (end);
  int fuzz = 0;

  for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
    {
      int align_addr, new_align;

      uid = INSN_UID (align_label);
620
      align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
      if (uid_shuid[uid] > end_shuid)
	break;
      known_align_log = LABEL_TO_ALIGNMENT (align_label);
      new_align = 1 << known_align_log;
      if (new_align < known_align)
	continue;
      fuzz += (-align_addr ^ growth) & (new_align - known_align);
      known_align = new_align;
    }
  return fuzz;
}

/* Compute a worst-case reference address of a branch so that it
   can be safely used in the presence of aligned labels.  Since the
   size of the branch itself is unknown, the size of the branch is
   not included in the range.  I.e. for a forward branch, the reference
   address is the end address of the branch as known from the previous
   branch shortening pass, minus a value to account for possible size
   increase due to alignment.  For a backward branch, it is the start
   address of the branch as known from the current pass, plus a value
   to account for possible size increase due to alignment.
   NB.: Therefore, the maximum offset allowed for backward branches needs
   to exclude the branch size.  */
Kazu Hirata committed
644

645
int
646
insn_current_reference_address (rtx branch)
647
{
648 649 650 651 652 653 654 655
  rtx dest, seq;
  int seq_uid;

  if (! INSN_ADDRESSES_SET_P ())
    return 0;

  seq = NEXT_INSN (PREV_INSN (branch));
  seq_uid = INSN_UID (seq);
656
  if (!JUMP_P (branch))
657 658 659 660 661 662 663
    /* This can happen for example on the PA; the objective is to know the
       offset to address something in front of the start of the function.
       Thus, we can treat it like a backward branch.
       We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
       any alignment we'd encounter, so we skip the call to align_fuzz.  */
    return insn_current_address;
  dest = JUMP_LABEL (branch);
664

665
  /* BRANCH has no proper alignment chain set, so use SEQ.
666 667
     BRANCH also has no INSN_SHUID.  */
  if (INSN_SHUID (seq) < INSN_SHUID (dest))
668
    {
Kazu Hirata committed
669
      /* Forward branch.  */
670
      return (insn_last_address + insn_lengths[seq_uid]
671
	      - align_fuzz (seq, dest, length_unit_log, ~0));
672 673 674
    }
  else
    {
Kazu Hirata committed
675
      /* Backward branch.  */
676
      return (insn_current_address
Joern Rennecke committed
677
	      + align_fuzz (dest, seq, length_unit_log, ~0));
678 679 680 681
    }
}
#endif /* HAVE_ATTR_length */

682 683 684
/* Compute branch alignments based on frequency information in the
   CFG.  */

685
unsigned int
686
compute_alignments (void)
687 688
{
  int log, max_skip, max_log;
689
  basic_block bb;
690 691
  int freq_max = 0;
  int freq_threshold = 0;
692 693 694 695 696 697 698 699 700

  if (label_align)
    {
      free (label_align);
      label_align = 0;
    }

  max_labelno = max_label_num ();
  min_labelno = get_first_label_num ();
701
  label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
702 703

  /* If not optimizing or optimizing for size, don't assign any alignments.  */
704
  if (! optimize || optimize_function_for_size_p (cfun))
705
    return 0;
706

707 708 709 710 711 712 713 714 715 716 717 718 719
  if (dump_file)
    {
      dump_flow_info (dump_file, TDF_DETAILS);
      flow_loops_dump (dump_file, NULL, 1);
      loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
    }
  FOR_EACH_BB (bb)
    if (bb->frequency > freq_max)
      freq_max = bb->frequency;
  freq_threshold = freq_max / PARAM_VALUE (PARAM_ALIGN_THRESHOLD);

  if (dump_file)
    fprintf(dump_file, "freq_max: %i\n",freq_max);
720
  FOR_EACH_BB (bb)
721
    {
722
      rtx label = BB_HEAD (bb);
723 724
      int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
      edge e;
725
      edge_iterator ei;
726

727
      if (!LABEL_P (label)
728
	  || optimize_bb_for_size_p (bb))
729 730 731 732 733 734
	{
	  if (dump_file)
	    fprintf(dump_file, "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
		    bb->index, bb->frequency, bb->loop_father->num, bb->loop_depth);
	  continue;
	}
735 736 737
      max_log = LABEL_ALIGN (label);
      max_skip = LABEL_ALIGN_MAX_SKIP;

738
      FOR_EACH_EDGE (e, ei, bb->preds)
739 740 741 742 743 744
	{
	  if (e->flags & EDGE_FALLTHRU)
	    has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
	  else
	    branch_frequency += EDGE_FREQUENCY (e);
	}
745 746 747 748 749 750 751 752 753 754 755 756
      if (dump_file)
	{
	  fprintf(dump_file, "BB %4i freq %4i loop %2i loop_depth %2i fall %4i branch %4i",
		  bb->index, bb->frequency, bb->loop_father->num,
		  bb->loop_depth,
		  fallthru_frequency, branch_frequency);
	  if (!bb->loop_father->inner && bb->loop_father->num)
	    fprintf (dump_file, " inner_loop");
	  if (bb->loop_father->header == bb)
	    fprintf (dump_file, " loop_header");
	  fprintf (dump_file, "\n");
	}
757

758
      /* There are two purposes to align block with no fallthru incoming edge:
759
	 1) to avoid fetch stalls when branch destination is near cache boundary
760
	 2) to improve cache efficiency in case the previous block is not executed
761 762 763 764
	    (so it does not need to be in the cache).

	 We to catch first case, we align frequently executed blocks.
	 To catch the second, we align blocks that are executed more frequently
765
	 than the predecessor and the predecessor is likely to not be executed
766 767 768
	 when function is called.  */

      if (!has_fallthru
769
	  && (branch_frequency > freq_threshold
770 771
	      || (bb->frequency > bb->prev_bb->frequency * 10
		  && (bb->prev_bb->frequency
772 773 774
		      <= ENTRY_BLOCK_PTR->frequency / 2))))
	{
	  log = JUMP_ALIGN (label);
775 776
	  if (dump_file)
	    fprintf(dump_file, "  jump alignment added.\n");
777 778 779 780 781 782 783
	  if (max_log < log)
	    {
	      max_log = log;
	      max_skip = JUMP_ALIGN_MAX_SKIP;
	    }
	}
      /* In case block is frequent and reached mostly by non-fallthru edge,
784
	 align it.  It is most likely a first block of loop.  */
785
      if (has_fallthru
786
	  && optimize_bb_for_speed_p (bb)
787 788 789
	  && branch_frequency + fallthru_frequency > freq_threshold
	  && (branch_frequency
	      > fallthru_frequency * PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS)))
790 791
	{
	  log = LOOP_ALIGN (label);
792 793
	  if (dump_file)
	    fprintf(dump_file, "  internal loop alignment added.\n");
794 795 796 797 798 799 800 801 802
	  if (max_log < log)
	    {
	      max_log = log;
	      max_skip = LOOP_ALIGN_MAX_SKIP;
	    }
	}
      LABEL_TO_ALIGNMENT (label) = max_log;
      LABEL_TO_MAX_SKIP (label) = max_skip;
    }
803 804

  if (dump_file)
805 806 807 808
    {
      loop_optimizer_finalize ();
      free_dominance_info (CDI_DOMINATORS);
    }
809
  return 0;
810
}
811

812
struct rtl_opt_pass pass_compute_alignments =
813
{
814 815
 {
  RTL_PASS,
816
  "alignments",                         /* name */
817 818 819 820 821
  NULL,                                 /* gate */
  compute_alignments,                   /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
822
  TV_NONE,                              /* tv_id */
823 824 825 826
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
827
  TODO_dump_func | TODO_verify_rtl_sharing
828 829
  | TODO_ggc_collect                    /* todo_flags_finish */
 }
830 831
};

832

833 834 835
/* Make a pass over all insns and compute their actual lengths by shortening
   any branches of variable length if possible.  */

836 837 838 839
/* shorten_branches might be called multiple times:  for example, the SH
   port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
   In order to do this, it needs proper length information, which it obtains
   by calling shorten_branches.  This cannot be collapsed with
840
   shorten_branches itself into a single pass unless we also want to integrate
841 842 843
   reorg.c, since the branch splitting exposes new instructions with delay
   slots.  */

844
void
845
shorten_branches (rtx first ATTRIBUTE_UNUSED)
846 847
{
  rtx insn;
848 849 850
  int max_uid;
  int i;
  int max_log;
851
  int max_skip;
852 853 854
#ifdef HAVE_ATTR_length
#define MAX_CODE_ALIGN 16
  rtx seq;
855 856 857 858
  int something_changed = 1;
  char *varying_length;
  rtx body;
  int uid;
859
  rtx align_tab[MAX_CODE_ALIGN];
860

861
#endif
862

863 864
  /* Compute maximum UID and allocate label_align / uid_shuid.  */
  max_uid = get_max_uid ();
865

866
  /* Free uid_shuid before reallocating it.  */
867
  free (uid_shuid);
868

869
  uid_shuid = XNEWVEC (int, max_uid);
870

871 872 873 874 875 876 877 878 879 880 881
  if (max_labelno != max_label_num ())
    {
      int old = max_labelno;
      int n_labels;
      int n_old_labels;

      max_labelno = max_label_num ();

      n_labels = max_labelno - min_labelno + 1;
      n_old_labels = old - min_labelno + 1;

882
      label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
883

884
      /* Range of labels grows monotonically in the function.  Failing here
885
         means that the initialization of array got lost.  */
886
      gcc_assert (n_old_labels <= n_labels);
887 888 889 890 891

      memset (label_align + n_old_labels, 0,
	      (n_labels - n_old_labels) * sizeof (struct label_alignment));
    }

892 893
  /* Initialize label_align and set up uid_shuid to be strictly
     monotonically rising with insn order.  */
894 895 896
  /* We use max_log here to keep track of the maximum alignment we want to
     impose on the next CODE_LABEL (or the current one if we are processing
     the CODE_LABEL itself).  */
Kazu Hirata committed
897

898 899 900 901
  max_log = 0;
  max_skip = 0;

  for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
902 903 904 905
    {
      int log;

      INSN_SHUID (insn) = i++;
906
      if (INSN_P (insn))
907
	continue;
908

909
      if (LABEL_P (insn))
910 911
	{
	  rtx next;
912
	  bool next_is_jumptable;
913

914 915 916 917 918 919 920
	  /* Merge in alignments computed by compute_alignments.  */
	  log = LABEL_TO_ALIGNMENT (insn);
	  if (max_log < log)
	    {
	      max_log = log;
	      max_skip = LABEL_TO_MAX_SKIP (insn);
	    }
921

922 923 924
	  next = next_nonnote_insn (insn);
	  next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
	  if (!next_is_jumptable)
925
	    {
926 927 928 929 930 931
	      log = LABEL_ALIGN (insn);
	      if (max_log < log)
		{
		  max_log = log;
		  max_skip = LABEL_ALIGN_MAX_SKIP;
		}
932
	    }
933 934
	  /* ADDR_VECs only take room if read-only data goes into the text
	     section.  */
935 936 937 938 939 940 941 942 943 944 945
	  if ((JUMP_TABLES_IN_TEXT_SECTION
	       || readonly_data_section == text_section)
	      && next_is_jumptable)
	    {
	      log = ADDR_VEC_ALIGN (next);
	      if (max_log < log)
		{
		  max_log = log;
		  max_skip = LABEL_ALIGN_MAX_SKIP;
		}
	    }
946
	  LABEL_TO_ALIGNMENT (insn) = max_log;
947
	  LABEL_TO_MAX_SKIP (insn) = max_skip;
948
	  max_log = 0;
949
	  max_skip = 0;
950
	}
951
      else if (BARRIER_P (insn))
952 953 954
	{
	  rtx label;

955
	  for (label = insn; label && ! INSN_P (label);
956
	       label = NEXT_INSN (label))
957
	    if (LABEL_P (label))
958 959 960
	      {
		log = LABEL_ALIGN_AFTER_BARRIER (insn);
		if (max_log < log)
961 962 963 964
		  {
		    max_log = log;
		    max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
		  }
965 966 967 968 969 970 971
		break;
	      }
	}
    }
#ifdef HAVE_ATTR_length

  /* Allocate the rest of the arrays.  */
972
  insn_lengths = XNEWVEC (int, max_uid);
973
  insn_lengths_max_uid = max_uid;
974 975
  /* Syntax errors can lead to labels being outside of the main insn stream.
     Initialize insn_addresses, so that we get reproducible results.  */
976
  INSN_ADDRESSES_ALLOC (max_uid);
977

978
  varying_length = XCNEWVEC (char, max_uid);
979 980 981 982 983 984

  /* Initialize uid_align.  We scan instructions
     from end to start, and keep in align_tab[n] the last seen insn
     that does an alignment of at least n+1, i.e. the successor
     in the alignment chain for an insn that does / has a known
     alignment of n.  */
985
  uid_align = XCNEWVEC (rtx, max_uid);
986

Kazu Hirata committed
987
  for (i = MAX_CODE_ALIGN; --i >= 0;)
988 989
    align_tab[i] = NULL_RTX;
  seq = get_last_insn ();
990
  for (; seq; seq = PREV_INSN (seq))
991 992 993
    {
      int uid = INSN_UID (seq);
      int log;
994
      log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
995 996 997 998 999 1000 1001 1002
      uid_align[uid] = align_tab[0];
      if (log)
	{
	  /* Found an alignment label.  */
	  uid_align[uid] = align_tab[log];
	  for (i = log - 1; i >= 0; i--)
	    align_tab[i] = seq;
	}
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
    }
#ifdef CASE_VECTOR_SHORTEN_MODE
  if (optimize)
    {
      /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
         label fields.  */

      int min_shuid = INSN_SHUID (get_insns ()) - 1;
      int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
      int rel;

      for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1015
	{
1016 1017 1018 1019 1020
	  rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
	  int len, i, min, max, insn_shuid;
	  int min_align;
	  addr_diff_vec_flags flags;

1021
	  if (!JUMP_P (insn)
1022 1023 1024 1025
	      || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
	    continue;
	  pat = PATTERN (insn);
	  len = XVECLEN (pat, 1);
1026
	  gcc_assert (len > 0);
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	  min_align = MAX_CODE_ALIGN;
	  for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
	    {
	      rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
	      int shuid = INSN_SHUID (lab);
	      if (shuid < min)
		{
		  min = shuid;
		  min_lab = lab;
		}
	      if (shuid > max)
		{
		  max = shuid;
		  max_lab = lab;
		}
	      if (min_align > LABEL_TO_ALIGNMENT (lab))
		min_align = LABEL_TO_ALIGNMENT (lab);
	    }
1045 1046
	  XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
	  XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1047 1048
	  insn_shuid = INSN_SHUID (insn);
	  rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1049
	  memset (&flags, 0, sizeof (flags));
1050 1051 1052 1053 1054 1055 1056
	  flags.min_align = min_align;
	  flags.base_after_vec = rel > insn_shuid;
	  flags.min_after_vec  = min > insn_shuid;
	  flags.max_after_vec  = max > insn_shuid;
	  flags.min_after_base = min > rel;
	  flags.max_after_base = max > rel;
	  ADDR_DIFF_VEC_FLAGS (pat) = flags;
1057 1058
	}
    }
1059
#endif /* CASE_VECTOR_SHORTEN_MODE */
1060 1061

  /* Compute initial lengths, addresses, and varying flags for each insn.  */
1062
  for (insn_current_address = 0, insn = first;
1063 1064 1065 1066
       insn != 0;
       insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
    {
      uid = INSN_UID (insn);
1067

