regexp.go 33.2 KB
Newer Older
1
// Copyright 2009 The Go Authors. All rights reserved.
2 3 4
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

5
// Package regexp implements regular expression search.
6
//
7 8 9
// The syntax of the regular expressions accepted is the same
// general syntax used by Perl, Python, and other languages.
// More precisely, it is the syntax accepted by RE2 and described at
10
// https://golang.org/s/re2syntax, except for \C.
11
// For an overview of the syntax, run
12
//   go doc regexp/syntax
13
//
14 15 16 17 18 19 20 21
// The regexp implementation provided by this package is
// guaranteed to run in time linear in the size of the input.
// (This is a property not guaranteed by most open source
// implementations of regular expressions.) For more information
// about this property, see
//	http://swtch.com/~rsc/regexp/regexp1.html
// or any book about automata theory.
//
22
// All characters are UTF-8-encoded code points.
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
//
// There are 16 methods of Regexp that match a regular expression and identify
// the matched text.  Their names are matched by this regular expression:
//
//	Find(All)?(String)?(Submatch)?(Index)?
//
// If 'All' is present, the routine matches successive non-overlapping
// matches of the entire expression.  Empty matches abutting a preceding
// match are ignored.  The return value is a slice containing the successive
// return values of the corresponding non-'All' routine.  These routines take
// an extra integer argument, n; if n >= 0, the function returns at most n
// matches/submatches.
//
// If 'String' is present, the argument is a string; otherwise it is a slice
// of bytes; return values are adjusted as appropriate.
//
// If 'Submatch' is present, the return value is a slice identifying the
40 41 42 43 44
// successive submatches of the expression. Submatches are matches of
// parenthesized subexpressions (also known as capturing groups) within the
// regular expression, numbered from left to right in order of opening
// parenthesis. Submatch 0 is the match of the entire expression, submatch 1
// the match of the first parenthesized subexpression, and so on.
45 46 47 48 49 50 51 52
//
// If 'Index' is present, matches and submatches are identified by byte index
// pairs within the input string: result[2*n:2*n+1] identifies the indexes of
// the nth submatch.  The pair for n==0 identifies the match of the entire
// expression.  If 'Index' is not present, the match is identified by the
// text of the match/submatch.  If an index is negative, it means that
// subexpression did not match any string in the input.
//
53 54 55 56 57 58 59 60 61 62
// There is also a subset of the methods that can be applied to text read
// from a RuneReader:
//
//	MatchReader, FindReaderIndex, FindReaderSubmatchIndex
//
// This set may grow.  Note that regular expression matches may need to
// examine text beyond the text returned by a match, so the methods that
// match text from a RuneReader may read arbitrarily far into the input
// before returning.
//
63 64 65 66 67 68 69
// (There are a few other methods that do not match this pattern.)
//
package regexp

import (
	"bytes"
	"io"
70 71
	"regexp/syntax"
	"strconv"
72
	"strings"
73
	"sync"
74
	"unicode"
75
	"unicode/utf8"
76 77 78 79 80
)

var debug = false

// Regexp is the representation of a compiled regular expression.
81
// A Regexp is safe for concurrent use by multiple goroutines.
82
type Regexp struct {
83 84 85
	// read-only after Compile
	expr           string         // as passed to Compile
	prog           *syntax.Prog   // compiled program
86
	onepass        *onePassProg   // onepass program or nil
87 88 89
	prefix         string         // required prefix in unanchored matches
	prefixBytes    []byte         // prefix, as a []byte
	prefixComplete bool           // prefix is the entire regexp
90
	prefixRune     rune           // first rune in prefix
91
	prefixEnd      uint32         // pc for last rune in prefix
92 93
	cond           syntax.EmptyOp // empty-width conditions required at start of match
	numSubexp      int
94
	subexpNames    []string
95 96 97 98 99
	longest        bool

	// cache of machines for running regexp
	mu      sync.Mutex
	machine []*machine
100 101
}

102 103 104 105 106
// String returns the source text used to compile the regular expression.
func (re *Regexp) String() string {
	return re.expr
}

107 108 109 110 111 112 113 114 115 116
// Compile parses a regular expression and returns, if successful,
// a Regexp object that can be used to match against text.
//
// When matching against text, the regexp returns a match that
// begins as early as possible in the input (leftmost), and among those
// it chooses the one that a backtracking search would have found first.
// This so-called leftmost-first matching is the same semantics
// that Perl, Python, and other implementations use, although this
// package implements it without the expense of backtracking.
// For POSIX leftmost-longest matching, see CompilePOSIX.
117
func Compile(expr string) (*Regexp, error) {
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
	return compile(expr, syntax.Perl, false)
}

