BigDecimal.java 48.7 KB
Newer Older
Tom Tromey committed
1
/* java.math.BigDecimal -- Arbitrary precision decimals.
2
   Copyright (C) 1999, 2000, 2001, 2003, 2005, 2006 Free Software Foundation, Inc.
Tom Tromey committed
3 4 5 6 7 8 9

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
10

Tom Tromey committed
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.

Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from
or based on this library.  If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so.  If you do not wish to do so, delete this
exception statement from your version. */

package java.math;

40 41
import gnu.java.lang.CPStringBuilder;

42
public class BigDecimal extends Number implements Comparable<BigDecimal>
Tom Tromey committed
43 44 45
{
  private BigInteger intVal;
  private int scale;
46
  private int precision = 0;
Tom Tromey committed
47 48
  private static final long serialVersionUID = 6108874887143696463L;

49 50 51 52
  /**
   * The constant zero as a BigDecimal with scale zero.
   * @since 1.5
   */
53
  public static final BigDecimal ZERO =
54
    new BigDecimal (BigInteger.ZERO, 0);
Tom Tromey committed
55

56 57 58 59
  /**
   * The constant one as a BigDecimal with scale zero.
   * @since 1.5
   */
60
  public static final BigDecimal ONE =
61
    new BigDecimal (BigInteger.ONE, 0);
Tom Tromey committed
62

63 64 65 66
  /**
   * The constant ten as a BigDecimal with scale zero.
   * @since 1.5
   */
67
  public static final BigDecimal TEN =
68
    new BigDecimal (BigInteger.TEN, 0);
69

Tom Tromey committed
70 71 72 73 74 75 76 77 78
  public static final int ROUND_UP = 0;
  public static final int ROUND_DOWN = 1;
  public static final int ROUND_CEILING = 2;
  public static final int ROUND_FLOOR = 3;
  public static final int ROUND_HALF_UP = 4;
  public static final int ROUND_HALF_DOWN = 5;
  public static final int ROUND_HALF_EVEN = 6;
  public static final int ROUND_UNNECESSARY = 7;

79 80 81 82 83 84 85 86 87 88 89
  /**
   * Constructs a new BigDecimal whose unscaled value is val and whose
   * scale is zero.
   * @param val the value of the new BigDecimal
   * @since 1.5
   */
  public BigDecimal (int val)
  {
    this.intVal = BigInteger.valueOf(val);
    this.scale = 0;
  }
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
  /**
   * Constructs a BigDecimal using the BigDecimal(int) constructor and then
   * rounds according to the MathContext.
   * @param val the value for the initial (unrounded) BigDecimal
   * @param mc the MathContext specifying the rounding
   * @throws ArithmeticException if the result is inexact but the rounding type
   * is RoundingMode.UNNECESSARY
   * @since 1.5
   */
  public BigDecimal (int val, MathContext mc)
  {
    this (val);
    if (mc.getPrecision() != 0)
      {
        BigDecimal result = this.round(mc);
        this.intVal = result.intVal;
        this.scale = result.scale;
        this.precision = result.precision;
109
      }
110
  }
111

112 113 114 115 116 117 118 119 120 121
  /**
   * Constructs a new BigDecimal whose unscaled value is val and whose
   * scale is zero.
   * @param val the value of the new BigDecimal
   */
  public BigDecimal (long val)
  {
    this.intVal = BigInteger.valueOf(val);
    this.scale = 0;
  }
122

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
  /**
   * Constructs a BigDecimal from the long in the same way as BigDecimal(long)
   * and then rounds according to the MathContext.
   * @param val the long from which we create the initial BigDecimal
   * @param mc the MathContext that specifies the rounding behaviour
   * @throws ArithmeticException if the result is inexact but the rounding type
   * is RoundingMode.UNNECESSARY
   * @since 1.5
   */
  public BigDecimal (long val, MathContext mc)
  {
    this(val);
    if (mc.getPrecision() != 0)
      {
        BigDecimal result = this.round(mc);
        this.intVal = result.intVal;
        this.scale = result.scale;
        this.precision = result.precision;
141
      }
142
  }
143

144
  /**
145 146
   * Constructs a BigDecimal whose value is given by num rounded according to
   * mc.  Since num is already a BigInteger, the rounding refers only to the
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
   * precision setting in mc, if mc.getPrecision() returns an int lower than
   * the number of digits in num, then rounding is necessary.
   * @param num the unscaledValue, before rounding
   * @param mc the MathContext that specifies the precision
   * @throws ArithmeticException if the result is inexact but the rounding type
   * is RoundingMode.UNNECESSARY
   * * @since 1.5
   */
  public BigDecimal (BigInteger num, MathContext mc)
  {
    this (num, 0);
    if (mc.getPrecision() != 0)
      {
        BigDecimal result = this.round(mc);
        this.intVal = result.intVal;
        this.scale = result.scale;
        this.precision = result.precision;
      }
  }
166

167 168
  /**
   * Constructs a BigDecimal from the String val according to the same
169
   * rules as the BigDecimal(String) constructor and then rounds
170 171 172 173
   * according to the MathContext mc.
   * @param val the String from which we construct the initial BigDecimal
   * @param mc the MathContext that specifies the rounding
   * @throws ArithmeticException if the result is inexact but the rounding type
174
   * is RoundingMode.UNNECESSARY
175 176 177 178 179 180 181 182 183 184 185 186 187
   * @since 1.5
   */
  public BigDecimal (String val, MathContext mc)
  {
    this (val);
    if (mc.getPrecision() != 0)
      {
        BigDecimal result = this.round(mc);
        this.intVal = result.intVal;
        this.scale = result.scale;
        this.precision = result.precision;
      }
  }
188

189 190 191 192 193
  /**
   * Constructs a BigDecimal whose unscaled value is num and whose
   * scale is zero.
   * @param num the value of the new BigDecimal
   */
194
  public BigDecimal (BigInteger num)
Tom Tromey committed
195 196 197 198
  {
    this (num, 0);
  }

199 200 201 202 203 204 205
  /**
   * Constructs a BigDecimal whose unscaled value is num and whose
   * scale is scale.
   * @param num
   * @param scale
   */
  public BigDecimal (BigInteger num, int scale)
Tom Tromey committed
206 207 208 209
  {
    this.intVal = num;
    this.scale = scale;
  }
210

211
  /**
212
   * Constructs a BigDecimal using the BigDecimal(BigInteger, int)
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
   * constructor and then rounds according to the MathContext.
   * @param num the unscaled value of the unrounded BigDecimal
   * @param scale the scale of the unrounded BigDecimal
   * @param mc the MathContext specifying the rounding
   * @throws ArithmeticException if the result is inexact but the rounding type
   * is RoundingMode.UNNECESSARY
   * @since 1.5
   */
  public BigDecimal (BigInteger num, int scale, MathContext mc)
  {
    this (num, scale);
    if (mc.getPrecision() != 0)
      {
        BigDecimal result = this.round(mc);
        this.intVal = result.intVal;
        this.scale = result.scale;
        this.precision = result.precision;
      }
  }
Tom Tromey committed
232