1068
      insn_lengths[uid] = 0;
1069

1070
      if (LABEL_P (insn))
1071 1072 1073 1074 1075
	{
	  int log = LABEL_TO_ALIGNMENT (insn);
	  if (log)
	    {
	      int align = 1 << log;
Kaveh R. Ghazi committed
1076
	      int new_address = (insn_current_address + align - 1) & -align;
1077 1078 1079 1080
	      insn_lengths[uid] = new_address - insn_current_address;
	    }
	}

1081
      INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
Kazu Hirata committed
1082

1083
      if (NOTE_P (insn) || BARRIER_P (insn)
1084
	  || LABEL_P (insn) || DEBUG_INSN_P(insn))
1085
	continue;
1086 1087
      if (INSN_DELETED_P (insn))
	continue;
1088 1089 1090

      body = PATTERN (insn);
      if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1091 1092 1093
	{
	  /* This only takes room if read-only data goes into the text
	     section.  */
1094 1095
	  if (JUMP_TABLES_IN_TEXT_SECTION
	      || readonly_data_section == text_section)
1096 1097 1098
	    insn_lengths[uid] = (XVECLEN (body,
					  GET_CODE (body) == ADDR_DIFF_VEC)
				 * GET_MODE_SIZE (GET_MODE (body)));
1099 1100
	  /* Alignment is handled by ADDR_VEC_ALIGN.  */
	}
1101
      else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
      else if (GET_CODE (body) == SEQUENCE)
	{
	  int i;
	  int const_delay_slots;
#ifdef DELAY_SLOTS
	  const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
#else
	  const_delay_slots = 0;
#endif
	  /* Inside a delay slot sequence, we do not do any branch shortening
	     if the shortening could change the number of delay slots
Mike Stump committed
1114
	     of the branch.  */
1115 1116 1117 1118 1119 1120
	  for (i = 0; i < XVECLEN (body, 0); i++)
	    {
	      rtx inner_insn = XVECEXP (body, 0, i);
	      int inner_uid = INSN_UID (inner_insn);
	      int inner_length;

1121 1122
	      if (GET_CODE (body) == ASM_INPUT
		  || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1123 1124 1125 1126
		inner_length = (asm_insn_count (PATTERN (inner_insn))
				* insn_default_length (inner_insn));
	      else
		inner_length = insn_default_length (inner_insn);
Kazu Hirata committed
1127

1128 1129 1130 1131 1132 1133
	      insn_lengths[inner_uid] = inner_length;
	      if (const_delay_slots)
		{
		  if ((varying_length[inner_uid]
		       = insn_variable_length_p (inner_insn)) != 0)
		    varying_length[uid] = 1;
1134 1135
		  INSN_ADDRESSES (inner_uid) = (insn_current_address
						+ insn_lengths[uid]);
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
		}
	      else
		varying_length[inner_uid] = 0;
	      insn_lengths[uid] += inner_length;
	    }
	}
      else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
	{
	  insn_lengths[uid] = insn_default_length (insn);
	  varying_length[uid] = insn_variable_length_p (insn);
	}

      /* If needed, do any adjustment.  */
#ifdef ADJUST_INSN_LENGTH
      ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1151
      if (insn_lengths[uid] < 0)
1152
	fatal_insn ("negative insn length", insn);
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
#endif
    }

  /* Now loop over all the insns finding varying length insns.  For each,
     get the current insn length.  If it has changed, reflect the change.
     When nothing changes for a full pass, we are done.  */

  while (something_changed)
    {
      something_changed = 0;
1163
      insn_current_align = MAX_CODE_ALIGN - 1;
1164
      for (insn_current_address = 0, insn = first;
1165 1166 1167 1168
	   insn != 0;
	   insn = NEXT_INSN (insn))
	{
	  int new_length;
1169
#ifdef ADJUST_INSN_LENGTH
1170
	  int tmp_length;
1171
#endif
1172
	  int length_align;
1173 1174

	  uid = INSN_UID (insn);
1175

1176
	  if (LABEL_P (insn))
1177 1178 1179 1180 1181
	    {
	      int log = LABEL_TO_ALIGNMENT (insn);
	      if (log > insn_current_align)
		{
		  int align = 1 << log;
Kaveh R. Ghazi committed
1182
		  int new_address= (insn_current_address + align - 1) & -align;
1183 1184 1185 1186 1187 1188
		  insn_lengths[uid] = new_address - insn_current_address;
		  insn_current_align = log;
		  insn_current_address = new_address;
		}
	      else
		insn_lengths[uid] = 0;
1189
	      INSN_ADDRESSES (uid) = insn_current_address;
1190 1191 1192 1193 1194 1195 1196
	      continue;
	    }

	  length_align = INSN_LENGTH_ALIGNMENT (insn);
	  if (length_align < insn_current_align)
	    insn_current_align = length_align;

1197 1198
	  insn_last_address = INSN_ADDRESSES (uid);
	  INSN_ADDRESSES (uid) = insn_current_address;
1199

1200
#ifdef CASE_VECTOR_SHORTEN_MODE
1201
	  if (optimize && JUMP_P (insn)
1202 1203 1204 1205 1206 1207 1208
	      && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
	    {
	      rtx body = PATTERN (insn);
	      int old_length = insn_lengths[uid];
	      rtx rel_lab = XEXP (XEXP (body, 0), 0);
	      rtx min_lab = XEXP (XEXP (body, 2), 0);
	      rtx max_lab = XEXP (XEXP (body, 3), 0);
1209 1210 1211
	      int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
	      int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
	      int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1212 1213
	      rtx prev;
	      int rel_align = 0;
1214 1215 1216 1217
	      addr_diff_vec_flags flags;

	      /* Avoid automatic aggregate initialization.  */
	      flags = ADDR_DIFF_VEC_FLAGS (body);
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

	      /* Try to find a known alignment for rel_lab.  */
	      for (prev = rel_lab;
		   prev
		   && ! insn_lengths[INSN_UID (prev)]
		   && ! (varying_length[INSN_UID (prev)] & 1);
		   prev = PREV_INSN (prev))
		if (varying_length[INSN_UID (prev)] & 2)
		  {
		    rel_align = LABEL_TO_ALIGNMENT (prev);
		    break;
		  }

	      /* See the comment on addr_diff_vec_flags in rtl.h for the
		 meaning of the flags values.  base: REL_LAB   vec: INSN  */
	      /* Anything after INSN has still addresses from the last
		 pass; adjust these so that they reflect our current
		 estimate for this pass.  */
	      if (flags.base_after_vec)
		rel_addr += insn_current_address - insn_last_address;
	      if (flags.min_after_vec)
		min_addr += insn_current_address - insn_last_address;
	      if (flags.max_after_vec)
		max_addr += insn_current_address - insn_last_address;
	      /* We want to know the worst case, i.e. lowest possible value
		 for the offset of MIN_LAB.  If MIN_LAB is after REL_LAB,
		 its offset is positive, and we have to be wary of code shrink;
		 otherwise, it is negative, and we have to be vary of code
		 size increase.  */
	      if (flags.min_after_base)
		{
		  /* If INSN is between REL_LAB and MIN_LAB, the size
		     changes we are about to make can change the alignment
		     within the observed offset, therefore we have to break
		     it up into two parts that are independent.  */
		  if (! flags.base_after_vec && flags.min_after_vec)
		    {
		      min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
		      min_addr -= align_fuzz (insn, min_lab, 0, 0);
		    }
		  else
		    min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
		}
	      else
		{
		  if (flags.base_after_vec && ! flags.min_after_vec)
		    {
		      min_addr -= align_fuzz (min_lab, insn, 0, ~0);
		      min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
		    }
		  else
		    min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
		}
	      /* Likewise, determine the highest lowest possible value
		 for the offset of MAX_LAB.  */
	      if (flags.max_after_base)
		{
		  if (! flags.base_after_vec && flags.max_after_vec)
		    {
		      max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
		      max_addr += align_fuzz (insn, max_lab, 0, ~0);
		    }
		  else
		    max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
		}
	      else
		{
		  if (flags.base_after_vec && ! flags.max_after_vec)
		    {
		      max_addr += align_fuzz (max_lab, insn, 0, 0);
		      max_addr += align_fuzz (insn, rel_lab, 0, 0);
		    }
		  else
		    max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
		}
	      PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
							max_addr - rel_addr,
							body));
1296 1297
	      if (JUMP_TABLES_IN_TEXT_SECTION
		  || readonly_data_section == text_section)
1298 1299 1300 1301 1302 1303 1304 1305
		{
		  insn_lengths[uid]
		    = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
		  insn_current_address += insn_lengths[uid];
		  if (insn_lengths[uid] != old_length)
		    something_changed = 1;
		}

1306 1307
	      continue;
	    }
1308 1309 1310
#endif /* CASE_VECTOR_SHORTEN_MODE */

	  if (! (varying_length[uid]))
1311
	    {
1312
	      if (NONJUMP_INSN_P (insn)
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
		  && GET_CODE (PATTERN (insn)) == SEQUENCE)
		{
		  int i;

		  body = PATTERN (insn);
		  for (i = 0; i < XVECLEN (body, 0); i++)
		    {
		      rtx inner_insn = XVECEXP (body, 0, i);
		      int inner_uid = INSN_UID (inner_insn);

		      INSN_ADDRESSES (inner_uid) = insn_current_address;

		      insn_current_address += insn_lengths[inner_uid];
		    }
Kazu Hirata committed
1327
		}
1328 1329 1330
	      else
		insn_current_address += insn_lengths[uid];

1331 1332
	      continue;
	    }
1333

1334
	  if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1335 1336
	    {
	      int i;
Kazu Hirata committed
1337

1338 1339 1340 1341 1342 1343 1344 1345
	      body = PATTERN (insn);
	      new_length = 0;
	      for (i = 0; i < XVECLEN (body, 0); i++)
		{
		  rtx inner_insn = XVECEXP (body, 0, i);
		  int inner_uid = INSN_UID (inner_insn);
		  int inner_length;

1346
		  INSN_ADDRESSES (inner_uid) = insn_current_address;
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382

		  /* insn_current_length returns 0 for insns with a
		     non-varying length.  */
		  if (! varying_length[inner_uid])
		    inner_length = insn_lengths[inner_uid];
		  else
		    inner_length = insn_current_length (inner_insn);

		  if (inner_length != insn_lengths[inner_uid])
		    {
		      insn_lengths[inner_uid] = inner_length;
		      something_changed = 1;
		    }
		  insn_current_address += insn_lengths[inner_uid];
		  new_length += inner_length;
		}
	    }
	  else
	    {
	      new_length = insn_current_length (insn);
	      insn_current_address += new_length;
	    }

#ifdef ADJUST_INSN_LENGTH
	  /* If needed, do any adjustment.  */
	  tmp_length = new_length;
	  ADJUST_INSN_LENGTH (insn, new_length);
	  insn_current_address += (new_length - tmp_length);
#endif

	  if (new_length != insn_lengths[uid])
	    {
	      insn_lengths[uid] = new_length;
	      something_changed = 1;
	    }
	}
1383 1384 1385
      /* For a non-optimizing compile, do only a single pass.  */
      if (!optimize)
	break;
1386
    }
1387 1388 1389

  free (varying_length);

1390 1391 1392 1393 1394 1395 1396 1397 1398
#endif /* HAVE_ATTR_length */
}

#ifdef HAVE_ATTR_length
/* Given the body of an INSN known to be generated by an ASM statement, return
   the number of machine instructions likely to be generated for this insn.
   This is used to compute its length.  */

static int
1399
asm_insn_count (rtx body)
1400
{
1401
  const char *templ;
1402

1403
  if (GET_CODE (body) == ASM_INPUT)
1404
    templ = XSTR (body, 0);
1405
  else
1406
    templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1407

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
  return asm_str_count (templ);
}
#endif

/* Return the number of machine instructions likely to be generated for the
   inline-asm template. */
int
asm_str_count (const char *templ)
{
  int count = 1;
H.J. Lu committed
1418

1419
  if (!*templ)
1420 1421
    return 0;

1422 1423 1424
  for (; *templ; templ++)
    if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
	|| *templ == '\n')
1425 1426 1427 1428 1429
      count++;

  return count;
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
/* ??? This is probably the wrong place for these.  */
/* Structure recording the mapping from source file and directory
   names at compile time to those to be embedded in debug
   information.  */
typedef struct debug_prefix_map
{
  const char *old_prefix;
  const char *new_prefix;
  size_t old_len;
  size_t new_len;
  struct debug_prefix_map *next;
} debug_prefix_map;

/* Linked list of such structures.  */
debug_prefix_map *debug_prefix_maps;


/* Record a debug file prefix mapping.  ARG is the argument to
   -fdebug-prefix-map and must be of the form OLD=NEW.  */

void
add_debug_prefix_map (const char *arg)
{
  debug_prefix_map *map;
  const char *p;

  p = strchr (arg, '=');
  if (!p)
    {
      error ("invalid argument %qs to -fdebug-prefix-map", arg);
      return;
    }
  map = XNEW (debug_prefix_map);
1463
  map->old_prefix = xstrndup (arg, p - arg);
1464 1465
  map->old_len = p - arg;
  p++;
1466
  map->new_prefix = xstrdup (p);
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
  map->new_len = strlen (p);
  map->next = debug_prefix_maps;
  debug_prefix_maps = map;
}

/* Perform user-specified mapping of debug filename prefixes.  Return
   the new name corresponding to FILENAME.  */

const char *
remap_debug_filename (const char *filename)
{
  debug_prefix_map *map;
  char *s;
  const char *name;
  size_t name_len;

  for (map = debug_prefix_maps; map; map = map->next)
    if (strncmp (filename, map->old_prefix, map->old_len) == 0)
      break;
  if (!map)
    return filename;
  name = filename + map->old_len;
  name_len = strlen (name) + 1;
  s = (char *) alloca (name_len + map->new_len);
  memcpy (s, map->new_prefix, map->new_len);
  memcpy (s + map->new_len, name, name_len);
  return ggc_strdup (s);
}

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
/* Return true if DWARF2 debug info can be emitted for DECL.  */

static bool
dwarf2_debug_info_emitted_p (tree decl)
{
  if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
    return false;

  if (DECL_IGNORED_P (decl))
    return false;

  return true;
}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
/* Output assembler code for the start of a function,
   and initialize some of the variables in this file
   for the new function.  The label for the function and associated
   assembler pseudo-ops have already been output in `assemble_start_function'.

