dse.c 111 KB
Newer Older
1
/* RTL dead store elimination.
Jakub Jelinek committed
2
   Copyright (C) 2005-2015 Free Software Foundation, Inc.
3 4 5 6 7 8 9 10

   Contributed by Richard Sandiford <rsandifor@codesourcery.com>
   and Kenneth Zadeck <zadeck@naturalbridge.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
11
Software Foundation; either version 3, or (at your option) any later
12 13 14 15 16 17 18 19
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
20 21
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
22 23 24 25 26 27

#undef BASELINE

#include "config.h"
#include "system.h"
#include "coretypes.h"
28
#include "backend.h"
29
#include "predict.h"
30 31
#include "tree.h"
#include "gimple.h"
32
#include "rtl.h"
33
#include "df.h"
34 35
#include "alias.h"
#include "fold-const.h"
36
#include "stor-layout.h"
37
#include "tm_p.h"
38
#include "regs.h"
39
#include "regset.h"
40
#include "flags.h"
41
#include "cfgrtl.h"
42 43 44 45
#include "cselib.h"
#include "tree-pass.h"
#include "alloc-pool.h"
#include "insn-config.h"
46 47 48 49 50 51 52
#include "expmed.h"
#include "dojump.h"
#include "explow.h"
#include "calls.h"
#include "emit-rtl.h"
#include "varasm.h"
#include "stmt.h"
53 54
#include "expr.h"
#include "recog.h"
55
#include "insn-codes.h"
56
#include "optabs.h"
57
#include "dbgcnt.h"
58
#include "target.h"
59
#include "params.h"
60
#include "internal-fn.h"
61
#include "gimple-ssa.h"
62
#include "rtl-iter.h"
63
#include "cfgcleanup.h"
64 65

/* This file contains three techniques for performing Dead Store
H.J. Lu committed
66
   Elimination (dse).
67 68 69 70 71

   * The first technique performs dse locally on any base address.  It
   is based on the cselib which is a local value numbering technique.
   This technique is local to a basic block but deals with a fairly
   general addresses.
H.J. Lu committed
72

73 74 75 76 77
   * The second technique performs dse globally but is restricted to
   base addresses that are either constant or are relative to the
   frame_pointer.

   * The third technique, (which is only done after register allocation)
78
   processes the spill slots.  This differs from the second
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
   technique because it takes advantage of the fact that spilling is
   completely free from the effects of aliasing.

   Logically, dse is a backwards dataflow problem.  A store can be
   deleted if it if cannot be reached in the backward direction by any
   use of the value being stored.  However, the local technique uses a
   forwards scan of the basic block because cselib requires that the
   block be processed in that order.

   The pass is logically broken into 7 steps:

   0) Initialization.

   1) The local algorithm, as well as scanning the insns for the two
   global algorithms.

   2) Analysis to see if the global algs are necessary.  In the case
   of stores base on a constant address, there must be at least two
   stores to that address, to make it possible to delete some of the
   stores.  In the case of stores off of the frame or spill related
   stores, only one store to an address is necessary because those
   stores die at the end of the function.

H.J. Lu committed
102
   3) Set up the global dataflow equations based on processing the
103 104 105 106 107 108 109
   info parsed in the first step.

   4) Solve the dataflow equations.

   5) Delete the insns that the global analysis has indicated are
   unnecessary.

Joseph Myers committed
110
   6) Delete insns that store the same value as preceding store
111 112 113
   where the earlier store couldn't be eliminated.

   7) Cleanup.
114 115 116 117 118

   This step uses cselib and canon_rtx to build the largest expression
   possible for each address.  This pass is a forwards pass through
   each basic block.  From the point of view of the global technique,
   the first pass could examine a block in either direction.  The
119
   forwards ordering is to accommodate cselib.
120

121
   We make a simplifying assumption: addresses fall into four broad
122 123 124 125 126 127 128 129
   categories:

   1) base has rtx_varies_p == false, offset is constant.
   2) base has rtx_varies_p == false, offset variable.
   3) base has rtx_varies_p == true, offset constant.
   4) base has rtx_varies_p == true, offset variable.

   The local passes are able to process all 4 kinds of addresses.  The
130
   global pass only handles 1).
131 132 133 134 135

   The global problem is formulated as follows:

     A store, S1, to address A, where A is not relative to the stack
     frame, can be eliminated if all paths from S1 to the end of the
136
     function contain another store to A before a read to A.
137 138

     If the address A is relative to the stack frame, a store S2 to A
139
     can be eliminated if there are no paths from S2 that reach the
140
     end of the function that read A before another store to A.  In
141
     this case S2 can be deleted if there are paths from S2 to the
142 143 144 145 146 147 148 149 150 151
     end of the function that have no reads or writes to A.  This
     second case allows stores to the stack frame to be deleted that
     would otherwise die when the function returns.  This cannot be
     done if stores_off_frame_dead_at_return is not true.  See the doc
     for that variable for when this variable is false.

     The global problem is formulated as a backwards set union
     dataflow problem where the stores are the gens and reads are the
     kills.  Set union problems are rare and require some special
     handling given our representation of bitmaps.  A straightforward
152
     implementation requires a lot of bitmaps filled with 1s.
153 154 155
     These are expensive and cumbersome in our bitmap formulation so
     care has been taken to avoid large vectors filled with 1s.  See
     the comments in bb_info and in the dataflow confluence functions
H.J. Lu committed
156
     for details.
157 158

   There are two places for further enhancements to this algorithm:
H.J. Lu committed
159

160 161 162 163 164 165 166
   1) The original dse which was embedded in a pass called flow also
   did local address forwarding.  For example in

   A <- r100
   ... <- A

   flow would replace the right hand side of the second insn with a
167
   reference to r100.  Most of the information is available to add this
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
   to this pass.  It has not done it because it is a lot of work in
   the case that either r100 is assigned to between the first and
   second insn and/or the second insn is a load of part of the value
   stored by the first insn.

   insn 5 in gcc.c-torture/compile/990203-1.c simple case.
   insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
   insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
   insn 44 in gcc.c-torture/execute/20010910-1.c simple case.

   2) The cleaning up of spill code is quite profitable.  It currently
   depends on reading tea leaves and chicken entrails left by reload.
   This pass depends on reload creating a singleton alias set for each
   spill slot and telling the next dse pass which of these alias sets
   are the singletons.  Rather than analyze the addresses of the
   spills, dse's spill processing just does analysis of the loads and
   stores that use those alias sets.  There are three cases where this
   falls short:

     a) Reload sometimes creates the slot for one mode of access, and
     then inserts loads and/or stores for a smaller mode.  In this
     case, the current code just punts on the slot.  The proper thing
     to do is to back out and use one bit vector position for each
     byte of the entity associated with the slot.  This depends on
     KNOWING that reload always generates the accesses for each of the
     bytes in some canonical (read that easy to understand several
     passes after reload happens) way.

     b) Reload sometimes decides that spill slot it allocated was not
     large enough for the mode and goes back and allocates more slots
     with the same mode and alias set.  The backout in this case is a
     little more graceful than (a).  In this case the slot is unmarked
     as being a spill slot and if final address comes out to be based
H.J. Lu committed
201
     off the frame pointer, the global algorithm handles this slot.
202 203 204 205

     c) For any pass that may prespill, there is currently no
     mechanism to tell the dse pass that the slot being used has the
     special properties that reload uses.  It may be that all that is
206
     required is to have those passes make the same calls that reload
207 208 209 210 211 212 213 214 215
     does, assuming that the alias sets can be manipulated in the same
     way.  */

/* There are limits to the size of constant offsets we model for the
   global problem.  There are certainly test cases, that exceed this
   limit, however, it is unlikely that there are important programs
   that really have constant offsets this size.  */
#define MAX_OFFSET (64 * 1024)

216 217 218 219 220 221 222 223 224 225 226 227 228
/* Obstack for the DSE dataflow bitmaps.  We don't want to put these
   on the default obstack because these bitmaps can grow quite large
   (~2GB for the small (!) test case of PR54146) and we'll hold on to
   all that memory until the end of the compiler run.
   As a bonus, delete_tree_live_info can destroy all the bitmaps by just
   releasing the whole obstack.  */
static bitmap_obstack dse_bitmap_obstack;

/* Obstack for other data.  As for above: Kinda nice to be able to
   throw it all away at the end in one big sweep.  */
static struct obstack dse_obstack;

/* Scratch bitmap for cselib's cselib_expand_value_rtx.  */
229
static bitmap scratch = NULL;
230

231
struct insn_info_type;
232 233

/* This structure holds information about a candidate store.  */
H.J. Lu committed
234
struct store_info
235 236 237 238 239
{

  /* False means this is a clobber.  */
  bool is_set;

240 241 242
  /* False if a single HOST_WIDE_INT bitmap is used for positions_needed.  */
  bool is_large;

243 244 245 246
  /* The id of the mem group of the base address.  If rtx_varies_p is
     true, this is -1.  Otherwise, it is the index into the group
     table.  */
  int group_id;
H.J. Lu committed
247

248 249 250 251 252 253
  /* This is the cselib value.  */
  cselib_val *cse_base;

  /* This canonized mem.  */
  rtx mem;

254
  /* Canonized MEM address for use by canon_true_dependence.  */
255 256 257
  rtx mem_addr;

  /* If this is non-zero, it is the alias set of a spill location.  */
258
  alias_set_type alias_set;
259 260 261

  /* The offset of the first and byte before the last byte associated
     with the operation.  */
262 263 264 265 266 267 268 269 270 271 272 273 274
  HOST_WIDE_INT begin, end;

  union
    {
      /* A bitmask as wide as the number of bytes in the word that
	 contains a 1 if the byte may be needed.  The store is unused if
	 all of the bits are 0.  This is used if IS_LARGE is false.  */
      unsigned HOST_WIDE_INT small_bitmask;

      struct
	{
	  /* A bitmap with one bit per byte.  Cleared bit means the position
	     is needed.  Used if IS_LARGE is false.  */
275
	  bitmap bmap;
276

277 278 279 280 281
	  /* Number of set bits (i.e. unneeded bytes) in BITMAP.  If it is
	     equal to END - BEGIN, the whole store is unused.  */
	  int count;
	} large;
    } positions_needed;
282 283 284 285 286 287 288

  /* The next store info for this insn.  */
  struct store_info *next;

  /* The right hand side of the store.  This is used if there is a
     subsequent reload of the mems address somewhere later in the
     basic block.  */
289 290 291 292 293 294 295 296 297
  rtx rhs;

  /* If rhs is or holds a constant, this contains that constant,
     otherwise NULL.  */
  rtx const_rhs;

  /* Set if this store stores the same constant value as REDUNDANT_REASON
     insn stored.  These aren't eliminated early, because doing that
     might prevent the earlier larger store to be eliminated.  */
298
  struct insn_info_type *redundant_reason;
299 300
};

301 302 303 304 305 306 307 308 309
/* Return a bitmask with the first N low bits set.  */

static unsigned HOST_WIDE_INT
lowpart_bitmask (int n)
{
  unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
  return mask >> (HOST_BITS_PER_WIDE_INT - n);
}

310
typedef struct store_info *store_info_t;
311 312 313 314 315
static pool_allocator<store_info> cse_store_info_pool ("cse_store_info_pool",
						       100);

static pool_allocator<store_info> rtx_store_info_pool ("rtx_store_info_pool",
						       100);
316 317 318

/* This structure holds information about a load.  These are only
   built for rtx bases.  */
319
struct read_info_type
320 321 322 323 324
{
  /* The id of the mem group of the base address.  */
  int group_id;

  /* If this is non-zero, it is the alias set of a spill location.  */
325
  alias_set_type alias_set;
326 327 328 329 330 331 332 333 334 335

  /* The offset of the first and byte after the last byte associated
     with the operation.  If begin == end == 0, the read did not have
     a constant offset.  */
  int begin, end;

  /* The mem being read.  */
  rtx mem;

  /* The next read_info for this insn.  */
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
  struct read_info_type *next;

  /* Pool allocation new operator.  */
  inline void *operator new (size_t)
  {
    return pool.allocate ();
  }

  /* Delete operator utilizing pool allocation.  */
  inline void operator delete (void *ptr)
  {
    pool.remove ((read_info_type *) ptr);
  }

  /* Memory allocation pool.  */
  static pool_allocator<read_info_type> pool;
352
};
353
typedef struct read_info_type *read_info_t;
354

355
pool_allocator<read_info_type> read_info_type::pool ("read_info_pool", 100);
356 357 358

/* One of these records is created for each insn.  */

359
struct insn_info_type
360 361 362 363 364 365 366 367 368 369 370 371 372
{
  /* Set true if the insn contains a store but the insn itself cannot
     be deleted.  This is set if the insn is a parallel and there is
     more than one non dead output or if the insn is in some way
     volatile.  */
  bool cannot_delete;

  /* This field is only used by the global algorithm.  It is set true
     if the insn contains any read of mem except for a (1).  This is
     also set if the insn is a call or has a clobber mem.  If the insn
     contains a wild read, the use_rec will be null.  */
  bool wild_read;

373 374 375 376 377
  /* This is true only for CALL instructions which could potentially read
     any non-frame memory location. This field is used by the global
     algorithm.  */
  bool non_frame_wild_read;

378 379
  /* This field is only used for the processing of const functions.
     These functions cannot read memory, but they can read the stack
380 381 382 383 384 385 386 387 388 389 390 391 392
     because that is where they may get their parms.  We need to be
     this conservative because, like the store motion pass, we don't
     consider CALL_INSN_FUNCTION_USAGE when processing call insns.
     Moreover, we need to distinguish two cases:
     1. Before reload (register elimination), the stores related to
	outgoing arguments are stack pointer based and thus deemed
	of non-constant base in this pass.  This requires special
	handling but also means that the frame pointer based stores
	need not be killed upon encountering a const function call.
     2. After reload, the stores related to outgoing arguments can be
	either stack pointer or hard frame pointer based.  This means
	that we have no other choice than also killing all the frame
	pointer based stores upon encountering a const function call.
393 394 395 396 397
     This field is set after reload for const function calls and before
     reload for const tail function calls on targets where arg pointer
     is the frame pointer.  Having this set is less severe than a wild
     read, it just means that all the frame related stores are killed
     rather than all the stores.  */
398 399 400 401
  bool frame_read;

  /* This field is only used for the processing of const functions.
     It is set if the insn may contain a stack pointer based store.  */
402
  bool stack_pointer_based;
403 404 405 406 407 408 409

  /* This is true if any of the sets within the store contains a
     cselib base.  Such stores can only be deleted by the local
     algorithm.  */
  bool contains_cselib_groups;

  /* The insn. */
David Malcolm committed
410
  rtx_insn *insn;
411 412 413 414 415

  /* The list of mem sets or mem clobbers that are contained in this
     insn.  If the insn is deletable, it contains only one mem set.
     But it could also contain clobbers.  Insns that contain more than
     one mem set are not deletable, but each of those mems are here in
416
     order to provide info to delete other insns.  */
417 418 419 420 421 422 423 424
  store_info_t store_rec;

  /* The linked list of mem uses in this insn.  Only the reads from
     rtx bases are listed here.  The reads to cselib bases are
     completely processed during the first scan and so are never
     created.  */
  read_info_t read_rec;

425 426 427 428 429 430 431
  /* The live fixed registers.  We assume only fixed registers can
     cause trouble by being clobbered from an expanded pattern;
     storing only the live fixed registers (rather than all registers)
     means less memory needs to be allocated / copied for the individual
     stores.  */
  regset fixed_regs_live;

432
  /* The prev insn in the basic block.  */
433
  struct insn_info_type * prev_insn;
434 435

  /* The linked list of insns that are in consideration for removal in
Joseph Myers committed
436
     the forwards pass through the basic block.  This pointer may be
437
     trash as it is not cleared when a wild read occurs.  The only
438
     time it is guaranteed to be correct is when the traversal starts
439
     at active_local_stores.  */
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
  struct insn_info_type * next_local_store;

  /* Pool allocation new operator.  */
  inline void *operator new (size_t)
  {
    return pool.allocate ();
  }

  /* Delete operator utilizing pool allocation.  */
  inline void operator delete (void *ptr)
  {
    pool.remove ((insn_info_type *) ptr);
  }

  /* Memory allocation pool.  */
  static pool_allocator<insn_info_type> pool;
456
};
457
typedef struct insn_info_type *insn_info_t;
458

459
pool_allocator<insn_info_type> insn_info_type::pool ("insn_info_pool", 100);
460 461

/* The linked list of stores that are under consideration in this
H.J. Lu committed
462
   basic block.  */
463
static insn_info_t active_local_stores;
464
static int active_local_stores_len;
465

466
struct dse_bb_info_type
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
{
  /* Pointer to the insn info for the last insn in the block.  These
     are linked so this is how all of the insns are reached.  During
     scanning this is the current insn being scanned.  */
  insn_info_t last_insn;

  /* The info for the global dataflow problem.  */


  /* This is set if the transfer function should and in the wild_read
     bitmap before applying the kill and gen sets.  That vector knocks
     out most of the bits in the bitmap and thus speeds up the
     operations.  */
  bool apply_wild_read;

482 483 484 485
  /* The following 4 bitvectors hold information about which positions
     of which stores are live or dead.  They are indexed by
     get_bitmap_index.  */

486 487
  /* The set of store positions that exist in this block before a wild read.  */
  bitmap gen;
H.J. Lu committed
488

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
  /* The set of load positions that exist in this block above the
     same position of a store.  */
  bitmap kill;

  /* The set of stores that reach the top of the block without being
     killed by a read.

