sese.h 10.7 KB
Newer Older
Sebastian Pop committed
1
/* Single entry single exit control flow regions.
2 3
   Copyright (C) 2008, 2009, 2010
   Free Software Foundation, Inc.
Sebastian Pop committed
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
   Contributed by Jan Sjodin <jan.sjodin@amd.com> and
   Sebastian Pop <sebastian.pop@amd.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#ifndef GCC_SESE_H
#define GCC_SESE_H

/* A Single Entry, Single Exit region is a part of the CFG delimited
   by two edges.  */
typedef struct sese_s
{
  /* Single ENTRY and single EXIT from the SESE region.  */
  edge entry, exit;

  /* Parameters used within the SCOP.  */
  VEC (tree, heap) *params;

  /* Loops completely contained in the SCOP.  */
  bitmap loops;
  VEC (loop_p, heap) *loop_nest;

  /* Are we allowed to add more params?  This is for debugging purpose.  We
     can only add new params before generating the bb domains, otherwise they
     become invalid.  */
  bool add_params;
} *sese;

#define SESE_ENTRY(S) (S->entry)
#define SESE_ENTRY_BB(S) (S->entry->dest)
#define SESE_EXIT(S) (S->exit)
#define SESE_EXIT_BB(S) (S->exit->dest)
#define SESE_PARAMS(S) (S->params)
#define SESE_LOOPS(S) (S->loops)
#define SESE_LOOP_NEST(S) (S->loop_nest)
#define SESE_ADD_PARAMS(S) (S->add_params)

extern sese new_sese (edge, edge);
extern void free_sese (sese);
extern void sese_insert_phis_for_liveouts (sese, basic_block, edge, edge);
extern void build_sese_loop_nests (sese);
59 60
extern edge copy_bb_and_scalar_dependences (basic_block, sese, edge,
					    VEC (tree, heap) *);
Sebastian Pop committed
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
extern struct loop *outermost_loop_in_sese (sese, basic_block);
extern void insert_loop_close_phis (htab_t, loop_p);
extern void insert_guard_phis (basic_block, edge, edge, htab_t, htab_t);
extern tree scalar_evolution_in_region (sese, loop_p, tree);

/* Check that SESE contains LOOP.  */

static inline bool
sese_contains_loop (sese sese, struct loop *loop)
{
  return bitmap_bit_p (SESE_LOOPS (sese), loop->num);
}

/* The number of parameters in REGION. */

static inline unsigned
sese_nb_params (sese region)
{
  return VEC_length (tree, SESE_PARAMS (region));
}

/* Checks whether BB is contained in the region delimited by ENTRY and
   EXIT blocks.  */

static inline bool
bb_in_region (basic_block bb, basic_block entry, basic_block exit)
{
#ifdef ENABLE_CHECKING
  {
    edge e;
    edge_iterator ei;

    /* Check that there are no edges coming in the region: all the
       predecessors of EXIT are dominated by ENTRY.  */
    FOR_EACH_EDGE (e, ei, exit->preds)
      dominated_by_p (CDI_DOMINATORS, e->src, entry);
  }
#endif

  return dominated_by_p (CDI_DOMINATORS, bb, entry)
	 && !(dominated_by_p (CDI_DOMINATORS, bb, exit)
	      && !dominated_by_p (CDI_DOMINATORS, entry, exit));
}

/* Checks whether BB is contained in the region delimited by ENTRY and
   EXIT blocks.  */

static inline bool
bb_in_sese_p (basic_block bb, sese region)
{
  basic_block entry = SESE_ENTRY_BB (region);
  basic_block exit = SESE_EXIT_BB (region);

  return bb_in_region (bb, entry, exit);
}

117 118 119 120 121 122 123 124 125
/* Returns true when STMT is defined in REGION.  */

static inline bool
stmt_in_sese_p (gimple stmt, sese region)
{
  basic_block bb = gimple_bb (stmt);
  return bb && bb_in_sese_p (bb, region);
}

Sebastian Pop committed
126 127 128 129 130 131
/* Returns true when NAME is defined in REGION.  */

static inline bool
defined_in_sese_p (tree name, sese region)
{
  gimple stmt = SSA_NAME_DEF_STMT (name);
132
  return stmt_in_sese_p (stmt, region);
Sebastian Pop committed
133 134 135 136
}

/* Returns true when LOOP is in REGION.  */

H.J. Lu committed
137
static inline bool
Sebastian Pop committed
138 139 140 141 142 143 144 145 146 147 148 149 150 151
loop_in_sese_p (struct loop *loop, sese region)
{
  return (bb_in_sese_p (loop->header, region)
	  && bb_in_sese_p (loop->latch, region));
}

/* Returns the loop depth of LOOP in REGION.  The loop depth
   is the same as the normal loop depth, but limited by a region.