   FIRST is the first insn of the rtl for the function being compiled.
   FILE is the file to write assembler code to.
   OPTIMIZE is nonzero if we should eliminate redundant
     test and compare insns.  */

void
1521 1522
final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
		      int optimize ATTRIBUTE_UNUSED)
1523 1524 1525 1526 1527
{
  block_depth = 0;

  this_is_asm_operands = 0;

1528 1529
  last_filename = locator_file (prologue_locator);
  last_linenum = locator_line (prologue_locator);
1530
  last_discriminator = discriminator = 0;
1531

1532
  high_block_linenum = high_function_linenum = last_linenum;
1533

1534 1535
  if (!DECL_IGNORED_P (current_function_decl))
    debug_hooks->begin_prologue (last_linenum, last_filename);
Jason Merrill committed
1536

1537
#if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1538
  if (!dwarf2_debug_info_emitted_p (current_function_decl))
1539
    dwarf2out_begin_prologue (0, NULL);
Kazu Hirata committed
1540
#endif
1541 1542

#ifdef LEAF_REG_REMAP
1543
  if (current_function_uses_only_leaf_regs)
1544 1545 1546 1547 1548
    leaf_renumber_regs (first);
#endif

  /* The Sun386i and perhaps other machines don't work right
     if the profiling code comes after the prologue.  */
1549
  if (targetm.profile_before_prologue () && crtl->profile)
1550 1551
    profile_function (file);

Jason Merrill committed
1552 1553
#if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
  if (dwarf2out_do_frame ())
1554
    dwarf2out_frame_debug (NULL_RTX, false);
Jason Merrill committed
1555 1556
#endif

1557 1558 1559 1560
  /* If debugging, assign block numbers to all of the blocks in this
     function.  */
  if (write_symbols)
    {
1561
      reemit_insn_block_notes ();
1562
      number_blocks (current_function_decl);
1563 1564 1565 1566 1567 1568
      /* We never actually put out begin/end notes for the top-level
	 block in the function.  But, conceptually, that block is
	 always needed.  */
      TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
    }

1569 1570 1571 1572 1573 1574 1575 1576 1577
  if (warn_frame_larger_than
    && get_frame_size () > frame_larger_than_size)
  {
      /* Issue a warning */
      warning (OPT_Wframe_larger_than_,
               "the frame size of %wd bytes is larger than %wd bytes",
               get_frame_size (), frame_larger_than_size);
  }

1578
  /* First output the function prologue: code to set up the stack frame.  */
1579
  targetm.asm_out.function_prologue (file, get_frame_size ());
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589

  /* If the machine represents the prologue as RTL, the profiling code must
     be emitted when NOTE_INSN_PROLOGUE_END is scanned.  */
#ifdef HAVE_prologue
  if (! HAVE_prologue)
#endif
    profile_after_prologue (file);
}

static void
1590
profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1591
{
1592
  if (!targetm.profile_before_prologue () && crtl->profile)
1593 1594 1595 1596
    profile_function (file);
}

static void
1597
profile_function (FILE *file ATTRIBUTE_UNUSED)
1598
{
1599
#ifndef NO_PROFILE_COUNTERS
1600
# define NO_PROFILE_COUNTERS	0
1601
#endif
1602 1603 1604 1605 1606 1607 1608 1609
#ifdef ASM_OUTPUT_REG_PUSH
  rtx sval = NULL, chain = NULL;

  if (cfun->returns_struct)
    sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
					   true);
  if (cfun->static_chain_decl)
    chain = targetm.calls.static_chain (current_function_decl, true);
1610
#endif /* ASM_OUTPUT_REG_PUSH */
1611

1612 1613 1614
  if (! NO_PROFILE_COUNTERS)
    {
      int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1615
      switch_to_section (data_section);
1616
      ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1617
      targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1618 1619
      assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
    }
1620

1621
  switch_to_section (current_function_section ());
1622

1623 1624 1625 1626 1627
#ifdef ASM_OUTPUT_REG_PUSH
  if (sval && REG_P (sval))
    ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
  if (chain && REG_P (chain))
    ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1628 1629
#endif

1630
  FUNCTION_PROFILER (file, current_function_funcdef_no);
1631

1632 1633 1634 1635 1636
#ifdef ASM_OUTPUT_REG_PUSH
  if (chain && REG_P (chain))
    ASM_OUTPUT_REG_POP (file, REGNO (chain));
  if (sval && REG_P (sval))
    ASM_OUTPUT_REG_POP (file, REGNO (sval));
1637 1638 1639 1640 1641 1642 1643 1644
#endif
}

/* Output assembler code for the end of a function.
   For clarity, args are same as those of `final_start_function'
   even though not all of them are needed.  */

void
1645
final_end_function (void)
1646
{
1647
  app_disable ();
1648

1649 1650
  if (!DECL_IGNORED_P (current_function_decl))
    debug_hooks->end_function (high_function_linenum);
1651 1652 1653

  /* Finally, output the function epilogue:
     code to restore the stack frame and return to the caller.  */
1654
  targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1655

1656
  /* And debug output.  */
1657 1658
  if (!DECL_IGNORED_P (current_function_decl))
    debug_hooks->end_epilogue (last_linenum, last_filename);
1659

1660
#if defined (DWARF2_UNWIND_INFO)
1661
  if (!dwarf2_debug_info_emitted_p (current_function_decl)
1662
      && dwarf2out_do_frame ())
1663
    dwarf2out_end_epilogue (last_linenum, last_filename);
x  
Jason Merrill committed
1664
#endif
1665 1666 1667
}

/* Output assembler code for some insns: all or part of a function.
1668
   For description of args, see `final_start_function', above.  */
1669 1670

void
1671
final (rtx first, FILE *file, int optimize)
1672
{
1673
  rtx insn;
1674
  int max_uid = 0;
1675
  int seen = 0;
1676 1677 1678 1679

  last_ignored_compare = 0;

  for (insn = first; insn; insn = NEXT_INSN (insn))
1680
    {
1681
      if (INSN_UID (insn) > max_uid)       /* Find largest UID.  */
Kazu Hirata committed
1682
	max_uid = INSN_UID (insn);
1683 1684 1685
#ifdef HAVE_cc0
      /* If CC tracking across branches is enabled, record the insn which
	 jumps to each branch only reached from one place.  */
1686
      if (optimize && JUMP_P (insn))
1687 1688 1689 1690 1691 1692 1693 1694
	{
	  rtx lab = JUMP_LABEL (insn);
	  if (lab && LABEL_NUSES (lab) == 1)
	    {
	      LABEL_REFS (lab) = insn;
	    }
	}
#endif
1695 1696
    }

1697 1698 1699 1700 1701
  init_recog ();

  CC_STATUS_INIT;

  /* Output the insns.  */
1702
  for (insn = first; insn;)
1703 1704
    {
#ifdef HAVE_ATTR_length
1705
      if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1706 1707 1708
	{
	  /* This can be triggered by bugs elsewhere in the compiler if
	     new insns are created after init_insn_lengths is called.  */
1709 1710
	  gcc_assert (NOTE_P (insn));
	  insn_current_address = -1;
1711 1712
	}
      else
1713
	insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1714 1715
#endif /* HAVE_ATTR_length */

1716
      insn = final_scan_insn (insn, file, optimize, 0, &seen);
1717
    }
1718 1719
}

1720
const char *
1721
get_insn_template (int code, rtx insn)
1722 1723 1724 1725
{
  switch (insn_data[code].output_format)
    {
    case INSN_OUTPUT_FORMAT_SINGLE:
1726
      return insn_data[code].output.single;
1727
    case INSN_OUTPUT_FORMAT_MULTI:
1728
      return insn_data[code].output.multi[which_alternative];
1729
    case INSN_OUTPUT_FORMAT_FUNCTION:
1730
      gcc_assert (insn);
1731
      return (*insn_data[code].output.function) (recog_data.operand, insn);
1732 1733

    default:
1734
      gcc_unreachable ();
1735 1736
    }
}
Kazu Hirata committed
1737

1738 1739 1740 1741 1742 1743
/* Emit the appropriate declaration for an alternate-entry-point
   symbol represented by INSN, to FILE.  INSN is a CODE_LABEL with
   LABEL_KIND != LABEL_NORMAL.

   The case fall-through in this function is intentional.  */
static void
1744
output_alternate_entry_point (FILE *file, rtx insn)
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
{
  const char *name = LABEL_NAME (insn);

  switch (LABEL_KIND (insn))
    {
    case LABEL_WEAK_ENTRY:
#ifdef ASM_WEAKEN_LABEL
      ASM_WEAKEN_LABEL (file, name);
#endif
    case LABEL_GLOBAL_ENTRY:
1755
      targetm.asm_out.globalize_label (file, name);
1756
    case LABEL_STATIC_ENTRY:
1757 1758 1759
#ifdef ASM_OUTPUT_TYPE_DIRECTIVE
      ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
#endif
1760 1761 1762 1763 1764
      ASM_OUTPUT_LABEL (file, name);
      break;

    case LABEL_NORMAL:
    default:
1765
      gcc_unreachable ();
1766 1767 1768
    }
}

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
/* Given a CALL_INSN, find and return the nested CALL. */
static rtx
call_from_call_insn (rtx insn)
{
  rtx x;
  gcc_assert (CALL_P (insn));
  x = PATTERN (insn);

  while (GET_CODE (x) != CALL)
    {
      switch (GET_CODE (x))
	{
	default:
	  gcc_unreachable ();
1783 1784 1785
	case COND_EXEC:
	  x = COND_EXEC_CODE (x);
	  break;
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
	case PARALLEL:
	  x = XVECEXP (x, 0, 0);
	  break;
	case SET:
	  x = XEXP (x, 1);
	  break;
	}
    }
  return x;
}

1797 1798 1799 1800 1801
/* The final scan for one insn, INSN.
   Args are same as in `final', except that INSN
   is the insn being scanned.
   Value returned is the next insn to be scanned.

1802 1803
   NOPEEPHOLES is the flag to disallow peephole processing (currently
   used for within delayed branch sequence output).
1804

1805 1806 1807 1808 1809 1810
   SEEN is used to track the end of the prologue, for emitting
   debug information.  We force the emission of a line note after
   both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
   at the beginning of the second basic block, whichever comes
   first.  */

1811
rtx
1812
final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1813
		 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1814
{
1815 1816 1817
#ifdef HAVE_cc0
  rtx set;
#endif
1818
  rtx next;
1819

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
  insn_counter++;

  /* Ignore deleted insns.  These can occur when we split insns (due to a
     template of "#") while not optimizing.  */
  if (INSN_DELETED_P (insn))
    return NEXT_INSN (insn);

  switch (GET_CODE (insn))
    {
    case NOTE:
1830
      switch (NOTE_KIND (insn))
1831 1832 1833
	{
	case NOTE_INSN_DELETED:
	  break;
1834

1835
	case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1836
	  in_cold_section_p = !in_cold_section_p;
1837 1838 1839 1840 1841
#ifdef DWARF2_UNWIND_INFO
	  if (dwarf2out_do_frame ())
	    dwarf2out_switch_text_section ();
	  else
#endif
1842 1843
	  if (!DECL_IGNORED_P (current_function_decl))
	    debug_hooks->switch_text_section ();
1844

1845
	  switch_to_section (current_function_section ());
1846
	  break;
1847

1848
	case NOTE_INSN_BASIC_BLOCK:
1849 1850
	  if (targetm.asm_out.unwind_emit)
	    targetm.asm_out.unwind_emit (asm_out_file, insn);
1851

1852 1853
	  if (flag_debug_asm)
	    fprintf (asm_out_file, "\t%s basic block %d\n",
1854
		     ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1855 1856 1857 1858

	  if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
	    {
	      *seen |= SEEN_EMITTED;
1859
	      force_source_line = true;
1860 1861 1862 1863
	    }
	  else
	    *seen |= SEEN_BB;

1864 1865
          discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;

1866
	  break;
1867

1868
	case NOTE_INSN_EH_REGION_BEG:
1869 1870
	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
				  NOTE_EH_HANDLER (insn));
Mike Stump committed
1871 1872
	  break;

1873
	case NOTE_INSN_EH_REGION_END:
1874 1875
	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
				  NOTE_EH_HANDLER (insn));
Mike Stump committed
1876 1877
	  break;

1878
	case NOTE_INSN_PROLOGUE_END:
1879
	  targetm.asm_out.function_end_prologue (file);
1880
	  profile_after_prologue (file);
1881 1882 1883 1884

	  if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
	    {
	      *seen |= SEEN_EMITTED;
1885
	      force_source_line = true;
1886 1887 1888 1889
	    }
	  else
	    *seen |= SEEN_NOTE;

1890 1891
	  break;

1892
	case NOTE_INSN_EPILOGUE_BEG:
1893 1894
#if defined (DWARF2_UNWIND_INFO) && defined (HAVE_epilogue)
	  if (dwarf2out_do_frame ())
1895
	    dwarf2out_cfi_begin_epilogue (insn);
1896
#endif
1897
	  (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
1898
	  targetm.asm_out.function_begin_epilogue (file);
1899
	  break;
1900

1901 1902 1903 1904 1905 1906
	case NOTE_INSN_CFA_RESTORE_STATE:
#if defined (DWARF2_UNWIND_INFO)
	  dwarf2out_frame_debug_restore_state ();
#endif
	  break;

1907
	case NOTE_INSN_FUNCTION_BEG:
1908
	  app_disable ();
1909 1910
	  if (!DECL_IGNORED_P (current_function_decl))
	    debug_hooks->end_prologue (last_linenum, last_filename);
1911 1912 1913 1914

	  if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
	    {
	      *seen |= SEEN_EMITTED;
1915
	      force_source_line = true;
1916 1917 1918 1919
	    }
	  else
	    *seen |= SEEN_NOTE;

1920
	  break;
1921 1922 1923

	case NOTE_INSN_BLOCK_BEG:
	  if (debug_info_level == DINFO_LEVEL_NORMAL
1924
	      || debug_info_level == DINFO_LEVEL_VERBOSE
1925 1926 1927
	      || write_symbols == DWARF2_DEBUG
	      || write_symbols == VMS_AND_DWARF2_DEBUG
	      || write_symbols == VMS_DEBUG)
1928 1929
	    {
	      int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1930

1931 1932 1933
	      app_disable ();
	      ++block_depth;
	      high_block_linenum = last_linenum;
1934

1935
	      /* Output debugging info about the symbol-block beginning.  */
1936 1937
	      if (!DECL_IGNORED_P (current_function_decl))
		debug_hooks->begin_block (last_linenum, n);
1938

1939 1940 1941
	      /* Mark this block as output.  */
	      TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
	    }
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
	  if (write_symbols == DBX_DEBUG
	      || write_symbols == SDB_DEBUG)
	    {
	      location_t *locus_ptr
		= block_nonartificial_location (NOTE_BLOCK (insn));

	      if (locus_ptr != NULL)
		{
		  override_filename = LOCATION_FILE (*locus_ptr);
		  override_linenum = LOCATION_LINE (*locus_ptr);
		}
	    }
1954
	  break;
1955

1956 1957 1958
	case NOTE_INSN_BLOCK_END:
	  if (debug_info_level == DINFO_LEVEL_NORMAL
	      || debug_info_level == DINFO_LEVEL_VERBOSE
1959 1960 1961
	      || write_symbols == DWARF2_DEBUG
	      || write_symbols == VMS_AND_DWARF2_DEBUG
	      || write_symbols == VMS_DEBUG)
1962 1963
	    {
	      int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1964

1965 1966 1967 1968
	      app_disable ();

	      /* End of a symbol-block.  */
	      --block_depth;
1969
	      gcc_assert (block_depth >= 0);
1970

1971 1972
	      if (!DECL_IGNORED_P (current_function_decl))
		debug_hooks->end_block (high_block_linenum, n);
1973
	    }
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
	  if (write_symbols == DBX_DEBUG
	      || write_symbols == SDB_DEBUG)
	    {
	      tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
	      location_t *locus_ptr
		= block_nonartificial_location (outer_block);

	      if (locus_ptr != NULL)
		{
		  override_filename = LOCATION_FILE (*locus_ptr);
		  override_linenum = LOCATION_LINE (*locus_ptr);
		}
	      else
		{
		  override_filename = NULL;
		  override_linenum = 0;
		}
	    }
1992 1993 1994 1995 1996 1997
	  break;

	case NOTE_INSN_DELETED_LABEL:
	  /* Emit the label.  We may have deleted the CODE_LABEL because
	     the label could be proved to be unreachable, though still
	     referenced (in the form of having its address taken.  */
1998
	  ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1999
	  break;
2000

2001
	case NOTE_INSN_VAR_LOCATION:
2002 2003
	  if (!DECL_IGNORED_P (current_function_decl))
	    debug_hooks->var_location (insn);
2004 2005
	  break;