233 234 235 236 237 238
  /**
   * Constructs a BigDecimal in the same way as BigDecimal(double) and then
   * rounds according to the MathContext.
   * @param num the double from which the initial BigDecimal is created
   * @param mc the MathContext that specifies the rounding behaviour
   * @throws ArithmeticException if the result is inexact but the rounding type
239
   * is RoundingMode.UNNECESSARY
240 241 242 243 244 245 246 247 248 249 250 251 252
   * @since 1.5
   */
  public BigDecimal (double num, MathContext mc)
  {
    this (num);
    if (mc.getPrecision() != 0)
      {
        BigDecimal result = this.round(mc);
        this.intVal = result.intVal;
        this.scale = result.scale;
        this.precision = result.precision;
      }
  }
253 254

  public BigDecimal (double num) throws NumberFormatException
Tom Tromey committed
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
  {
    if (Double.isInfinite (num) || Double.isNaN (num))
      throw new NumberFormatException ("invalid argument: " + num);
    // Note we can't convert NUM to a String and then use the
    // String-based constructor.  The BigDecimal documentation makes
    // it clear that the two constructors work differently.

    final int mantissaBits = 52;
    final int exponentBits = 11;
    final long mantMask = (1L << mantissaBits) - 1;
    final long expMask = (1L << exponentBits) - 1;

    long bits = Double.doubleToLongBits (num);
    long mantissa = bits & mantMask;
    long exponent = (bits >>> mantissaBits) & expMask;
    boolean denormal = exponent == 0;
271

Tom Tromey committed
272 273
    // Correct the exponent for the bias.
    exponent -= denormal ? 1022 : 1023;
274

Tom Tromey committed
275 276 277 278 279 280 281 282 283 284
    // Now correct the exponent to account for the bits to the right
    // of the decimal.
    exponent -= mantissaBits;
    // Ordinary numbers have an implied leading `1' bit.
    if (! denormal)
      mantissa |= (1L << mantissaBits);

    // Shave off factors of 10.
    while (exponent < 0 && (mantissa & 1) == 0)
      {
285 286
        ++exponent;
        mantissa >>= 1;
Tom Tromey committed
287 288 289 290 291
      }

    intVal = BigInteger.valueOf (bits < 0 ? - mantissa : mantissa);
    if (exponent < 0)
      {
292 293 294 295 296 297
        // We have MANTISSA * 2 ^ (EXPONENT).
        // Since (1/2)^N == 5^N * 10^-N we can easily convert this
        // into a power of 10.
        scale = (int) (- exponent);
        BigInteger mult = BigInteger.valueOf (5).pow (scale);
        intVal = intVal.multiply (mult);
Tom Tromey committed
298 299 300
      }
    else
      {
301 302
        intVal = intVal.shiftLeft ((int) exponent);
        scale = 0;
Tom Tromey committed
303 304 305
      }
  }

306
  /**
307
   * Constructs a BigDecimal from the char subarray and rounding
308 309 310 311 312
   * according to the MathContext.
   * @param in the char array
   * @param offset the start of the subarray
   * @param len the length of the subarray
   * @param mc the MathContext for rounding
313
   * @throws NumberFormatException if the char subarray is not a valid
314
   * BigDecimal representation
315
   * @throws ArithmeticException if the result is inexact but the rounding
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
   * mode is RoundingMode.UNNECESSARY
   * @since 1.5
   */
  public BigDecimal(char[] in, int offset, int len, MathContext mc)
  {
    this(in, offset, len);
    // If mc has precision other than zero then we must round.
    if (mc.getPrecision() != 0)
      {
        BigDecimal temp = this.round(mc);
        this.intVal = temp.intVal;
        this.scale = temp.scale;
        this.precision = temp.precision;
      }
  }
331

332 333
  /**
   * Constructs a BigDecimal from the char array and rounding according
334
   * to the MathContext.
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
   * @param in the char array
   * @param mc the MathContext
   * @throws NumberFormatException if <code>in</code> is not a valid BigDecimal
   * representation
   * @throws ArithmeticException if the result is inexact but the rounding mode
   * is RoundingMode.UNNECESSARY
   * @since 1.5
   */
  public BigDecimal(char[] in, MathContext mc)
  {
    this(in, 0, in.length);
    // If mc has precision other than zero then we must round.
    if (mc.getPrecision() != 0)
      {
        BigDecimal temp = this.round(mc);
        this.intVal = temp.intVal;
        this.scale = temp.scale;
        this.precision = temp.precision;
353
      }
354
  }
355

356 357 358 359 360 361 362 363 364 365 366 367
  /**
   * Constructs a BigDecimal from the given char array, accepting the same
   * sequence of characters as the BigDecimal(String) constructor.
   * @param in the char array
   * @throws NumberFormatException if <code>in</code> is not a valid BigDecimal
   * representation
   * @since 1.5
   */
  public BigDecimal(char[] in)
  {
    this(in, 0, in.length);
  }
368

369 370
  /**
   * Constructs a BigDecimal from a char subarray, accepting the same sequence
371
   * of characters as the BigDecimal(String) constructor.
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
   * @param in the char array
   * @param offset the start of the subarray
   * @param len the length of the subarray
   * @throws NumberFormatException if <code>in</code> is not a valid
   * BigDecimal representation.
   * @since 1.5
   */
  public BigDecimal(char[] in, int offset, int len)
  {
    //  start is the index into the char array where the significand starts
    int start = offset;
    //  end is one greater than the index of the last character used
    int end = offset + len;
    //  point is the index into the char array where the exponent starts
    //  (or, if there is no exponent, this is equal to end)
    int point = offset;
388
    //  dot is the index into the char array where the decimal point is
389 390
    //  found, or -1 if there is no decimal point
    int dot = -1;
391

392
    //  The following examples show what these variables mean.  Note that
393
    //  point and dot don't yet have the correct values, they will be
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    //  properly assigned in a loop later on in this method.
    //
    //  Example 1
    //
    //         +  1  0  2  .  4  6  9
    //  __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
    //
    //  offset = 2, len = 8, start = 3, dot = 6, point = end = 10
    //
    //  Example 2
    //
    //         +  2  3  4  .  6  1  3  E  -  1
    //  __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
    //
    //  offset = 2, len = 11, start = 3, dot = 6, point = 10, end = 13
    //
    //  Example 3
    //
412
    //         -  1  2  3  4  5  e  7
413 414
    //  __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
    //
415 416
    //  offset = 2, len = 8, start = 3, dot = -1, point = 8, end = 10

