simplify.go 4.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
// Copyright 2011 The Go Authors.  All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package syntax

// Simplify returns a regexp equivalent to re but without counted repetitions
// and with various other simplifications, such as rewriting /(?:a+)+/ to /a+/.
// The resulting regexp will execute correctly but its string representation
// will not produce the same parse tree, because capturing parentheses
// may have been duplicated or removed.  For example, the simplified form
// for /(x){1,2}/ is /(x)(x)?/ but both parentheses capture as $1.
// The returned regexp may share structure with or be the original.
func (re *Regexp) Simplify() *Regexp {
	if re == nil {
		return nil
	}
	switch re.Op {
	case OpCapture, OpConcat, OpAlternate:
		// Simplify children, building new Regexp if children change.
		nre := re
		for i, sub := range re.Sub {
			nsub := sub.Simplify()
			if nre == re && nsub != sub {
				// Start a copy.
				nre = new(Regexp)
				*nre = *re
				nre.Rune = nil
				nre.Sub = append(nre.Sub0[:0], re.Sub[:i]...)
			}
			if nre != re {
				nre.Sub = append(nre.Sub, nsub)
			}
		}
		return nre

	case OpStar, OpPlus, OpQuest:
		sub := re.Sub[0].Simplify()
		return simplify1(re.Op, re.Flags, sub, re)

	case OpRepeat:
		// Special special case: x{0} matches the empty string
		// and doesn't even need to consider x.
		if re.Min == 0 && re.Max == 0 {
			return &Regexp{Op: OpEmptyMatch}
		}

		// The fun begins.
		sub := re.Sub[0].Simplify()

		// x{n,} means at least n matches of x.
		if re.Max == -1 {
			// Special case: x{0,} is x*.
			if re.Min == 0 {
				return simplify1(OpStar, re.Flags, sub, nil)
			}

			// Special case: x{1,} is x+.
			if re.Min == 1 {
				return simplify1(OpPlus, re.Flags, sub, nil)
			}

			// General case: x{4,} is xxxx+.
			nre := &Regexp{Op: OpConcat}
			nre.Sub = nre.Sub0[:0]
			for i := 0; i < re.Min-1; i++ {
				nre.Sub = append(nre.Sub, sub)
			}
			nre.Sub = append(nre.Sub, simplify1(OpPlus, re.Flags, sub, nil))
			return nre
		}

		// Special case x{0} handled above.

		// Special case: x{1} is just x.
		if re.Min == 1 && re.Max == 1 {
			return sub
		}

		// General case: x{n,m} means n copies of x and m copies of x?
		// The machine will do less work if we nest the final m copies,
		// so that x{2,5} = xx(x(x(x)?)?)?

		// Build leading prefix: xx.
		var prefix *Regexp
		if re.Min > 0 {
			prefix = &Regexp{Op: OpConcat}
			prefix.Sub = prefix.Sub0[:0]
			for i := 0; i < re.Min; i++ {
				prefix.Sub = append(prefix.Sub, sub)
			}
		}

		// Build and attach suffix: (x(x(x)?)?)?
		if re.Max > re.Min {
			suffix := simplify1(OpQuest, re.Flags, sub, nil)
			for i := re.Min + 1; i < re.Max; i++ {
				nre2 := &Regexp{Op: OpConcat}
				nre2.Sub = append(nre2.Sub0[:0], sub, suffix)
				suffix = simplify1(OpQuest, re.Flags, nre2, nil)
			}
			if prefix == nil {
				return suffix
			}
			prefix.Sub = append(prefix.Sub, suffix)
		}
		if prefix != nil {
			return prefix
		}

		// Some degenerate case like min > max or min < max < 0.
		// Handle as impossible match.
		return &Regexp{Op: OpNoMatch}
	}

	return re
}

// simplify1 implements Simplify for the unary OpStar,
// OpPlus, and OpQuest operators.  It returns the simple regexp
// equivalent to
//
//	Regexp{Op: op, Flags: flags, Sub: {sub}}
//
// under the assumption that sub is already simple, and
// without first allocating that structure.  If the regexp
// to be returned turns out to be equivalent to re, simplify1
// returns re instead.
//
// simplify1 is factored out of Simplify because the implementation
// for other operators generates these unary expressions.
// Letting them call simplify1 makes sure the expressions they
// generate are simple.
func simplify1(op Op, flags Flags, sub, re *Regexp) *Regexp {
	// Special case: repeat the empty string as much as
	// you want, but it's still the empty string.
	if sub.Op == OpEmptyMatch {
		return sub
	}
	// The operators are idempotent if the flags match.
	if op == sub.Op && flags&NonGreedy == sub.Flags&NonGreedy {
		return sub
	}
	if re != nil && re.Op == op && re.Flags&NonGreedy == flags&NonGreedy && sub == re.Sub[0] {
		return re
	}

	re = &Regexp{Op: op, Flags: flags}
	re.Sub = append(re.Sub0[:0], sub)
	return re
}