// CompilePOSIX is like Compile but restricts the regular expression
// to POSIX ERE (egrep) syntax and changes the match semantics to
// leftmost-longest.
//
// That is, when matching against text, the regexp returns a match that
// begins as early as possible in the input (leftmost), and among those
// it chooses a match that is as long as possible.
// This so-called leftmost-longest matching is the same semantics
// that early regular expression implementations used and that POSIX
// specifies.
//
// However, there can be multiple leftmost-longest matches, with different
// submatch choices, and here this package diverges from POSIX.
// Among the possible leftmost-longest matches, this package chooses
// the one that a backtracking search would have found first, while POSIX
// specifies that the match be chosen to maximize the length of the first
// subexpression, then the second, and so on from left to right.
// The POSIX rule is computationally prohibitive and not even well-defined.
// See http://swtch.com/~rsc/regexp/regexp2.html#posix for details.
140
func CompilePOSIX(expr string) (*Regexp, error) {
141 142 143
	return compile(expr, syntax.POSIX, true)
}

144 145 146 147 148 149 150 151
// Longest makes future searches prefer the leftmost-longest match.
// That is, when matching against text, the regexp returns a match that
// begins as early as possible in the input (leftmost), and among those
// it chooses a match that is as long as possible.
func (re *Regexp) Longest() {
	re.longest = true
}

152
func compile(expr string, mode syntax.Flags, longest bool) (*Regexp, error) {
153 154 155 156 157
	re, err := syntax.Parse(expr, mode)
	if err != nil {
		return nil, err
	}
	maxCap := re.MaxCap()
158 159
	capNames := re.CapNames()

160 161 162 163 164 165
	re = re.Simplify()
	prog, err := syntax.Compile(re)
	if err != nil {
		return nil, err
	}
	regexp := &Regexp{
166 167
		expr:        expr,
		prog:        prog,
168
		onepass:     compileOnePass(prog),
169 170 171 172
		numSubexp:   maxCap,
		subexpNames: capNames,
		cond:        prog.StartCond(),
		longest:     longest,
173
	}
174 175 176 177 178
	if regexp.onepass == notOnePass {
		regexp.prefix, regexp.prefixComplete = prog.Prefix()
	} else {
		regexp.prefix, regexp.prefixComplete, regexp.prefixEnd = onePassPrefix(prog)
	}
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
	if regexp.prefix != "" {
		// TODO(rsc): Remove this allocation by adding
		// IndexString to package bytes.
		regexp.prefixBytes = []byte(regexp.prefix)
		regexp.prefixRune, _ = utf8.DecodeRuneInString(regexp.prefix)
	}
	return regexp, nil
}

// get returns a machine to use for matching re.
// It uses the re's machine cache if possible, to avoid
// unnecessary allocation.
func (re *Regexp) get() *machine {
	re.mu.Lock()
	if n := len(re.machine); n > 0 {
		z := re.machine[n-1]
		re.machine = re.machine[:n-1]
		re.mu.Unlock()
		return z
	}
	re.mu.Unlock()
200
	z := progMachine(re.prog, re.onepass)
201 202 203 204 205 206 207 208 209 210 211 212
	z.re = re
	return z
}

// put returns a machine to the re's machine cache.
// There is no attempt to limit the size of the cache, so it will
// grow to the maximum number of simultaneous matches
// run using re.  (The cache empties when re gets garbage collected.)
func (re *Regexp) put(z *machine) {
	re.mu.Lock()
	re.machine = append(re.machine, z)
	re.mu.Unlock()
213 214 215 216 217 218 219 220
}

// MustCompile is like Compile but panics if the expression cannot be parsed.
// It simplifies safe initialization of global variables holding compiled regular
// expressions.
func MustCompile(str string) *Regexp {
	regexp, error := Compile(str)
	if error != nil {
221
		panic(`regexp: Compile(` + quote(str) + `): ` + error.Error())
222 223 224 225
	}
	return regexp
}

226 227 228 229 230 231
// MustCompilePOSIX is like CompilePOSIX but panics if the expression cannot be parsed.
// It simplifies safe initialization of global variables holding compiled regular
// expressions.
func MustCompilePOSIX(str string) *Regexp {
	regexp, error := CompilePOSIX(str)
	if error != nil {
232
		panic(`regexp: CompilePOSIX(` + quote(str) + `): ` + error.Error())
233
	}
234
	return regexp
235 236
}

237 238 239
func quote(s string) string {
	if strconv.CanBackquote(s) {
		return "`" + s + "`"
240
	}
241
	return strconv.Quote(s)
242 243
}

244 245 246
// NumSubexp returns the number of parenthesized subexpressions in this Regexp.
func (re *Regexp) NumSubexp() int {
	return re.numSubexp
247 248
}