2006
	default:
2007
	  gcc_unreachable ();
Kazu Hirata committed
2008
	  break;
2009 2010 2011 2012
	}
      break;

    case BARRIER:
2013
#if defined (DWARF2_UNWIND_INFO)
2014
      if (dwarf2out_do_frame ())
2015
	dwarf2out_frame_debug (insn, false);
2016
#endif
2017 2018 2019
      break;

    case CODE_LABEL:
2020 2021
      /* The target port might emit labels in the output function for
	 some insn, e.g. sh.c output_branchy_insn.  */
2022 2023 2024
      if (CODE_LABEL_NUMBER (insn) <= max_labelno)
	{
	  int align = LABEL_TO_ALIGNMENT (insn);
Kaveh R. Ghazi committed
2025
#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2026
	  int max_skip = LABEL_TO_MAX_SKIP (insn);
Kaveh R. Ghazi committed
2027
#endif
2028

2029
	  if (align && NEXT_INSN (insn))
2030
	    {
2031
#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2032
	      ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2033
#else
2034 2035 2036
#ifdef ASM_OUTPUT_ALIGN_WITH_NOP
              ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
#else
2037
	      ASM_OUTPUT_ALIGN (file, align);
2038
#endif
2039
#endif
2040
	    }
2041
	}
2042
      CC_STATUS_INIT;
2043

2044 2045
      if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
	debug_hooks->label (insn);
2046

2047
      app_disable ();
2048 2049

      next = next_nonnote_insn (insn);
2050 2051 2052 2053
      /* If this label is followed by a jump-table, make sure we put
	 the label in the read-only section.  Also possibly write the
	 label and jump table together.  */
      if (next != 0 && JUMP_TABLE_DATA_P (next))
2054
	{
2055
#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2056 2057 2058
	  /* In this case, the case vector is being moved by the
	     target, so don't output the label at all.  Leave that
	     to the back end macros.  */
2059
#else
2060 2061 2062
	  if (! JUMP_TABLES_IN_TEXT_SECTION)
	    {
	      int log_align;
2063

2064 2065
	      switch_to_section (targetm.asm_out.function_rodata_section
				 (current_function_decl));
2066 2067

#ifdef ADDR_VEC_ALIGN
2068
	      log_align = ADDR_VEC_ALIGN (next);
2069
#else
2070
	      log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2071
#endif
2072 2073 2074 2075
	      ASM_OUTPUT_ALIGN (file, log_align);
	    }
	  else
	    switch_to_section (current_function_section ());
2076

2077
#ifdef ASM_OUTPUT_CASE_LABEL
2078 2079
	  ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
				 next);
2080
#else
2081
	  targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2082
#endif
2083
#endif
2084
	  break;
2085
	}
2086 2087
      if (LABEL_ALT_ENTRY_P (insn))
	output_alternate_entry_point (file, insn);
2088
      else
2089
	targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2090 2091 2092 2093
      break;

    default:
      {
2094
	rtx body = PATTERN (insn);
2095
	int insn_code_number;
2096
	const char *templ;
2097
	bool is_stmt;
2098

2099 2100
	/* Reset this early so it is correct for ASM statements.  */
	current_insn_predicate = NULL_RTX;
2101

2102 2103 2104
	/* An INSN, JUMP_INSN or CALL_INSN.
	   First check for special kinds that recog doesn't recognize.  */

2105
	if (GET_CODE (body) == USE /* These are just declarations.  */
2106 2107 2108 2109
	    || GET_CODE (body) == CLOBBER)
	  break;

#ifdef HAVE_cc0
2110 2111 2112 2113 2114
	{
	  /* If there is a REG_CC_SETTER note on this insn, it means that
	     the setting of the condition code was done in the delay slot
	     of the insn that branched here.  So recover the cc status
	     from the insn that set it.  */
2115

2116 2117 2118 2119 2120 2121 2122
	  rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
	  if (note)
	    {
	      NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
	      cc_prev_status = cc_status;
	    }
	}
2123 2124 2125 2126 2127 2128 2129
#endif

	/* Detect insns that are really jump-tables
	   and output them as such.  */

	if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
	  {
Kaveh R. Ghazi committed
2130
#if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2131
	    int vlen, idx;
Kaveh R. Ghazi committed
2132
#endif
2133

2134
	    if (! JUMP_TABLES_IN_TEXT_SECTION)
2135 2136
	      switch_to_section (targetm.asm_out.function_rodata_section
				 (current_function_decl));
2137
	    else
2138
	      switch_to_section (current_function_section ());
2139

2140
	    app_disable ();
2141

2142 2143 2144 2145 2146 2147
#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
	    if (GET_CODE (body) == ADDR_VEC)
	      {
#ifdef ASM_OUTPUT_ADDR_VEC
		ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
#else
2148
		gcc_unreachable ();
2149 2150 2151 2152 2153 2154 2155
#endif
	      }
	    else
	      {
#ifdef ASM_OUTPUT_ADDR_DIFF_VEC
		ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
#else
2156
		gcc_unreachable ();
2157 2158 2159
#endif
	      }
#else
2160 2161 2162 2163 2164 2165 2166 2167 2168
	    vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
	    for (idx = 0; idx < vlen; idx++)
	      {
		if (GET_CODE (body) == ADDR_VEC)
		  {
#ifdef ASM_OUTPUT_ADDR_VEC_ELT
		    ASM_OUTPUT_ADDR_VEC_ELT
		      (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
#else
2169
		    gcc_unreachable ();
2170 2171 2172 2173 2174 2175 2176
#endif
		  }
		else
		  {
#ifdef ASM_OUTPUT_ADDR_DIFF_ELT
		    ASM_OUTPUT_ADDR_DIFF_ELT
		      (file,
2177
		       body,
2178 2179 2180
		       CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
		       CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
#else
2181
		    gcc_unreachable ();
2182 2183 2184 2185 2186 2187 2188 2189
#endif
		  }
	      }
#ifdef ASM_OUTPUT_CASE_END
	    ASM_OUTPUT_CASE_END (file,
				 CODE_LABEL_NUMBER (PREV_INSN (insn)),
				 insn);
#endif
2190
#endif
2191

2192
	    switch_to_section (current_function_section ());
2193 2194 2195

	    break;
	  }
2196 2197
	/* Output this line note if it is the first or the last line
	   note in a row.  */
2198 2199 2200 2201
	if (!DECL_IGNORED_P (current_function_decl)
	    && notice_source_line (insn, &is_stmt))
	  (*debug_hooks->source_line) (last_linenum, last_filename,
				       last_discriminator, is_stmt);
2202 2203 2204

	if (GET_CODE (body) == ASM_INPUT)
	  {
2205 2206
	    const char *string = XSTR (body, 0);

2207 2208
	    /* There's no telling what that did to the condition codes.  */
	    CC_STATUS_INIT;
2209 2210

	    if (string[0])
2211
	      {
2212
		expanded_location loc;
2213

Anatoly Sokolov committed
2214
		app_enable ();
2215
		loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2216
		if (*loc.file && loc.line)
2217 2218
		  fprintf (asm_out_file, "%s %i \"%s\" 1\n",
			   ASM_COMMENT_START, loc.line, loc.file);
2219
		fprintf (asm_out_file, "\t%s\n", string);
2220 2221
#if HAVE_AS_LINE_ZERO
		if (*loc.file && loc.line)
2222
		  fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2223
#endif
2224 2225 2226 2227 2228 2229 2230
	      }
	    break;
	  }

	/* Detect `asm' construct with operands.  */
	if (asm_noperands (body) >= 0)
	  {
2231
	    unsigned int noperands = asm_noperands (body);
2232
	    rtx *ops = XALLOCAVEC (rtx, noperands);
2233
	    const char *string;
2234
	    location_t loc;
2235
	    expanded_location expanded;
2236 2237 2238 2239 2240

	    /* There's no telling what that did to the condition codes.  */
	    CC_STATUS_INIT;

	    /* Get out the operand values.  */
2241
	    string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2242
	    /* Inhibit dying on what would otherwise be compiler bugs.  */
2243 2244
	    insn_noperands = noperands;
	    this_is_asm_operands = insn;
2245
	    expanded = expand_location (loc);
2246

2247 2248 2249 2250
#ifdef FINAL_PRESCAN_INSN
	    FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
#endif

2251
	    /* Output the insn using them.  */
2252 2253
	    if (string[0])
	      {
Anatoly Sokolov committed
2254
		app_enable ();
2255
		if (expanded.file && expanded.line)
2256
		  fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2257
			   ASM_COMMENT_START, expanded.line, expanded.file);
2258
	        output_asm_insn (string, ops);
2259
#if HAVE_AS_LINE_ZERO
2260
		if (expanded.file && expanded.line)
2261
		  fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2262
#endif
2263 2264
	      }

2265 2266 2267 2268
	    if (targetm.asm_out.final_postscan_insn)
	      targetm.asm_out.final_postscan_insn (file, insn, ops,
						   insn_noperands);

2269 2270 2271 2272
	    this_is_asm_operands = 0;
	    break;
	  }

2273
	app_disable ();
2274 2275 2276 2277

	if (GET_CODE (body) == SEQUENCE)
	  {
	    /* A delayed-branch sequence */
2278
	    int i;
2279 2280 2281

	    final_sequence = body;

2282 2283 2284 2285 2286
	    /* Record the delay slots' frame information before the branch.
	       This is needed for delayed calls: see execute_cfa_program().  */
#if defined (DWARF2_UNWIND_INFO)
	    if (dwarf2out_do_frame ())
	      for (i = 1; i < XVECLEN (body, 0); i++)
2287
		dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2288 2289
#endif

2290 2291 2292 2293 2294
	    /* The first insn in this SEQUENCE might be a JUMP_INSN that will
	       force the restoration of a comparison that was previously
	       thought unnecessary.  If that happens, cancel this sequence
	       and cause that insn to be restored.  */

2295
	    next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2296 2297 2298 2299 2300 2301 2302
	    if (next != XVECEXP (body, 0, 1))
	      {
		final_sequence = 0;
		return next;
	      }

	    for (i = 1; i < XVECLEN (body, 0); i++)
2303 2304 2305 2306 2307 2308
	      {
		rtx insn = XVECEXP (body, 0, i);
		rtx next = NEXT_INSN (insn);
		/* We loop in case any instruction in a delay slot gets
		   split.  */
		do
2309
		  insn = final_scan_insn (insn, file, 0, 1, seen);
2310 2311
		while (insn != next);
	      }
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
#ifdef DBR_OUTPUT_SEQEND
	    DBR_OUTPUT_SEQEND (file);
#endif
	    final_sequence = 0;

	    /* If the insn requiring the delay slot was a CALL_INSN, the
	       insns in the delay slot are actually executed before the
	       called function.  Hence we don't preserve any CC-setting
	       actions in these insns and the CC must be marked as being
	       clobbered by the function.  */
2322
	    if (CALL_P (XVECEXP (body, 0, 0)))
2323 2324 2325
	      {
		CC_STATUS_INIT;
	      }
2326 2327 2328 2329 2330 2331 2332 2333
	    break;
	  }

	/* We have a real machine instruction as rtl.  */

	body = PATTERN (insn);

#ifdef HAVE_cc0
Kazu Hirata committed
2334
	set = single_set (insn);
2335

2336 2337 2338 2339 2340 2341 2342 2343
	/* Check for redundant test and compare instructions
	   (when the condition codes are already set up as desired).
	   This is done only when optimizing; if not optimizing,
	   it should be possible for the user to alter a variable
	   with the debugger in between statements
	   and the next statement should reexamine the variable
	   to compute the condition codes.  */

2344
	if (optimize)
2345
	  {
2346 2347 2348
	    if (set
		&& GET_CODE (SET_DEST (set)) == CC0
		&& insn != last_ignored_compare)
2349
	      {
Paolo Bonzini committed
2350
		rtx src1, src2;
2351
		if (GET_CODE (SET_SRC (set)) == SUBREG)
2352
		  SET_SRC (set) = alter_subreg (&SET_SRC (set));
Paolo Bonzini committed
2353 2354 2355 2356

		src1 = SET_SRC (set);
		src2 = NULL_RTX;
		if (GET_CODE (SET_SRC (set)) == COMPARE)
2357 2358 2359
		  {
		    if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
		      XEXP (SET_SRC (set), 0)
2360
			= alter_subreg (&XEXP (SET_SRC (set), 0));
2361 2362
		    if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
		      XEXP (SET_SRC (set), 1)
2363
			= alter_subreg (&XEXP (SET_SRC (set), 1));
Paolo Bonzini committed
2364 2365 2366
		    if (XEXP (SET_SRC (set), 1)
			== CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
		      src2 = XEXP (SET_SRC (set), 0);
2367 2368
		  }
		if ((cc_status.value1 != 0
Paolo Bonzini committed
2369
		     && rtx_equal_p (src1, cc_status.value1))
2370
		    || (cc_status.value2 != 0
Paolo Bonzini committed
2371 2372 2373 2374 2375
			&& rtx_equal_p (src1, cc_status.value2))
		    || (src2 != 0 && cc_status.value1 != 0
		        && rtx_equal_p (src2, cc_status.value1))
		    || (src2 != 0 && cc_status.value2 != 0
			&& rtx_equal_p (src2, cc_status.value2)))
2376
		  {
2377
		    /* Don't delete insn if it has an addressing side-effect.  */
2378
		    if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2379 2380 2381 2382 2383 2384 2385
			/* or if anything in it is volatile.  */
			&& ! volatile_refs_p (PATTERN (insn)))
		      {
			/* We don't really delete the insn; just ignore it.  */
			last_ignored_compare = insn;
			break;
		      }
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
		  }
	      }
	  }

	/* If this is a conditional branch, maybe modify it
	   if the cc's are in a nonstandard state
	   so that it accomplishes the same thing that it would
	   do straightforwardly if the cc's were set up normally.  */

	if (cc_status.flags != 0
2396
	    && JUMP_P (insn)
2397 2398 2399
	    && GET_CODE (body) == SET
	    && SET_DEST (body) == pc_rtx
	    && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2400
	    && COMPARISON_P (XEXP (SET_SRC (body), 0))
2401
	    && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2402 2403 2404 2405 2406 2407
	  {
	    /* This function may alter the contents of its argument
	       and clear some of the cc_status.flags bits.
	       It may also return 1 meaning condition now always true
	       or -1 meaning condition now always false
	       or 2 meaning condition nontrivial but altered.  */
2408
	    int result = alter_cond (XEXP (SET_SRC (body), 0));
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
	    /* If condition now has fixed value, replace the IF_THEN_ELSE
	       with its then-operand or its else-operand.  */
	    if (result == 1)
	      SET_SRC (body) = XEXP (SET_SRC (body), 1);
	    if (result == -1)
	      SET_SRC (body) = XEXP (SET_SRC (body), 2);

	    /* The jump is now either unconditional or a no-op.
	       If it has become a no-op, don't try to output it.
	       (It would not be recognized.)  */
	    if (SET_SRC (body) == pc_rtx)
	      {
2421
	        delete_insn (insn);
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
		break;
	      }
	    else if (GET_CODE (SET_SRC (body)) == RETURN)
	      /* Replace (set (pc) (return)) with (return).  */
	      PATTERN (insn) = body = SET_SRC (body);

	    /* Rerecognize the instruction if it has changed.  */
	    if (result != 0)
	      INSN_CODE (insn) = -1;
	  }

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
	/* If this is a conditional trap, maybe modify it if the cc's
	   are in a nonstandard state so that it accomplishes the same
	   thing that it would do straightforwardly if the cc's were
	   set up normally.  */
	if (cc_status.flags != 0
	    && NONJUMP_INSN_P (insn)
	    && GET_CODE (body) == TRAP_IF
	    && COMPARISON_P (TRAP_CONDITION (body))
	    && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
	  {
	    /* This function may alter the contents of its argument
	       and clear some of the cc_status.flags bits.
	       It may also return 1 meaning condition now always true
	       or -1 meaning condition now always false
	       or 2 meaning condition nontrivial but altered.  */
	    int result = alter_cond (TRAP_CONDITION (body));