417 418 419 420 421 422 423 424 425 426 427 428 429 430
    //  Determine the sign of the number.
    boolean negative = false;
    if (in[offset] == '+')
      {
        ++start;
        ++point;
      }
    else if (in[offset] == '-')
      {
        ++start;
        ++point;
        negative = true;
      }

431
    //  Check each character looking for the decimal point and the
432 433 434 435 436 437 438 439 440 441 442 443 444 445
    //  start of the exponent.
    while (point < end)
      {
        char c = in[point];
        if (c == '.')
          {
            // If dot != -1 then we've seen more than one decimal point.
            if (dot != -1)
              throw new NumberFormatException("multiple `.'s in number");
            dot = point;
          }
        // Break when we reach the start of the exponent.
        else if (c == 'e' || c == 'E')
          break;
446
        // Throw an exception if the character was not a decimal or an
447 448 449 450 451 452 453 454 455
        // exponent and is not a digit.
        else if (!Character.isDigit(c))
          throw new NumberFormatException("unrecognized character at " + point
                                          + ": " + c);
        ++point;
      }

    // val is a StringBuilder from which we'll create a BigInteger
    // which will be the unscaled value for this BigDecimal
456
    CPStringBuilder val = new CPStringBuilder(point - start - 1);
457 458
    if (dot != -1)
      {
459
        // If there was a decimal we must combine the two parts that
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
        // contain only digits and we must set the scale properly.
        val.append(in, start, dot - start);
        val.append(in, dot + 1, point - dot - 1);
        scale = point - 1 - dot;
      }
    else
      {
        // If there was no decimal then the unscaled value is just the number
        // formed from all the digits and the scale is zero.
        val.append(in, start, point - start);
        scale = 0;
      }
    if (val.length() == 0)
      throw new NumberFormatException("no digits seen");

    // Prepend a negative sign if necessary.
    if (negative)
      val.insert(0, '-');
    intVal = new BigInteger(val.toString());

    // Now parse exponent.
    // If point < end that means we broke out of the previous loop when we
    // saw an 'e' or an 'E'.
    if (point < end)
      {
        point++;
        // Ignore a '+' sign.
        if (in[point] == '+')
          point++;

        // Throw an exception if there were no digits found after the 'e'
        // or 'E'.
        if (point >= end)
          throw new NumberFormatException("no exponent following e or E");

        try
          {
497
            // Adjust the scale according to the exponent.
498 499 500 501 502 503 504 505 506 507
            // Remember that the value of a BigDecimal is
            // unscaledValue x Math.pow(10, -scale)
            scale -= Integer.parseInt(new String(in, point, end - point));
          }
        catch (NumberFormatException ex)
          {
            throw new NumberFormatException("malformed exponent");
          }
      }
  }
508 509

  public BigDecimal (String num) throws NumberFormatException
Tom Tromey committed
510 511 512 513 514 515 516
  {
    int len = num.length();
    int start = 0, point = 0;
    int dot = -1;
    boolean negative = false;
    if (num.charAt(0) == '+')
      {
517 518
        ++start;
        ++point;
Tom Tromey committed
519 520 521
      }
    else if (num.charAt(0) == '-')
      {
522 523 524
        ++start;
        ++point;
        negative = true;
Tom Tromey committed
525 526 527 528
      }

    while (point < len)
      {
529 530 531 532 533 534 535 536 537 538 539 540
        char c = num.charAt (point);
        if (c == '.')
          {
            if (dot >= 0)
              throw new NumberFormatException ("multiple `.'s in number");
            dot = point;
          }
        else if (c == 'e' || c == 'E')
          break;
        else if (Character.digit (c, 10) < 0)
          throw new NumberFormatException ("unrecognized character: " + c);
        ++point;
Tom Tromey committed
541 542 543 544 545
      }

    String val;
    if (dot >= 0)
      {
546 547
        val = num.substring (start, dot) + num.substring (dot + 1, point);
        scale = point - 1 - dot;
Tom Tromey committed
548 549 550
      }
    else
      {
551 552
        val = num.substring (start, point);
        scale = 0;
Tom Tromey committed
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
      }
    if (val.length () == 0)
      throw new NumberFormatException ("no digits seen");

    if (negative)
      val = "-" + val;
    intVal = new BigInteger (val);

    // Now parse exponent.
    if (point < len)
      {
        point++;
        if (num.charAt(point) == '+')
          point++;

        if (point >= len )
          throw new NumberFormatException ("no exponent following e or E");
570 571 572

        try
          {
573
        scale -= Integer.parseInt (num.substring (point));
574 575 576 577 578
          }
        catch (NumberFormatException ex)
          {
            throw new NumberFormatException ("malformed exponent");
          }
Tom Tromey committed
579 580 581
      }
  }

582
  public static BigDecimal valueOf (long val)
Tom Tromey committed
583 584 585 586
  {
    return valueOf (val, 0);
  }

587 588
  public static BigDecimal valueOf (long val, int scale)
    throws NumberFormatException
Tom Tromey committed
589 590 591
  {
    if ((scale == 0) && ((int)val == val))
      switch ((int) val)
592 593 594 595 596 597
        {
        case 0:
          return ZERO;
        case 1:
          return ONE;
        }
Tom Tromey committed
598 599 600 601

    return new BigDecimal (BigInteger.valueOf (val), scale);
  }

602
  public BigDecimal add (BigDecimal val)
Tom Tromey committed
603 604 605 606 607 608 609
  {
    // For addition, need to line up decimals.  Note that the movePointRight
    // method cannot be used for this as it might return a BigDecimal with
    // scale == 0 instead of the scale we need.
    BigInteger op1 = intVal;
    BigInteger op2 = val.intVal;
    if (scale < val.scale)
610
      op1 = op1.multiply (BigInteger.TEN.pow (val.scale - scale));
Tom Tromey committed
611
    else if (scale > val.scale)
612
      op2 = op2.multiply (BigInteger.TEN.pow (scale - val.scale));
Tom Tromey committed
613 614 615

    return new BigDecimal (op1.add (op2), Math.max (scale, val.scale));
  }
616

617
  /**
618
   * Returns a BigDecimal whose value is found first by calling the
619 620 621 622 623 624 625 626 627 628 629 630
   * method add(val) and then by rounding according to the MathContext mc.
   * @param val the augend
   * @param mc the MathContext for rounding
   * @throws ArithmeticException if the value is inexact but the rounding is
   * RoundingMode.UNNECESSARY
   * @return <code>this</code> + <code>val</code>, rounded if need be
   * @since 1.5
   */
  public BigDecimal add (BigDecimal val, MathContext mc)
  {
    return add(val).round(mc);
  }
Tom Tromey committed
631