   Example:

   loop_0
     loop_1
       {
H.J. Lu committed
152
         S0
Sebastian Pop committed
153 154 155 156 157 158 159 160
            <- region start
         S1

         loop_2
           S2

         S3
            <- region end
H.J. Lu committed
161
       }
Sebastian Pop committed
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

    loop_0 does not exist in the region -> invalid
    loop_1 exists, but is not completely contained in the region -> depth 0
    loop_2 is completely contained -> depth 1  */

static inline unsigned int
sese_loop_depth (sese region, loop_p loop)
{
  unsigned int depth = 0;

  gcc_assert ((!loop_in_sese_p (loop, region)
	       && (SESE_ENTRY_BB (region)->loop_father == loop
	           || SESE_EXIT (region)->src->loop_father == loop))
              || loop_in_sese_p (loop, region));

  while (loop_in_sese_p (loop, region))
    {
      depth++;
      loop = loop_outer (loop);
    }

  return depth;
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
/* Splits BB to make a single entry single exit region.  */

static inline sese
split_region_for_bb (basic_block bb)
{
  edge entry, exit;

  if (single_pred_p (bb))
    entry = single_pred_edge (bb);
  else
    {
      entry = split_block_after_labels (bb);
      bb = single_succ (bb);
    }

  if (single_succ_p (bb))
    exit = single_succ_edge (bb);
  else
    {
      gimple_stmt_iterator gsi = gsi_last_bb (bb);
      gsi_prev (&gsi);
      exit = split_block (bb, gsi_stmt (gsi));
    }

  return new_sese (entry, exit);
}

Sebastian Pop committed
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
/* Returns the block preceding the entry of a SESE.  */

static inline basic_block
block_before_sese (sese sese)
{
  return SESE_ENTRY (sese)->src;
}



/* A single entry single exit specialized for conditions.  */

typedef struct ifsese_s {
  sese region;
  sese true_region;
  sese false_region;
} *ifsese;

extern void if_region_set_false_region (ifsese, sese);
extern ifsese move_sese_in_condition (sese);
extern edge get_true_edge_from_guard_bb (basic_block);
extern edge get_false_edge_from_guard_bb (basic_block);
235
extern void set_ifsese_condition (ifsese, tree);
Sebastian Pop committed
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274

static inline edge
if_region_entry (ifsese if_region)
{
  return SESE_ENTRY (if_region->region);
}

static inline edge
if_region_exit (ifsese if_region)
{
  return SESE_EXIT (if_region->region);
}

static inline basic_block
if_region_get_condition_block (ifsese if_region)
{
  return if_region_entry (if_region)->dest;
}

/* Structure containing the mapping between the old names and the new
   names used after block copy in the new loop context.  */
typedef struct rename_map_elt_s
{
  tree old_name, expr;
} *rename_map_elt;

DEF_VEC_P(rename_map_elt);
DEF_VEC_ALLOC_P (rename_map_elt, heap);

extern void debug_rename_map (htab_t);
extern hashval_t rename_map_elt_info (const void *);
extern int eq_rename_map_elts (const void *, const void *);

/* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW.  */

static inline rename_map_elt
new_rename_map_elt (tree old_name, tree expr)
{
  rename_map_elt res;
H.J. Lu committed
275

Sebastian Pop committed
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
  res = XNEW (struct rename_map_elt_s);
  res->old_name = old_name;
  res->expr = expr;

  return res;
}

/* Structure containing the mapping between the CLooG's induction
   variable and the type of the old induction variable.  */
typedef struct ivtype_map_elt_s
{
  tree type;
  const char *cloog_iv;
} *ivtype_map_elt;

extern void debug_ivtype_map (htab_t);
extern hashval_t ivtype_map_elt_info (const void *);
extern int eq_ivtype_map_elts (const void *, const void *);

/* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW.  */

static inline ivtype_map_elt
new_ivtype_map_elt (const char *cloog_iv, tree type)
{
  ivtype_map_elt res;
H.J. Lu committed
301