249 250 251 252 253 254 255 256 257
// SubexpNames returns the names of the parenthesized subexpressions
// in this Regexp.  The name for the first sub-expression is names[1],
// so that if m is a match slice, the name for m[i] is SubexpNames()[i].
// Since the Regexp as a whole cannot be named, names[0] is always
// the empty string.  The slice should not be modified.
func (re *Regexp) SubexpNames() []string {
	return re.subexpNames
}

258
const endOfText rune = -1
259

260 261 262
// input abstracts different representations of the input text. It provides
// one-character lookahead.
type input interface {
263 264
	step(pos int) (r rune, width int) // advance one rune
	canCheckPrefix() bool             // can we look ahead without losing info?
265 266
	hasPrefix(re *Regexp) bool
	index(re *Regexp, pos int) int
267
	context(pos int) syntax.EmptyOp
268 269 270 271 272 273 274
}

// inputString scans a string.
type inputString struct {
	str string
}

275
func (i *inputString) step(pos int) (rune, int) {
276
	if pos < len(i.str) {
277 278
		c := i.str[pos]
		if c < utf8.RuneSelf {
279
			return rune(c), 1
280 281
		}
		return utf8.DecodeRuneInString(i.str[pos:])
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
	}
	return endOfText, 0
}

func (i *inputString) canCheckPrefix() bool {
	return true
}

func (i *inputString) hasPrefix(re *Regexp) bool {
	return strings.HasPrefix(i.str, re.prefix)
}

func (i *inputString) index(re *Regexp, pos int) int {
	return strings.Index(i.str[pos:], re.prefix)
}

298
func (i *inputString) context(pos int) syntax.EmptyOp {
299
	r1, r2 := endOfText, endOfText
300 301 302 303 304 305 306 307 308
	if pos > 0 && pos <= len(i.str) {
		r1, _ = utf8.DecodeLastRuneInString(i.str[:pos])
	}
	if pos < len(i.str) {
		r2, _ = utf8.DecodeRuneInString(i.str[pos:])
	}
	return syntax.EmptyOpContext(r1, r2)
}

309 310 311 312 313
// inputBytes scans a byte slice.
type inputBytes struct {
	str []byte
}

314
func (i *inputBytes) step(pos int) (rune, int) {
315
	if pos < len(i.str) {
316 317
		c := i.str[pos]
		if c < utf8.RuneSelf {
318
			return rune(c), 1
319 320
		}
		return utf8.DecodeRune(i.str[pos:])
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
	}
	return endOfText, 0
}

func (i *inputBytes) canCheckPrefix() bool {
	return true
}

func (i *inputBytes) hasPrefix(re *Regexp) bool {
	return bytes.HasPrefix(i.str, re.prefixBytes)
}

func (i *inputBytes) index(re *Regexp, pos int) int {
	return bytes.Index(i.str[pos:], re.prefixBytes)
}

337
func (i *inputBytes) context(pos int) syntax.EmptyOp {
338
	r1, r2 := endOfText, endOfText
339 340 341 342 343 344 345 346 347
	if pos > 0 && pos <= len(i.str) {
		r1, _ = utf8.DecodeLastRune(i.str[:pos])
	}
	if pos < len(i.str) {
		r2, _ = utf8.DecodeRune(i.str[pos:])
	}
	return syntax.EmptyOpContext(r1, r2)
}

348 349 350 351 352 353 354
// inputReader scans a RuneReader.
type inputReader struct {
	r     io.RuneReader
	atEOT bool
	pos   int
}

355
func (i *inputReader) step(pos int) (rune, int) {
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
	if !i.atEOT && pos != i.pos {
		return endOfText, 0

	}
	r, w, err := i.r.ReadRune()
	if err != nil {
		i.atEOT = true
		return endOfText, 0
	}
	i.pos += w
	return r, w
}

func (i *inputReader) canCheckPrefix() bool {
	return false
}

func (i *inputReader) hasPrefix(re *Regexp) bool {
	return false
}

func (i *inputReader) index(re *Regexp, pos int) int {
	return -1
}

381 382
func (i *inputReader) context(pos int) syntax.EmptyOp {
	return 0
383 384
}

385 386 387 388
// LiteralPrefix returns a literal string that must begin any match
// of the regular expression re.  It returns the boolean true if the
// literal string comprises the entire regular expression.
func (re *Regexp) LiteralPrefix() (prefix string, complete bool) {
389
	return re.prefix, re.prefixComplete
390 391
}

392 393
// MatchReader reports whether the Regexp matches the text read by the
// RuneReader.
394
func (re *Regexp) MatchReader(r io.RuneReader) bool {
395
	return re.doExecute(r, nil, "", 0, 0) != nil
396 397
}