632
  public BigDecimal subtract (BigDecimal val)
Tom Tromey committed
633 634 635 636
  {
    return this.add(val.negate());
  }

637
  /**
638
   * Returns a BigDecimal whose value is found first by calling the
639 640 641 642 643 644 645 646 647 648 649 650 651
   * method subtract(val) and then by rounding according to the MathContext mc.
   * @param val the subtrahend
   * @param mc the MathContext for rounding
   * @throws ArithmeticException if the value is inexact but the rounding is
   * RoundingMode.UNNECESSARY
   * @return <code>this</code> - <code>val</code>, rounded if need be
   * @since 1.5
   */
  public BigDecimal subtract (BigDecimal val, MathContext mc)
  {
    return subtract(val).round(mc);
  }

652
  public BigDecimal multiply (BigDecimal val)
Tom Tromey committed
653 654 655
  {
    return new BigDecimal (intVal.multiply (val.intVal), scale + val.scale);
  }
656

657 658
  /**
   * Returns a BigDecimal whose value is (this x val) before it is rounded
659
   * according to the MathContext mc.
660 661 662 663 664 665 666 667 668 669 670
   * @param val the multiplicand
   * @param mc the MathContext for rounding
   * @return a new BigDecimal with value approximately (this x val)
   * @throws ArithmeticException if the value is inexact but the rounding mode
   * is RoundingMode.UNNECESSARY
   * @since 1.5
   */
  public BigDecimal multiply (BigDecimal val, MathContext mc)
  {
    return multiply(val).round(mc);
  }
Tom Tromey committed
671

672 673
  public BigDecimal divide (BigDecimal val, int roundingMode)
    throws ArithmeticException, IllegalArgumentException
Tom Tromey committed
674 675 676
  {
    return divide (val, scale, roundingMode);
  }
677

678 679
  /**
   * Returns a BigDecimal whose value is (this / val), with the specified scale
680
   * and rounding according to the RoundingMode
681 682 683 684 685 686 687 688
   * @param val the divisor
   * @param scale the scale of the BigDecimal returned
   * @param roundingMode the rounding mode to use
   * @return a BigDecimal whose value is approximately (this / val)
   * @throws ArithmeticException if divisor is zero or the rounding mode is
   * UNNECESSARY but the specified scale cannot represent the value exactly
   * @since 1.5
   */
689
  public BigDecimal divide(BigDecimal val,
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
                           int scale, RoundingMode roundingMode)
  {
    return divide (val, scale, roundingMode.ordinal());
  }

  /**
   * Returns a BigDecimal whose value is (this / val) rounded according to the
   * RoundingMode
   * @param val the divisor
   * @param roundingMode the rounding mode to use
   * @return a BigDecimal whose value is approximately (this / val)
   * @throws ArithmeticException if divisor is zero or the rounding mode is
   * UNNECESSARY but the specified scale cannot represent the value exactly
   */
  public BigDecimal divide (BigDecimal val, RoundingMode roundingMode)
  {
    return divide (val, scale, roundingMode.ordinal());
  }
708

Tom Tromey committed
709
  public BigDecimal divide(BigDecimal val, int newScale, int roundingMode)
710
    throws ArithmeticException, IllegalArgumentException
Tom Tromey committed
711 712
  {
    if (roundingMode < 0 || roundingMode > 7)
713 714
      throw
        new IllegalArgumentException("illegal rounding mode: " + roundingMode);
Tom Tromey committed
715

716
    if (intVal.signum () == 0)  // handle special case of 0.0/0.0
Tom Tromey committed
717
      return newScale == 0 ? ZERO : new BigDecimal (ZERO.intVal, newScale);
718

Tom Tromey committed
719 720 721 722 723
    // Ensure that pow gets a non-negative value.
    BigInteger valIntVal = val.intVal;
    int power = newScale - (scale - val.scale);
    if (power < 0)
      {
724 725
        // Effectively increase the scale of val to avoid an
        // ArithmeticException for a negative power.
726
        valIntVal = valIntVal.multiply (BigInteger.TEN.pow (-power));
727
        power = 0;
Tom Tromey committed
728 729
      }

730
    BigInteger dividend = intVal.multiply (BigInteger.TEN.pow (power));
731

Tom Tromey committed
732 733 734 735 736 737 738
    BigInteger parts[] = dividend.divideAndRemainder (valIntVal);

    BigInteger unrounded = parts[0];
    if (parts[1].signum () == 0) // no remainder, no rounding necessary
      return new BigDecimal (unrounded, newScale);

    if (roundingMode == ROUND_UNNECESSARY)
739
      throw new ArithmeticException ("Rounding necessary");
Tom Tromey committed
740 741 742 743 744 745 746 747 748

    int sign = intVal.signum () * valIntVal.signum ();

    if (roundingMode == ROUND_CEILING)
      roundingMode = (sign > 0) ? ROUND_UP : ROUND_DOWN;
    else if (roundingMode == ROUND_FLOOR)
      roundingMode = (sign < 0) ? ROUND_UP : ROUND_DOWN;
    else
      {
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
        // half is -1 if remainder*2 < positive intValue (*power), 0 if equal,
        // 1 if >. This implies that the remainder to round is less than,
        // equal to, or greater than half way to the next digit.
        BigInteger posRemainder
          = parts[1].signum () < 0 ? parts[1].negate() : parts[1];
        valIntVal = valIntVal.signum () < 0 ? valIntVal.negate () : valIntVal;
        int half = posRemainder.shiftLeft(1).compareTo(valIntVal);

        switch(roundingMode)
          {
          case ROUND_HALF_UP:
            roundingMode = (half < 0) ? ROUND_DOWN : ROUND_UP;
            break;
          case ROUND_HALF_DOWN:
            roundingMode = (half > 0) ? ROUND_UP : ROUND_DOWN;
            break;
          case ROUND_HALF_EVEN:
            if (half < 0)
              roundingMode = ROUND_DOWN;
            else if (half > 0)
              roundingMode = ROUND_UP;
            else if (unrounded.testBit(0)) // odd, then ROUND_HALF_UP
              roundingMode = ROUND_UP;
            else                           // even, ROUND_HALF_DOWN
              roundingMode = ROUND_DOWN;
            break;
          }
Tom Tromey committed
776 777 778 779 780 781 782 783
      }

    if (roundingMode == ROUND_UP)
      unrounded = unrounded.add (BigInteger.valueOf (sign > 0 ? 1 : -1));

    // roundingMode == ROUND_DOWN
    return new BigDecimal (unrounded, newScale);
  }
784

785 786
  /**
   * Performs division, if the resulting quotient requires rounding
787 788
   * (has a nonterminating decimal expansion),
   * an ArithmeticException is thrown.
789 790 791 792
   * #see divide(BigDecimal, int, int)
   * @since 1.5
   */
  public BigDecimal divide(BigDecimal divisor)
793
    throws ArithmeticException, IllegalArgumentException
794 795 796 797 798 799
  {
    return divide(divisor, scale, ROUND_UNNECESSARY);
  }