     Do not represent the in if it is all ones.  Note that this is
     what the bitvector should logically be initialized to for a set
     intersection problem.  However, like the kill set, this is too
     expensive.  So initially, the in set will only be created for the
     exit block and any block that contains a wild read.  */
  bitmap in;

  /* The set of stores that reach the bottom of the block from it's
     successors.

     Do not represent the in if it is all ones.  Note that this is
     what the bitvector should logically be initialized to for a set
     intersection problem.  However, like the kill and in set, this is
     too expensive.  So what is done is that the confluence operator
     just initializes the vector from one of the out sets of the
     successors of the block.  */
  bitmap out;
513 514 515 516

  /* The following bitvector is indexed by the reg number.  It
     contains the set of regs that are live at the current instruction
     being processed.  While it contains info for all of the
517 518
     registers, only the hard registers are actually examined.  It is used
     to assure that shift and/or add sequences that are inserted do not
Joseph Myers committed
519
     accidentally clobber live hard regs.  */
520
  bitmap regs_live;
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535

  /* Pool allocation new operator.  */
  inline void *operator new (size_t)
  {
    return pool.allocate ();
  }

  /* Delete operator utilizing pool allocation.  */
  inline void operator delete (void *ptr)
  {
    pool.remove ((dse_bb_info_type *) ptr);
  }

  /* Memory allocation pool.  */
  static pool_allocator<dse_bb_info_type> pool;
536 537
};

538 539
typedef struct dse_bb_info_type *bb_info_t;
pool_allocator<dse_bb_info_type> dse_bb_info_type::pool ("bb_info_pool", 100);
540 541 542 543 544 545 546 547

/* Table to hold all bb_infos.  */
static bb_info_t *bb_table;

/* There is a group_info for each rtx base that is used to reference
   memory.  There are also not many of the rtx bases because they are
   very limited in scope.  */

H.J. Lu committed
548
struct group_info
549 550 551 552 553 554 555 556
{
  /* The actual base of the address.  */
  rtx rtx_base;

  /* The sequential id of the base.  This allows us to have a
     canonical ordering of these that is not based on addresses.  */
  int id;

557 558 559 560 561 562 563 564
  /* True if there are any positions that are to be processed
     globally.  */
  bool process_globally;

  /* True if the base of this group is either the frame_pointer or
     hard_frame_pointer.  */
  bool frame_related;

565 566 567
  /* A mem wrapped around the base pointer for the group in order to do
     read dependency.  It must be given BLKmode in order to encompass all
     the possible offsets from the base.  */
568
  rtx base_mem;
H.J. Lu committed
569

570 571
  /* Canonized version of base_mem's address.  */
  rtx canon_base_addr;
572 573

  /* These two sets of two bitmaps are used to keep track of how many
574
     stores are actually referencing that position from this base.  We
575
     only do this for rtx bases as this will be used to assign
576
     positions in the bitmaps for the global problem.  Bit N is set in
577 578 579 580 581 582 583 584 585 586 587 588 589 590
     store1 on the first store for offset N.  Bit N is set in store2
     for the second store to offset N.  This is all we need since we
     only care about offsets that have two or more stores for them.

     The "_n" suffix is for offsets less than 0 and the "_p" suffix is
     for 0 and greater offsets.

     There is one special case here, for stores into the stack frame,
     we will or store1 into store2 before deciding which stores look
     at globally.  This is because stores to the stack frame that have
     no other reads before the end of the function can also be
     deleted.  */
  bitmap store1_n, store1_p, store2_n, store2_p;

591 592 593 594 595
  /* These bitmaps keep track of offsets in this group escape this function.
     An offset escapes if it corresponds to a named variable whose
     addressable flag is set.  */
  bitmap escaped_n, escaped_p;

596
  /* The positions in this bitmap have the same assignments as the in,
597
     out, gen and kill bitmaps.  This bitmap is all zeros except for
598
     the positions that are occupied by stores for this group.  */
599 600 601
  bitmap group_kill;

  /* The offset_map is used to map the offsets from this base into
602
     positions in the global bitmaps.  It is only created after all of
603 604
     the all of stores have been scanned and we know which ones we
     care about.  */
H.J. Lu committed
605 606
  int *offset_map_n, *offset_map_p;
  int offset_map_size_n, offset_map_size_p;
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

  /* Pool allocation new operator.  */
  inline void *operator new (size_t)
  {
    return pool.allocate ();
  }

  /* Delete operator utilizing pool allocation.  */
  inline void operator delete (void *ptr)
  {
    pool.remove ((group_info *) ptr);
  }

  /* Memory allocation pool.  */
  static pool_allocator<group_info> pool;
622 623
};
typedef struct group_info *group_info_t;
624
typedef const struct group_info *const_group_info_t;
625 626

pool_allocator<group_info> group_info::pool ("rtx_group_info_pool", 100);
627 628 629 630 631

/* Index into the rtx_group_vec.  */
static int rtx_group_next_id;


632
static vec<group_info_t> rtx_group_vec;
633 634 635 636


/* This structure holds the set of changes that are being deferred
   when removing read operation.  See replace_read.  */
H.J. Lu committed
637
struct deferred_change
638 639 640 641 642 643 644 645 646
{

  /* The mem that is being replaced.  */
  rtx *loc;

  /* The reg it is being replaced with.  */
  rtx reg;

  struct deferred_change *next;
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661

  /* Pool allocation new operator.  */
  inline void *operator new (size_t)
  {
    return pool.allocate ();
  }

  /* Delete operator utilizing pool allocation.  */
  inline void operator delete (void *ptr)
  {
    pool.remove ((deferred_change *) ptr);
  }

  /* Memory allocation pool.  */
  static pool_allocator<deferred_change> pool;
662 663 664
};

typedef struct deferred_change *deferred_change_t;
665 666 667

pool_allocator<deferred_change> deferred_change::pool
  ("deferred_change_pool", 10);
668 669 670 671 672 673 674 675 676 677 678 679

static deferred_change_t deferred_change_list = NULL;

/* The group that holds all of the clear_alias_sets.  */
static group_info_t clear_alias_group;

/* The modes of the clear_alias_sets.  */
static htab_t clear_alias_mode_table;

/* Hash table element to look up the mode for an alias set.  */
struct clear_alias_mode_holder
{
680
  alias_set_type alias_set;
681
  machine_mode mode;
682 683
};

684
/* This is true except if cfun->stdarg -- i.e. we cannot do
685
   this for vararg functions because they play games with the frame.  */
686 687 688
static bool stores_off_frame_dead_at_return;

/* Counter for stats.  */
H.J. Lu committed
689 690 691 692
static int globally_deleted;
static int locally_deleted;
static int spill_deleted;

693 694
static bitmap all_blocks;

695 696 697
/* Locations that are killed by calls in the global phase.  */
static bitmap kill_on_calls;

698 699 700 701 702 703
/* The number of bits used in the global bitmaps.  */
static unsigned int current_position;

/*----------------------------------------------------------------------------
   Zeroth step.

H.J. Lu committed
704
   Initialization.
705 706 707 708 709 710
----------------------------------------------------------------------------*/


/* Find the entry associated with ALIAS_SET.  */

static struct clear_alias_mode_holder *
711
clear_alias_set_lookup (alias_set_type alias_set)
712 713 714
{
  struct clear_alias_mode_holder tmp_holder;
  void **slot;
H.J. Lu committed
715

716 717 718
  tmp_holder.alias_set = alias_set;
  slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
  gcc_assert (*slot);
H.J. Lu committed
719

720
  return (struct clear_alias_mode_holder *) *slot;
721 722 723 724 725 726
}


/* Hashtable callbacks for maintaining the "bases" field of
   store_group_info, given that the addresses are function invariants.  */

727
struct invariant_group_base_hasher : nofree_ptr_hash <group_info>
728
{
729 730
  static inline hashval_t hash (const group_info *);
  static inline bool equal (const group_info *, const group_info *);
731 732 733
};

inline bool
734 735
invariant_group_base_hasher::equal (const group_info *gi1,
				    const group_info *gi2)
736 737 738 739
{
  return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
}

740
inline hashval_t
741
invariant_group_base_hasher::hash (const group_info *gi)
742 743 744 745 746
{
  int do_not_record;
  return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
}

747
/* Tables of group_info structures, hashed by base value.  */
748
static hash_table<invariant_group_base_hasher> *rtx_group_table;
749

750 751 752 753 754 755

/* Get the GROUP for BASE.  Add a new group if it is not there.  */

static group_info_t
get_group_info (rtx base)
{
H.J. Lu committed
756 757
  struct group_info tmp_gi;
  group_info_t gi;
758
  group_info **slot;
759 760 761 762 763 764

  if (base)
    {
      /* Find the store_base_info structure for BASE, creating a new one
	 if necessary.  */
      tmp_gi.rtx_base = base;
765
      slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
766 767 768 769 770 771
      gi = (group_info_t) *slot;
    }
  else
    {
      if (!clear_alias_group)
	{
772
	  clear_alias_group = gi = new group_info;
773 774
	  memset (gi, 0, sizeof (struct group_info));
	  gi->id = rtx_group_next_id++;
775 776 777 778 779 780 781
	  gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
	  gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
	  gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
	  gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
	  gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
	  gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
	  gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
782 783 784 785 786
	  gi->process_globally = false;
	  gi->offset_map_size_n = 0;
	  gi->offset_map_size_p = 0;
	  gi->offset_map_n = NULL;
	  gi->offset_map_p = NULL;
787
	  rtx_group_vec.safe_push (gi);
788 789 790 791 792 793
	}
      return clear_alias_group;
    }

  if (gi == NULL)
    {
794
      *slot = gi = new group_info;
795 796
      gi->rtx_base = base;
      gi->id = rtx_group_next_id++;
797
      gi->base_mem = gen_rtx_MEM (BLKmode, base);
798
      gi->canon_base_addr = canon_rtx (base);
799 800 801 802 803 804 805
      gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
      gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
      gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
      gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
      gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
      gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
      gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
806
      gi->process_globally = false;
H.J. Lu committed
807
      gi->frame_related =
808 809 810 811 812
	(base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
      gi->offset_map_size_n = 0;
      gi->offset_map_size_p = 0;
      gi->offset_map_n = NULL;
      gi->offset_map_p = NULL;
813
      rtx_group_vec.safe_push (gi);
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
    }

  return gi;
}


/* Initialization of data structures.  */

static void
dse_step0 (void)
{
  locally_deleted = 0;
  globally_deleted = 0;
  spill_deleted = 0;

829 830 831 832 833
  bitmap_obstack_initialize (&dse_bitmap_obstack);
  gcc_obstack_init (&dse_obstack);

  scratch = BITMAP_ALLOC (&reg_obstack);
  kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
834 835


836
  rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
837

838
  bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
839 840
  rtx_group_next_id = 0;

841
  stores_off_frame_dead_at_return = !cfun->stdarg;
842 843

  init_alias_analysis ();
H.J. Lu committed
844

845
  clear_alias_group = NULL;
846 847 848 849 850 851 852 853
}



/*----------------------------------------------------------------------------
   First step.

   Scan all of the insns.  Any random ordering of the blocks is fine.
854
   Each block is scanned in forward order to accommodate cselib which
855 856 857 858 859
   is used to remove stores with non-constant bases.
----------------------------------------------------------------------------*/

/* Delete all of the store_info recs from INSN_INFO.  */

H.J. Lu committed
860
static void
861 862 863 864 865 866
free_store_info (insn_info_t insn_info)
{
  store_info_t store_info = insn_info->store_rec;
  while (store_info)
    {
      store_info_t next = store_info->next;
867
      if (store_info->is_large)
868
	BITMAP_FREE (store_info->positions_needed.large.bmap);
869
      if (store_info->cse_base)
870
	cse_store_info_pool.remove (store_info);
871
      else
872
	rtx_store_info_pool.remove (store_info);
873 874 875 876 877 878 879 880
      store_info = next;
    }

  insn_info->cannot_delete = true;
  insn_info->contains_cselib_groups = false;
  insn_info->store_rec = NULL;
}

881 882
typedef struct
{
883
  rtx_insn *first, *current;
884 885 886 887 888 889 890 891 892 893
  regset fixed_regs_live;
  bool failure;
} note_add_store_info;

/* Callback for emit_inc_dec_insn_before via note_stores.
   Check if a register is clobbered which is live afterwards.  */

static void
note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
{
894
  rtx_insn *insn;
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
  note_add_store_info *info = (note_add_store_info *) data;

  if (!REG_P (loc))
    return;

  /* If this register is referenced by the current or an earlier insn,
     that's OK.  E.g. this applies to the register that is being incremented
     with this addition.  */
  for (insn = info->first;
       insn != NEXT_INSN (info->current);
       insn = NEXT_INSN (insn))
    if (reg_referenced_p (loc, PATTERN (insn)))
      return;

  /* If we come here, we have a clobber of a register that's only OK
     if that register is not live.  If we don't have liveness information
     available, fail now.  */
  if (!info->fixed_regs_live)
    {
914
      info->failure = true;
915 916 917
      return;
    }
  /* Now check if this is a live fixed register.  */
918 919 920 921
  unsigned int end_regno = END_REGNO (loc);
  for (unsigned int regno = REGNO (loc); regno < end_regno; ++regno)
    if (REGNO_REG_SET_P (info->fixed_regs_live, regno))
      info->failure = true;
922 923
}

924 925
/* Callback for for_each_inc_dec that emits an INSN that sets DEST to
   SRC + SRCOFF before insn ARG.  */
926 927

static int
928 929 930
emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
			  rtx op ATTRIBUTE_UNUSED,
			  rtx dest, rtx src, rtx srcoff, void *arg)
931
{
932
  insn_info_t insn_info = (insn_info_t) arg;
933
  rtx_insn *insn = insn_info->insn, *new_insn, *cur;
934
  note_add_store_info info;
H.J. Lu committed
935

936 937
  /* We can reuse all operands without copying, because we are about
     to delete the insn that contained it.  */
938
  if (srcoff)
939 940 941 942 943 944
    {
      start_sequence ();
      emit_insn (gen_add3_insn (dest, src, srcoff));
      new_insn = get_insns ();
      end_sequence ();
    }
945
  else
946
    new_insn = gen_move_insn (dest, src);
947 948 949 950 951 952 953 954
  info.first = new_insn;
  info.fixed_regs_live = insn_info->fixed_regs_live;
  info.failure = false;
  for (cur = new_insn; cur; cur = NEXT_INSN (cur))
    {
      info.current = cur;
      note_stores (PATTERN (cur), note_add_store, &info);
    }
955