398
// MatchString reports whether the Regexp matches the string s.
399
func (re *Regexp) MatchString(s string) bool {
400
	return re.doExecute(nil, nil, s, 0, 0) != nil
401
}
402

403
// Match reports whether the Regexp matches the byte slice b.
404
func (re *Regexp) Match(b []byte) bool {
405
	return re.doExecute(nil, b, "", 0, 0) != nil
406
}
407

408 409 410
// MatchReader checks whether a textual regular expression matches the text
// read by the RuneReader.  More complicated queries need to use Compile and
// the full Regexp interface.
411
func MatchReader(pattern string, r io.RuneReader) (matched bool, err error) {
412 413 414 415 416 417
	re, err := Compile(pattern)
	if err != nil {
		return false, err
	}
	return re.MatchReader(r), nil
}
418 419 420 421

// MatchString checks whether a textual regular expression
// matches a string.  More complicated queries need
// to use Compile and the full Regexp interface.
422
func MatchString(pattern string, s string) (matched bool, err error) {
423 424 425 426 427 428 429 430 431 432
	re, err := Compile(pattern)
	if err != nil {
		return false, err
	}
	return re.MatchString(s), nil
}

// Match checks whether a textual regular expression
// matches a byte slice.  More complicated queries need
// to use Compile and the full Regexp interface.
433
func Match(pattern string, b []byte) (matched bool, err error) {
434 435 436 437 438 439 440
	re, err := Compile(pattern)
	if err != nil {
		return false, err
	}
	return re.Match(b), nil
}

441 442 443
// ReplaceAllString returns a copy of src, replacing matches of the Regexp
// with the replacement string repl.  Inside repl, $ signs are interpreted as
// in Expand, so for instance $1 represents the text of the first submatch.
444
func (re *Regexp) ReplaceAllString(src, repl string) string {
445 446 447 448 449 450 451 452 453 454
	n := 2
	if strings.Index(repl, "$") >= 0 {
		n = 2 * (re.numSubexp + 1)
	}
	b := re.replaceAll(nil, src, n, func(dst []byte, match []int) []byte {
		return re.expand(dst, repl, nil, src, match)
	})
	return string(b)
}

455
// ReplaceAllLiteralString returns a copy of src, replacing matches of the Regexp
456 457 458 459 460 461
// with the replacement string repl.  The replacement repl is substituted directly,
// without using Expand.
func (re *Regexp) ReplaceAllLiteralString(src, repl string) string {
	return string(re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
		return append(dst, repl...)
	}))
462 463
}

464
// ReplaceAllStringFunc returns a copy of src in which all matches of the
465
// Regexp have been replaced by the return value of function repl applied
466 467
// to the matched substring.  The replacement returned by repl is substituted
// directly, without using Expand.
468
func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string {
469 470 471 472 473 474 475
	b := re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
		return append(dst, repl(src[match[0]:match[1]])...)
	})
	return string(b)
}

func (re *Regexp) replaceAll(bsrc []byte, src string, nmatch int, repl func(dst []byte, m []int) []byte) []byte {
476 477
	lastMatchEnd := 0 // end position of the most recent match
	searchPos := 0    // position where we next look for a match
478 479 480 481 482 483 484 485 486
	var buf []byte
	var endPos int
	if bsrc != nil {
		endPos = len(bsrc)
	} else {
		endPos = len(src)
	}
	for searchPos <= endPos {
		a := re.doExecute(nil, bsrc, src, searchPos, nmatch)
487 488 489 490 491
		if len(a) == 0 {
			break // no more matches
		}

		// Copy the unmatched characters before this match.
492 493 494 495 496
		if bsrc != nil {
			buf = append(buf, bsrc[lastMatchEnd:a[0]]...)
		} else {
			buf = append(buf, src[lastMatchEnd:a[0]]...)
		}
497 498 499 500 501 502

		// Now insert a copy of the replacement string, but not for a
		// match of the empty string immediately after another match.
		// (Otherwise, we get double replacement for patterns that
		// match both empty and nonempty strings.)
		if a[1] > lastMatchEnd || a[0] == 0 {
503
			buf = repl(buf, a)
504 505 506 507
		}
		lastMatchEnd = a[1]

		// Advance past this match; always advance at least one character.
508 509 510 511 512 513
		var width int
		if bsrc != nil {
			_, width = utf8.DecodeRune(bsrc[searchPos:])
		} else {
			_, width = utf8.DecodeRuneInString(src[searchPos:])
		}
514 515 516 517 518 519 520 521 522 523 524 525
		if searchPos+width > a[1] {
			searchPos += width
		} else if searchPos+1 > a[1] {
			// This clause is only needed at the end of the input
			// string.  In that case, DecodeRuneInString returns width=0.
			searchPos++
		} else {
			searchPos = a[1]
		}
	}