  /**
   * Returns a BigDecimal whose value is the remainder in the quotient
800 801
   * this / val.  This is obtained by
   * subtract(divideToIntegralValue(val).multiply(val)).
802 803 804 805 806 807 808 809 810 811 812 813
   * @param val the divisor
   * @return a BigDecimal whose value is the remainder
   * @throws ArithmeticException if val == 0
   * @since 1.5
   */
  public BigDecimal remainder(BigDecimal val)
  {
    return subtract(divideToIntegralValue(val).multiply(val));
  }

  /**
   * Returns a BigDecimal array, the first element of which is the integer part
814
   * of this / val, and the second element of which is the remainder of
815 816 817 818 819 820 821 822 823 824 825 826 827
   * that quotient.
   * @param val the divisor
   * @return the above described BigDecimal array
   * @throws ArithmeticException if val == 0
   * @since 1.5
   */
  public BigDecimal[] divideAndRemainder(BigDecimal val)
  {
    BigDecimal[] result = new BigDecimal[2];
    result[0] = divideToIntegralValue(val);
    result[1] = subtract(result[0].multiply(val));
    return result;
  }
828

829
  /**
830
   * Returns a BigDecimal whose value is the integer part of the quotient
831 832 833 834 835 836 837 838 839 840
   * this / val.  The preferred scale is this.scale - val.scale.
   * @param val the divisor
   * @return a BigDecimal whose value is the integer part of this / val.
   * @throws ArithmeticException if val == 0
   * @since 1.5
   */
  public BigDecimal divideToIntegralValue(BigDecimal val)
  {
    return divide(val, ROUND_DOWN).floor().setScale(scale - val.scale, ROUND_DOWN);
  }
841

842
  /**
843
   * Mutates this BigDecimal into one with no fractional part, whose value is
844 845
   * equal to the largest integer that is <= to this BigDecimal.  Note that
   * since this method is private it is okay to mutate this BigDecimal.
846
   * @return the BigDecimal obtained through the floor operation on this
847 848 849 850 851 852 853 854 855 856 857
   * BigDecimal.
   */
  private BigDecimal floor()
  {
    if (scale <= 0)
      return this;
    String intValStr = intVal.toString();
    intValStr = intValStr.substring(0, intValStr.length() - scale);
    intVal = new BigInteger(intValStr).multiply(BigInteger.TEN.pow(scale));
    return this;
  }
858 859

  public int compareTo (BigDecimal val)
Tom Tromey committed
860 861 862 863
  {
    if (scale == val.scale)
      return intVal.compareTo (val.intVal);

864
    BigInteger thisParts[] =
865
      intVal.divideAndRemainder (BigInteger.TEN.pow (scale));
Tom Tromey committed
866
    BigInteger valParts[] =
867
      val.intVal.divideAndRemainder (BigInteger.TEN.pow (val.scale));
868

Tom Tromey committed
869 870 871 872 873 874
    int compare;
    if ((compare = thisParts[0].compareTo (valParts[0])) != 0)
      return compare;

    // quotients are the same, so compare remainders

875 876 877
    // Add some trailing zeros to the remainder with the smallest scale
    if (scale < val.scale)
      thisParts[1] = thisParts[1].multiply
878
                        (BigInteger.valueOf (10).pow (val.scale - scale));
879 880
    else if (scale > val.scale)
      valParts[1] = valParts[1].multiply
881
                        (BigInteger.valueOf (10).pow (scale - val.scale));
Tom Tromey committed
882 883 884 885 886

    // and compare them
    return thisParts[1].compareTo (valParts[1]);
  }

887
  public boolean equals (Object o)
Tom Tromey committed
888
  {
889 890 891
    return (o instanceof BigDecimal
            && scale == ((BigDecimal) o).scale
            && compareTo ((BigDecimal) o) == 0);
Tom Tromey committed
892 893
  }

894
  public int hashCode()
Tom Tromey committed
895 896 897 898 899 900
  {
    return intValue() ^ scale;
  }

  public BigDecimal max (BigDecimal val)
  {
901
    switch (compareTo (val))
Tom Tromey committed
902 903
      {
      case 1:
904
        return this;
Tom Tromey committed
905
      default:
906
        return val;
Tom Tromey committed
907 908 909
      }
  }

910
  public BigDecimal min (BigDecimal val)
Tom Tromey committed
911
  {
912
    switch (compareTo (val))
Tom Tromey committed
913 914
      {
      case -1:
915
        return this;
Tom Tromey committed
916
      default:
917
        return val;
Tom Tromey committed
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
      }
  }

  public BigDecimal movePointLeft (int n)
  {
    return (n < 0) ? movePointRight (-n) : new BigDecimal (intVal, scale + n);
  }

  public BigDecimal movePointRight (int n)
  {
    if (n < 0)
      return movePointLeft (-n);

    if (scale >= n)
      return new BigDecimal (intVal, scale - n);

934 935
    return new BigDecimal (intVal.multiply
                           (BigInteger.TEN.pow (n - scale)), 0);
Tom Tromey committed
936 937
  }

938
  public int signum ()
Tom Tromey committed
939 940 941 942
  {
    return intVal.signum ();
  }

943
  public int scale ()
Tom Tromey committed
944 945 946
  {
    return scale;
  }
947

Tom Tromey committed
948 949 950 951 952
  public BigInteger unscaledValue()
  {
    return intVal;
  }

953
  public BigDecimal abs ()
Tom Tromey committed
954 955 956 957
  {
    return new BigDecimal (intVal.abs (), scale);
  }

958
  public BigDecimal negate ()
Tom Tromey committed
959 960 961
  {
    return new BigDecimal (intVal.negate (), scale);
  }
962

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
  /**
   * Returns a BigDecimal whose value is found first by negating this via
   * the negate() method, then by rounding according to the MathContext mc.
   * @param mc the MathContext for rounding
   * @return a BigDecimal whose value is approximately (-this)
   * @throws ArithmeticException if the value is inexact but the rounding mode
   * is RoundingMode.UNNECESSARY
   * @since 1.5
   */
  public BigDecimal negate(MathContext mc)
  {
    BigDecimal result = negate();
    if (mc.getPrecision() != 0)
      result = result.round(mc);
    return result;
  }
979

980
  /**
981
   * Returns this BigDecimal.  This is included for symmetry with the
982 983 984 985 986 987 988 989
   * method negate().
   * @return this
   * @since 1.5
   */
  public BigDecimal plus()
  {
    return this;
  }
990