956 957 958 959 960 961
  /* If a failure was flagged above, return 1 so that for_each_inc_dec will
     return it immediately, communicating the failure to its caller.  */
  if (info.failure)
    return 1;

  emit_insn_before (new_insn, insn);
962

963
  return 0;
964 965
}

966 967 968
/* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
   is there, is split into a separate insn.
   Return true on success (or if there was nothing to do), false on failure.  */
969

970 971
static bool
check_for_inc_dec_1 (insn_info_t insn_info)
972
{
David Malcolm committed
973
  rtx_insn *insn = insn_info->insn;
974 975
  rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
  if (note)
976 977
    return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
			     insn_info) == 0;
978
  return true;
979 980 981
}


982 983 984 985 986
/* Entry point for postreload.  If you work on reload_cse, or you need this
   anywhere else, consider if you can provide register liveness information
   and add a parameter to this function so that it can be passed down in
   insn_info.fixed_regs_live.  */
bool
David Malcolm committed
987
check_for_inc_dec (rtx_insn *insn)
988
{
989
  insn_info_type insn_info;
990 991 992 993 994 995
  rtx note;

  insn_info.insn = insn;
  insn_info.fixed_regs_live = NULL;
  note = find_reg_note (insn, REG_INC, NULL_RTX);
  if (note)
996 997
    return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
			     &insn_info) == 0;
998 999 1000
  return true;
}

H.J. Lu committed
1001
/* Delete the insn and free all of the fields inside INSN_INFO.  */
1002 1003 1004 1005 1006 1007 1008 1009 1010

static void
delete_dead_store_insn (insn_info_t insn_info)
{
  read_info_t read_info;

  if (!dbg_cnt (dse))
    return;

1011 1012
  if (!check_for_inc_dec_1 (insn_info))
    return;
1013
  if (dump_file && (dump_flags & TDF_DETAILS))
1014
    {
H.J. Lu committed
1015
      fprintf (dump_file, "Locally deleting insn %d ",
1016 1017
	       INSN_UID (insn_info->insn));
      if (insn_info->store_rec->alias_set)
H.J. Lu committed
1018
	fprintf (dump_file, "alias set %d\n",
1019
		 (int) insn_info->store_rec->alias_set);
1020 1021 1022 1023 1024 1025
      else
	fprintf (dump_file, "\n");
    }

  free_store_info (insn_info);
  read_info = insn_info->read_rec;
H.J. Lu committed
1026

1027 1028 1029
  while (read_info)
    {
      read_info_t next = read_info->next;
1030
      delete read_info;
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
      read_info = next;
    }
  insn_info->read_rec = NULL;

  delete_insn (insn_info->insn);
  locally_deleted++;
  insn_info->insn = NULL;

  insn_info->wild_read = false;
}

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
/* Return whether DECL, a local variable, can possibly escape the current
   function scope.  */

static bool
local_variable_can_escape (tree decl)
{
  if (TREE_ADDRESSABLE (decl))
    return true;

  /* If this is a partitioned variable, we need to consider all the variables
     in the partition.  This is necessary because a store into one of them can
     be replaced with a store into another and this may not change the outcome
     of the escape analysis.  */
  if (cfun->gimple_df->decls_to_pointers != NULL)
    {
1057
      tree *namep = cfun->gimple_df->decls_to_pointers->get (decl);
1058
      if (namep)
1059
	return TREE_ADDRESSABLE (*namep);
1060 1061 1062 1063 1064 1065 1066
    }

  return false;
}

/* Return whether EXPR can possibly escape the current function scope.  */

1067 1068 1069 1070 1071 1072 1073 1074
static bool
can_escape (tree expr)
{
  tree base;
  if (!expr)
    return true;
  base = get_base_address (expr);
  if (DECL_P (base)
1075 1076 1077 1078 1079
      && !may_be_aliased (base)
      && !(TREE_CODE (base) == VAR_DECL
	   && !DECL_EXTERNAL (base)
	   && !TREE_STATIC (base)
	   && local_variable_can_escape (base)))
1080 1081 1082
    return false;
  return true;
}
1083 1084 1085 1086 1087

/* Set the store* bitmaps offset_map_size* fields in GROUP based on
   OFFSET and WIDTH.  */

static void
1088 1089
set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width,
                tree expr)
1090 1091
{
  HOST_WIDE_INT i;
1092
  bool expr_escapes = can_escape (expr);
1093
  if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET)
1094 1095 1096 1097
    for (i=offset; i<offset+width; i++)
      {
	bitmap store1;
	bitmap store2;
1098
        bitmap escaped;
1099 1100 1101 1102 1103
	int ai;
	if (i < 0)
	  {
	    store1 = group->store1_n;
	    store2 = group->store2_n;
1104
	    escaped = group->escaped_n;
1105 1106 1107 1108 1109 1110
	    ai = -i;
	  }
	else
	  {
	    store1 = group->store1_p;
	    store2 = group->store2_p;
1111
	    escaped = group->escaped_p;
1112 1113
	    ai = i;
	  }
H.J. Lu committed
1114

1115
	if (!bitmap_set_bit (store1, ai))
1116
	  bitmap_set_bit (store2, ai);
H.J. Lu committed
1117
	else
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	  {
	    if (i < 0)
	      {
		if (group->offset_map_size_n < ai)
		  group->offset_map_size_n = ai;
	      }
	    else
	      {
		if (group->offset_map_size_p < ai)
		  group->offset_map_size_p = ai;
	      }
	  }
1130 1131
        if (expr_escapes)
          bitmap_set_bit (escaped, ai);
1132 1133 1134
      }
}

1135 1136 1137 1138 1139 1140
static void
reset_active_stores (void)
{
  active_local_stores = NULL;
  active_local_stores_len = 0;
}
1141

1142
/* Free all READ_REC of the LAST_INSN of BB_INFO.  */
1143 1144

static void
1145
free_read_records (bb_info_t bb_info)
1146 1147 1148 1149 1150 1151
{
  insn_info_t insn_info = bb_info->last_insn;
  read_info_t *ptr = &insn_info->read_rec;
  while (*ptr)
    {
      read_info_t next = (*ptr)->next;
1152
      if ((*ptr)->alias_set == 0)
1153
        {
1154
	  delete *ptr;
1155
          *ptr = next;
1156
        }
H.J. Lu committed
1157
      else
1158
        ptr = &(*ptr)->next;
1159
    }
1160 1161 1162 1163 1164 1165 1166 1167
}

/* Set the BB_INFO so that the last insn is marked as a wild read.  */

static void
add_wild_read (bb_info_t bb_info)
{
  insn_info_t insn_info = bb_info->last_insn;
1168
  insn_info->wild_read = true;
1169 1170
  free_read_records (bb_info);
  reset_active_stores ();
1171 1172
}

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
/* Set the BB_INFO so that the last insn is marked as a wild read of
   non-frame locations.  */

static void
add_non_frame_wild_read (bb_info_t bb_info)
{
  insn_info_t insn_info = bb_info->last_insn;
  insn_info->non_frame_wild_read = true;
  free_read_records (bb_info);
  reset_active_stores ();
}
1184

1185 1186 1187
/* Return true if X is a constant or one of the registers that behave
   as a constant over the life of a function.  This is equivalent to
   !rtx_varies_p for memory addresses.  */
1188 1189 1190 1191

static bool
const_or_frame_p (rtx x)
{
1192 1193 1194 1195
  if (CONSTANT_P (x))
    return true;

  if (GET_CODE (x) == REG)
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
    {
      /* Note that we have to test for the actual rtx used for the frame
	 and arg pointers and not just the register number in case we have
	 eliminated the frame and/or arg pointer and are using it
	 for pseudos.  */
      if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
	  /* The arg pointer varies if it is not a fixed register.  */
	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
	  || x == pic_offset_table_rtx)
	return true;
      return false;
    }
1208

1209
  return false;
1210 1211
}

H.J. Lu committed
1212 1213
/* Take all reasonable action to put the address of MEM into the form
   that we can do analysis on.
1214 1215 1216 1217 1218 1219 1220 1221 1222

   The gold standard is to get the address into the form: address +
   OFFSET where address is something that rtx_varies_p considers a
   constant.  When we can get the address in this form, we can do
   global analysis on it.  Note that for constant bases, address is
   not actually returned, only the group_id.  The address can be
   obtained from that.

   If that fails, we try cselib to get a value we can at least use
H.J. Lu committed
1223 1224
   locally.  If that fails we return false.

1225 1226 1227 1228 1229 1230 1231
   The GROUP_ID is set to -1 for cselib bases and the index of the
   group for non_varying bases.

   FOR_READ is true if this is a mem read and false if not.  */

static bool
canon_address (rtx mem,
1232
	       alias_set_type *alias_set_out,
1233
	       int *group_id,
H.J. Lu committed
1234
	       HOST_WIDE_INT *offset,
1235 1236
	       cselib_val **base)
{
1237
  machine_mode address_mode = get_address_mode (mem);
1238 1239
  rtx mem_address = XEXP (mem, 0);
  rtx expanded_address, address;
1240 1241
  int expanded;

1242 1243
  *alias_set_out = 0;

1244
  cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1245

1246
  if (dump_file && (dump_flags & TDF_DETAILS))
1247 1248 1249 1250 1251 1252
    {
      fprintf (dump_file, "  mem: ");
      print_inline_rtx (dump_file, mem_address, 0);
      fprintf (dump_file, "\n");
    }

1253 1254 1255 1256 1257 1258 1259 1260
  /* First see if just canon_rtx (mem_address) is const or frame,
     if not, try cselib_expand_value_rtx and call canon_rtx on that.  */
  address = NULL_RTX;
  for (expanded = 0; expanded < 2; expanded++)
    {
      if (expanded)
	{
	  /* Use cselib to replace all of the reg references with the full
H.J. Lu committed
1261
	     expression.  This will take care of the case where we have
1262

1263 1264
	     r_x = base + offset;
	     val = *r_x;
H.J. Lu committed
1265 1266

	     by making it into
1267

1268
	     val = *(base + offset);  */
1269

1270 1271
	  expanded_address = cselib_expand_value_rtx (mem_address,
						      scratch, 5);
1272

1273 1274 1275 1276 1277 1278 1279
	  /* If this fails, just go with the address from first
	     iteration.  */
	  if (!expanded_address)
	    break;
	}
      else
	expanded_address = mem_address;
1280

1281 1282
      /* Split the address into canonical BASE + OFFSET terms.  */
      address = canon_rtx (expanded_address);
1283

1284
      *offset = 0;
1285

1286
      if (dump_file && (dump_flags & TDF_DETAILS))
1287 1288 1289 1290 1291 1292 1293
	{
	  if (expanded)
	    {
	      fprintf (dump_file, "\n   after cselib_expand address: ");
	      print_inline_rtx (dump_file, expanded_address, 0);
	      fprintf (dump_file, "\n");
	    }
1294

1295 1296 1297 1298
	  fprintf (dump_file, "\n   after canon_rtx address: ");
	  print_inline_rtx (dump_file, address, 0);
	  fprintf (dump_file, "\n");
	}
1299

1300 1301
      if (GET_CODE (address) == CONST)
	address = XEXP (address, 0);
1302

1303 1304 1305 1306 1307 1308
      if (GET_CODE (address) == PLUS
	  && CONST_INT_P (XEXP (address, 1)))
	{
	  *offset = INTVAL (XEXP (address, 1));
	  address = XEXP (address, 0);
	}
1309

1310 1311
      if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
	  && const_or_frame_p (address))
1312
	{
1313 1314
	  group_info_t group = get_group_info (address);

1315
	  if (dump_file && (dump_flags & TDF_DETAILS))
1316 1317 1318 1319 1320
	    fprintf (dump_file, "  gid=%d offset=%d \n",
		     group->id, (int)*offset);
	  *base = NULL;
	  *group_id = group->id;
	  return true;
1321
	}
1322 1323
    }

1324
  *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1325 1326 1327 1328
  *group_id = -1;

  if (*base == NULL)
    {
1329
      if (dump_file && (dump_flags & TDF_DETAILS))
1330 1331
	fprintf (dump_file, " no cselib val - should be a wild read.\n");
      return false;
1332
    }
1333
  if (dump_file && (dump_flags & TDF_DETAILS))
1334 1335
    fprintf (dump_file, "  varying cselib base=%u:%u offset = %d\n",
	     (*base)->uid, (*base)->hash, (int)*offset);
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
  return true;
}


/* Clear the rhs field from the active_local_stores array.  */

static void
clear_rhs_from_active_local_stores (void)
{
  insn_info_t ptr = active_local_stores;

  while (ptr)
    {
      store_info_t store_info = ptr->store_rec;
      /* Skip the clobbers.  */
      while (!store_info->is_set)
	store_info = store_info->next;

      store_info->rhs = NULL;
1355
      store_info->const_rhs = NULL;
1356 1357 1358 1359 1360 1361

      ptr = ptr->next_local_store;
    }
}


1362 1363 1364 1365 1366 1367 1368
/* Mark byte POS bytes from the beginning of store S_INFO as unneeded.  */

static inline void
set_position_unneeded (store_info_t s_info, int pos)
{
  if (__builtin_expect (s_info->is_large, false))
    {
1369 1370
      if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
	s_info->positions_needed.large.count++;
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
    }
  else
    s_info->positions_needed.small_bitmask
      &= ~(((unsigned HOST_WIDE_INT) 1) << pos);
}

/* Mark the whole store S_INFO as unneeded.  */

static inline void
set_all_positions_unneeded (store_info_t s_info)
{
  if (__builtin_expect (s_info->is_large, false))
    {
      int pos, end = s_info->end - s_info->begin;
      for (pos = 0; pos < end; pos++)
1386
	bitmap_set_bit (s_info->positions_needed.large.bmap, pos);
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
      s_info->positions_needed.large.count = end;
    }
  else
    s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0;
}

/* Return TRUE if any bytes from S_INFO store are needed.  */

static inline bool
any_positions_needed_p (store_info_t s_info)
{
  if (__builtin_expect (s_info->is_large, false))
    return (s_info->positions_needed.large.count
	    < s_info->end - s_info->begin);
  else
    return (s_info->positions_needed.small_bitmask
	    != (unsigned HOST_WIDE_INT) 0);
}

/* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
   store are needed.  */

static inline bool
all_positions_needed_p (store_info_t s_info, int start, int width)
{
  if (__builtin_expect (s_info->is_large, false))
    {
      int end = start + width;
      while (start < end)
1416
	if (bitmap_bit_p (s_info->positions_needed.large.bmap, start++))
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	  return false;
      return true;
    }
  else
    {
      unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start;
      return (s_info->positions_needed.small_bitmask & mask) == mask;
    }
}


1428
static rtx get_stored_val (store_info_t, machine_mode, HOST_WIDE_INT,
1429 1430 1431
			   HOST_WIDE_INT, basic_block, bool);


1432 1433 1434 1435 1436 1437 1438
/* BODY is an instruction pattern that belongs to INSN.  Return 1 if
   there is a candidate store, after adding it to the appropriate
   local store group if so.  */

static int
record_store (rtx body, bb_info_t bb_info)
{
1439
  rtx mem, rhs, const_rhs, mem_addr;
1440 1441
  HOST_WIDE_INT offset = 0;
  HOST_WIDE_INT width = 0;
1442
  alias_set_type spill_alias_set;
1443 1444 1445 1446
  insn_info_t insn_info = bb_info->last_insn;
  store_info_t store_info = NULL;
  int group_id;
  cselib_val *base = NULL;
1447
  insn_info_t ptr, last, redundant_reason;
1448 1449 1450 1451 1452
  bool store_is_unused;

  if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
    return 0;

1453 1454
  mem = SET_DEST (body);

1455 1456 1457 1458
  /* If this is not used, then this cannot be used to keep the insn
     from being deleted.  On the other hand, it does provide something
     that can be used to prove that another store is dead.  */
  store_is_unused
1459
    = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

  /* Check whether that value is a suitable memory location.  */
  if (!MEM_P (mem))
    {
      /* If the set or clobber is unused, then it does not effect our
	 ability to get rid of the entire insn.  */
      if (!store_is_unused)
	insn_info->cannot_delete = true;
      return 0;
    }