	// Copy the unmatched characters after the last match.
526 527 528 529 530
	if bsrc != nil {
		buf = append(buf, bsrc[lastMatchEnd:]...)
	} else {
		buf = append(buf, src[lastMatchEnd:]...)
	}
531

532
	return buf
533 534
}

535
// ReplaceAll returns a copy of src, replacing matches of the Regexp
536
// with the replacement text repl.  Inside repl, $ signs are interpreted as
537
// in Expand, so for instance $1 represents the text of the first submatch.
538
func (re *Regexp) ReplaceAll(src, repl []byte) []byte {
539 540 541 542 543 544 545 546
	n := 2
	if bytes.IndexByte(repl, '$') >= 0 {
		n = 2 * (re.numSubexp + 1)
	}
	srepl := ""
	b := re.replaceAll(src, "", n, func(dst []byte, match []int) []byte {
		if len(srepl) != len(repl) {
			srepl = string(repl)
547
		}
548 549 550 551
		return re.expand(dst, srepl, src, "", match)
	})
	return b
}
552

553 554 555 556 557 558 559 560
// ReplaceAllLiteral returns a copy of src, replacing matches of the Regexp
// with the replacement bytes repl.  The replacement repl is substituted directly,
// without using Expand.
func (re *Regexp) ReplaceAllLiteral(src, repl []byte) []byte {
	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
		return append(dst, repl...)
	})
}
561

562
// ReplaceAllFunc returns a copy of src in which all matches of the
563
// Regexp have been replaced by the return value of function repl applied
564 565 566 567 568 569
// to the matched byte slice.  The replacement returned by repl is substituted
// directly, without using Expand.
func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte {
	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
		return append(dst, repl(src[match[0]:match[1]])...)
	})
570 571
}

572 573 574 575 576 577
var specialBytes = []byte(`\.+*?()|[]{}^$`)

func special(b byte) bool {
	return bytes.IndexByte(specialBytes, b) >= 0
}

578 579 580 581 582 583 584 585 586
// QuoteMeta returns a string that quotes all regular expression metacharacters
// inside the argument text; the returned string is a regular expression matching
// the literal text.  For example, QuoteMeta(`[foo]`) returns `\[foo\]`.
func QuoteMeta(s string) string {
	b := make([]byte, 2*len(s))

	// A byte loop is correct because all metacharacters are ASCII.
	j := 0
	for i := 0; i < len(s); i++ {
587
		if special(s[i]) {
588 589 590 591 592 593 594 595 596
			b[j] = '\\'
			j++
		}
		b[j] = s[i]
		j++
	}
	return string(b[0:j])
}

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
// The number of capture values in the program may correspond
// to fewer capturing expressions than are in the regexp.
// For example, "(a){0}" turns into an empty program, so the
// maximum capture in the program is 0 but we need to return
// an expression for \1.  Pad appends -1s to the slice a as needed.
func (re *Regexp) pad(a []int) []int {
	if a == nil {
		// No match.
		return nil
	}
	n := (1 + re.numSubexp) * 2
	for len(a) < n {
		a = append(a, -1)
	}
	return a
}

614 615 616 617 618 619 620 621 622 623
// Find matches in slice b if b is non-nil, otherwise find matches in string s.
func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) {
	var end int
	if b == nil {
		end = len(s)
	} else {
		end = len(b)
	}

	for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; {
624
		matches := re.doExecute(nil, b, s, pos, re.prog.NumCap)
625 626 627 628 629 630 631 632 633 634 635 636 637
		if len(matches) == 0 {
			break
		}

		accept := true
		if matches[1] == pos {
			// We've found an empty match.
			if matches[0] == prevMatchEnd {
				// We don't allow an empty match right
				// after a previous match, so ignore it.
				accept = false
			}
			var width int
638
			// TODO: use step()
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
			if b == nil {
				_, width = utf8.DecodeRuneInString(s[pos:end])
			} else {
				_, width = utf8.DecodeRune(b[pos:end])
			}
			if width > 0 {
				pos += width
			} else {
				pos = end + 1
			}
		} else {
			pos = matches[1]
		}
		prevMatchEnd = matches[1]

		if accept {
655
			deliver(re.pad(matches))
656 657 658 659 660 661 662 663
			i++
		}
	}
}

// Find returns a slice holding the text of the leftmost match in b of the regular expression.
// A return value of nil indicates no match.
func (re *Regexp) Find(b []byte) []byte {
664
	a := re.doExecute(nil, b, "", 0, 2)
665 666 667 668 669 670 671 672 673 674 675
	if a == nil {
		return nil
	}
	return b[a[0]:a[1]]
}