991
  /**
992
   * Returns a BigDecimal whose value is found by rounding <code>this</code>
993 994 995 996 997 998 999 1000 1001 1002 1003
   * according to the MathContext.  This is the same as round(MathContext).
   * @param mc the MathContext for rounding
   * @return a BigDecimal whose value is <code>this</code> before being rounded
   * @throws ArithmeticException if the value is inexact but the rounding mode
   * is RoundingMode.UNNECESSARY
   * @since 1.5
   */
  public BigDecimal plus(MathContext mc)
  {
    return round(mc);
  }
1004

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
  /**
   * Returns a BigDecimal which is this BigDecimal rounded according to the
   * MathContext rounding settings.
   * @param mc the MathContext that tells us how to round
   * @return the rounded BigDecimal
   */
  public BigDecimal round(MathContext mc)
  {
    int mcPrecision = mc.getPrecision();
    int numToChop = precision() - mcPrecision;
1015
    // If mc specifies not to chop any digits or if we've already chopped
1016 1017 1018 1019
    // enough digits (say by using a MathContext in the constructor for this
    // BigDecimal) then just return this.
    if (mcPrecision == 0 || numToChop <= 0)
      return this;
1020

1021 1022 1023
    // Make a new BigDecimal which is the correct power of 10 to chop off
    // the required number of digits and then call divide.
    BigDecimal div = new BigDecimal(BigInteger.TEN.pow(numToChop));
1024
    BigDecimal rounded = divide(div, scale, mc.getRoundingMode().ordinal());
1025 1026 1027 1028
    rounded.scale -= numToChop;
    rounded.precision = mcPrecision;
    return rounded;
  }
1029

1030 1031 1032
  /**
   * Returns the precision of this BigDecimal (the number of digits in the
   * unscaled value).  The precision of a zero value is 1.
1033
   * @return the number of digits in the unscaled value, or 1 if the value
1034 1035 1036 1037 1038 1039
   * is zero.
   */
  public int precision()
  {
    if (precision == 0)
      {
1040 1041
        String s = intVal.toString();
        precision = s.length() - (( s.charAt(0) == '-' ) ? 1 : 0);
1042 1043 1044
      }
    return precision;
  }
1045

1046 1047 1048 1049
  /**
   * Returns the String representation of this BigDecimal, using scientific
   * notation if necessary.  The following steps are taken to generate
   * the result:
1050
   *
1051 1052 1053
   * 1. the BigInteger unscaledValue's toString method is called and if
   * <code>scale == 0<code> is returned.
   * 2. an <code>int adjExp</code> is created which is equal to the negation
1054
   * of <code>scale</code> plus the number of digits in the unscaled value,
1055
   * minus one.
1056 1057
   * 3. if <code>scale >= 0 && adjExp >= -6</code> then we represent this
   * BigDecimal without scientific notation.  A decimal is added if the
1058 1059
   * scale is positive and zeros are prepended as necessary.
   * 4. if scale is negative or adjExp is less than -6 we use scientific
1060
   * notation.  If the unscaled value has more than one digit, a decimal
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
   * as inserted after the first digit, the character 'E' is appended
   * and adjExp is appended.
   */
  public String toString()
  {
    // bigStr is the String representation of the unscaled value.  If
    // scale is zero we simply return this.
    String bigStr = intVal.toString();
    if (scale == 0)
      return bigStr;

    boolean negative = (bigStr.charAt(0) == '-');
    int point = bigStr.length() - scale - (negative ? 1 : 0);

1075
    CPStringBuilder val = new CPStringBuilder();
1076 1077 1078

    if (scale >= 0 && (point - 1) >= -6)
      {
1079
        // Convert to character form without scientific notation.
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
        if (point <= 0)
          {
            // Zeros need to be prepended to the StringBuilder.
            if (negative)
              val.append('-');
            // Prepend a '0' and a '.' and then as many more '0's as necessary.
            val.append('0').append('.');
            while (point < 0)
              {
                val.append('0');
                point++;
              }
            // Append the unscaled value.
            val.append(bigStr.substring(negative ? 1 : 0));
          }
        else
          {
1097
            // No zeros need to be prepended so the String is simply the
1098 1099 1100 1101 1102 1103 1104 1105 1106
            // unscaled value with the decimal point inserted.
            val.append(bigStr);
            val.insert(point + (negative ? 1 : 0), '.');
          }
      }
    else
      {
        // We must use scientific notation to represent this BigDecimal.
        val.append(bigStr);
1107
        // If there is more than one digit in the unscaled value we put a
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
        // decimal after the first digit.
        if (bigStr.length() > 1)
          val.insert( ( negative ? 2 : 1 ), '.');
        // And then append 'E' and the exponent = (point - 1).
        val.append('E');
        if (point - 1 >= 0)
          val.append('+');
        val.append( point - 1 );
      }
    return val.toString();
  }

  /**
   * Returns the String representation of this BigDecimal, using engineering
1122
   * notation if necessary.  This is similar to toString() but when exponents
1123 1124
   * are used the exponent is made to be a multiple of 3 such that the integer
   * part is between 1 and 999.
1125
   *
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
   * @return a String representation of this BigDecimal in engineering notation
   * @since 1.5
   */
  public String toEngineeringString()
  {
    // bigStr is the String representation of the unscaled value.  If
    // scale is zero we simply return this.
    String bigStr = intVal.toString();
    if (scale == 0)
      return bigStr;
Tom Tromey committed
1136

1137 1138 1139 1140 1141
    boolean negative = (bigStr.charAt(0) == '-');
    int point = bigStr.length() - scale - (negative ? 1 : 0);

    // This is the adjusted exponent described above.
    int adjExp = point - 1;
1142
    CPStringBuilder val = new CPStringBuilder();
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

    if (scale >= 0 && adjExp >= -6)
      {
        // Convert to character form without scientific notation.
        if (point <= 0)
          {
            // Zeros need to be prepended to the StringBuilder.
            if (negative)
              val.append('-');
            // Prepend a '0' and a '.' and then as many more '0's as necessary.
            val.append('0').append('.');
            while (point < 0)
              {
                val.append('0');
                point++;
              }
            // Append the unscaled value.
            val.append(bigStr.substring(negative ? 1 : 0));
          }
        else
          {
1164
            // No zeros need to be prepended so the String is simply the
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
            // unscaled value with the decimal point inserted.
            val.append(bigStr);
            val.insert(point + (negative ? 1 : 0), '.');
          }
      }
    else
      {
        // We must use scientific notation to represent this BigDecimal.
        // The exponent must be a multiple of 3 and the integer part
        // must be between 1 and 999.
1175
        val.append(bigStr);
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
        int zeros = adjExp % 3;
        int dot = 1;
        if (adjExp > 0)
          {
            // If the exponent is positive we just move the decimal to the
            // right and decrease the exponent until it is a multiple of 3.
            dot += zeros;
            adjExp -= zeros;
          }
        else
          {
            // If the exponent is negative then we move the dot to the right
1188
            // and decrease the exponent (increase its magnitude) until
1189
            // it is a multiple of 3.  Note that this is not adjExp -= zeros
1190
            // because the mod operator doesn't give us the distance to the
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
            // correct multiple of 3.  (-5 mod 3) is -2 but the distance from
            // -5 to the correct multiple of 3 (-6) is 1, not 2.
            if (zeros == -2)
              {
                dot += 1;
                adjExp -= 1;
              }
            else if (zeros == -1)
              {
                dot += 2;
                adjExp -= 2;
              }
          }