  /* At this point we know mem is a mem. */
  if (GET_MODE (mem) == BLKmode)
    {
      if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
	{
1476
	  if (dump_file && (dump_flags & TDF_DETAILS))
1477 1478 1479
	    fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
	  add_wild_read (bb_info);
	  insn_info->cannot_delete = true;
1480
	  return 0;
1481
	}
1482 1483
      /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
	 as memset (addr, 0, 36);  */
1484 1485 1486
      else if (!MEM_SIZE_KNOWN_P (mem)
	       || MEM_SIZE (mem) <= 0
	       || MEM_SIZE (mem) > MAX_OFFSET
1487 1488
	       || GET_CODE (body) != SET
	       || !CONST_INT_P (SET_SRC (body)))
1489
	{
1490 1491 1492 1493 1494 1495 1496 1497
	  if (!store_is_unused)
	    {
	      /* If the set or clobber is unused, then it does not effect our
		 ability to get rid of the entire insn.  */
	      insn_info->cannot_delete = true;
	      clear_rhs_from_active_local_stores ();
	    }
	  return 0;
1498 1499 1500 1501 1502
	}
    }

  /* We can still process a volatile mem, we just cannot delete it.  */
  if (MEM_VOLATILE_P (mem))
1503
    insn_info->cannot_delete = true;
1504 1505 1506 1507 1508 1509 1510

  if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
    {
      clear_rhs_from_active_local_stores ();
      return 0;
    }

1511
  if (GET_MODE (mem) == BLKmode)
1512
    width = MEM_SIZE (mem);
1513
  else
1514
    width = GET_MODE_SIZE (GET_MODE (mem));
1515 1516 1517 1518 1519

  if (spill_alias_set)
    {
      bitmap store1 = clear_alias_group->store1_p;
      bitmap store2 = clear_alias_group->store2_p;
1520 1521

      gcc_assert (GET_MODE (mem) != BLKmode);
H.J. Lu committed
1522

1523
      if (!bitmap_set_bit (store1, spill_alias_set))
1524
	bitmap_set_bit (store2, spill_alias_set);
H.J. Lu committed
1525

1526 1527
      if (clear_alias_group->offset_map_size_p < spill_alias_set)
	clear_alias_group->offset_map_size_p = spill_alias_set;
H.J. Lu committed
1528

1529
      store_info = rtx_store_info_pool.allocate ();
1530

1531
      if (dump_file && (dump_flags & TDF_DETAILS))
1532
	fprintf (dump_file, " processing spill store %d(%s)\n",
1533
		 (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
1534 1535 1536 1537 1538
    }
  else if (group_id >= 0)
    {
      /* In the restrictive case where the base is a constant or the
	 frame pointer we can do global analysis.  */
H.J. Lu committed
1539 1540

      group_info_t group
1541
	= rtx_group_vec[group_id];
1542
      tree expr = MEM_EXPR (mem);
H.J. Lu committed
1543

1544
      store_info = rtx_store_info_pool.allocate ();
1545
      set_usage_bits (group, offset, width, expr);
1546

1547
      if (dump_file && (dump_flags & TDF_DETAILS))
1548 1549 1550 1551 1552
	fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
		 group_id, (int)offset, (int)(offset+width));
    }
  else
    {
1553
      if (may_be_sp_based_p (XEXP (mem, 0)))
1554
	insn_info->stack_pointer_based = true;
1555
      insn_info->contains_cselib_groups = true;
1556

1557
      store_info = cse_store_info_pool.allocate ();
1558 1559
      group_id = -1;

1560
      if (dump_file && (dump_flags & TDF_DETAILS))
1561 1562 1563 1564
	fprintf (dump_file, " processing cselib store [%d..%d)\n",
		 (int)offset, (int)(offset+width));
    }

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
  const_rhs = rhs = NULL_RTX;
  if (GET_CODE (body) == SET
      /* No place to keep the value after ra.  */
      && !reload_completed
      && (REG_P (SET_SRC (body))
	  || GET_CODE (SET_SRC (body)) == SUBREG
	  || CONSTANT_P (SET_SRC (body)))
      && !MEM_VOLATILE_P (mem)
      /* Sometimes the store and reload is used for truncation and
	 rounding.  */
      && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
    {
      rhs = SET_SRC (body);
      if (CONSTANT_P (rhs))
	const_rhs = rhs;
      else if (body == PATTERN (insn_info->insn))
	{
	  rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
	  if (tem && CONSTANT_P (XEXP (tem, 0)))
	    const_rhs = XEXP (tem, 0);
	}
      if (const_rhs == NULL_RTX && REG_P (rhs))
	{
	  rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);

	  if (tem && CONSTANT_P (tem))
	    const_rhs = tem;
	}
    }

1595 1596 1597 1598
  /* Check to see if this stores causes some other stores to be
     dead.  */
  ptr = active_local_stores;
  last = NULL;
1599
  redundant_reason = NULL;
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
  mem = canon_rtx (mem);
  /* For alias_set != 0 canon_true_dependence should be never called.  */
  if (spill_alias_set)
    mem_addr = NULL_RTX;
  else
    {
      if (group_id < 0)
	mem_addr = base->val_rtx;
      else
	{
	  group_info_t group
1611
	    = rtx_group_vec[group_id];
1612 1613
	  mem_addr = group->canon_base_addr;
	}
1614 1615 1616 1617
      /* get_addr can only handle VALUE but cannot handle expr like:
	 VALUE + OFFSET, so call get_addr to get original addr for
	 mem_addr before plus_constant.  */
      mem_addr = get_addr (mem_addr);
1618
      if (offset)
1619
	mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1620
    }
1621 1622 1623 1624 1625

  while (ptr)
    {
      insn_info_t next = ptr->next_local_store;
      store_info_t s_info = ptr->store_rec;
1626
      bool del = true;
1627 1628

      /* Skip the clobbers. We delete the active insn if this insn
1629
	 shadows the set.  To have been put on the active list, it
1630 1631 1632 1633 1634
	 has exactly on set. */
      while (!s_info->is_set)
	s_info = s_info->next;

      if (s_info->alias_set != spill_alias_set)
1635
	del = false;
1636 1637
      else if (s_info->alias_set)
	{
H.J. Lu committed
1638
	  struct clear_alias_mode_holder *entry
1639 1640 1641 1642 1643 1644 1645 1646 1647
	    = clear_alias_set_lookup (s_info->alias_set);
	  /* Generally, spills cannot be processed if and of the
	     references to the slot have a different mode.  But if
	     we are in the same block and mode is exactly the same
	     between this store and one before in the same block,
	     we can still delete it.  */
	  if ((GET_MODE (mem) == GET_MODE (s_info->mem))
	      && (GET_MODE (mem) == entry->mode))
	    {
1648
	      del = true;
1649
	      set_all_positions_unneeded (s_info);
1650
	    }
1651
	  if (dump_file && (dump_flags & TDF_DETAILS))
1652
	    fprintf (dump_file, "    trying spill store in insn=%d alias_set=%d\n",
1653
		     INSN_UID (ptr->insn), (int) s_info->alias_set);
1654
	}
H.J. Lu committed
1655
      else if ((s_info->group_id == group_id)
1656 1657 1658
	       && (s_info->cse_base == base))
	{
	  HOST_WIDE_INT i;
1659
	  if (dump_file && (dump_flags & TDF_DETAILS))
1660
	    fprintf (dump_file, "    trying store in insn=%d gid=%d[%d..%d)\n",
H.J. Lu committed
1661
		     INSN_UID (ptr->insn), s_info->group_id,
1662
		     (int)s_info->begin, (int)s_info->end);
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702

	  /* Even if PTR won't be eliminated as unneeded, if both
	     PTR and this insn store the same constant value, we might
	     eliminate this insn instead.  */
	  if (s_info->const_rhs
	      && const_rhs
	      && offset >= s_info->begin
	      && offset + width <= s_info->end
	      && all_positions_needed_p (s_info, offset - s_info->begin,
					 width))
	    {
	      if (GET_MODE (mem) == BLKmode)
		{
		  if (GET_MODE (s_info->mem) == BLKmode
		      && s_info->const_rhs == const_rhs)
		    redundant_reason = ptr;
		}
	      else if (s_info->const_rhs == const0_rtx
		       && const_rhs == const0_rtx)
		redundant_reason = ptr;
	      else
		{
		  rtx val;
		  start_sequence ();
		  val = get_stored_val (s_info, GET_MODE (mem),
					offset, offset + width,
					BLOCK_FOR_INSN (insn_info->insn),
					true);
		  if (get_insns () != NULL)
		    val = NULL_RTX;
		  end_sequence ();
		  if (val && rtx_equal_p (val, const_rhs))
		    redundant_reason = ptr;
		}
	    }

	  for (i = MAX (offset, s_info->begin);
	       i < offset + width && i < s_info->end;
	       i++)
	    set_position_unneeded (s_info, i - s_info->begin);
1703 1704 1705 1706 1707 1708
	}
      else if (s_info->rhs)
	/* Need to see if it is possible for this store to overwrite
	   the value of store_info.  If it is, set the rhs to NULL to
	   keep it from being used to remove a load.  */
	{
H.J. Lu committed
1709
	  if (canon_true_dependence (s_info->mem,
1710 1711
				     GET_MODE (s_info->mem),
				     s_info->mem_addr,
1712
				     mem, mem_addr))
1713 1714 1715 1716
	    {
	      s_info->rhs = NULL;
	      s_info->const_rhs = NULL;
	    }
1717
	}
1718

1719 1720
      /* An insn can be deleted if every position of every one of
	 its s_infos is zero.  */
1721
      if (any_positions_needed_p (s_info))
1722
	del = false;
1723

1724
      if (del)
1725 1726
	{
	  insn_info_t insn_to_delete = ptr;
H.J. Lu committed
1727

1728
	  active_local_stores_len--;
1729 1730 1731 1732
	  if (last)
	    last->next_local_store = ptr->next_local_store;
	  else
	    active_local_stores = ptr->next_local_store;
H.J. Lu committed
1733

1734 1735
	  if (!insn_to_delete->cannot_delete)
	    delete_dead_store_insn (insn_to_delete);
1736 1737 1738
	}
      else
	last = ptr;
H.J. Lu committed
1739

1740 1741
      ptr = next;
    }
H.J. Lu committed
1742

1743 1744 1745
  /* Finish filling in the store_info.  */
  store_info->next = insn_info->store_rec;
  insn_info->store_rec = store_info;
1746
  store_info->mem = mem;
1747
  store_info->alias_set = spill_alias_set;
1748
  store_info->mem_addr = mem_addr;
1749
  store_info->cse_base = base;
1750 1751 1752 1753
  if (width > HOST_BITS_PER_WIDE_INT)
    {
      store_info->is_large = true;
      store_info->positions_needed.large.count = 0;
1754
      store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
1755 1756 1757 1758 1759 1760
    }
  else
    {
      store_info->is_large = false;
      store_info->positions_needed.small_bitmask = lowpart_bitmask (width);
    }
1761 1762 1763 1764
  store_info->group_id = group_id;
  store_info->begin = offset;
  store_info->end = offset + width;
  store_info->is_set = GET_CODE (body) == SET;
1765 1766 1767
  store_info->rhs = rhs;
  store_info->const_rhs = const_rhs;
  store_info->redundant_reason = redundant_reason;
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778

  /* If this is a clobber, we return 0.  We will only be able to
     delete this insn if there is only one store USED store, but we
     can use the clobber to delete other stores earlier.  */
  return store_info->is_set ? 1 : 0;
}


static void
dump_insn_info (const char * start, insn_info_t insn_info)
{
H.J. Lu committed
1779
  fprintf (dump_file, "%s insn=%d %s\n", start,
1780 1781 1782 1783 1784
	   INSN_UID (insn_info->insn),
	   insn_info->store_rec ? "has store" : "naked");
}


1785 1786 1787 1788 1789 1790 1791 1792 1793
/* If the modes are different and the value's source and target do not
   line up, we need to extract the value from lower part of the rhs of
   the store, shift it, and then put it into a form that can be shoved
   into the read_insn.  This function generates a right SHIFT of a
   value that is at least ACCESS_SIZE bytes wide of READ_MODE.  The
   shift sequence is returned or NULL if we failed to find a
   shift.  */

static rtx
1794
find_shift_sequence (int access_size,
1795
		     store_info_t store_info,
1796
		     machine_mode read_mode,
1797
		     int shift, bool speed, bool require_cst)
1798
{
1799 1800
  machine_mode store_mode = GET_MODE (store_info->mem);
  machine_mode new_mode;
1801
  rtx read_reg = NULL;
1802 1803 1804 1805 1806 1807 1808 1809

  /* Some machines like the x86 have shift insns for each size of
     operand.  Other machines like the ppc or the ia-64 may only have
     shift insns that shift values within 32 or 64 bit registers.
     This loop tries to find the smallest shift insn that will right
     justify the value we want to read but is available in one insn on
     the machine.  */

1810 1811 1812 1813
  for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
					  MODE_INT);
       GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
       new_mode = GET_MODE_WIDER_MODE (new_mode))
1814
    {
1815 1816
      rtx target, new_reg, new_lhs;
      rtx_insn *shift_seq, *insn;
1817
      int cost;
1818

1819 1820 1821
      /* If a constant was stored into memory, try to simplify it here,
	 otherwise the cost of the shift might preclude this optimization
	 e.g. at -Os, even when no actual shift will be needed.  */
1822
      if (store_info->const_rhs)
1823 1824
	{
	  unsigned int byte = subreg_lowpart_offset (new_mode, store_mode);
1825 1826
	  rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
				     store_mode, byte);
1827 1828 1829 1830 1831 1832 1833 1834 1835
	  if (ret && CONSTANT_P (ret))
	    {
	      ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
						     ret, GEN_INT (shift));
	      if (ret && CONSTANT_P (ret))
		{
		  byte = subreg_lowpart_offset (read_mode, new_mode);
		  ret = simplify_subreg (read_mode, ret, new_mode, byte);
		  if (ret && CONSTANT_P (ret)
1836 1837
		      && (set_src_cost (ret, read_mode, speed)
			  <= COSTS_N_INSNS (1)))
1838 1839 1840 1841 1842
		    return ret;
		}
	    }
	}

1843 1844 1845
      if (require_cst)
	return NULL_RTX;

1846 1847 1848
      /* Try a wider mode if truncating the store mode to NEW_MODE
	 requires a real instruction.  */
      if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1849
	  && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1850 1851
	continue;

1852 1853 1854 1855 1856 1857
      /* Also try a wider mode if the necessary punning is either not
	 desirable or not possible.  */
      if (!CONSTANT_P (store_info->rhs)
	  && !MODES_TIEABLE_P (new_mode, store_mode))
	continue;

1858
      new_reg = gen_reg_rtx (new_mode);
1859 1860 1861 1862 1863 1864 1865 1866 1867

      start_sequence ();

      /* In theory we could also check for an ashr.  Ian Taylor knows
	 of one dsp where the cost of these two was not the same.  But
	 this really is a rare case anyway.  */
      target = expand_binop (new_mode, lshr_optab, new_reg,
			     GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);

1868 1869
      shift_seq = get_insns ();
      end_sequence ();
1870

1871 1872 1873 1874 1875 1876
      if (target != new_reg || shift_seq == NULL)
	continue;

      cost = 0;
      for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
	if (INSN_P (insn))
1877
	  cost += insn_rtx_cost (PATTERN (insn), speed);
1878 1879 1880 1881 1882

      /* The computation up to here is essentially independent
	 of the arguments and could be precomputed.  It may
	 not be worth doing so.  We could precompute if
	 worthwhile or at least cache the results.  The result
1883 1884
	 technically depends on both SHIFT and ACCESS_SIZE,
	 but in practice the answer will depend only on ACCESS_SIZE.  */
1885 1886 1887 1888

      if (cost > COSTS_N_INSNS (1))
	continue;