	    /* If TRAP_CONDITION has become always false, delete the
	       instruction.  */
	    if (result == -1)
	      {
		delete_insn (insn);
		break;
	      }

	    /* If TRAP_CONDITION has become always true, replace
	       TRAP_CONDITION with const_true_rtx.  */
	    if (result == 1)
	      TRAP_CONDITION (body) = const_true_rtx;

	    /* Rerecognize the instruction if it has changed.  */
	    if (result != 0)
	      INSN_CODE (insn) = -1;
	  }

2468
	/* Make same adjustments to instructions that examine the
2469 2470
	   condition codes without jumping and instructions that
	   handle conditional moves (if this machine has either one).  */
2471 2472

	if (cc_status.flags != 0
2473
	    && set != 0)
2474
	  {
2475
	    rtx cond_rtx, then_rtx, else_rtx;
Kazu Hirata committed
2476

2477
	    if (!JUMP_P (insn)
2478
		&& GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2479
	      {
2480 2481 2482
		cond_rtx = XEXP (SET_SRC (set), 0);
		then_rtx = XEXP (SET_SRC (set), 1);
		else_rtx = XEXP (SET_SRC (set), 2);
2483 2484 2485
	      }
	    else
	      {
2486
		cond_rtx = SET_SRC (set);
2487 2488 2489
		then_rtx = const_true_rtx;
		else_rtx = const0_rtx;
	      }
Kazu Hirata committed
2490

2491
	    switch (GET_CODE (cond_rtx))
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
	      {
	      case GTU:
	      case GT:
	      case LTU:
	      case LT:
	      case GEU:
	      case GE:
	      case LEU:
	      case LE:
	      case EQ:
	      case NE:
		{
2504
		  int result;
2505
		  if (XEXP (cond_rtx, 0) != cc0_rtx)
2506
		    break;
2507
		  result = alter_cond (cond_rtx);
2508
		  if (result == 1)
2509
		    validate_change (insn, &SET_SRC (set), then_rtx, 0);
2510
		  else if (result == -1)
2511
		    validate_change (insn, &SET_SRC (set), else_rtx, 0);
2512 2513
		  else if (result == 2)
		    INSN_CODE (insn) = -1;
2514
		  if (SET_DEST (set) == SET_SRC (set))
2515
		    delete_insn (insn);
2516
		}
2517 2518 2519 2520
		break;

	      default:
		break;
2521 2522
	      }
	  }
2523

2524 2525
#endif

2526
#ifdef HAVE_peephole
2527 2528 2529 2530 2531 2532 2533 2534 2535
	/* Do machine-specific peephole optimizations if desired.  */

	if (optimize && !flag_no_peephole && !nopeepholes)
	  {
	    rtx next = peephole (insn);
	    /* When peepholing, if there were notes within the peephole,
	       emit them before the peephole.  */
	    if (next != 0 && next != NEXT_INSN (insn))
	      {
2536
		rtx note, prev = PREV_INSN (insn);
2537 2538 2539

		for (note = NEXT_INSN (insn); note != next;
		     note = NEXT_INSN (note))
2540
		  final_scan_insn (note, file, optimize, nopeepholes, seen);
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552

		/* Put the notes in the proper position for a later
		   rescan.  For example, the SH target can do this
		   when generating a far jump in a delayed branch
		   sequence.  */
		note = NEXT_INSN (insn);
		PREV_INSN (note) = prev;
		NEXT_INSN (prev) = note;
		NEXT_INSN (PREV_INSN (next)) = insn;
		PREV_INSN (insn) = PREV_INSN (next);
		NEXT_INSN (insn) = next;
		PREV_INSN (next) = insn;
2553 2554 2555 2556 2557
	      }

	    /* PEEPHOLE might have changed this.  */
	    body = PATTERN (insn);
	  }
2558
#endif
2559 2560 2561 2562 2563 2564 2565

	/* Try to recognize the instruction.
	   If successful, verify that the operands satisfy the
	   constraints for the instruction.  Crash if they don't,
	   since `reload' should have changed them so that they do.  */

	insn_code_number = recog_memoized (insn);
2566
	cleanup_subreg_operands (insn);
2567

Kazu Hirata committed
2568 2569 2570 2571 2572 2573 2574
	/* Dump the insn in the assembly for debugging.  */
	if (flag_dump_rtl_in_asm)
	  {
	    print_rtx_head = ASM_COMMENT_START;
	    print_rtl_single (asm_out_file, insn);
	    print_rtx_head = "";
	  }
2575

2576
	if (! constrain_operands_cached (1))
2577 2578 2579 2580 2581 2582
	  fatal_insn_not_found (insn);

	/* Some target machines need to prescan each insn before
	   it is output.  */

#ifdef FINAL_PRESCAN_INSN
2583
	FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2584 2585
#endif

2586 2587
	if (targetm.have_conditional_execution ()
	    && GET_CODE (PATTERN (insn)) == COND_EXEC)
2588 2589
	  current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));

2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
#ifdef HAVE_cc0
	cc_prev_status = cc_status;

	/* Update `cc_status' for this instruction.
	   The instruction's output routine may change it further.
	   If the output routine for a jump insn needs to depend
	   on the cc status, it should look at cc_prev_status.  */

	NOTICE_UPDATE_CC (body, insn);
#endif

2601
	current_output_insn = debug_insn = insn;
2602

2603
#if defined (DWARF2_UNWIND_INFO)
2604
	if (CALL_P (insn) && dwarf2out_do_frame ())
2605
	  dwarf2out_frame_debug (insn, false);
2606 2607
#endif

2608
	/* Find the proper template for this insn.  */
2609
	templ = get_insn_template (insn_code_number, insn);
2610

2611 2612 2613
	/* If the C code returns 0, it means that it is a jump insn
	   which follows a deleted test insn, and that test insn
	   needs to be reinserted.  */
2614
	if (templ == 0)
2615
	  {
2616 2617
	    rtx prev;

2618
	    gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2619 2620 2621 2622 2623 2624 2625 2626 2627

	    /* We have already processed the notes between the setter and
	       the user.  Make sure we don't process them again, this is
	       particularly important if one of the notes is a block
	       scope note or an EH note.  */
	    for (prev = insn;
		 prev != last_ignored_compare;
		 prev = PREV_INSN (prev))
	      {
2628
		if (NOTE_P (prev))
2629
		  delete_insn (prev);	/* Use delete_note.  */
2630 2631 2632
	      }

	    return prev;
2633 2634 2635 2636
	  }

	/* If the template is the string "#", it means that this insn must
	   be split.  */
2637
	if (templ[0] == '#' && templ[1] == '\0')
2638
	  {
2639
	    rtx new_rtx = try_split (body, insn, 0);
2640 2641

	    /* If we didn't split the insn, go away.  */
2642
	    if (new_rtx == insn && PATTERN (new_rtx) == body)
2643
	      fatal_insn ("could not split insn", insn);
Kazu Hirata committed
2644

2645 2646 2647 2648
#ifdef HAVE_ATTR_length
	    /* This instruction should have been split in shorten_branches,
	       to ensure that we would have valid length info for the
	       splitees.  */
2649
	    gcc_unreachable ();
2650 2651
#endif

2652
	    return new_rtx;
2653
	  }
Kazu Hirata committed
2654

2655 2656 2657
	/* ??? This will put the directives in the wrong place if
	   get_insn_template outputs assembly directly.  However calling it
	   before get_insn_template breaks if the insns is split.  */
2658 2659
	if (targetm.asm_out.unwind_emit_before_insn
	    && targetm.asm_out.unwind_emit)
2660
	  targetm.asm_out.unwind_emit (asm_out_file, insn);
2661

2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
	if (CALL_P (insn))
	  {
	    rtx x = call_from_call_insn (insn);
	    x = XEXP (x, 0);
	    if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
	      {
		tree t;
		x = XEXP (x, 0);
		t = SYMBOL_REF_DECL (x);
		if (t)
		  assemble_external (t);
	      }
	  }

2676
	/* Output assembler code from the template.  */
2677
	output_asm_insn (templ, recog_data.operand);
2678

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
	/* Record point-of-call information for ICF debugging.  */
	if (flag_enable_icf_debug && CALL_P (insn))
	  {
	    rtx x = call_from_call_insn (insn);
	    x = XEXP (x, 0);
	    if (x && MEM_P (x))
	      {
	        if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
	          {
		    tree t;
		    x = XEXP (x, 0);
		    t = SYMBOL_REF_DECL (x);
		    if (t)
		      (*debug_hooks->direct_call) (t);
	          }
	        else
	          (*debug_hooks->virtual_call) (INSN_UID (insn));
	      }
	  }

2699 2700 2701 2702 2703 2704
	/* Some target machines need to postscan each insn after
	   it is output.  */
	if (targetm.asm_out.final_postscan_insn)
	  targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
					       recog_data.n_operands);

2705 2706 2707
	/* If necessary, report the effect that the instruction has on
	   the unwind info.   We've already done this for delay slots
	   and call instructions.  */
Jason Merrill committed
2708
#if defined (DWARF2_UNWIND_INFO)
2709
	if (final_sequence == 0
2710 2711 2712
#if !defined (HAVE_prologue)
	    && !ACCUMULATE_OUTGOING_ARGS
#endif
2713
	    && dwarf2out_do_frame ())
2714
	  dwarf2out_frame_debug (insn, true);
Jason Merrill committed
2715
#endif
x  
Jason Merrill committed
2716

2717 2718 2719 2720
	if (!targetm.asm_out.unwind_emit_before_insn
	    && targetm.asm_out.unwind_emit)
	  targetm.asm_out.unwind_emit (asm_out_file, insn);

2721
	current_output_insn = debug_insn = 0;
2722 2723 2724 2725 2726
      }
    }
  return NEXT_INSN (insn);
}

2727 2728 2729
/* Return whether a source line note needs to be emitted before INSN.
   Sets IS_STMT to TRUE if the line should be marked as a possible
   breakpoint location.  */
2730

2731
static bool
2732
notice_source_line (rtx insn, bool *is_stmt)
2733
{
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
  const char *filename;
  int linenum;

  if (override_filename)
    {
      filename = override_filename;
      linenum = override_linenum;
    }
  else
    {
      filename = insn_file (insn);
      linenum = insn_line (insn);
    }
2747

2748 2749 2750 2751 2752 2753
  if (filename == NULL)
    return false;

  if (force_source_line
      || filename != last_filename
      || last_linenum != linenum)
2754
    {
2755
      force_source_line = false;
2756 2757
      last_filename = filename;
      last_linenum = linenum;
2758
      last_discriminator = discriminator;
2759
      *is_stmt = true;
2760 2761 2762 2763
      high_block_linenum = MAX (last_linenum, high_block_linenum);
      high_function_linenum = MAX (last_linenum, high_function_linenum);
      return true;
    }
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774

  if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
    {
      /* If the discriminator changed, but the line number did not,
         output the line table entry with is_stmt false so the
         debugger does not treat this as a breakpoint location.  */
      last_discriminator = discriminator;
      *is_stmt = false;
      return true;
    }

2775
  return false;
2776 2777
}

2778 2779
/* For each operand in INSN, simplify (subreg (reg)) so that it refers
   directly to the desired hard register.  */
Kazu Hirata committed
2780

2781
void
2782
cleanup_subreg_operands (rtx insn)
2783
{
2784
  int i;
2785
  bool changed = false;
2786
  extract_insn_cached (insn);
2787
  for (i = 0; i < recog_data.n_operands; i++)
2788
    {
2789
      /* The following test cannot use recog_data.operand when testing
2790 2791 2792 2793 2794
	 for a SUBREG: the underlying object might have been changed
	 already if we are inside a match_operator expression that
	 matches the else clause.  Instead we test the underlying
	 expression directly.  */
      if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2795 2796 2797 2798
	{
	  recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
	  changed = true;
	}
2799
      else if (GET_CODE (recog_data.operand[i]) == PLUS
2800
	       || GET_CODE (recog_data.operand[i]) == MULT
2801
	       || MEM_P (recog_data.operand[i]))
2802
	recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
2803 2804
    }

2805
  for (i = 0; i < recog_data.n_dups; i++)
2806
    {
2807
      if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2808 2809 2810 2811
	{
	  *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
	  changed = true;
	}
2812
      else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2813
	       || GET_CODE (*recog_data.dup_loc[i]) == MULT
2814
	       || MEM_P (*recog_data.dup_loc[i]))
2815
	*recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
2816
    }
2817 2818
  if (changed)
    df_insn_rescan (insn);
2819 2820
}

2821 2822 2823 2824
/* If X is a SUBREG, replace it with a REG or a MEM,
   based on the thing it is a subreg of.  */

rtx
2825
alter_subreg (rtx *xp)
2826
{
2827
  rtx x = *xp;
2828
  rtx y = SUBREG_REG (x);
2829

2830 2831
  /* simplify_subreg does not remove subreg from volatile references.
     We are required to.  */
2832
  if (MEM_P (y))
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
    {
      int offset = SUBREG_BYTE (x);

      /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
	 contains 0 instead of the proper offset.  See simplify_subreg.  */
      if (offset == 0
	  && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
        {
          int difference = GET_MODE_SIZE (GET_MODE (y))
			   - GET_MODE_SIZE (GET_MODE (x));
          if (WORDS_BIG_ENDIAN)
            offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
          if (BYTES_BIG_ENDIAN)
            offset += difference % UNITS_PER_WORD;
        }

      *xp = adjust_address (y, GET_MODE (x), offset);
    }
2851
  else
2852
    {
2853
      rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2854 2855
				 SUBREG_BYTE (x));

2856 2857
      if (new_rtx != 0)
	*xp = new_rtx;
2858
      else if (REG_P (y))
2859
	{
2860
	  /* Simplify_subreg can't handle some REG cases, but we have to.  */
2861 2862 2863 2864 2865 2866 2867 2868 2869
	  unsigned int regno;
	  HOST_WIDE_INT offset;

	  regno = subreg_regno (x);
	  if (subreg_lowpart_p (x))
	    offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
	  else
	    offset = SUBREG_BYTE (x);
	  *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
2870 2871 2872
	}
    }

2873
  return *xp;
2874 2875 2876 2877 2878
}

/* Do alter_subreg on all the SUBREGs contained in X.  */

static rtx
2879
walk_alter_subreg (rtx *xp, bool *changed)
2880
{
2881
  rtx x = *xp;
2882 2883 2884 2885
  switch (GET_CODE (x))
    {
    case PLUS:
    case MULT:
2886
    case AND:
2887 2888
      XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
      XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
2889 2890 2891
      break;

    case MEM:
2892
    case ZERO_EXTEND:
2893
      XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
2894 2895 2896
      break;

    case SUBREG:
2897
      *changed = true;
2898
      return alter_subreg (xp);
Kazu Hirata committed
2899

2900 2901
    default:
      break;
2902 2903
    }

2904
  return *xp;
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
}

#ifdef HAVE_cc0

/* Given BODY, the body of a jump instruction, alter the jump condition
   as required by the bits that are set in cc_status.flags.
   Not all of the bits there can be handled at this level in all cases.