Sebastian Pop committed
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
  res = XNEW (struct ivtype_map_elt_s);
  res->cloog_iv = cloog_iv;
  res->type = type;

  return res;
}

/* Free and compute again all the dominators information.  */

static inline void
recompute_all_dominators (void)
{
  mark_irreducible_loops ();
  free_dominance_info (CDI_DOMINATORS);
  calculate_dominance_info (CDI_DOMINATORS);
}

typedef struct gimple_bb
{
  basic_block bb;
322
  struct poly_bb *pbb;
Sebastian Pop committed
323 324 325 326

  /* Lists containing the restrictions of the conditional statements
     dominating this bb.  This bb can only be executed, if all conditions
     are true.
H.J. Lu committed
327

Sebastian Pop committed
328
     Example:
H.J. Lu committed
329

Sebastian Pop committed
330 331 332
     for (i = 0; i <= 20; i++)
     {
       A
H.J. Lu committed
333

Sebastian Pop committed
334 335 336
       if (2i <= 8)
         B
     }
H.J. Lu committed
337

Sebastian Pop committed
338
     So for B there is an additional condition (2i <= 8).
H.J. Lu committed
339

Sebastian Pop committed
340 341 342 343 344 345 346 347 348
     List of COND_EXPR and SWITCH_EXPR.  A COND_EXPR is true only if the
     corresponding element in CONDITION_CASES is not NULL_TREE.  For a
     SWITCH_EXPR the corresponding element in CONDITION_CASES is a
     CASE_LABEL_EXPR.  */
  VEC (gimple, heap) *conditions;
  VEC (gimple, heap) *condition_cases;
  VEC (data_reference_p, heap) *data_refs;
} *gimple_bb_p;

349 350 351 352 353
#define GBB_BB(GBB) (GBB)->bb
#define GBB_PBB(GBB) (GBB)->pbb
#define GBB_DATA_REFS(GBB) (GBB)->data_refs
#define GBB_CONDITIONS(GBB) (GBB)->conditions
#define GBB_CONDITION_CASES(GBB) (GBB)->condition_cases
Sebastian Pop committed
354 355 356 357 358 359 360 361 362

/* Return the innermost loop that contains the basic block GBB.  */

static inline struct loop *
gbb_loop (struct gimple_bb *gbb)
{
  return GBB_BB (gbb)->loop_father;
}

H.J. Lu committed
363
/* Returns the gimple loop, that corresponds to the loop_iterator_INDEX.
Sebastian Pop committed
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
   If there is no corresponding gimple loop, we return NULL.  */

static inline loop_p
gbb_loop_at_index (gimple_bb_p gbb, sese region, int index)
{
  loop_p loop = gbb_loop (gbb);
  int depth = sese_loop_depth (region, loop);

  while (--depth > index)
    loop = loop_outer (loop);

  gcc_assert (sese_contains_loop (region, loop));

  return loop;
}

/* The number of common loops in REGION for GBB1 and GBB2.  */

static inline int
nb_common_loops (sese region, gimple_bb_p gbb1, gimple_bb_p gbb2)
{
  loop_p l1 = gbb_loop (gbb1);
  loop_p l2 = gbb_loop (gbb2);
  loop_p common = find_common_loop (l1, l2);
H.J. Lu committed
388

Sebastian Pop committed
389 390 391
  return sese_loop_depth (region, common);
}

392 393 394 395 396 397
/* Return true when DEF can be analyzed in REGION by the scalar
   evolution analyzer.  */

static inline bool
scev_analyzable_p (tree def, sese region)
{
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
  loop_p loop;
  tree scev;
  tree type = TREE_TYPE (def);

  /* When Graphite generates code for a scev, the code generator
     expresses the scev in function of a single induction variable.
     This is unsafe for floating point computations, as it may replace
     a floating point sum reduction with a multiplication.  The
     following test returns false for non integer types to avoid such
     problems.  */
  if (!INTEGRAL_TYPE_P (type)
      && !POINTER_TYPE_P (type))
    return false;

  loop = loop_containing_stmt (SSA_NAME_DEF_STMT (def));
  scev = scalar_evolution_in_region (region, loop, def);
414 415

  return !chrec_contains_undetermined (scev)
416 417
    && (TREE_CODE (scev) != SSA_NAME
	|| !defined_in_sese_p (scev, region))
418 419
    && (tree_does_not_contain_chrecs (scev)
	|| evolution_function_is_affine_p (scev));
420 421
}

Sebastian Pop committed
422
#endif