1889 1890 1891 1892 1893
      new_lhs = extract_low_bits (new_mode, store_mode,
				  copy_rtx (store_info->rhs));
      if (new_lhs == NULL_RTX)
	continue;

1894 1895 1896 1897
      /* We found an acceptable shift.  Generate a move to
	 take the value from the store and put it into the
	 shift pseudo, then shift it, then generate another
	 move to put in into the target of the read.  */
1898
      emit_move_insn (new_reg, new_lhs);
1899
      emit_insn (shift_seq);
1900
      read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1901
      break;
1902 1903
    }

1904
  return read_reg;
1905 1906 1907
}


1908 1909 1910 1911 1912 1913 1914 1915 1916
/* Call back for note_stores to find the hard regs set or clobbered by
   insn.  Data is a bitmap of the hardregs set so far.  */

static void
look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
{
  bitmap regs_set = (bitmap) data;

  if (REG_P (x)
1917
      && HARD_REGISTER_P (x))
1918
    bitmap_set_range (regs_set, REGNO (x), REG_NREGS (x));
1919 1920
}

1921 1922 1923 1924 1925 1926
/* Helper function for replace_read and record_store.
   Attempt to return a value stored in STORE_INFO, from READ_BEGIN
   to one before READ_END bytes read in READ_MODE.  Return NULL
   if not successful.  If REQUIRE_CST is true, return always constant.  */

static rtx
1927
get_stored_val (store_info_t store_info, machine_mode read_mode,
1928 1929 1930
		HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end,
		basic_block bb, bool require_cst)
{
1931
  machine_mode store_mode = GET_MODE (store_info->mem);
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
  int shift;
  int access_size; /* In bytes.  */
  rtx read_reg;

  /* To get here the read is within the boundaries of the write so
     shift will never be negative.  Start out with the shift being in
     bytes.  */
  if (store_mode == BLKmode)
    shift = 0;
  else if (BYTES_BIG_ENDIAN)
    shift = store_info->end - read_end;
  else
    shift = read_begin - store_info->begin;

  access_size = shift + GET_MODE_SIZE (read_mode);

  /* From now on it is bits.  */
  shift *= BITS_PER_UNIT;

  if (shift)
    read_reg = find_shift_sequence (access_size, store_info, read_mode, shift,
    				    optimize_bb_for_speed_p (bb),
				    require_cst);
  else if (store_mode == BLKmode)
    {
      /* The store is a memset (addr, const_val, const_size).  */
      gcc_assert (CONST_INT_P (store_info->rhs));
      store_mode = int_mode_for_mode (read_mode);
      if (store_mode == BLKmode)
	read_reg = NULL_RTX;
      else if (store_info->rhs == const0_rtx)
	read_reg = extract_low_bits (read_mode, store_mode, const0_rtx);
      else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT
	       || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
	read_reg = NULL_RTX;
      else
	{
	  unsigned HOST_WIDE_INT c
	    = INTVAL (store_info->rhs)
	      & (((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1);
	  int shift = BITS_PER_UNIT;
	  while (shift < HOST_BITS_PER_WIDE_INT)
	    {
	      c |= (c << shift);
	      shift <<= 1;
	    }
1978
	  read_reg = gen_int_mode (c, store_mode);
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
	  read_reg = extract_low_bits (read_mode, store_mode, read_reg);
	}
    }
  else if (store_info->const_rhs
	   && (require_cst
	       || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
    read_reg = extract_low_bits (read_mode, store_mode,
				 copy_rtx (store_info->const_rhs));
  else
    read_reg = extract_low_bits (read_mode, store_mode,
				 copy_rtx (store_info->rhs));
  if (require_cst && read_reg && !CONSTANT_P (read_reg))
    read_reg = NULL_RTX;
  return read_reg;
}
1994

1995 1996 1997 1998 1999
/* Take a sequence of:
     A <- r1
     ...
     ... <- A

H.J. Lu committed
2000
   and change it into
2001 2002 2003 2004 2005
   r2 <- r1
   A <- r1
   ...
   ... <- r2

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
   or

   r3 <- extract (r1)
   r3 <- r3 >> shift
   r2 <- extract (r3)
   ... <- r2

   or

   r2 <- extract (r1)
   ... <- r2

   Depending on the alignment and the mode of the store and
   subsequent load.


   The STORE_INFO and STORE_INSN are for the store and READ_INFO
2023 2024 2025 2026
   and READ_INSN are for the read.  Return true if the replacement
   went ok.  */

static bool
H.J. Lu committed
2027
replace_read (store_info_t store_info, insn_info_t store_insn,
2028 2029
	      read_info_t read_info, insn_info_t read_insn, rtx *loc,
	      bitmap regs_live)
2030
{
2031 2032
  machine_mode store_mode = GET_MODE (store_info->mem);
  machine_mode read_mode = GET_MODE (read_info->mem);
2033 2034
  rtx_insn *insns, *this_insn;
  rtx read_reg;
2035
  basic_block bb;
2036

2037 2038 2039
  if (!dbg_cnt (dse))
    return false;

2040 2041 2042 2043 2044
  /* Create a sequence of instructions to set up the read register.
     This sequence goes immediately before the store and its result
     is read by the load.

     We need to keep this in perspective.  We are replacing a read
2045 2046 2047 2048
     with a sequence of insns, but the read will almost certainly be
     in cache, so it is not going to be an expensive one.  Thus, we
     are not willing to do a multi insn shift or worse a subroutine
     call to get rid of the read.  */
2049
  if (dump_file && (dump_flags & TDF_DETAILS))
2050 2051 2052 2053 2054
    fprintf (dump_file, "trying to replace %smode load in insn %d"
	     " from %smode store in insn %d\n",
	     GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
	     GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
  start_sequence ();
2055 2056 2057 2058
  bb = BLOCK_FOR_INSN (read_insn->insn);
  read_reg = get_stored_val (store_info,
			     read_mode, read_info->begin, read_info->end,
			     bb, false);
2059
  if (read_reg == NULL_RTX)
2060
    {
2061
      end_sequence ();
2062
      if (dump_file && (dump_flags & TDF_DETAILS))
2063 2064
	fprintf (dump_file, " -- could not extract bits of stored value\n");
      return false;
2065
    }
2066 2067 2068 2069 2070
  /* Force the value into a new register so that it won't be clobbered
     between the store and the load.  */
  read_reg = copy_to_mode_reg (read_mode, read_reg);
  insns = get_insns ();
  end_sequence ();
2071

2072 2073 2074 2075 2076 2077 2078
  if (insns != NULL_RTX)
    {
      /* Now we have to scan the set of new instructions to see if the
	 sequence contains and sets of hardregs that happened to be
	 live at this point.  For instance, this can happen if one of
	 the insns sets the CC and the CC happened to be live at that
	 point.  This does occasionally happen, see PR 37922.  */
2079
      bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
2080 2081 2082

      for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
	note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
H.J. Lu committed
2083

2084 2085 2086
      bitmap_and_into (regs_set, regs_live);
      if (!bitmap_empty_p (regs_set))
	{
2087
	  if (dump_file && (dump_flags & TDF_DETAILS))
2088
	    {
H.J. Lu committed
2089
	      fprintf (dump_file,
2090 2091 2092
		       "abandoning replacement because sequence clobbers live hardregs:");
	      df_print_regset (dump_file, regs_set);
	    }
H.J. Lu committed
2093

2094 2095 2096 2097 2098 2099
	  BITMAP_FREE (regs_set);
	  return false;
	}
      BITMAP_FREE (regs_set);
    }

2100
  if (validate_change (read_insn->insn, loc, read_reg, 0))
2101
    {
2102
      deferred_change_t change = new deferred_change;
H.J. Lu committed
2103

2104 2105 2106
      /* Insert this right before the store insn where it will be safe
	 from later insns that might change it before the read.  */
      emit_insn_before (insns, store_insn->insn);
H.J. Lu committed
2107

2108 2109
      /* And now for the kludge part: cselib croaks if you just
	 return at this point.  There are two reasons for this:
H.J. Lu committed
2110

2111 2112
	 1) Cselib has an idea of how many pseudos there are and
	 that does not include the new ones we just added.
H.J. Lu committed
2113

2114 2115 2116
	 2) Cselib does not know about the move insn we added
	 above the store_info, and there is no way to tell it
	 about it, because it has "moved on".
H.J. Lu committed
2117

2118 2119 2120
	 Problem (1) is fixable with a certain amount of engineering.
	 Problem (2) is requires starting the bb from scratch.  This
	 could be expensive.
H.J. Lu committed
2121

2122 2123 2124 2125 2126 2127 2128 2129
	 So we are just going to have to lie.  The move/extraction
	 insns are not really an issue, cselib did not see them.  But
	 the use of the new pseudo read_insn is a real problem because
	 cselib has not scanned this insn.  The way that we solve this
	 problem is that we are just going to put the mem back for now
	 and when we are finished with the block, we undo this.  We
	 keep a table of mems to get rid of.  At the end of the basic
	 block we can put them back.  */
H.J. Lu committed
2130

2131
      *loc = read_info->mem;
2132 2133 2134 2135
      change->next = deferred_change_list;
      deferred_change_list = change;
      change->loc = loc;
      change->reg = read_reg;
H.J. Lu committed
2136

2137 2138 2139
      /* Get rid of the read_info, from the point of view of the
	 rest of dse, play like this read never happened.  */
      read_insn->read_rec = read_info->next;
2140
      delete read_info;
2141
      if (dump_file && (dump_flags & TDF_DETAILS))
2142 2143 2144 2145 2146
	{
	  fprintf (dump_file, " -- replaced the loaded MEM with ");
	  print_simple_rtl (dump_file, read_reg);
	  fprintf (dump_file, "\n");
	}
2147
      return true;
2148
    }
H.J. Lu committed
2149
  else
2150
    {
2151
      if (dump_file && (dump_flags & TDF_DETAILS))
2152 2153 2154 2155 2156
	{
	  fprintf (dump_file, " -- replacing the loaded MEM with ");
	  print_simple_rtl (dump_file, read_reg);
	  fprintf (dump_file, " led to an invalid instruction\n");
	}
2157 2158 2159 2160
      return false;
    }
}

2161 2162
/* Check the address of MEM *LOC and kill any appropriate stores that may
   be active.  */
2163

2164 2165
static void
check_mem_read_rtx (rtx *loc, bb_info_t bb_info)
2166
{
2167
  rtx mem = *loc, mem_addr;
2168 2169 2170
  insn_info_t insn_info;
  HOST_WIDE_INT offset = 0;
  HOST_WIDE_INT width = 0;
2171
  alias_set_type spill_alias_set = 0;
H.J. Lu committed
2172
  cselib_val *base = NULL;
2173 2174 2175 2176 2177 2178 2179 2180
  int group_id;
  read_info_t read_info;

  insn_info = bb_info->last_insn;

  if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
      || (MEM_VOLATILE_P (mem)))
    {
2181
      if (dump_file && (dump_flags & TDF_DETAILS))
2182 2183 2184
	fprintf (dump_file, " adding wild read, volatile or barrier.\n");
      add_wild_read (bb_info);
      insn_info->cannot_delete = true;
2185
      return;
2186 2187 2188 2189 2190
    }

  /* If it is reading readonly mem, then there can be no conflict with
     another write. */
  if (MEM_READONLY_P (mem))
2191
    return;
2192 2193 2194

  if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
    {
2195
      if (dump_file && (dump_flags & TDF_DETAILS))
2196 2197
	fprintf (dump_file, " adding wild read, canon_address failure.\n");
      add_wild_read (bb_info);
2198
      return;
2199 2200 2201 2202 2203 2204 2205
    }

  if (GET_MODE (mem) == BLKmode)
    width = -1;
  else
    width = GET_MODE_SIZE (GET_MODE (mem));

2206
  read_info = new read_info_type;
2207 2208 2209 2210 2211 2212 2213
  read_info->group_id = group_id;
  read_info->mem = mem;
  read_info->alias_set = spill_alias_set;
  read_info->begin = offset;
  read_info->end = offset + width;
  read_info->next = insn_info->read_rec;
  insn_info->read_rec = read_info;
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
  /* For alias_set != 0 canon_true_dependence should be never called.  */
  if (spill_alias_set)
    mem_addr = NULL_RTX;
  else
    {
      if (group_id < 0)
	mem_addr = base->val_rtx;
      else
	{
	  group_info_t group
2224
	    = rtx_group_vec[group_id];
2225 2226
	  mem_addr = group->canon_base_addr;
	}
2227 2228 2229 2230
      /* get_addr can only handle VALUE but cannot handle expr like:
	 VALUE + OFFSET, so call get_addr to get original addr for
	 mem_addr before plus_constant.  */
      mem_addr = get_addr (mem_addr);
2231
      if (offset)
2232
	mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
2233
    }
2234

2235
  /* We ignore the clobbers in store_info.  The is mildly aggressive,
2236 2237 2238 2239 2240 2241 2242
     but there really should not be a clobber followed by a read.  */

  if (spill_alias_set)
    {
      insn_info_t i_ptr = active_local_stores;
      insn_info_t last = NULL;

2243
      if (dump_file && (dump_flags & TDF_DETAILS))
2244
	fprintf (dump_file, " processing spill load %d\n",
2245
		 (int) spill_alias_set);
2246 2247 2248 2249 2250 2251 2252 2253

      while (i_ptr)
	{
	  store_info_t store_info = i_ptr->store_rec;

	  /* Skip the clobbers.  */
	  while (!store_info->is_set)
	    store_info = store_info->next;
H.J. Lu committed
2254

2255 2256
	  if (store_info->alias_set == spill_alias_set)
	    {
2257
	      if (dump_file && (dump_flags & TDF_DETAILS))
2258 2259
		dump_insn_info ("removing from active", i_ptr);

2260
	      active_local_stores_len--;
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
	      if (last)
		last->next_local_store = i_ptr->next_local_store;
	      else
		active_local_stores = i_ptr->next_local_store;
	    }
	  else
	    last = i_ptr;
	  i_ptr = i_ptr->next_local_store;
	}
    }
  else if (group_id >= 0)
    {
      /* This is the restricted case where the base is a constant or
	 the frame pointer and offset is a constant.  */
      insn_info_t i_ptr = active_local_stores;
      insn_info_t last = NULL;
H.J. Lu committed
2277

2278
      if (dump_file && (dump_flags & TDF_DETAILS))
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
	{
	  if (width == -1)
	    fprintf (dump_file, " processing const load gid=%d[BLK]\n",
		     group_id);
	  else
	    fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
		     group_id, (int)offset, (int)(offset+width));
	}

      while (i_ptr)
	{
	  bool remove = false;
	  store_info_t store_info = i_ptr->store_rec;
H.J. Lu committed
2292

2293 2294 2295
	  /* Skip the clobbers.  */
	  while (!store_info->is_set)
	    store_info = store_info->next;
H.J. Lu committed
2296

2297 2298 2299 2300
	  /* There are three cases here.  */
	  if (store_info->group_id < 0)
	    /* We have a cselib store followed by a read from a
	       const base. */
H.J. Lu committed
2301 2302
	    remove
	      = canon_true_dependence (store_info->mem,
2303 2304
				       GET_MODE (store_info->mem),
				       store_info->mem_addr,
2305
				       mem, mem_addr);
H.J. Lu committed
2306

2307 2308 2309 2310 2311
	  else if (group_id == store_info->group_id)
	    {
	      /* This is a block mode load.  We may get lucky and
		 canon_true_dependence may save the day.  */
	      if (width == -1)
H.J. Lu committed
2312 2313
		remove
		  = canon_true_dependence (store_info->mem,
2314 2315
					   GET_MODE (store_info->mem),
					   store_info->mem_addr,
2316
					   mem, mem_addr);
H.J. Lu committed
2317

2318 2319
	      /* If this read is just reading back something that we just
		 stored, rewrite the read.  */
H.J. Lu committed
2320
	      else
2321 2322
		{
		  if (store_info->rhs
2323 2324 2325 2326 2327 2328 2329
		      && offset >= store_info->begin
		      && offset + width <= store_info->end
		      && all_positions_needed_p (store_info,
						 offset - store_info->begin,
						 width)
		      && replace_read (store_info, i_ptr, read_info,
				       insn_info, loc, bb_info->regs_live))
2330
		    return;
2331