// FindIndex returns a two-element slice of integers defining the location of
// the leftmost match in b of the regular expression.  The match itself is at
// b[loc[0]:loc[1]].
// A return value of nil indicates no match.
func (re *Regexp) FindIndex(b []byte) (loc []int) {
676
	a := re.doExecute(nil, b, "", 0, 2)
677 678 679 680 681 682 683 684 685 686 687 688
	if a == nil {
		return nil
	}
	return a[0:2]
}

// FindString returns a string holding the text of the leftmost match in s of the regular
// expression.  If there is no match, the return value is an empty string,
// but it will also be empty if the regular expression successfully matches
// an empty string.  Use FindStringIndex or FindStringSubmatch if it is
// necessary to distinguish these cases.
func (re *Regexp) FindString(s string) string {
689
	a := re.doExecute(nil, nil, s, 0, 2)
690 691 692 693 694 695 696 697 698 699
	if a == nil {
		return ""
	}
	return s[a[0]:a[1]]
}

// FindStringIndex returns a two-element slice of integers defining the
// location of the leftmost match in s of the regular expression.  The match
// itself is at s[loc[0]:loc[1]].
// A return value of nil indicates no match.
700
func (re *Regexp) FindStringIndex(s string) (loc []int) {
701
	a := re.doExecute(nil, nil, s, 0, 2)
702 703 704 705 706 707 708 709
	if a == nil {
		return nil
	}
	return a[0:2]
}

// FindReaderIndex returns a two-element slice of integers defining the
// location of the leftmost match of the regular expression in text read from
710 711 712
// the RuneReader.  The match text was found in the input stream at
// byte offset loc[0] through loc[1]-1.
// A return value of nil indicates no match.
713
func (re *Regexp) FindReaderIndex(r io.RuneReader) (loc []int) {
714
	a := re.doExecute(r, nil, "", 0, 2)
715 716 717 718 719 720 721 722 723 724 725 726
	if a == nil {
		return nil
	}
	return a[0:2]
}

// FindSubmatch returns a slice of slices holding the text of the leftmost
// match of the regular expression in b and the matches, if any, of its
// subexpressions, as defined by the 'Submatch' descriptions in the package
// comment.
// A return value of nil indicates no match.
func (re *Regexp) FindSubmatch(b []byte) [][]byte {
727
	a := re.doExecute(nil, b, "", 0, re.prog.NumCap)
728 729 730
	if a == nil {
		return nil
	}
731
	ret := make([][]byte, 1+re.numSubexp)
732
	for i := range ret {
733
		if 2*i < len(a) && a[2*i] >= 0 {
734 735 736 737 738 739
			ret[i] = b[a[2*i]:a[2*i+1]]
		}
	}
	return ret
}

740 741 742 743
// Expand appends template to dst and returns the result; during the
// append, Expand replaces variables in the template with corresponding
// matches drawn from src.  The match slice should have been returned by
// FindSubmatchIndex.
744
//
745 746 747 748 749 750
// In the template, a variable is denoted by a substring of the form
// $name or ${name}, where name is a non-empty sequence of letters,
// digits, and underscores.  A purely numeric name like $1 refers to
// the submatch with the corresponding index; other names refer to
// capturing parentheses named with the (?P<name>...) syntax.  A
// reference to an out of range or unmatched index or a name that is not
751
// present in the regular expression is replaced with an empty slice.
752
//
753 754
// In the $name form, name is taken to be as long as possible: $1x is
// equivalent to ${1x}, not ${1}x, and, $10 is equivalent to ${10}, not ${1}0.
755
//
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
// To insert a literal $ in the output, use $$ in the template.
func (re *Regexp) Expand(dst []byte, template []byte, src []byte, match []int) []byte {
	return re.expand(dst, string(template), src, "", match)
}

// ExpandString is like Expand but the template and source are strings.
// It appends to and returns a byte slice in order to give the calling
// code control over allocation.
func (re *Regexp) ExpandString(dst []byte, template string, src string, match []int) []byte {
	return re.expand(dst, template, nil, src, match)
}