   The value is normally 0.
   1 means that the condition has become always true.
   -1 means that the condition has become always false.
   2 means that COND has been altered.  */

static int
2919
alter_cond (rtx cond)
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
{
  int value = 0;

  if (cc_status.flags & CC_REVERSED)
    {
      value = 2;
      PUT_CODE (cond, swap_condition (GET_CODE (cond)));
    }

  if (cc_status.flags & CC_INVERTED)
    {
      value = 2;
      PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
    }

  if (cc_status.flags & CC_NOT_POSITIVE)
    switch (GET_CODE (cond))
      {
      case LE:
      case LEU:
      case GEU:
	/* Jump becomes unconditional.  */
	return 1;

      case GT:
      case GTU:
      case LTU:
	/* Jump becomes no-op.  */
	return -1;

      case GE:
	PUT_CODE (cond, EQ);
	value = 2;
	break;

      case LT:
	PUT_CODE (cond, NE);
	value = 2;
	break;
Kazu Hirata committed
2959

2960 2961
      default:
	break;
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
      }

  if (cc_status.flags & CC_NOT_NEGATIVE)
    switch (GET_CODE (cond))
      {
      case GE:
      case GEU:
	/* Jump becomes unconditional.  */
	return 1;

      case LT:
      case LTU:
	/* Jump becomes no-op.  */
	return -1;

      case LE:
      case LEU:
	PUT_CODE (cond, EQ);
	value = 2;
	break;

      case GT:
      case GTU:
	PUT_CODE (cond, NE);
	value = 2;
	break;
Kazu Hirata committed
2988

2989 2990
      default:
	break;
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
      }

  if (cc_status.flags & CC_NO_OVERFLOW)
    switch (GET_CODE (cond))
      {
      case GEU:
	/* Jump becomes unconditional.  */
	return 1;

      case LEU:
	PUT_CODE (cond, EQ);
	value = 2;
	break;

      case GTU:
	PUT_CODE (cond, NE);
	value = 2;
	break;

      case LTU:
	/* Jump becomes no-op.  */
	return -1;
Kazu Hirata committed
3013

3014 3015
      default:
	break;
3016 3017 3018 3019 3020
      }

  if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
    switch (GET_CODE (cond))
      {
3021
      default:
3022
	gcc_unreachable ();
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058

      case NE:
	PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
	value = 2;
	break;

      case EQ:
	PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
	value = 2;
	break;
      }

  if (cc_status.flags & CC_NOT_SIGNED)
    /* The flags are valid if signed condition operators are converted
       to unsigned.  */
    switch (GET_CODE (cond))
      {
      case LE:
	PUT_CODE (cond, LEU);
	value = 2;
	break;

      case LT:
	PUT_CODE (cond, LTU);
	value = 2;
	break;

      case GT:
	PUT_CODE (cond, GTU);
	value = 2;
	break;

      case GE:
	PUT_CODE (cond, GEU);
	value = 2;
	break;
3059 3060 3061

      default:
	break;
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
      }

  return value;
}
#endif

/* Report inconsistency between the assembler template and the operands.
   In an `asm', it's the user's fault; otherwise, the compiler's fault.  */

void
3072
output_operand_lossage (const char *cmsgid, ...)
3073
{
3074 3075
  char *fmt_string;
  char *new_message;
3076
  const char *pfx_str;
3077
  va_list ap;
3078

3079
  va_start (ap, cmsgid);
3080

3081
  pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3082
  asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
3083
  vasprintf (&new_message, fmt_string, ap);
Kazu Hirata committed
3084

3085
  if (this_is_asm_operands)
3086
    error_for_asm (this_is_asm_operands, "%s", new_message);
3087
  else
3088 3089 3090 3091
    internal_error ("%s", new_message);

  free (fmt_string);
  free (new_message);
3092
  va_end (ap);
3093 3094 3095 3096
}

/* Output of assembler code from a template, and its subroutines.  */

3097 3098 3099 3100
/* Annotate the assembly with a comment describing the pattern and
   alternative used.  */

static void
3101
output_asm_name (void)
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
{
  if (debug_insn)
    {
      int num = INSN_CODE (debug_insn);
      fprintf (asm_out_file, "\t%s %d\t%s",
	       ASM_COMMENT_START, INSN_UID (debug_insn),
	       insn_data[num].name);
      if (insn_data[num].n_alternatives > 1)
	fprintf (asm_out_file, "/%d", which_alternative + 1);
#ifdef HAVE_ATTR_length
      fprintf (asm_out_file, "\t[length = %d]",
	       get_attr_length (debug_insn));
#endif
      /* Clear this so only the first assembler insn
	 of any rtl insn will get the special comment for -dp.  */
      debug_insn = 0;
    }
}

3121 3122
/* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
   or its address, return that expr .  Set *PADDRESSP to 1 if the expr
3123 3124 3125
   corresponds to the address of the object and 0 if to the object.  */

static tree
3126
get_mem_expr_from_op (rtx op, int *paddressp)
3127
{
3128
  tree expr;
3129 3130 3131 3132
  int inner_addressp;

  *paddressp = 0;

3133
  if (REG_P (op))
3134
    return REG_EXPR (op);
3135
  else if (!MEM_P (op))
3136 3137
    return 0;

3138 3139
  if (MEM_EXPR (op) != 0)
    return MEM_EXPR (op);
3140 3141 3142 3143 3144 3145 3146 3147

  /* Otherwise we have an address, so indicate it and look at the address.  */
  *paddressp = 1;
  op = XEXP (op, 0);

  /* First check if we have a decl for the address, then look at the right side
     if it is a PLUS.  Otherwise, strip off arithmetic and keep looking.
     But don't allow the address to itself be indirect.  */
3148 3149
  if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
    return expr;
3150
  else if (GET_CODE (op) == PLUS
3151 3152
	   && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
    return expr;
3153

Shujing Zhao committed
3154
  while (UNARY_P (op)
3155
	 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3156 3157
    op = XEXP (op, 0);

3158 3159
  expr = get_mem_expr_from_op (op, &inner_addressp);
  return inner_addressp ? 0 : expr;
3160
}
3161

3162 3163 3164 3165 3166
/* Output operand names for assembler instructions.  OPERANDS is the
   operand vector, OPORDER is the order to write the operands, and NOPS
   is the number of operands to write.  */

static void
3167
output_asm_operand_names (rtx *operands, int *oporder, int nops)
3168 3169 3170 3171 3172 3173 3174
{
  int wrote = 0;
  int i;

  for (i = 0; i < nops; i++)
    {
      int addressp;
3175 3176
      rtx op = operands[oporder[i]];
      tree expr = get_mem_expr_from_op (op, &addressp);
3177

3178 3179 3180
      fprintf (asm_out_file, "%c%s",
	       wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
      wrote = 1;
3181
      if (expr)
3182
	{
3183
	  fprintf (asm_out_file, "%s",
3184 3185
		   addressp ? "*" : "");
	  print_mem_expr (asm_out_file, expr);
3186 3187
	  wrote = 1;
	}
3188 3189 3190
      else if (REG_P (op) && ORIGINAL_REGNO (op)
	       && ORIGINAL_REGNO (op) != REGNO (op))
	fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3191 3192 3193
    }
}

3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
/* Output text from TEMPLATE to the assembler output file,
   obeying %-directions to substitute operands taken from
   the vector OPERANDS.

   %N (for N a digit) means print operand N in usual manner.
   %lN means require operand N to be a CODE_LABEL or LABEL_REF
      and print the label name with no punctuation.
   %cN means require operand N to be a constant
      and print the constant expression with no punctuation.
   %aN means expect operand N to be a memory address
      (not a memory reference!) and print a reference
      to that address.
   %nN means expect operand N to be a constant
      and print a constant expression for minus the value
      of the operand, with no other punctuation.  */

void
3211
output_asm_insn (const char *templ, rtx *operands)
3212
{
3213 3214
  const char *p;
  int c;
3215 3216 3217
#ifdef ASSEMBLER_DIALECT
  int dialect = 0;
#endif
3218
  int oporder[MAX_RECOG_OPERANDS];
3219
  char opoutput[MAX_RECOG_OPERANDS];
3220
  int ops = 0;
3221 3222 3223

  /* An insn may return a null string template
     in a case where no assembler code is needed.  */
3224
  if (*templ == 0)
3225 3226
    return;

3227
  memset (opoutput, 0, sizeof opoutput);
3228
  p = templ;
3229 3230 3231 3232 3233 3234
  putc ('\t', asm_out_file);

#ifdef ASM_OUTPUT_OPCODE
  ASM_OUTPUT_OPCODE (asm_out_file, p);
#endif

3235
  while ((c = *p++))
3236 3237 3238
    switch (c)
      {
      case '\n':
3239 3240
	if (flag_verbose_asm)
	  output_asm_operand_names (operands, oporder, ops);
3241 3242 3243
	if (flag_print_asm_name)
	  output_asm_name ();

3244 3245 3246
	ops = 0;
	memset (opoutput, 0, sizeof opoutput);

3247
	putc (c, asm_out_file);
3248
#ifdef ASM_OUTPUT_OPCODE
3249 3250 3251 3252 3253 3254 3255
	while ((c = *p) == '\t')
	  {
	    putc (c, asm_out_file);
	    p++;
	  }
	ASM_OUTPUT_OPCODE (asm_out_file, p);
#endif
3256
	break;
3257 3258 3259

#ifdef ASSEMBLER_DIALECT
      case '{':
3260
	{
3261
	  int i;
Kazu Hirata committed
3262

3263 3264 3265 3266 3267
	  if (dialect)
	    output_operand_lossage ("nested assembly dialect alternatives");
	  else
	    dialect = 1;

3268 3269 3270 3271
	  /* If we want the first dialect, do nothing.  Otherwise, skip
	     DIALECT_NUMBER of strings ending with '|'.  */
	  for (i = 0; i < dialect_number; i++)
	    {
3272
	      while (*p && *p != '}' && *p++ != '|')
3273
		;
3274 3275
	      if (*p == '}')
		break;
3276 3277 3278
	      if (*p == '|')
		p++;
	    }
3279 3280 3281

	  if (*p == '\0')
	    output_operand_lossage ("unterminated assembly dialect alternative");
3282
	}
3283 3284 3285
	break;

      case '|':
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
	if (dialect)
	  {
	    /* Skip to close brace.  */
	    do
	      {
		if (*p == '\0')
		  {
		    output_operand_lossage ("unterminated assembly dialect alternative");
		    break;
		  }
3296
	      }
3297 3298 3299 3300 3301
	    while (*p++ != '}');
	    dialect = 0;
	  }
	else
	  putc (c, asm_out_file);
3302 3303 3304
	break;

      case '}':
3305 3306 3307
	if (! dialect)
	  putc (c, asm_out_file);
	dialect = 0;
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
	break;
#endif

      case '%':
	/* %% outputs a single %.  */
	if (*p == '%')
	  {
	    p++;
	    putc (c, asm_out_file);
	  }
	/* %= outputs a number which is unique to each insn in the entire
	   compilation.  This is useful for making local labels that are
	   referred to more than once in a given insn.  */
	else if (*p == '=')
	  {
	    p++;
	    fprintf (asm_out_file, "%d", insn_counter);
	  }
	/* % followed by a letter and some digits
	   outputs an operand in a special way depending on the letter.
	   Letters `acln' are implemented directly.
	   Other letters are passed to `output_operand' so that
3330
	   the TARGET_PRINT_OPERAND hook can define them.  */
3331
	else if (ISALPHA (*p))
3332 3333
	  {
	    int letter = *p++;
3334 3335
	    unsigned long opnum;
	    char *endptr;
3336

3337 3338 3339 3340 3341 3342
	    opnum = strtoul (p, &endptr, 10);

	    if (endptr == p)
	      output_operand_lossage ("operand number missing "
				      "after %%-letter");
	    else if (this_is_asm_operands && opnum >= insn_noperands)
3343 3344
	      output_operand_lossage ("operand number out of range");
	    else if (letter == 'l')
3345
	      output_asm_label (operands[opnum]);
3346
	    else if (letter == 'a')
3347
	      output_address (operands[opnum]);
3348 3349
	    else if (letter == 'c')
	      {
3350 3351
		if (CONSTANT_ADDRESS_P (operands[opnum]))
		  output_addr_const (asm_out_file, operands[opnum]);
3352
		else
3353
		  output_operand (operands[opnum], 'c');
3354 3355 3356
	      }
	    else if (letter == 'n')
	      {
Shujing Zhao committed
3357
		if (CONST_INT_P (operands[opnum]))
3358
		  fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3359
			   - INTVAL (operands[opnum]));
3360 3361 3362
		else
		  {
		    putc ('-', asm_out_file);
3363
		    output_addr_const (asm_out_file, operands[opnum]);
3364 3365 3366
		  }
	      }
	    else
3367
	      output_operand (operands[opnum], letter);
Kazu Hirata committed
3368

3369
	    if (!opoutput[opnum])
3370
	      oporder[ops++] = opnum;
3371
	    opoutput[opnum] = 1;
3372

3373 3374
	    p = endptr;
	    c = *p;
3375 3376
	  }
	/* % followed by a digit outputs an operand the default way.  */
3377
	else if (ISDIGIT (*p))
3378
	  {
3379 3380
	    unsigned long opnum;
	    char *endptr;
3381

3382 3383
	    opnum = strtoul (p, &endptr, 10);
	    if (this_is_asm_operands && opnum >= insn_noperands)
3384 3385
	      output_operand_lossage ("operand number out of range");
	    else
3386
	      output_operand (operands[opnum], 0);
3387

3388
	    if (!opoutput[opnum])
3389
	      oporder[ops++] = opnum;
3390
	    opoutput[opnum] = 1;
3391

3392 3393
	    p = endptr;
	    c = *p;
3394 3395
	  }
	/* % followed by punctuation: output something for that
3396 3397 3398
	   punctuation character alone, with no operand.  The
	   TARGET_PRINT_OPERAND hook decides what is actually done.  */
	else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3399 3400 3401 3402 3403 3404 3405 3406 3407
	  output_operand (NULL_RTX, *p++);
	else
	  output_operand_lossage ("invalid %%-code");
	break;

      default:
	putc (c, asm_out_file);
      }

3408 3409
  /* Write out the variable names for operands, if we know them.  */
  if (flag_verbose_asm)
3410
    output_asm_operand_names (operands, oporder, ops);
3411 3412
  if (flag_print_asm_name)
    output_asm_name ();
3413 3414 3415 3416 3417 3418 3419

  putc ('\n', asm_out_file);
}

/* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol.  */

void
3420
output_asm_label (rtx x)
3421 3422 3423 3424
{
  char buf[256];

  if (GET_CODE (x) == LABEL_REF)
3425
    x = XEXP (x, 0);
3426 3427
  if (LABEL_P (x)
      || (NOTE_P (x)
3428
	  && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3429 3430
    ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
  else
3431
    output_operand_lossage ("'%%l' operand isn't a label");
3432 3433 3434 3435

  assemble_name (asm_out_file, buf);
}

3436 3437 3438
/* Helper rtx-iteration-function for mark_symbol_refs_as_used and
   output_operand.  Marks SYMBOL_REFs as referenced through use of
   assemble_external.  */
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461

static int
mark_symbol_ref_as_used (rtx *xp, void *dummy ATTRIBUTE_UNUSED)
{
  rtx x = *xp;

  /* If we have a used symbol, we may have to emit assembly
     annotations corresponding to whether the symbol is external, weak
     or has non-default visibility.  */
  if (GET_CODE (x) == SYMBOL_REF)
    {
      tree t;

      t = SYMBOL_REF_DECL (x);
      if (t)
	assemble_external (t);

      return -1;
    }

  return 0;
}

3462 3463 3464 3465 3466 3467 3468 3469
/* Marks SYMBOL_REFs in x as referenced through use of assemble_external.  */

void
mark_symbol_refs_as_used (rtx x)
{
  for_each_rtx (&x, mark_symbol_ref_as_used, NULL);
}

3470 3471 3472 3473 3474 3475 3476
/* Print operand X using machine-dependent assembler syntax.
   CODE is a non-digit that preceded the operand-number in the % spec,
   such as 'z' if the spec was `%z3'.  CODE is 0 if there was no char
   between the % and the digits.
   When CODE is a non-letter, X is 0.