2332 2333
		  /* The bases are the same, just see if the offsets
		     overlap.  */
H.J. Lu committed
2334
		  if ((offset < store_info->end)
2335 2336 2337 2338
		      && (offset + width > store_info->begin))
		    remove = true;
		}
	    }
H.J. Lu committed
2339 2340

	  /* else
2341 2342 2343
	     The else case that is missing here is that the
	     bases are constant but different.  There is nothing
	     to do here because there is no overlap.  */
H.J. Lu committed
2344

2345 2346
	  if (remove)
	    {
2347
	      if (dump_file && (dump_flags & TDF_DETAILS))
2348 2349
		dump_insn_info ("removing from active", i_ptr);

2350
	      active_local_stores_len--;
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	      if (last)
		last->next_local_store = i_ptr->next_local_store;
	      else
		active_local_stores = i_ptr->next_local_store;
	    }
	  else
	    last = i_ptr;
	  i_ptr = i_ptr->next_local_store;
	}
    }
H.J. Lu committed
2361
  else
2362 2363 2364
    {
      insn_info_t i_ptr = active_local_stores;
      insn_info_t last = NULL;
2365
      if (dump_file && (dump_flags & TDF_DETAILS))
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
	{
	  fprintf (dump_file, " processing cselib load mem:");
	  print_inline_rtx (dump_file, mem, 0);
	  fprintf (dump_file, "\n");
	}

      while (i_ptr)
	{
	  bool remove = false;
	  store_info_t store_info = i_ptr->store_rec;
H.J. Lu committed
2376

2377
	  if (dump_file && (dump_flags & TDF_DETAILS))
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
	    fprintf (dump_file, " processing cselib load against insn %d\n",
		     INSN_UID (i_ptr->insn));

	  /* Skip the clobbers.  */
	  while (!store_info->is_set)
	    store_info = store_info->next;

	  /* If this read is just reading back something that we just
	     stored, rewrite the read.  */
	  if (store_info->rhs
	      && store_info->group_id == -1
	      && store_info->cse_base == base
2390
	      && width != -1
2391 2392 2393 2394 2395 2396
	      && offset >= store_info->begin
	      && offset + width <= store_info->end
	      && all_positions_needed_p (store_info,
					 offset - store_info->begin, width)
	      && replace_read (store_info, i_ptr,  read_info, insn_info, loc,
			       bb_info->regs_live))
2397
	    return;
2398 2399

	  if (!store_info->alias_set)
H.J. Lu committed
2400
	    remove = canon_true_dependence (store_info->mem,
2401 2402
					    GET_MODE (store_info->mem),
					    store_info->mem_addr,
2403
					    mem, mem_addr);
H.J. Lu committed
2404

2405 2406
	  if (remove)
	    {
2407
	      if (dump_file && (dump_flags & TDF_DETAILS))
2408
		dump_insn_info ("removing from active", i_ptr);
H.J. Lu committed
2409

2410
	      active_local_stores_len--;
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
	      if (last)
		last->next_local_store = i_ptr->next_local_store;
	      else
		active_local_stores = i_ptr->next_local_store;
	    }
	  else
	    last = i_ptr;
	  i_ptr = i_ptr->next_local_store;
	}
    }
}

2423
/* A note_uses callback in which DATA points the INSN_INFO for
2424 2425 2426 2427 2428 2429
   as check_mem_read_rtx.  Nullify the pointer if i_m_r_m_r returns
   true for any part of *LOC.  */

static void
check_mem_read_use (rtx *loc, void *data)
{
2430 2431 2432 2433 2434 2435 2436
  subrtx_ptr_iterator::array_type array;
  FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
    {
      rtx *loc = *iter;
      if (MEM_P (*loc))
	check_mem_read_rtx (loc, (bb_info_t) data);
    }
2437 2438
}

2439 2440 2441 2442 2443 2444 2445

/* Get arguments passed to CALL_INSN.  Return TRUE if successful.
   So far it only handles arguments passed in registers.  */

static bool
get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
{
2446 2447
  CUMULATIVE_ARGS args_so_far_v;
  cumulative_args_t args_so_far;
2448 2449 2450
  tree arg;
  int idx;

2451 2452
  INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
  args_so_far = pack_cumulative_args (&args_so_far_v);
2453 2454 2455 2456 2457 2458

  arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
  for (idx = 0;
       arg != void_list_node && idx < nargs;
       arg = TREE_CHAIN (arg), idx++)
    {
2459
      machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2460
      rtx reg, link, tmp;
2461
      reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true);
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
      if (!reg || !REG_P (reg) || GET_MODE (reg) != mode
	  || GET_MODE_CLASS (mode) != MODE_INT)
	return false;

      for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
	   link;
	   link = XEXP (link, 1))
	if (GET_CODE (XEXP (link, 0)) == USE)
	  {
	    args[idx] = XEXP (XEXP (link, 0), 0);
	    if (REG_P (args[idx])
		&& REGNO (args[idx]) == REGNO (reg)
		&& (GET_MODE (args[idx]) == mode
		    || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT
			&& (GET_MODE_SIZE (GET_MODE (args[idx]))
			    <= UNITS_PER_WORD)
			&& (GET_MODE_SIZE (GET_MODE (args[idx]))
			    > GET_MODE_SIZE (mode)))))
	      break;
	  }
      if (!link)
	return false;

      tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
      if (GET_MODE (args[idx]) != mode)
	{
	  if (!tmp || !CONST_INT_P (tmp))
	    return false;
2490
	  tmp = gen_int_mode (INTVAL (tmp), mode);
2491 2492 2493 2494
	}
      if (tmp)
	args[idx] = tmp;

2495
      targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true);
2496 2497 2498 2499 2500 2501
    }
  if (arg != void_list_node || idx != nargs)
    return false;
  return true;
}

2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
/* Return a bitmap of the fixed registers contained in IN.  */

static bitmap
copy_fixed_regs (const_bitmap in)
{
  bitmap ret;

  ret = ALLOC_REG_SET (NULL);
  bitmap_and (ret, in, fixed_reg_set_regset);
  return ret;
}
2513

2514 2515 2516 2517 2518
/* Apply record_store to all candidate stores in INSN.  Mark INSN
   if some part of it is not a candidate store and assigns to a
   non-register target.  */

static void
David Malcolm committed
2519
scan_insn (bb_info_t bb_info, rtx_insn *insn)
2520 2521
{
  rtx body;
2522
  insn_info_type *insn_info = new insn_info_type;
2523
  int mems_found = 0;
2524
  memset (insn_info, 0, sizeof (struct insn_info_type));
2525

2526
  if (dump_file && (dump_flags & TDF_DETAILS))
2527 2528 2529 2530 2531 2532
    fprintf (dump_file, "\n**scanning insn=%d\n",
	     INSN_UID (insn));

  insn_info->prev_insn = bb_info->last_insn;
  insn_info->insn = insn;
  bb_info->last_insn = insn_info;
H.J. Lu committed
2533

2534 2535 2536 2537 2538
  if (DEBUG_INSN_P (insn))
    {
      insn_info->cannot_delete = true;
      return;
    }
2539 2540 2541 2542 2543 2544

  /* Look at all of the uses in the insn.  */
  note_uses (&PATTERN (insn), check_mem_read_use, bb_info);

  if (CALL_P (insn))
    {
2545 2546 2547
      bool const_call;
      tree memset_call = NULL_TREE;

2548
      insn_info->cannot_delete = true;
2549

2550
      /* Const functions cannot do anything bad i.e. read memory,
2551
	 however, they can read their parameters which may have
2552 2553 2554 2555 2556
	 been pushed onto the stack.
	 memset and bzero don't read memory either.  */
      const_call = RTL_CONST_CALL_P (insn);
      if (!const_call)
	{
2557 2558
	  rtx call = get_call_rtx_from (insn);
	  if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
	    {
	      rtx symbol = XEXP (XEXP (call, 0), 0);
	      if (SYMBOL_REF_DECL (symbol)
		  && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
		{
		  if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
		       == BUILT_IN_NORMAL
		       && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
			   == BUILT_IN_MEMSET))
		      || SYMBOL_REF_DECL (symbol) == block_clear_fn)
		    memset_call = SYMBOL_REF_DECL (symbol);
		}
	    }
	}
      if (const_call || memset_call)
2574 2575 2576 2577
	{
	  insn_info_t i_ptr = active_local_stores;
	  insn_info_t last = NULL;

2578
	  if (dump_file && (dump_flags & TDF_DETAILS))
2579 2580
	    fprintf (dump_file, "%s call %d\n",
		     const_call ? "const" : "memset", INSN_UID (insn));
2581

2582
	  /* See the head comment of the frame_read field.  */
2583 2584 2585 2586 2587 2588 2589
	  if (reload_completed
	      /* Tail calls are storing their arguments using
		 arg pointer.  If it is a frame pointer on the target,
		 even before reload we need to kill frame pointer based
		 stores.  */
	      || (SIBLING_CALL_P (insn)
		  && HARD_FRAME_POINTER_IS_ARG_POINTER))
2590 2591 2592 2593
	    insn_info->frame_read = true;

	  /* Loop over the active stores and remove those which are
	     killed by the const function call.  */
2594 2595
	  while (i_ptr)
	    {
2596 2597 2598
	      bool remove_store = false;

	      /* The stack pointer based stores are always killed.  */
2599
	      if (i_ptr->stack_pointer_based)
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
	        remove_store = true;

	      /* If the frame is read, the frame related stores are killed.  */
	      else if (insn_info->frame_read)
		{
		  store_info_t store_info = i_ptr->store_rec;

		  /* Skip the clobbers.  */
		  while (!store_info->is_set)
		    store_info = store_info->next;

		  if (store_info->group_id >= 0
2612
		      && rtx_group_vec[store_info->group_id]->frame_related)
2613 2614 2615 2616
		    remove_store = true;
		}

	      if (remove_store)
2617
		{
2618
		  if (dump_file && (dump_flags & TDF_DETAILS))
2619
		    dump_insn_info ("removing from active", i_ptr);
H.J. Lu committed
2620

2621
		  active_local_stores_len--;
2622 2623 2624 2625 2626 2627 2628
		  if (last)
		    last->next_local_store = i_ptr->next_local_store;
		  else
		    active_local_stores = i_ptr->next_local_store;
		}
	      else
		last = i_ptr;
2629

2630 2631
	      i_ptr = i_ptr->next_local_store;
	    }
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641

	  if (memset_call)
	    {
	      rtx args[3];
	      if (get_call_args (insn, memset_call, args, 3)
		  && CONST_INT_P (args[1])
		  && CONST_INT_P (args[2])
		  && INTVAL (args[2]) > 0)
		{
		  rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2642
		  set_mem_size (mem, INTVAL (args[2]));
2643
		  body = gen_rtx_SET (mem, args[1]);
2644
		  mems_found += record_store (body, bb_info);
2645
		  if (dump_file && (dump_flags & TDF_DETAILS))
2646 2647 2648
		    fprintf (dump_file, "handling memset as BLKmode store\n");
		  if (mems_found == 1)
		    {
2649 2650 2651 2652 2653 2654
		      if (active_local_stores_len++
			  >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
			{
			  active_local_stores_len = 1;
			  active_local_stores = NULL;
			}
2655 2656
		      insn_info->fixed_regs_live
			= copy_fixed_regs (bb_info->regs_live);
2657 2658 2659 2660 2661
		      insn_info->next_local_store = active_local_stores;
		      active_local_stores = insn_info;
		    }
		}
	    }
2662
	}
2663 2664 2665 2666 2667
      else if (SIBLING_CALL_P (insn) && reload_completed)
	/* Arguments for a sibling call that are pushed to memory are passed
	   using the incoming argument pointer of the current function.  After
	   reload that might be (and likely is) frame pointer based.  */
	add_wild_read (bb_info);
2668
      else
2669 2670 2671
	/* Every other call, including pure functions, may read any memory
           that is not relative to the frame.  */
        add_non_frame_wild_read (bb_info);
2672

2673 2674 2675 2676 2677 2678
      return;
    }

  /* Assuming that there are sets in these insns, we cannot delete
     them.  */
  if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2679
      || volatile_refs_p (PATTERN (insn))
2680
      || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2681 2682 2683
      || (RTX_FRAME_RELATED_P (insn))
      || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
    insn_info->cannot_delete = true;
H.J. Lu committed
2684

2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
  body = PATTERN (insn);
  if (GET_CODE (body) == PARALLEL)
    {
      int i;
      for (i = 0; i < XVECLEN (body, 0); i++)
	mems_found += record_store (XVECEXP (body, 0, i), bb_info);
    }
  else
    mems_found += record_store (body, bb_info);

2695
  if (dump_file && (dump_flags & TDF_DETAILS))
H.J. Lu committed
2696
    fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2697 2698
	     mems_found, insn_info->cannot_delete ? "true" : "false");

2699 2700 2701 2702 2703
  /* If we found some sets of mems, add it into the active_local_stores so
     that it can be locally deleted if found dead or used for
     replace_read and redundant constant store elimination.  Otherwise mark
     it as cannot delete.  This simplifies the processing later.  */
  if (mems_found == 1)
2704
    {
2705 2706 2707 2708 2709 2710
      if (active_local_stores_len++
	  >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
	{
	  active_local_stores_len = 1;
	  active_local_stores = NULL;
	}
2711
      insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
      insn_info->next_local_store = active_local_stores;
      active_local_stores = insn_info;
    }
  else
    insn_info->cannot_delete = true;
}


/* Remove BASE from the set of active_local_stores.  This is a
   callback from cselib that is used to get rid of the stores in
   active_local_stores.  */

static void
remove_useless_values (cselib_val *base)
{
  insn_info_t insn_info = active_local_stores;
  insn_info_t last = NULL;

  while (insn_info)
    {
      store_info_t store_info = insn_info->store_rec;
2733
      bool del = false;
2734 2735 2736 2737 2738

      /* If ANY of the store_infos match the cselib group that is
	 being deleted, then the insn can not be deleted.  */
      while (store_info)
	{
H.J. Lu committed
2739
	  if ((store_info->group_id == -1)
2740 2741
	      && (store_info->cse_base == base))
	    {
2742
	      del = true;
2743 2744 2745 2746 2747
	      break;
	    }
	  store_info = store_info->next;
	}

2748
      if (del)
2749
	{
2750
	  active_local_stores_len--;
2751 2752 2753 2754 2755 2756 2757 2758
	  if (last)
	    last->next_local_store = insn_info->next_local_store;
	  else
	    active_local_stores = insn_info->next_local_store;
	  free_store_info (insn_info);
	}
      else
	last = insn_info;
H.J. Lu committed
2759

2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
      insn_info = insn_info->next_local_store;
    }
}


/* Do all of step 1.  */

static void
dse_step1 (void)
{
  basic_block bb;
2771
  bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
H.J. Lu committed
2772

2773
  cselib_init (0);
2774 2775 2776 2777
  all_blocks = BITMAP_ALLOC (NULL);
  bitmap_set_bit (all_blocks, ENTRY_BLOCK);
  bitmap_set_bit (all_blocks, EXIT_BLOCK);

2778
  FOR_ALL_BB_FN (bb, cfun)
2779 2780
    {
      insn_info_t ptr;
2781
      bb_info_t bb_info = new dse_bb_info_type;
2782

2783
      memset (bb_info, 0, sizeof (dse_bb_info_type));
2784
      bitmap_set_bit (all_blocks, bb->index);
2785 2786 2787 2788
      bb_info->regs_live = regs_live;

      bitmap_copy (regs_live, DF_LR_IN (bb));
      df_simulate_initialize_forwards (bb, regs_live);
2789 2790 2791 2792 2793 2794

      bb_table[bb->index] = bb_info;
      cselib_discard_hook = remove_useless_values;

      if (bb->index >= NUM_FIXED_BLOCKS)
	{
David Malcolm committed
2795
	  rtx_insn *insn;
2796 2797

	  active_local_stores = NULL;
2798
	  active_local_stores_len = 0;
2799
	  cselib_clear_table ();
H.J. Lu committed
2800