func (re *Regexp) expand(dst []byte, template string, bsrc []byte, src string, match []int) []byte {
	for len(template) > 0 {
		i := strings.Index(template, "$")
		if i < 0 {
			break
		}
		dst = append(dst, template[:i]...)
		template = template[i:]
		if len(template) > 1 && template[1] == '$' {
			// Treat $$ as $.
			dst = append(dst, '$')
			template = template[2:]
			continue
		}
		name, num, rest, ok := extract(template)
		if !ok {
			// Malformed; treat $ as raw text.
			dst = append(dst, '$')
			template = template[1:]
			continue
		}
		template = rest
		if num >= 0 {
791
			if 2*num+1 < len(match) && match[2*num] >= 0 {
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
				if bsrc != nil {
					dst = append(dst, bsrc[match[2*num]:match[2*num+1]]...)
				} else {
					dst = append(dst, src[match[2*num]:match[2*num+1]]...)
				}
			}
		} else {
			for i, namei := range re.subexpNames {
				if name == namei && 2*i+1 < len(match) && match[2*i] >= 0 {
					if bsrc != nil {
						dst = append(dst, bsrc[match[2*i]:match[2*i+1]]...)
					} else {
						dst = append(dst, src[match[2*i]:match[2*i+1]]...)
					}
					break
				}
			}
		}
	}
	dst = append(dst, template...)
	return dst
}

// extract returns the name from a leading "$name" or "${name}" in str.
// If it is a number, extract returns num set to that number; otherwise num = -1.
func extract(str string) (name string, num int, rest string, ok bool) {
	if len(str) < 2 || str[0] != '$' {
		return
	}
	brace := false
	if str[1] == '{' {
		brace = true
		str = str[2:]
	} else {
		str = str[1:]
	}
	i := 0
	for i < len(str) {
		rune, size := utf8.DecodeRuneInString(str[i:])
		if !unicode.IsLetter(rune) && !unicode.IsDigit(rune) && rune != '_' {
			break
		}
		i += size
	}
	if i == 0 {
		// empty name is not okay
		return
	}
	name = str[:i]
	if brace {
		if i >= len(str) || str[i] != '}' {
			// missing closing brace
			return
		}
		i++
	}

	// Parse number.
	num = 0
	for i := 0; i < len(name); i++ {
		if name[i] < '0' || '9' < name[i] || num >= 1e8 {
			num = -1
			break
		}
		num = num*10 + int(name[i]) - '0'
	}
	// Disallow leading zeros.
	if name[0] == '0' && len(name) > 1 {
		num = -1
	}

	rest = str[i:]
	ok = true
	return
}

868 869 870 871 872 873
// FindSubmatchIndex returns a slice holding the index pairs identifying the
// leftmost match of the regular expression in b and the matches, if any, of
// its subexpressions, as defined by the 'Submatch' and 'Index' descriptions
// in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindSubmatchIndex(b []byte) []int {
874
	return re.pad(re.doExecute(nil, b, "", 0, re.prog.NumCap))
875 876 877 878 879 880 881 882
}

// FindStringSubmatch returns a slice of strings holding the text of the
// leftmost match of the regular expression in s and the matches, if any, of
// its subexpressions, as defined by the 'Submatch' description in the
// package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindStringSubmatch(s string) []string {
883
	a := re.doExecute(nil, nil, s, 0, re.prog.NumCap)
884 885 886
	if a == nil {
		return nil
	}
887
	ret := make([]string, 1+re.numSubexp)
888
	for i := range ret {
889
		if 2*i < len(a) && a[2*i] >= 0 {
890 891 892 893 894 895 896 897 898 899 900 901
			ret[i] = s[a[2*i]:a[2*i+1]]
		}
	}
	return ret
}

// FindStringSubmatchIndex returns a slice holding the index pairs
// identifying the leftmost match of the regular expression in s and the
// matches, if any, of its subexpressions, as defined by the 'Submatch' and
// 'Index' descriptions in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindStringSubmatchIndex(s string) []int {
902
	return re.pad(re.doExecute(nil, nil, s, 0, re.prog.NumCap))
903 904 905 906 907 908 909 910
}

// FindReaderSubmatchIndex returns a slice holding the index pairs
// identifying the leftmost match of the regular expression of text read by
// the RuneReader, and the matches, if any, of its subexpressions, as defined
// by the 'Submatch' and 'Index' descriptions in the package comment.  A
// return value of nil indicates no match.
func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int {
911
	return re.pad(re.doExecute(r, nil, "", 0, re.prog.NumCap))
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
}

const startSize = 10 // The size at which to start a slice in the 'All' routines.