   The meanings of the letters are machine-dependent and controlled
3477
   by TARGET_PRINT_OPERAND.  */
3478

3479
void
3480
output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3481 3482
{
  if (x && GET_CODE (x) == SUBREG)
3483
    x = alter_subreg (&x);
3484

3485
  /* X must not be a pseudo reg.  */
3486
  gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3487

3488
  targetm.asm_out.print_operand (asm_out_file, x, code);
3489 3490 3491 3492 3493

  if (x == NULL_RTX)
    return;

  for_each_rtx (&x, mark_symbol_ref_as_used, NULL);
3494 3495
}

3496 3497
/* Print a memory reference operand for address X using
   machine-dependent assembler syntax.  */
3498 3499

void
3500
output_address (rtx x)
3501
{
3502 3503
  bool changed = false;
  walk_alter_subreg (&x, &changed);
3504
  targetm.asm_out.print_operand_address (asm_out_file, x);
3505 3506 3507 3508 3509 3510 3511
}

/* Print an integer constant expression in assembler syntax.
   Addition and subtraction are the only arithmetic
   that may appear in these expressions.  */

void
3512
output_addr_const (FILE *file, rtx x)
3513 3514 3515 3516 3517 3518 3519
{
  char buf[256];

 restart:
  switch (GET_CODE (x))
    {
    case PC:
3520
      putc ('.', file);
3521 3522 3523
      break;

    case SYMBOL_REF:
3524
      if (SYMBOL_REF_DECL (x))
3525
	assemble_external (SYMBOL_REF_DECL (x));
3526 3527 3528
#ifdef ASM_OUTPUT_SYMBOL_REF
      ASM_OUTPUT_SYMBOL_REF (file, x);
#else
3529
      assemble_name (file, XSTR (x, 0));
3530
#endif
3531 3532 3533
      break;

    case LABEL_REF:
3534 3535
      x = XEXP (x, 0);
      /* Fall through.  */
3536 3537
    case CODE_LABEL:
      ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3538 3539 3540
#ifdef ASM_OUTPUT_LABEL_REF
      ASM_OUTPUT_LABEL_REF (file, buf);
#else
3541
      assemble_name (file, buf);
3542
#endif
3543 3544 3545
      break;

    case CONST_INT:
3546
      fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
      break;

    case CONST:
      /* This used to output parentheses around the expression,
	 but that does not work on the 386 (either ATT or BSD assembler).  */
      output_addr_const (file, XEXP (x, 0));
      break;

    case CONST_DOUBLE:
      if (GET_MODE (x) == VOIDmode)
	{
	  /* We can use %d if the number is one word and positive.  */
	  if (CONST_DOUBLE_HIGH (x))
3560
	    fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3561 3562
		     (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
		     (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
Kazu Hirata committed
3563
	  else if (CONST_DOUBLE_LOW (x) < 0)
3564 3565
	    fprintf (file, HOST_WIDE_INT_PRINT_HEX,
		     (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3566
	  else
3567
	    fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3568 3569 3570 3571 3572 3573 3574
	}
      else
	/* We can't handle floating point constants;
	   PRINT_OPERAND must handle them.  */
	output_operand_lossage ("floating constant misused");
      break;

3575
    case CONST_FIXED:
3576 3577
      fprintf (file, HOST_WIDE_INT_PRINT_HEX,
	       (unsigned HOST_WIDE_INT) CONST_FIXED_VALUE_LOW (x));
3578 3579
      break;

3580 3581
    case PLUS:
      /* Some assemblers need integer constants to appear last (eg masm).  */
Shujing Zhao committed
3582
      if (CONST_INT_P (XEXP (x, 0)))
3583 3584 3585 3586 3587 3588 3589 3590 3591
	{
	  output_addr_const (file, XEXP (x, 1));
	  if (INTVAL (XEXP (x, 0)) >= 0)
	    fprintf (file, "+");
	  output_addr_const (file, XEXP (x, 0));
	}
      else
	{
	  output_addr_const (file, XEXP (x, 0));
Shujing Zhao committed
3592
	  if (!CONST_INT_P (XEXP (x, 1))
3593
	      || INTVAL (XEXP (x, 1)) >= 0)
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
	    fprintf (file, "+");
	  output_addr_const (file, XEXP (x, 1));
	}
      break;

    case MINUS:
      /* Avoid outputting things like x-x or x+5-x,
	 since some assemblers can't handle that.  */
      x = simplify_subtraction (x);
      if (GET_CODE (x) != MINUS)
	goto restart;

      output_addr_const (file, XEXP (x, 0));
      fprintf (file, "-");
Shujing Zhao committed
3608
      if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
3609 3610 3611 3612
	  || GET_CODE (XEXP (x, 1)) == PC
	  || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
	output_addr_const (file, XEXP (x, 1));
      else
3613
	{
3614
	  fputs (targetm.asm_out.open_paren, file);
3615
	  output_addr_const (file, XEXP (x, 1));
3616
	  fputs (targetm.asm_out.close_paren, file);
3617 3618 3619 3620 3621
	}
      break;

    case ZERO_EXTEND:
    case SIGN_EXTEND:
3622
    case SUBREG:
3623
    case TRUNCATE:
3624 3625 3626 3627
      output_addr_const (file, XEXP (x, 0));
      break;

    default:
3628 3629
      if (targetm.asm_out.output_addr_const_extra (file, x))
	break;
3630

3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
      output_operand_lossage ("invalid expression as operand");
    }
}

/* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
   %R prints the value of REGISTER_PREFIX.
   %L prints the value of LOCAL_LABEL_PREFIX.
   %U prints the value of USER_LABEL_PREFIX.
   %I prints the value of IMMEDIATE_PREFIX.
   %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3641
   Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3642 3643 3644 3645

   We handle alternate assembler dialects here, just like output_asm_insn.  */

void
3646
asm_fprintf (FILE *file, const char *p, ...)
3647 3648 3649
{
  char buf[10];
  char *q, c;
3650
  va_list argptr;
3651

3652
  va_start (argptr, p);
3653 3654 3655

  buf[0] = '%';

3656
  while ((c = *p++))
3657 3658 3659 3660
    switch (c)
      {
#ifdef ASSEMBLER_DIALECT
      case '{':
3661 3662
	{
	  int i;
3663

3664 3665 3666 3667 3668 3669 3670 3671 3672
	  /* If we want the first dialect, do nothing.  Otherwise, skip
	     DIALECT_NUMBER of strings ending with '|'.  */
	  for (i = 0; i < dialect_number; i++)
	    {
	      while (*p && *p++ != '|')
		;

	      if (*p == '|')
		p++;
Kazu Hirata committed
3673
	    }
3674
	}
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
	break;

      case '|':
	/* Skip to close brace.  */
	while (*p && *p++ != '}')
	  ;
	break;

      case '}':
	break;
#endif

      case '%':
	c = *p++;
	q = &buf[1];
3690 3691 3692 3693 3694
	while (strchr ("-+ #0", c))
	  {
	    *q++ = c;
	    c = *p++;
	  }
3695
	while (ISDIGIT (c) || c == '.')
3696 3697 3698 3699 3700 3701 3702
	  {
	    *q++ = c;
	    c = *p++;
	  }
	switch (c)
	  {
	  case '%':
3703
	    putc ('%', file);
3704 3705 3706
	    break;

	  case 'd':  case 'i':  case 'u':
3707 3708
	  case 'x':  case 'X':  case 'o':
	  case 'c':
3709 3710 3711 3712 3713 3714
	    *q++ = c;
	    *q = 0;
	    fprintf (file, buf, va_arg (argptr, int));
	    break;

	  case 'w':
3715 3716 3717 3718
	    /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
	       'o' cases, but we do not check for those cases.  It
	       means that the value is a HOST_WIDE_INT, which may be
	       either `long' or `long long'.  */
3719 3720
	    memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
	    q += strlen (HOST_WIDE_INT_PRINT);
3721 3722 3723 3724 3725 3726 3727
	    *q++ = *p++;
	    *q = 0;
	    fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
	    break;

	  case 'l':
	    *q++ = c;
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
#ifdef HAVE_LONG_LONG
	    if (*p == 'l')
	      {
		*q++ = *p++;
		*q++ = *p++;
		*q = 0;
		fprintf (file, buf, va_arg (argptr, long long));
	      }
	    else
#endif
	      {
		*q++ = *p++;
		*q = 0;
		fprintf (file, buf, va_arg (argptr, long));
	      }
3743

3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
	    break;

	  case 's':
	    *q++ = c;
	    *q = 0;
	    fprintf (file, buf, va_arg (argptr, char *));
	    break;

	  case 'O':
#ifdef ASM_OUTPUT_OPCODE
	    ASM_OUTPUT_OPCODE (asm_out_file, p);
#endif
	    break;

	  case 'R':
#ifdef REGISTER_PREFIX
	    fprintf (file, "%s", REGISTER_PREFIX);
#endif
	    break;

	  case 'I':
#ifdef IMMEDIATE_PREFIX
	    fprintf (file, "%s", IMMEDIATE_PREFIX);
#endif
	    break;

	  case 'L':
#ifdef LOCAL_LABEL_PREFIX
	    fprintf (file, "%s", LOCAL_LABEL_PREFIX);
#endif
	    break;

	  case 'U':
3777
	    fputs (user_label_prefix, file);
3778 3779
	    break;

3780
#ifdef ASM_FPRINTF_EXTENSIONS
3781
	    /* Uppercase letters are reserved for general use by asm_fprintf
3782 3783 3784 3785 3786 3787 3788 3789 3790
	       and so are not available to target specific code.  In order to
	       prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
	       they are defined here.  As they get turned into real extensions
	       to asm_fprintf they should be removed from this list.  */
	  case 'A': case 'B': case 'C': case 'D': case 'E':
	  case 'F': case 'G': case 'H': case 'J': case 'K':
	  case 'M': case 'N': case 'P': case 'Q': case 'S':
	  case 'T': case 'V': case 'W': case 'Y': case 'Z':
	    break;
Kazu Hirata committed
3791

3792 3793
	  ASM_FPRINTF_EXTENSIONS (file, argptr, p)
#endif
3794
	  default:
3795
	    gcc_unreachable ();
3796 3797 3798 3799
	  }
	break;

      default:
3800
	putc (c, file);
3801
      }
3802
  va_end (argptr);
3803 3804 3805 3806 3807 3808 3809 3810
}

/* Split up a CONST_DOUBLE or integer constant rtx
   into two rtx's for single words,
   storing in *FIRST the word that comes first in memory in the target
   and in *SECOND the other.  */

void
3811
split_double (rtx value, rtx *first, rtx *second)
3812
{
Shujing Zhao committed
3813
  if (CONST_INT_P (value))
3814
    {
3815
      if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3816
	{
3817
	  /* In this case the CONST_INT holds both target words.
3818 3819
	     Extract the bits from it into two word-sized pieces.
	     Sign extend each half to HOST_WIDE_INT.  */
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
	  unsigned HOST_WIDE_INT low, high;
	  unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;

	  /* Set sign_bit to the most significant bit of a word.  */
	  sign_bit = 1;
	  sign_bit <<= BITS_PER_WORD - 1;

	  /* Set mask so that all bits of the word are set.  We could
	     have used 1 << BITS_PER_WORD instead of basing the
	     calculation on sign_bit.  However, on machines where
	     HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
	     compiler warning, even though the code would never be
	     executed.  */
	  mask = sign_bit << 1;
	  mask--;

	  /* Set sign_extend as any remaining bits.  */
	  sign_extend = ~mask;
Kazu Hirata committed
3838

3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
	  /* Pick the lower word and sign-extend it.  */
	  low = INTVAL (value);
	  low &= mask;
	  if (low & sign_bit)
	    low |= sign_extend;

	  /* Pick the higher word, shifted to the least significant
	     bits, and sign-extend it.  */
	  high = INTVAL (value);
	  high >>= BITS_PER_WORD - 1;
	  high >>= 1;
	  high &= mask;
	  if (high & sign_bit)
	    high |= sign_extend;

	  /* Store the words in the target machine order.  */
3855 3856
	  if (WORDS_BIG_ENDIAN)
	    {
3857 3858
	      *first = GEN_INT (high);
	      *second = GEN_INT (low);
3859 3860 3861
	    }
	  else
	    {
3862 3863
	      *first = GEN_INT (low);
	      *second = GEN_INT (high);
3864
	    }
3865 3866 3867
	}
      else
	{
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
	  /* The rule for using CONST_INT for a wider mode
	     is that we regard the value as signed.
	     So sign-extend it.  */
	  rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
	  if (WORDS_BIG_ENDIAN)
	    {
	      *first = high;
	      *second = value;
	    }
	  else
	    {
	      *first = value;
	      *second = high;
	    }
3882
	}
3883 3884 3885
    }
  else if (GET_CODE (value) != CONST_DOUBLE)
    {
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
      if (WORDS_BIG_ENDIAN)
	{
	  *first = const0_rtx;
	  *second = value;
	}
      else
	{
	  *first = value;
	  *second = const0_rtx;
	}
3896 3897 3898 3899 3900 3901 3902
    }
  else if (GET_MODE (value) == VOIDmode
	   /* This is the old way we did CONST_DOUBLE integers.  */
	   || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
    {
      /* In an integer, the words are defined as most and least significant.
	 So order them by the target's convention.  */
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
      if (WORDS_BIG_ENDIAN)
	{
	  *first = GEN_INT (CONST_DOUBLE_HIGH (value));
	  *second = GEN_INT (CONST_DOUBLE_LOW (value));
	}
      else
	{
	  *first = GEN_INT (CONST_DOUBLE_LOW (value));
	  *second = GEN_INT (CONST_DOUBLE_HIGH (value));
	}
3913 3914 3915
    }
  else
    {
Kazu Hirata committed
3916 3917
      REAL_VALUE_TYPE r;
      long l[2];
3918 3919 3920 3921 3922
      REAL_VALUE_FROM_CONST_DOUBLE (r, value);

      /* Note, this converts the REAL_VALUE_TYPE to the target's
	 format, splits up the floating point double and outputs
	 exactly 32 bits of it into each of l[0] and l[1] --
Mike Stump committed
3923
	 not necessarily BITS_PER_WORD bits.  */
3924 3925
      REAL_VALUE_TO_TARGET_DOUBLE (r, l);

3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
      /* If 32 bits is an entire word for the target, but not for the host,
	 then sign-extend on the host so that the number will look the same
	 way on the host that it would on the target.  See for instance
	 simplify_unary_operation.  The #if is needed to avoid compiler
	 warnings.  */

#if HOST_BITS_PER_LONG > 32
      if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
	{
	  if (l[0] & ((long) 1 << 31))
	    l[0] |= ((long) (-1) << 32);
	  if (l[1] & ((long) 1 << 31))
	    l[1] |= ((long) (-1) << 32);
	}
#endif

3942 3943
      *first = GEN_INT (l[0]);
      *second = GEN_INT (l[1]);
3944 3945 3946 3947 3948 3949
    }
}

/* Return nonzero if this function has no function calls.  */

int
3950
leaf_function_p (void)
3951 3952
{
  rtx insn;
3953
  rtx link;
3954

3955
  if (crtl->profile || profile_arc_flag)
3956 3957 3958 3959
    return 0;

  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
3960
      if (CALL_P (insn)
3961
	  && ! SIBLING_CALL_P (insn))
3962
	return 0;
3963
      if (NONJUMP_INSN_P (insn)
3964
	  && GET_CODE (PATTERN (insn)) == SEQUENCE
3965
	  && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3966
	  && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3967 3968
	return 0;
    }
3969
  for (link = crtl->epilogue_delay_list;
3970 3971
       link;
       link = XEXP (link, 1))
3972
    {
3973 3974
      insn = XEXP (link, 0);