        // Either we have to append zeros because, for example, 1.1E+5 should
        // be 110E+3, or we just have to put the decimal in the right place.
        if (dot > val.length())
          {
            while (dot > val.length())
              val.append('0');
          }
        else if (bigStr.length() > dot)
          val.insert(dot + (negative ? 1 : 0), '.');
1214

1215 1216 1217 1218 1219 1220 1221 1222
        // And then append 'E' and the exponent (adjExp).
        val.append('E');
        if (adjExp >= 0)
          val.append('+');
        val.append(adjExp);
      }
    return val.toString();
  }
1223

1224
  /**
1225
   * Returns a String representation of this BigDecimal without using
1226 1227
   * scientific notation.  This is how toString() worked for releases 1.4
   * and previous.  Zeros may be added to the end of the String.  For
1228 1229
   * example, an unscaled value of 1234 and a scale of -3 would result in
   * the String 1234000, but the toString() method would return
1230 1231 1232 1233 1234
   * 1.234E+6.
   * @return a String representation of this BigDecimal
   * @since 1.5
   */
  public String toPlainString()
Tom Tromey committed
1235
  {
1236
    // If the scale is zero we simply return the String representation of the
1237
    // unscaled value.
Tom Tromey committed
1238
    String bigStr = intVal.toString();
1239
    if (scale == 0)
Tom Tromey committed
1240 1241
      return bigStr;

1242
    // Remember if we have to put a negative sign at the start.
Tom Tromey committed
1243 1244 1245 1246
    boolean negative = (bigStr.charAt(0) == '-');

    int point = bigStr.length() - scale - (negative ? 1 : 0);

1247
    CPStringBuilder sb = new CPStringBuilder(bigStr.length() + 2
1248
                                             + (point <= 0 ? (-point + 1) : 0));
Tom Tromey committed
1249 1250
    if (point <= 0)
      {
1251
        // We have to prepend zeros and a decimal point.
Tom Tromey committed
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
        if (negative)
          sb.append('-');
        sb.append('0').append('.');
        while (point < 0)
          {
            sb.append('0');
            point++;
          }
        sb.append(bigStr.substring(negative ? 1 : 0));
      }
1262 1263 1264 1265 1266 1267 1268
    else if (point < bigStr.length())
      {
        // No zeros need to be prepended or appended, just put the decimal
        // in the right place.
        sb.append(bigStr);
        sb.insert(point + (negative ? 1 : 0), '.');
      }
Tom Tromey committed
1269 1270
    else
      {
1271 1272 1273 1274
        // We must append zeros instead of using scientific notation.
        sb.append(bigStr);
        for (int i = bigStr.length(); i < point; i++)
          sb.append('0');
Tom Tromey committed
1275 1276 1277
      }
    return sb.toString();
  }
1278

1279 1280 1281 1282 1283
  /**
   * Converts this BigDecimal to a BigInteger.  Any fractional part will
   * be discarded.
   * @return a BigDecimal whose value is equal to floor[this]
   */
1284
  public BigInteger toBigInteger ()
Tom Tromey committed
1285
  {
1286 1287 1288 1289 1290 1291 1292 1293
    // If scale > 0 then we must divide, if scale > 0 then we must multiply,
    // and if scale is zero then we just return intVal;
    if (scale > 0)
      return intVal.divide (BigInteger.TEN.pow (scale));
    else if (scale < 0)
      return intVal.multiply(BigInteger.TEN.pow(-scale));
    return intVal;
  }
1294

1295
  /**
1296
   * Converts this BigDecimal into a BigInteger, throwing an
1297 1298 1299 1300 1301 1302 1303 1304 1305
   * ArithmeticException if the conversion is not exact.
   * @return a BigInteger whose value is equal to the value of this BigDecimal
   * @since 1.5
   */
  public BigInteger toBigIntegerExact()
  {
    if (scale > 0)
      {
        // If we have to divide, we must check if the result is exact.
1306
        BigInteger[] result =
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
          intVal.divideAndRemainder(BigInteger.TEN.pow(scale));
        if (result[1].equals(BigInteger.ZERO))
          return result[0];
        throw new ArithmeticException("No exact BigInteger representation");
      }
    else if (scale < 0)
      // If we're multiplying instead, then we needn't check for exactness.
      return intVal.multiply(BigInteger.TEN.pow(-scale));
    // If the scale is zero we can simply return intVal.
    return intVal;
Tom Tromey committed
1317 1318
  }

1319
  public int intValue ()
Tom Tromey committed
1320 1321 1322
  {
    return toBigInteger ().intValue ();
  }
1323

1324
  /**
1325 1326
   * Returns a BigDecimal which is numerically equal to this BigDecimal but
   * with no trailing zeros in the representation.  For example, if this
1327
   * BigDecimal has [unscaledValue, scale] = [6313000, 4] this method returns
1328
   * a BigDecimal with [unscaledValue, scale] = [6313, 1].  As another
1329 1330 1331
   * example, [12400, -2] would become [124, -4].
   * @return a numerically equal BigDecimal with no trailing zeros
   */
1332
  public BigDecimal stripTrailingZeros()
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
  {
    String intValStr = intVal.toString();
    int newScale = scale;
    int pointer = intValStr.length() - 1;
    // This loop adjusts pointer which will be used to give us the substring
    // of intValStr to use in our new BigDecimal, and also accordingly
    // adjusts the scale of our new BigDecimal.
    while (intValStr.charAt(pointer) == '0')
      {
        pointer --;
        newScale --;
      }
    // Create a new BigDecimal with the appropriate substring and then
    // set its scale.
1347
    BigDecimal result = new BigDecimal(intValStr.substring(0, pointer + 1));
1348 1349 1350
    result.scale = newScale;
    return result;
  }
Tom Tromey committed
1351 1352 1353 1354 1355 1356

  public long longValue ()
  {
    return toBigInteger().longValue();
  }

1357
  public float floatValue()
Tom Tromey committed
1358 1359 1360 1361
  {
    return Float.valueOf(toString()).floatValue();
  }