// FindAll is the 'All' version of Find; it returns a slice of all successive
// matches of the expression, as defined by the 'All' description in the
// package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAll(b []byte, n int) [][]byte {
	if n < 0 {
		n = len(b) + 1
	}
	result := make([][]byte, 0, startSize)
	re.allMatches("", b, n, func(match []int) {
		result = append(result, b[match[0]:match[1]])
	})
	if len(result) == 0 {
		return nil
	}
	return result
}

// FindAllIndex is the 'All' version of FindIndex; it returns a slice of all
// successive matches of the expression, as defined by the 'All' description
// in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllIndex(b []byte, n int) [][]int {
	if n < 0 {
		n = len(b) + 1
	}
	result := make([][]int, 0, startSize)
	re.allMatches("", b, n, func(match []int) {
		result = append(result, match[0:2])
	})
	if len(result) == 0 {
		return nil
	}
	return result
}

// FindAllString is the 'All' version of FindString; it returns a slice of all
// successive matches of the expression, as defined by the 'All' description
// in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllString(s string, n int) []string {
	if n < 0 {
		n = len(s) + 1
	}
	result := make([]string, 0, startSize)
	re.allMatches(s, nil, n, func(match []int) {
		result = append(result, s[match[0]:match[1]])
	})
	if len(result) == 0 {
		return nil
	}
	return result
}

// FindAllStringIndex is the 'All' version of FindStringIndex; it returns a
// slice of all successive matches of the expression, as defined by the 'All'
// description in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllStringIndex(s string, n int) [][]int {
	if n < 0 {
		n = len(s) + 1
	}
	result := make([][]int, 0, startSize)
	re.allMatches(s, nil, n, func(match []int) {
		result = append(result, match[0:2])
	})
	if len(result) == 0 {
		return nil
	}
	return result
}

// FindAllSubmatch is the 'All' version of FindSubmatch; it returns a slice
// of all successive matches of the expression, as defined by the 'All'
// description in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllSubmatch(b []byte, n int) [][][]byte {
	if n < 0 {
		n = len(b) + 1
	}
	result := make([][][]byte, 0, startSize)
	re.allMatches("", b, n, func(match []int) {
		slice := make([][]byte, len(match)/2)
		for j := range slice {
			if match[2*j] >= 0 {
				slice[j] = b[match[2*j]:match[2*j+1]]
			}
		}
		result = append(result, slice)
	})
	if len(result) == 0 {
		return nil
	}
	return result
}

// FindAllSubmatchIndex is the 'All' version of FindSubmatchIndex; it returns
// a slice of all successive matches of the expression, as defined by the
// 'All' description in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllSubmatchIndex(b []byte, n int) [][]int {
	if n < 0 {
		n = len(b) + 1
	}
	result := make([][]int, 0, startSize)
	re.allMatches("", b, n, func(match []int) {
		result = append(result, match)
	})
	if len(result) == 0 {
		return nil
	}
	return result
}

// FindAllStringSubmatch is the 'All' version of FindStringSubmatch; it
// returns a slice of all successive matches of the expression, as defined by
// the 'All' description in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllStringSubmatch(s string, n int) [][]string {
	if n < 0 {
		n = len(s) + 1
	}
	result := make([][]string, 0, startSize)
	re.allMatches(s, nil, n, func(match []int) {
		slice := make([]string, len(match)/2)
		for j := range slice {
			if match[2*j] >= 0 {
				slice[j] = s[match[2*j]:match[2*j+1]]
			}
		}
		result = append(result, slice)
	})
	if len(result) == 0 {
		return nil
	}
	return result
}

// FindAllStringSubmatchIndex is the 'All' version of
// FindStringSubmatchIndex; it returns a slice of all successive matches of
// the expression, as defined by the 'All' description in the package
// comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllStringSubmatchIndex(s string, n int) [][]int {
	if n < 0 {
		n = len(s) + 1
	}
	result := make([][]int, 0, startSize)
	re.allMatches(s, nil, n, func(match []int) {
		result = append(result, match)
	})
	if len(result) == 0 {
		return nil
	}
	return result
}
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120

// Split slices s into substrings separated by the expression and returns a slice of
// the substrings between those expression matches.
//
// The slice returned by this method consists of all the substrings of s
// not contained in the slice returned by FindAllString. When called on an expression
// that contains no metacharacters, it is equivalent to strings.SplitN.
//
// Example:
//   s := regexp.MustCompile("a*").Split("abaabaccadaaae", 5)
//   // s: ["", "b", "b", "c", "cadaaae"]
//
// The count determines the number of substrings to return:
//   n > 0: at most n substrings; the last substring will be the unsplit remainder.
//   n == 0: the result is nil (zero substrings)
//   n < 0: all substrings
func (re *Regexp) Split(s string, n int) []string {

	if n == 0 {
		return nil
	}

	if len(re.expr) > 0 && len(s) == 0 {
		return []string{""}
	}

	matches := re.FindAllStringIndex(s, n)
	strings := make([]string, 0, len(matches))

	beg := 0
	end := 0
	for _, match := range matches {
		if n > 0 && len(strings) >= n-1 {
			break
		}

		end = match[0]
		if match[1] != 0 {
			strings = append(strings, s[beg:end])
		}
		beg = match[1]
	}

	if end != len(s) {
		strings = append(strings, s[beg:])
	}

	return strings
}