2801 2802 2803 2804 2805 2806
	  /* Scan the insns.  */
	  FOR_BB_INSNS (bb, insn)
	    {
	      if (INSN_P (insn))
		scan_insn (bb_info, insn);
	      cselib_process_insn (insn);
2807 2808
	      if (INSN_P (insn))
		df_simulate_one_insn_forwards (bb, insn, regs_live);
2809
	    }
H.J. Lu committed
2810

2811 2812 2813 2814 2815 2816
	  /* This is something of a hack, because the global algorithm
	     is supposed to take care of the case where stores go dead
	     at the end of the function.  However, the global
	     algorithm must take a more conservative view of block
	     mode reads than the local alg does.  So to get the case
	     where you have a store to the frame followed by a non
2817
	     overlapping block more read, we look at the active local
2818 2819 2820 2821 2822
	     stores at the end of the function and delete all of the
	     frame and spill based ones.  */
	  if (stores_off_frame_dead_at_return
	      && (EDGE_COUNT (bb->succs) == 0
		  || (single_succ_p (bb)
2823
		      && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
2824
		      && ! crtl->calls_eh_return)))
2825 2826 2827 2828 2829 2830 2831 2832 2833
	    {
	      insn_info_t i_ptr = active_local_stores;
	      while (i_ptr)
		{
		  store_info_t store_info = i_ptr->store_rec;

		  /* Skip the clobbers.  */
		  while (!store_info->is_set)
		    store_info = store_info->next;
2834
		  if (store_info->alias_set && !i_ptr->cannot_delete)
2835
		    delete_dead_store_insn (i_ptr);
H.J. Lu committed
2836
		  else
2837 2838
		    if (store_info->group_id >= 0)
		      {
H.J. Lu committed
2839
			group_info_t group
2840
			  = rtx_group_vec[store_info->group_id];
2841
			if (group->frame_related && !i_ptr->cannot_delete)
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
			  delete_dead_store_insn (i_ptr);
		      }

		  i_ptr = i_ptr->next_local_store;
		}
	    }

	  /* Get rid of the loads that were discovered in
	     replace_read.  Cselib is finished with this block.  */
	  while (deferred_change_list)
	    {
	      deferred_change_t next = deferred_change_list->next;

	      /* There is no reason to validate this change.  That was
		 done earlier.  */
	      *deferred_change_list->loc = deferred_change_list->reg;
2858
	      delete deferred_change_list;
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
	      deferred_change_list = next;
	    }

	  /* Get rid of all of the cselib based store_infos in this
	     block and mark the containing insns as not being
	     deletable.  */
	  ptr = bb_info->last_insn;
	  while (ptr)
	    {
	      if (ptr->contains_cselib_groups)
2869 2870 2871 2872 2873 2874 2875 2876 2877
		{
		  store_info_t s_info = ptr->store_rec;
		  while (s_info && !s_info->is_set)
		    s_info = s_info->next;
		  if (s_info
		      && s_info->redundant_reason
		      && s_info->redundant_reason->insn
		      && !ptr->cannot_delete)
		    {
2878
		      if (dump_file && (dump_flags & TDF_DETAILS))
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
			fprintf (dump_file, "Locally deleting insn %d "
					    "because insn %d stores the "
					    "same value and couldn't be "
					    "eliminated\n",
				 INSN_UID (ptr->insn),
				 INSN_UID (s_info->redundant_reason->insn));
		      delete_dead_store_insn (ptr);
		    }
		  free_store_info (ptr);
		}
	      else
		{
		  store_info_t s_info;

		  /* Free at least positions_needed bitmaps.  */
		  for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
		    if (s_info->is_large)
		      {
2897
			BITMAP_FREE (s_info->positions_needed.large.bmap);
2898 2899 2900
			s_info->is_large = false;
		      }
		}
2901 2902 2903
	      ptr = ptr->prev_insn;
	    }

2904
	  cse_store_info_pool.release ();
2905
	}
2906
      bb_info->regs_live = NULL;
2907 2908
    }

2909
  BITMAP_FREE (regs_live);
2910
  cselib_finish ();
2911
  rtx_group_table->empty ();
2912 2913 2914 2915 2916 2917 2918 2919
}


/*----------------------------------------------------------------------------
   Second step.

   Assign each byte position in the stores that we are going to
   analyze globally to a position in the bitmaps.  Returns true if
2920
   there are any bit positions assigned.
2921 2922 2923 2924 2925 2926 2927 2928
----------------------------------------------------------------------------*/

static void
dse_step2_init (void)
{
  unsigned int i;
  group_info_t group;

2929
  FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2930 2931 2932 2933 2934 2935 2936 2937 2938
    {
      /* For all non stack related bases, we only consider a store to
	 be deletable if there are two or more stores for that
	 position.  This is because it takes one store to make the
	 other store redundant.  However, for the stores that are
	 stack related, we consider them if there is only one store
	 for the position.  We do this because the stack related
	 stores can be deleted if their is no read between them and
	 the end of the function.
H.J. Lu committed
2939

2940 2941 2942 2943 2944 2945 2946 2947 2948
	 To make this work in the current framework, we take the stack
	 related bases add all of the bits from store1 into store2.
	 This has the effect of making the eligible even if there is
	 only one store.   */

      if (stores_off_frame_dead_at_return && group->frame_related)
	{
	  bitmap_ior_into (group->store2_n, group->store1_n);
	  bitmap_ior_into (group->store2_p, group->store1_p);
2949
	  if (dump_file && (dump_flags & TDF_DETAILS))
H.J. Lu committed
2950
	    fprintf (dump_file, "group %d is frame related ", i);
2951 2952 2953
	}

      group->offset_map_size_n++;
2954 2955
      group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
				       group->offset_map_size_n);
2956
      group->offset_map_size_p++;
2957 2958
      group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
				       group->offset_map_size_p);
2959
      group->process_globally = false;
2960
      if (dump_file && (dump_flags & TDF_DETAILS))
2961
	{
H.J. Lu committed
2962
	  fprintf (dump_file, "group %d(%d+%d): ", i,
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
		   (int)bitmap_count_bits (group->store2_n),
		   (int)bitmap_count_bits (group->store2_p));
	  bitmap_print (dump_file, group->store2_n, "n ", " ");
	  bitmap_print (dump_file, group->store2_p, "p ", "\n");
	}
    }
}


/* Init the offset tables for the normal case.  */

static bool
dse_step2_nospill (void)
{
  unsigned int i;
  group_info_t group;
  /* Position 0 is unused because 0 is used in the maps to mean
     unused.  */
  current_position = 1;
2982
  FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2983 2984 2985 2986 2987 2988 2989
    {
      bitmap_iterator bi;
      unsigned int j;

      if (group == clear_alias_group)
	continue;

2990 2991
      memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
      memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
2992 2993 2994 2995 2996
      bitmap_clear (group->group_kill);

      EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
	{
	  bitmap_set_bit (group->group_kill, current_position);
2997 2998
          if (bitmap_bit_p (group->escaped_n, j))
	    bitmap_set_bit (kill_on_calls, current_position);
2999 3000 3001 3002 3003
	  group->offset_map_n[j] = current_position++;
	  group->process_globally = true;
	}
      EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
	{
H.J. Lu committed
3004
	  bitmap_set_bit (group->group_kill, current_position);
3005 3006
          if (bitmap_bit_p (group->escaped_p, j))
	    bitmap_set_bit (kill_on_calls, current_position);
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
	  group->offset_map_p[j] = current_position++;
	  group->process_globally = true;
	}
    }
  return current_position != 1;
}



/*----------------------------------------------------------------------------
  Third step.
H.J. Lu committed
3018

3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
  Build the bit vectors for the transfer functions.
----------------------------------------------------------------------------*/


/* Look up the bitmap index for OFFSET in GROUP_INFO.  If it is not
   there, return 0.  */

static int
get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
{
  if (offset < 0)
    {
      HOST_WIDE_INT offset_p = -offset;
      if (offset_p >= group_info->offset_map_size_n)
	return 0;
      return group_info->offset_map_n[offset_p];
    }
  else
    {
      if (offset >= group_info->offset_map_size_p)
	return 0;
      return group_info->offset_map_p[offset];
    }
}


/* Process the STORE_INFOs into the bitmaps into GEN and KILL.  KILL
   may be NULL. */

H.J. Lu committed
3048
static void
3049 3050 3051 3052 3053
scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
{
  while (store_info)
    {
      HOST_WIDE_INT i;
H.J. Lu committed
3054
      group_info_t group_info
3055
	= rtx_group_vec[store_info->group_id];
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
      if (group_info->process_globally)
	for (i = store_info->begin; i < store_info->end; i++)
	  {
	    int index = get_bitmap_index (group_info, i);
	    if (index != 0)
	      {
		bitmap_set_bit (gen, index);
		if (kill)
		  bitmap_clear_bit (kill, index);
	      }
	  }
      store_info = store_info->next;
    }
}


/* Process the STORE_INFOs into the bitmaps into GEN and KILL.  KILL
   may be NULL. */

H.J. Lu committed
3075
static void
3076 3077 3078 3079 3080 3081
scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
{
  while (store_info)
    {
      if (store_info->alias_set)
	{
H.J. Lu committed
3082
	  int index = get_bitmap_index (clear_alias_group,
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
					store_info->alias_set);
	  if (index != 0)
	    {
	      bitmap_set_bit (gen, index);
	      if (kill)
		bitmap_clear_bit (kill, index);
	    }
	}
      store_info = store_info->next;
    }
}


/* Process the READ_INFOs into the bitmaps into GEN and KILL.  KILL
   may be NULL.  */

static void
scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
{
  read_info_t read_info = insn_info->read_rec;
  int i;
  group_info_t group;

3106 3107 3108
  /* If this insn reads the frame, kill all the frame related stores.  */
  if (insn_info->frame_read)
    {
3109
      FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3110 3111 3112 3113
	if (group->process_globally && group->frame_related)
	  {
	    if (kill)
	      bitmap_ior_into (kill, group->group_kill);
H.J. Lu committed
3114
	    bitmap_and_compl_into (gen, group->group_kill);
3115 3116
	  }
    }
3117 3118 3119 3120 3121 3122 3123
  if (insn_info->non_frame_wild_read)
    {
      /* Kill all non-frame related stores.  Kill all stores of variables that
         escape.  */
      if (kill)
        bitmap_ior_into (kill, kill_on_calls);
      bitmap_and_compl_into (gen, kill_on_calls);
3124
      FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3125 3126 3127 3128 3129 3130 3131
	if (group->process_globally && !group->frame_related)
	  {
	    if (kill)
	      bitmap_ior_into (kill, group->group_kill);
	    bitmap_and_compl_into (gen, group->group_kill);
	  }
    }
3132 3133
  while (read_info)
    {
3134
      FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
	{
	  if (group->process_globally)
	    {
	      if (i == read_info->group_id)
		{
		  if (read_info->begin > read_info->end)
		    {
		      /* Begin > end for block mode reads.  */
		      if (kill)
			bitmap_ior_into (kill, group->group_kill);
		      bitmap_and_compl_into (gen, group->group_kill);
		    }
		  else
		    {
		      /* The groups are the same, just process the
			 offsets.  */
		      HOST_WIDE_INT j;
		      for (j = read_info->begin; j < read_info->end; j++)
			{
			  int index = get_bitmap_index (group, j);
			  if (index != 0)
			    {
			      if (kill)
				bitmap_set_bit (kill, index);
			      bitmap_clear_bit (gen, index);
			    }
			}
		    }
		}
	      else
		{
		  /* The groups are different, if the alias sets
		     conflict, clear the entire group.  We only need
		     to apply this test if the read_info is a cselib
		     read.  Anything with a constant base cannot alias
		     something else with a different constant
		     base.  */
		  if ((read_info->group_id < 0)
H.J. Lu committed
3173
		      && canon_true_dependence (group->base_mem,
3174
						GET_MODE (group->base_mem),
3175
						group->canon_base_addr,
3176
						read_info->mem, NULL_RTX))
3177 3178 3179 3180 3181 3182 3183 3184
		    {
		      if (kill)
			bitmap_ior_into (kill, group->group_kill);
		      bitmap_and_compl_into (gen, group->group_kill);
		    }
		}
	    }
	}
H.J. Lu committed
3185

3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
      read_info = read_info->next;
    }
}

/* Process the READ_INFOs into the bitmaps into GEN and KILL.  KILL
   may be NULL.  */

static void
scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
{
  while (read_info)
    {
      if (read_info->alias_set)
	{
H.J. Lu committed
3200
	  int index = get_bitmap_index (clear_alias_group,
3201 3202 3203 3204 3205 3206 3207 3208
					read_info->alias_set);
	  if (index != 0)
	    {
	      if (kill)
		bitmap_set_bit (kill, index);
	      bitmap_clear_bit (gen, index);
	    }
	}
H.J. Lu committed
3209

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
      read_info = read_info->next;
    }
}


/* Return the insn in BB_INFO before the first wild read or if there
   are no wild reads in the block, return the last insn.  */

static insn_info_t
find_insn_before_first_wild_read (bb_info_t bb_info)
{
  insn_info_t insn_info = bb_info->last_insn;
  insn_info_t last_wild_read = NULL;

  while (insn_info)
    {
      if (insn_info->wild_read)
	{
	  last_wild_read = insn_info->prev_insn;
	  /* Block starts with wild read.  */
	  if (!last_wild_read)
	    return NULL;
	}

      insn_info = insn_info->prev_insn;
    }

  if (last_wild_read)
    return last_wild_read;
  else
    return bb_info->last_insn;
}


/* Scan the insns in BB_INFO starting at PTR and going to the top of
   the block in order to build the gen and kill sets for the block.
   We start at ptr which may be the last insn in the block or may be
   the first insn with a wild read.  In the latter case we are able to
   skip the rest of the block because it just does not matter:
   anything that happens is hidden by the wild read.  */

static void
dse_step3_scan (bool for_spills, basic_block bb)
{
  bb_info_t bb_info = bb_table[bb->index];
  insn_info_t insn_info;

  if (for_spills)
    /* There are no wild reads in the spill case.  */
    insn_info = bb_info->last_insn;
  else
    insn_info = find_insn_before_first_wild_read (bb_info);
H.J. Lu committed
3262

3263 3264 3265 3266 3267 3268 3269
  /* In the spill case or in the no_spill case if there is no wild
     read in the block, we will need a kill set.  */
  if (insn_info == bb_info->last_insn)
    {
      if (bb_info->kill)
	bitmap_clear (bb_info->kill);
      else
3270
	bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
3271
    }
H.J. Lu committed
3272
  else
3273 3274 3275 3276 3277 3278 3279 3280 3281
    if (bb_info->kill)
      BITMAP_FREE (bb_info->kill);

  while (insn_info)
    {
      /* There may have been code deleted by the dce pass run before
	 this phase.  */
      if (insn_info->insn && INSN_P (insn_info->insn))
	{
H.J. Lu committed
3282
	  /* Process the read(s) last.  */
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
	  if (for_spills)
	    {
	      scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
	      scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
	    }
	  else
	    {
	      scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
	      scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
	    }
H.J. Lu committed
3293
	}
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307

      insn_info = insn_info->prev_insn;
    }
}


/* Set the gen set of the exit block, and also any block with no
   successors that does not have a wild read.  */

static void
dse_step3_exit_block_scan (bb_info_t bb_info)
{
  /* The gen set is all 0's for the exit block except for the
     frame_pointer_group.  */
H.J. Lu committed
3308

3309 3310 3311 3312
  if (stores_off_frame_dead_at_return)
    {
      unsigned int i;
      group_info_t group;
H.J. Lu committed
3313

3314
      FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
	{
	  if (group->process_globally && group->frame_related)
	    bitmap_ior_into (bb_info->gen, group->group_kill);
	}
    }
}