3975
      if (CALL_P (insn)
3976
	  && ! SIBLING_CALL_P (insn))
3977
	return 0;
3978
      if (NONJUMP_INSN_P (insn)
3979
	  && GET_CODE (PATTERN (insn)) == SEQUENCE
3980
	  && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3981
	  && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3982 3983 3984 3985 3986 3987
	return 0;
    }

  return 1;
}

3988
/* Return 1 if branch is a forward branch.
3989 3990 3991 3992
   Uses insn_shuid array, so it works only in the final pass.  May be used by
   output templates to customary add branch prediction hints.
 */
int
3993
final_forward_branch_p (rtx insn)
3994 3995
{
  int insn_id, label_id;
3996

3997
  gcc_assert (uid_shuid);
3998 3999 4000
  insn_id = INSN_SHUID (insn);
  label_id = INSN_SHUID (JUMP_LABEL (insn));
  /* We've hit some insns that does not have id information available.  */
4001
  gcc_assert (insn_id && label_id);
4002 4003 4004
  return insn_id < label_id;
}

4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
/* On some machines, a function with no call insns
   can run faster if it doesn't create its own register window.
   When output, the leaf function should use only the "output"
   registers.  Ordinarily, the function would be compiled to use
   the "input" registers to find its arguments; it is a candidate
   for leaf treatment if it uses only the "input" registers.
   Leaf function treatment means renumbering so the function
   uses the "output" registers instead.  */

#ifdef LEAF_REGISTERS

/* Return 1 if this function uses only the registers that can be
   safely renumbered.  */

int
4020
only_leaf_regs_used (void)
4021 4022
{
  int i;
4023
  const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4024 4025

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4026
    if ((df_regs_ever_live_p (i) || global_regs[i])
4027 4028 4029
	&& ! permitted_reg_in_leaf_functions[i])
      return 0;

4030
  if (crtl->uses_pic_offset_table
4031
      && pic_offset_table_rtx != 0
4032
      && REG_P (pic_offset_table_rtx)
4033 4034 4035
      && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
    return 0;

4036 4037 4038 4039 4040 4041 4042
  return 1;
}

/* Scan all instructions and renumber all registers into those
   available in leaf functions.  */

static void
4043
leaf_renumber_regs (rtx first)
4044 4045 4046 4047 4048 4049 4050
{
  rtx insn;

  /* Renumber only the actual patterns.
     The reg-notes can contain frame pointer refs,
     and renumbering them could crash, and should not be needed.  */
  for (insn = first; insn; insn = NEXT_INSN (insn))
4051
    if (INSN_P (insn))
4052
      leaf_renumber_regs_insn (PATTERN (insn));
4053
  for (insn = crtl->epilogue_delay_list;
Kazu Hirata committed
4054 4055
       insn;
       insn = XEXP (insn, 1))
4056
    if (INSN_P (XEXP (insn, 0)))
4057 4058 4059 4060 4061 4062 4063
      leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
}

/* Scan IN_RTX and its subexpressions, and renumber all regs into those
   available in leaf functions.  */

void
4064
leaf_renumber_regs_insn (rtx in_rtx)
4065
{
4066 4067
  int i, j;
  const char *format_ptr;
4068 4069 4070 4071 4072 4073 4074 4075

  if (in_rtx == 0)
    return;

  /* Renumber all input-registers into output-registers.
     renumbered_regs would be 1 for an output-register;
     they  */

4076
  if (REG_P (in_rtx))
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
    {
      int newreg;

      /* Don't renumber the same reg twice.  */
      if (in_rtx->used)
	return;

      newreg = REGNO (in_rtx);
      /* Don't try to renumber pseudo regs.  It is possible for a pseudo reg
	 to reach here as part of a REG_NOTE.  */
      if (newreg >= FIRST_PSEUDO_REGISTER)
	{
	  in_rtx->used = 1;
	  return;
	}
      newreg = LEAF_REG_REMAP (newreg);
4093
      gcc_assert (newreg >= 0);
4094 4095 4096
      df_set_regs_ever_live (REGNO (in_rtx), false);
      df_set_regs_ever_live (newreg, true);
      SET_REGNO (in_rtx, newreg);
4097 4098 4099
      in_rtx->used = 1;
    }

4100
  if (INSN_P (in_rtx))
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
    {
      /* Inside a SEQUENCE, we find insns.
	 Renumber just the patterns of these insns,
	 just as we do for the top-level insns.  */
      leaf_renumber_regs_insn (PATTERN (in_rtx));
      return;
    }

  format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));

  for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
    switch (*format_ptr++)
      {
      case 'e':
	leaf_renumber_regs_insn (XEXP (in_rtx, i));
	break;

      case 'E':
	if (NULL != XVEC (in_rtx, i))
	  {
	    for (j = 0; j < XVECLEN (in_rtx, i); j++)
	      leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
	  }
	break;

      case 'S':
      case 's':
      case '0':
      case 'i':
      case 'w':
      case 'n':
      case 'u':
	break;

      default:
4136
	gcc_unreachable ();
4137 4138 4139
      }
}
#endif
4140 4141 4142 4143 4144 4145 4146


/* When -gused is used, emit debug info for only used symbols. But in
   addition to the standard intercepted debug_hooks there are some direct
   calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
   Those routines may also be called from a higher level intercepted routine. So
   to prevent recording data for an inner call to one of these for an intercept,
4147
   we maintain an intercept nesting counter (debug_nesting). We only save the
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
   intercepted arguments if the nesting is 1.  */
int debug_nesting = 0;

static tree *symbol_queue;
int symbol_queue_index = 0;
static int symbol_queue_size = 0;

/* Generate the symbols for any queued up type symbols we encountered
   while generating the type info for some originally used symbol.
   This might generate additional entries in the queue.  Only when
   the nesting depth goes to 0 is this routine called.  */

void
4161
debug_flush_symbol_queue (void)
4162 4163
{
  int i;
4164

4165 4166
  /* Make sure that additionally queued items are not flushed
     prematurely.  */
4167

4168
  ++debug_nesting;
4169

4170 4171
  for (i = 0; i < symbol_queue_index; ++i)
    {
4172
      /* If we pushed queued symbols then such symbols must be
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
         output no matter what anyone else says.  Specifically,
         we need to make sure dbxout_symbol() thinks the symbol was
         used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
         which may be set for outside reasons.  */
      int saved_tree_used = TREE_USED (symbol_queue[i]);
      int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
      TREE_USED (symbol_queue[i]) = 1;
      TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;

#ifdef DBX_DEBUGGING_INFO
      dbxout_symbol (symbol_queue[i], 0);
#endif

      TREE_USED (symbol_queue[i]) = saved_tree_used;
      TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
    }

  symbol_queue_index = 0;
4191
  --debug_nesting;
4192 4193 4194 4195 4196 4197
}

/* Queue a type symbol needed as part of the definition of a decl
   symbol.  These symbols are generated when debug_flush_symbol_queue()
   is called.  */

4198
void
4199 4200
debug_queue_symbol (tree decl)
{
4201
  if (symbol_queue_index >= symbol_queue_size)
4202 4203
    {
      symbol_queue_size += 10;
4204
      symbol_queue = XRESIZEVEC (tree, symbol_queue, symbol_queue_size);
4205 4206 4207
    }

  symbol_queue[symbol_queue_index++] = decl;
4208
}
4209

4210
/* Free symbol queue.  */
4211
void
4212
debug_free_queue (void)
4213 4214 4215 4216 4217 4218 4219 4220
{
  if (symbol_queue)
    {
      free (symbol_queue);
      symbol_queue = NULL;
      symbol_queue_size = 0;
    }
}
4221 4222

/* Turn the RTL into assembly.  */
4223
static unsigned int
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
rest_of_handle_final (void)
{
  rtx x;
  const char *fnname;

  /* Get the function's name, as described by its RTL.  This may be
     different from the DECL_NAME name used in the source file.  */

  x = DECL_RTL (current_function_decl);
  gcc_assert (MEM_P (x));
  x = XEXP (x, 0);
  gcc_assert (GET_CODE (x) == SYMBOL_REF);
  fnname = XSTR (x, 0);

  assemble_start_function (current_function_decl, fnname);
  final_start_function (get_insns (), asm_out_file, optimize);
  final (get_insns (), asm_out_file, optimize);
  final_end_function ();

4243 4244 4245
  /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
     directive that closes the procedure descriptor.  Similarly, for x64 SEH.
     Otherwise it's not strictly necessary, but it doesn't hurt either.  */
4246
  output_function_exception_table (fnname);
4247 4248 4249 4250 4251

  assemble_end_function (current_function_decl, fnname);

  user_defined_section_attribute = false;

4252 4253 4254
  /* Free up reg info memory.  */
  free_reg_info ();

4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
  if (! quiet_flag)
    fflush (asm_out_file);

  /* Write DBX symbols if requested.  */

  /* Note that for those inline functions where we don't initially
     know for certain that we will be generating an out-of-line copy,
     the first invocation of this routine (rest_of_compilation) will
     skip over this code by doing a `goto exit_rest_of_compilation;'.
     Later on, wrapup_global_declarations will (indirectly) call
     rest_of_compilation again for those inline functions that need
     to have out-of-line copies generated.  During that call, we
     *will* be routed past here.  */

  timevar_push (TV_SYMOUT);
4270 4271
  if (!DECL_IGNORED_P (current_function_decl))
    debug_hooks->function_decl (current_function_decl);
4272
  timevar_pop (TV_SYMOUT);
4273 4274 4275 4276

  /* Release the blocks that are linked to DECL_INITIAL() to free the memory.  */
  DECL_INITIAL (current_function_decl) = error_mark_node;

4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
  if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
      && targetm.have_ctors_dtors)
    targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
				 decl_init_priority_lookup
				   (current_function_decl));
  if (DECL_STATIC_DESTRUCTOR (current_function_decl)
      && targetm.have_ctors_dtors)
    targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
				decl_fini_priority_lookup
				  (current_function_decl));
4287
  return 0;
4288 4289
}

4290
struct rtl_opt_pass pass_final =
4291
{
4292 4293
 {
  RTL_PASS,
4294
  "final",                              /* name */
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
  NULL,                                 /* gate */
  rest_of_handle_final,                 /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  TV_FINAL,                             /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
4305 4306
  TODO_ggc_collect                      /* todo_flags_finish */
 }
4307 4308 4309
};


4310
static unsigned int
4311 4312 4313 4314
rest_of_handle_shorten_branches (void)
{
  /* Shorten branches.  */
  shorten_branches (get_insns ());
4315
  return 0;
4316
}
4317

4318
struct rtl_opt_pass pass_shorten_branches =
4319
{
4320 4321
 {
  RTL_PASS,
4322
  "shorten",                            /* name */
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
  NULL,                                 /* gate */
  rest_of_handle_shorten_branches,      /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  TV_FINAL,                             /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
4333 4334
  TODO_dump_func                        /* todo_flags_finish */
 }
4335 4336 4337
};


4338
static unsigned int
4339 4340 4341
rest_of_clean_state (void)
{
  rtx insn, next;
4342 4343 4344 4345 4346 4347 4348 4349 4350
  FILE *final_output = NULL;
  int save_unnumbered = flag_dump_unnumbered;
  int save_noaddr = flag_dump_noaddr;

  if (flag_dump_final_insns)
    {
      final_output = fopen (flag_dump_final_insns, "a");
      if (!final_output)
	{
4351 4352
	  error ("could not open final insn dump file %qs: %m",
		 flag_dump_final_insns);
4353 4354 4355 4356 4357
	  flag_dump_final_insns = NULL;
	}
      else
	{
	  const char *aname;
4358
	  struct cgraph_node *node = cgraph_node (current_function_decl);
4359 4360 4361 4362

	  aname = (IDENTIFIER_POINTER
		   (DECL_ASSEMBLER_NAME (current_function_decl)));
	  fprintf (final_output, "\n;; Function (%s) %s\n\n", aname,
4363
	     node->frequency == NODE_FREQUENCY_HOT
4364
	     ? " (hot)"
4365
	     : node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED
4366
	     ? " (unlikely executed)"
4367 4368
	     : node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
	     ? " (executed once)"
4369 4370 4371
	     : "");

	  flag_dump_noaddr = flag_dump_unnumbered = 1;
4372 4373
	  if (flag_compare_debug_opt || flag_compare_debug)
	    dump_flags |= TDF_NOUID;
4374
	  final_insns_dump_p = true;
4375 4376 4377 4378 4379 4380 4381 4382

	  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
	    if (LABEL_P (insn))
	      INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
	    else
	      INSN_UID (insn) = 0;
	}
    }
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392

  /* It is very important to decompose the RTL instruction chain here:
     debug information keeps pointing into CODE_LABEL insns inside the function
     body.  If these remain pointing to the other insns, we end up preserving
     whole RTL chain and attached detailed debug info in memory.  */
  for (insn = get_insns (); insn; insn = next)
    {
      next = NEXT_INSN (insn);
      NEXT_INSN (insn) = NULL;
      PREV_INSN (insn) = NULL;
4393 4394 4395 4396 4397

      if (final_output
	  && (!NOTE_P (insn) ||
	      (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
	       && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4398 4399
	       && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
	       && NOTE_KIND (insn) != NOTE_INSN_CFA_RESTORE_STATE)))
4400 4401 4402 4403 4404 4405 4406 4407
	print_rtl_single (final_output, insn);

    }

  if (final_output)
    {
      flag_dump_noaddr = save_noaddr;
      flag_dump_unnumbered = save_unnumbered;
4408
      final_insns_dump_p = false;
4409 4410 4411

      if (fclose (final_output))
	{
4412 4413
	  error ("could not close final insn dump file %qs: %m",
		 flag_dump_final_insns);
4414 4415
	  flag_dump_final_insns = NULL;
	}
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
    }

  /* In case the function was not output,
     don't leave any temporary anonymous types
     queued up for sdb output.  */
#ifdef SDB_DEBUGGING_INFO
  if (write_symbols == SDB_DEBUG)
    sdbout_types (NULL_TREE);
#endif

4426
  flag_rerun_cse_after_global_opts = 0;
4427 4428
  reload_completed = 0;
  epilogue_completed = 0;
4429 4430 4431
#ifdef STACK_REGS
  regstack_completed = 0;
#endif
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441

  /* Clear out the insn_length contents now that they are no
     longer valid.  */
  init_insn_lengths ();

  /* Show no temporary slots allocated.  */
  init_temp_slots ();

  free_bb_for_insn ();

4442 4443
  delete_tree_ssa ();

4444 4445
  if (targetm.binds_local_p (current_function_decl))
    {
4446
      unsigned int pref = crtl->preferred_stack_boundary;
4447 4448
      if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
        pref = crtl->stack_alignment_needed;
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
      cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
        = pref;
    }

  /* Make sure volatile mem refs aren't considered valid operands for
     arithmetic insns.  We must call this here if this is a nested inline
     function, since the above code leaves us in the init_recog state,
     and the function context push/pop code does not save/restore volatile_ok.

     ??? Maybe it isn't necessary for expand_start_function to call this
     anymore if we do it here?  */

  init_recog_no_volatile ();

  /* We're done with this function.  Free up memory if we can.  */
  free_after_parsing (cfun);
  free_after_compilation (cfun);
4466
  return 0;
4467 4468
}

4469
struct rtl_opt_pass pass_clean_state =
4470
{
4471 4472
 {
  RTL_PASS,
4473
  "*clean_state",                       /* name */
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
  NULL,                                 /* gate */
  rest_of_clean_state,                  /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  TV_FINAL,                             /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  PROP_rtl,                             /* properties_destroyed */
  0,                                    /* todo_flags_start */
4484 4485
  0                                     /* todo_flags_finish */
 }
4486
};