1362
  public double doubleValue()
Tom Tromey committed
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
  {
    return Double.valueOf(toString()).doubleValue();
  }

  public BigDecimal setScale (int scale) throws ArithmeticException
  {
    return setScale (scale, ROUND_UNNECESSARY);
  }

  public BigDecimal setScale (int scale, int roundingMode)
    throws ArithmeticException, IllegalArgumentException
  {
1375 1376 1377 1378
    // NOTE: The 1.5 JRE doesn't throw this, ones prior to it do and
    // the spec says it should. Nevertheless, if 1.6 doesn't fix this
    // we should consider removing it.
    if( scale < 0 ) throw new ArithmeticException("Scale parameter < 0.");
Tom Tromey committed
1379 1380
    return divide (ONE, scale, roundingMode);
  }
1381

1382 1383 1384 1385 1386 1387
  /**
   * Returns a BigDecimal whose value is the same as this BigDecimal but whose
   * representation has a scale of <code>newScale</code>.  If the scale is
   * reduced then rounding may occur, according to the RoundingMode.
   * @param newScale
   * @param roundingMode
1388
   * @return a BigDecimal whose scale is as given, whose value is
1389
   * <code>this</code> with possible rounding
1390 1391
   * @throws ArithmeticException if the rounding mode is UNNECESSARY but
   * rounding is required
1392 1393 1394 1395 1396 1397
   * @since 1.5
   */
  public BigDecimal setScale(int newScale, RoundingMode roundingMode)
  {
    return setScale(newScale, roundingMode.ordinal());
  }
1398

1399
  /**
1400
   * Returns a new BigDecimal constructed from the BigDecimal(String)
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
   * constructor using the Double.toString(double) method to obtain
   * the String.
   * @param val the double value used in Double.toString(double)
   * @return a BigDecimal representation of val
   * @throws NumberFormatException if val is NaN or infinite
   * @since 1.5
   */
  public static BigDecimal valueOf(double val)
  {
    if (Double.isInfinite(val) || Double.isNaN(val))
      throw new NumberFormatException("argument cannot be NaN or infinite.");
    return new BigDecimal(Double.toString(val));
  }
1414

1415 1416
  /**
   * Returns a BigDecimal whose numerical value is the numerical value
1417
   * of this BigDecimal multiplied by 10 to the power of <code>n</code>.
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
   * @param n the power of ten
   * @return the new BigDecimal
   * @since 1.5
   */
  public BigDecimal scaleByPowerOfTen(int n)
  {
    BigDecimal result = new BigDecimal(intVal, scale - n);
    result.precision = precision;
    return result;
  }
1428

1429
  /**
1430 1431
   * Returns a BigDecimal whose value is <code>this</code> to the power of
   * <code>n</code>.
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
   * @param n the power
   * @return the new BigDecimal
   * @since 1.5
   */
  public BigDecimal pow(int n)
  {
    if (n < 0 || n > 999999999)
      throw new ArithmeticException("n must be between 0 and 999999999");
    BigDecimal result = new BigDecimal(intVal.pow(n), scale * n);
    return result;
  }
1443

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
  /**
   * Returns a BigDecimal whose value is determined by first calling pow(n)
   * and then by rounding according to the MathContext mc.
   * @param n the power
   * @param mc the MathContext
   * @return the new BigDecimal
   * @throws ArithmeticException if n < 0 or n > 999999999 or if the result is
   * inexact but the rounding is RoundingMode.UNNECESSARY
   * @since 1.5
   */
  public BigDecimal pow(int n, MathContext mc)
  {
    // FIXME: The specs claim to use the X3.274-1996 algorithm.  We
    // currently do not.
    return pow(n).round(mc);
  }
1460

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
  /**
   * Returns a BigDecimal whose value is the absolute value of this BigDecimal
   * with rounding according to the given MathContext.
   * @param mc the MathContext
   * @return the new BigDecimal
   */
  public BigDecimal abs(MathContext mc)
  {
    BigDecimal result = abs();
    result = result.round(mc);
    return result;
  }
1473

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
  /**
   * Returns the size of a unit in the last place of this BigDecimal.  This
   * returns a BigDecimal with [unscaledValue, scale] = [1, this.scale()].
   * @return the size of a unit in the last place of <code>this</code>.
   * @since 1.5
   */
  public BigDecimal ulp()
  {
    return new BigDecimal(BigInteger.ONE, scale);
  }
1484

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
  /**
   * Converts this BigDecimal to a long value.
   * @return the long value
   * @throws ArithmeticException if rounding occurs or if overflow occurs
   * @since 1.5
   */
  public long longValueExact()
  {
    // Set scale will throw an exception if rounding occurs.
    BigDecimal temp = setScale(0, ROUND_UNNECESSARY);
    BigInteger tempVal = temp.intVal;
    // Check for overflow.
    long result = intVal.longValue();
    if (tempVal.compareTo(BigInteger.valueOf(Long.MAX_VALUE)) > 1
        || (result < 0 && signum() == 1) || (result > 0 && signum() == -1))
      throw new ArithmeticException("this BigDecimal is too " +
            "large to fit into the return type");
1502

1503 1504
    return intVal.longValue();
  }
1505

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
  /**
   * Converts this BigDecimal into an int by first calling longValueExact
   * and then checking that the <code>long</code> returned from that
   * method fits into an <code>int</code>.
   * @return an int whose value is <code>this</code>
   * @throws ArithmeticException if this BigDecimal has a fractional part
   * or is too large to fit into an int.
   * @since 1.5
   */
  public int intValueExact()
  {
    long temp = longValueExact();
    int result = (int)temp;
    if (result != temp)
      throw new ArithmeticException ("this BigDecimal cannot fit into an int");
    return result;
  }
1523

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
  /**
   * Converts this BigDecimal into a byte by first calling longValueExact
   * and then checking that the <code>long</code> returned from that
   * method fits into a <code>byte</code>.
   * @return a byte whose value is <code>this</code>
   * @throws ArithmeticException if this BigDecimal has a fractional part
   * or is too large to fit into a byte.
   * @since 1.5
   */
  public byte byteValueExact()
  {
    long temp = longValueExact();
    byte result = (byte)temp;
    if (result != temp)
      throw new ArithmeticException ("this BigDecimal cannot fit into a byte");
    return result;
  }
1541

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
  /**
   * Converts this BigDecimal into a short by first calling longValueExact
   * and then checking that the <code>long</code> returned from that
   * method fits into a <code>short</code>.
   * @return a short whose value is <code>this</code>
   * @throws ArithmeticException if this BigDecimal has a fractional part
   * or is too large to fit into a short.
   * @since 1.5
   */
  public short shortValueExact()
  {
    long temp = longValueExact();
    short result = (short)temp;
    if (result != temp)
      throw new ArithmeticException ("this BigDecimal cannot fit into a short");
    return result;
  }
Tom Tromey committed
1559
}