/* Find all of the blocks that are not backwards reachable from the
   exit block or any block with no successors (BB).  These are the
   infinite loops or infinite self loops.  These blocks will still
   have their bits set in UNREACHABLE_BLOCKS.  */

static void
mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
{
  edge e;
  edge_iterator ei;

3334
  if (bitmap_bit_p (unreachable_blocks, bb->index))
3335
    {
3336
      bitmap_clear_bit (unreachable_blocks, bb->index);
3337
      FOR_EACH_EDGE (e, ei, bb->preds)
H.J. Lu committed
3338
	{
3339
	  mark_reachable_blocks (unreachable_blocks, e->src);
H.J. Lu committed
3340
	}
3341 3342 3343 3344 3345 3346 3347 3348 3349
    }
}

/* Build the transfer functions for the function.  */

static void
dse_step3 (bool for_spills)
{
  basic_block bb;
3350
  sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
3351 3352 3353
  sbitmap_iterator sbi;
  bitmap all_ones = NULL;
  unsigned int i;
H.J. Lu committed
3354

3355
  bitmap_ones (unreachable_blocks);
3356

3357
  FOR_ALL_BB_FN (bb, cfun)
3358 3359 3360 3361 3362
    {
      bb_info_t bb_info = bb_table[bb->index];
      if (bb_info->gen)
	bitmap_clear (bb_info->gen);
      else
3363
	bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384

      if (bb->index == ENTRY_BLOCK)
	;
      else if (bb->index == EXIT_BLOCK)
	dse_step3_exit_block_scan (bb_info);
      else
	dse_step3_scan (for_spills, bb);
      if (EDGE_COUNT (bb->succs) == 0)
	mark_reachable_blocks (unreachable_blocks, bb);

      /* If this is the second time dataflow is run, delete the old
	 sets.  */
      if (bb_info->in)
	BITMAP_FREE (bb_info->in);
      if (bb_info->out)
	BITMAP_FREE (bb_info->out);
    }

  /* For any block in an infinite loop, we must initialize the out set
     to all ones.  This could be expensive, but almost never occurs in
     practice. However, it is common in regression tests.  */
3385
  EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
3386 3387 3388 3389 3390 3391 3392 3393 3394
    {
      if (bitmap_bit_p (all_blocks, i))
	{
	  bb_info_t bb_info = bb_table[i];
	  if (!all_ones)
	    {
	      unsigned int j;
	      group_info_t group;

3395
	      all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
3396
	      FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
3397 3398 3399 3400
		bitmap_ior_into (all_ones, group->group_kill);
	    }
	  if (!bb_info->out)
	    {
3401
	      bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
	      bitmap_copy (bb_info->out, all_ones);
	    }
	}
    }

  if (all_ones)
    BITMAP_FREE (all_ones);
  sbitmap_free (unreachable_blocks);
}



/*----------------------------------------------------------------------------
   Fourth step.

   Solve the bitvector equations.
----------------------------------------------------------------------------*/


/* Confluence function for blocks with no successors.  Create an out
   set from the gen set of the exit block.  This block logically has
   the exit block as a successor.  */



static void
dse_confluence_0 (basic_block bb)
{
  bb_info_t bb_info = bb_table[bb->index];

  if (bb->index == EXIT_BLOCK)
    return;

  if (!bb_info->out)
    {
3437
      bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3438 3439 3440 3441 3442 3443 3444 3445
      bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
    }
}

/* Propagate the information from the in set of the dest of E to the
   out set of the src of E.  If the various in or out sets are not
   there, that means they are all ones.  */

3446
static bool
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
dse_confluence_n (edge e)
{
  bb_info_t src_info = bb_table[e->src->index];
  bb_info_t dest_info = bb_table[e->dest->index];

  if (dest_info->in)
    {
      if (src_info->out)
	bitmap_and_into (src_info->out, dest_info->in);
      else
	{
3458
	  src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3459 3460 3461
	  bitmap_copy (src_info->out, dest_info->in);
	}
    }
3462
  return true;
3463 3464 3465 3466
}


/* Propagate the info from the out to the in set of BB_INDEX's basic
H.J. Lu committed
3467
   block.  There are three cases:
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492

   1) The block has no kill set.  In this case the kill set is all
   ones.  It does not matter what the out set of the block is, none of
   the info can reach the top.  The only thing that reaches the top is
   the gen set and we just copy the set.

   2) There is a kill set but no out set and bb has successors.  In
   this case we just return. Eventually an out set will be created and
   it is better to wait than to create a set of ones.

   3) There is both a kill and out set.  We apply the obvious transfer
   function.
*/

static bool
dse_transfer_function (int bb_index)
{
  bb_info_t bb_info = bb_table[bb_index];

  if (bb_info->kill)
    {
      if (bb_info->out)
	{
	  /* Case 3 above.  */
	  if (bb_info->in)
H.J. Lu committed
3493
	    return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3494 3495 3496
					 bb_info->out, bb_info->kill);
	  else
	    {
3497
	      bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
H.J. Lu committed
3498
	      bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
				    bb_info->out, bb_info->kill);
	      return true;
	    }
	}
      else
	/* Case 2 above.  */
	return false;
    }
  else
    {
      /* Case 1 above.  If there is already an in set, nothing
	 happens.  */
      if (bb_info->in)
	return false;
      else
	{
3515
	  bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
	  bitmap_copy (bb_info->in, bb_info->gen);
	  return true;
	}
    }
}

/* Solve the dataflow equations.  */

static void
dse_step4 (void)
{
H.J. Lu committed
3527 3528 3529
  df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
		      dse_confluence_n, dse_transfer_function,
	   	      all_blocks, df_get_postorder (DF_BACKWARD),
3530
		      df_get_n_blocks (DF_BACKWARD));
3531
  if (dump_file && (dump_flags & TDF_DETAILS))
3532 3533 3534 3535
    {
      basic_block bb;

      fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3536
      FOR_ALL_BB_FN (bb, cfun)
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
	{
	  bb_info_t bb_info = bb_table[bb->index];

	  df_print_bb_index (bb, dump_file);
	  if (bb_info->in)
	    bitmap_print (dump_file, bb_info->in, "  in:   ", "\n");
	  else
	    fprintf (dump_file, "  in:   *MISSING*\n");
	  if (bb_info->gen)
	    bitmap_print (dump_file, bb_info->gen, "  gen:  ", "\n");
	  else
	    fprintf (dump_file, "  gen:  *MISSING*\n");
	  if (bb_info->kill)
	    bitmap_print (dump_file, bb_info->kill, "  kill: ", "\n");
	  else
	    fprintf (dump_file, "  kill: *MISSING*\n");
	  if (bb_info->out)
	    bitmap_print (dump_file, bb_info->out, "  out:  ", "\n");
	  else
	    fprintf (dump_file, "  out:  *MISSING*\n\n");
	}
    }
}



/*----------------------------------------------------------------------------
   Fifth step.

3566
   Delete the stores that can only be deleted using the global information.
3567 3568 3569 3570 3571 3572 3573
----------------------------------------------------------------------------*/


static void
dse_step5_nospill (void)
{
  basic_block bb;
3574
  FOR_EACH_BB_FN (bb, cfun)
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
    {
      bb_info_t bb_info = bb_table[bb->index];
      insn_info_t insn_info = bb_info->last_insn;
      bitmap v = bb_info->out;

      while (insn_info)
	{
	  bool deleted = false;
	  if (dump_file && insn_info->insn)
	    {
	      fprintf (dump_file, "starting to process insn %d\n",
		       INSN_UID (insn_info->insn));
	      bitmap_print (dump_file, v, "  v:  ", "\n");
	    }

	  /* There may have been code deleted by the dce pass run before
	     this phase.  */
H.J. Lu committed
3592
	  if (insn_info->insn
3593 3594 3595 3596 3597 3598 3599 3600
	      && INSN_P (insn_info->insn)
	      && (!insn_info->cannot_delete)
	      && (!bitmap_empty_p (v)))
	    {
	      store_info_t store_info = insn_info->store_rec;

	      /* Try to delete the current insn.  */
	      deleted = true;
H.J. Lu committed
3601

3602 3603 3604 3605 3606 3607 3608 3609 3610
	      /* Skip the clobbers.  */
	      while (!store_info->is_set)
		store_info = store_info->next;

	      if (store_info->alias_set)
		deleted = false;
	      else
		{
		  HOST_WIDE_INT i;
H.J. Lu committed
3611
		  group_info_t group_info
3612
		    = rtx_group_vec[store_info->group_id];
H.J. Lu committed
3613

3614 3615 3616
		  for (i = store_info->begin; i < store_info->end; i++)
		    {
		      int index = get_bitmap_index (group_info, i);
H.J. Lu committed
3617

3618
		      if (dump_file && (dump_flags & TDF_DETAILS))
H.J. Lu committed
3619
			fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
3620 3621
		      if (index == 0 || !bitmap_bit_p (v, index))
			{
3622
			  if (dump_file && (dump_flags & TDF_DETAILS))
H.J. Lu committed
3623
			    fprintf (dump_file, "failing at i = %d\n", (int)i);
3624 3625 3626 3627 3628 3629 3630
			  deleted = false;
			  break;
			}
		    }
		}
	      if (deleted)
		{
3631 3632
		  if (dbg_cnt (dse)
		      && check_for_inc_dec_1 (insn_info))
3633 3634 3635 3636 3637 3638 3639 3640
		    {
		      delete_insn (insn_info->insn);
		      insn_info->insn = NULL;
		      globally_deleted++;
		    }
		}
	    }
	  /* We do want to process the local info if the insn was
3641
	     deleted.  For instance, if the insn did a wild read, we
3642
	     no longer need to trash the info.  */
H.J. Lu committed
3643
	  if (insn_info->insn
3644 3645 3646 3647 3648 3649
	      && INSN_P (insn_info->insn)
	      && (!deleted))
	    {
	      scan_stores_nospill (insn_info->store_rec, v, NULL);
	      if (insn_info->wild_read)
		{
3650
		  if (dump_file && (dump_flags & TDF_DETAILS))
3651 3652 3653
		    fprintf (dump_file, "wild read\n");
		  bitmap_clear (v);
		}
3654 3655
	      else if (insn_info->read_rec
                       || insn_info->non_frame_wild_read)
3656
		{
3657
		  if (dump_file && !insn_info->non_frame_wild_read)
3658
		    fprintf (dump_file, "regular read\n");
3659
                  else if (dump_file && (dump_flags & TDF_DETAILS))
3660
		    fprintf (dump_file, "non-frame wild read\n");
3661 3662 3663
		  scan_reads_nospill (insn_info, v, NULL);
		}
	    }
H.J. Lu committed
3664

3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
	  insn_info = insn_info->prev_insn;
	}
    }
}



/*----------------------------------------------------------------------------
   Sixth step.

3675 3676 3677 3678 3679 3680 3681 3682 3683
   Delete stores made redundant by earlier stores (which store the same
   value) that couldn't be eliminated.
----------------------------------------------------------------------------*/

static void
dse_step6 (void)
{
  basic_block bb;

3684
  FOR_ALL_BB_FN (bb, cfun)
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
    {
      bb_info_t bb_info = bb_table[bb->index];
      insn_info_t insn_info = bb_info->last_insn;

      while (insn_info)
	{
	  /* There may have been code deleted by the dce pass run before
	     this phase.  */
	  if (insn_info->insn
	      && INSN_P (insn_info->insn)
	      && !insn_info->cannot_delete)
	    {
	      store_info_t s_info = insn_info->store_rec;

	      while (s_info && !s_info->is_set)
		s_info = s_info->next;
	      if (s_info
		  && s_info->redundant_reason
		  && s_info->redundant_reason->insn
		  && INSN_P (s_info->redundant_reason->insn))
		{
David Malcolm committed
3706
		  rtx_insn *rinsn = s_info->redundant_reason->insn;
3707
		  if (dump_file && (dump_flags & TDF_DETAILS))
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
		    fprintf (dump_file, "Locally deleting insn %d "
					"because insn %d stores the "
					"same value and couldn't be "
					"eliminated\n",
					INSN_UID (insn_info->insn),
					INSN_UID (rinsn));
		  delete_dead_store_insn (insn_info);
		}
	    }
	  insn_info = insn_info->prev_insn;
	}
    }
}

/*----------------------------------------------------------------------------
   Seventh step.

H.J. Lu committed
3725
   Destroy everything left standing.
3726 3727
----------------------------------------------------------------------------*/

H.J. Lu committed
3728
static void
3729
dse_step7 (void)
3730
{
3731 3732
  bitmap_obstack_release (&dse_bitmap_obstack);
  obstack_free (&dse_obstack, NULL);
3733

3734 3735
  end_alias_analysis ();
  free (bb_table);
3736 3737
  delete rtx_group_table;
  rtx_group_table = NULL;
3738
  rtx_group_vec.release ();
3739 3740 3741
  BITMAP_FREE (all_blocks);
  BITMAP_FREE (scratch);

3742 3743 3744 3745 3746 3747
  rtx_store_info_pool.release ();
  read_info_type::pool.release ();
  insn_info_type::pool.release ();
  dse_bb_info_type::pool.release ();
  group_info::pool.release ();
  deferred_change::pool.release ();
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
}


/* -------------------------------------------------------------------------
   DSE
   ------------------------------------------------------------------------- */

/* Callback for running pass_rtl_dse.  */

static unsigned int
rest_of_handle_dse (void)
{
  df_set_flags (DF_DEFER_INSN_RESCAN);

3762 3763 3764 3765 3766
  /* Need the notes since we must track live hardregs in the forwards
     direction.  */
  df_note_add_problem ();
  df_analyze ();

3767 3768 3769 3770 3771 3772 3773
  dse_step0 ();
  dse_step1 ();
  dse_step2_init ();
  if (dse_step2_nospill ())
    {
      df_set_flags (DF_LR_RUN_DCE);
      df_analyze ();
3774
      if (dump_file && (dump_flags & TDF_DETAILS))
3775 3776 3777 3778 3779 3780
	fprintf (dump_file, "doing global processing\n");
      dse_step3 (false);
      dse_step4 ();
      dse_step5_nospill ();
    }

3781
  dse_step6 ();
3782
  dse_step7 ();
3783 3784 3785 3786

  if (dump_file)
    fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
	     locally_deleted, globally_deleted, spill_deleted);
3787 3788 3789 3790 3791 3792 3793 3794

  /* DSE can eliminate potentially-trapping MEMs.
     Remove any EH edges associated with them.  */
  if ((locally_deleted || globally_deleted)
      && cfun->can_throw_non_call_exceptions
      && purge_all_dead_edges ())
    cleanup_cfg (0);

3795 3796 3797
  return 0;
}

3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
namespace {

const pass_data pass_data_rtl_dse1 =
{
  RTL_PASS, /* type */
  "dse1", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_DSE1, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
3810
  TODO_df_finish, /* todo_flags_finish */
3811 3812
};

3813 3814 3815
class pass_rtl_dse1 : public rtl_opt_pass
{
public:
3816 3817
  pass_rtl_dse1 (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
3818 3819 3820
  {}

  /* opt_pass methods: */
3821 3822 3823 3824 3825
  virtual bool gate (function *)
    {
      return optimize > 0 && flag_dse && dbg_cnt (dse1);
    }

3826
  virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849

}; // class pass_rtl_dse1

} // anon namespace

rtl_opt_pass *
make_pass_rtl_dse1 (gcc::context *ctxt)
{
  return new pass_rtl_dse1 (ctxt);
}

namespace {

const pass_data pass_data_rtl_dse2 =
{
  RTL_PASS, /* type */
  "dse2", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_DSE2, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
3850
  TODO_df_finish, /* todo_flags_finish */
3851
};
3852 3853 3854 3855

class pass_rtl_dse2 : public rtl_opt_pass
{
public:
3856 3857
  pass_rtl_dse2 (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
3858 3859 3860
  {}

  /* opt_pass methods: */
3861 3862 3863 3864 3865
  virtual bool gate (function *)
    {
      return optimize > 0 && flag_dse && dbg_cnt (dse2);
    }

3866
  virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876

}; // class pass_rtl_dse2

} // anon namespace

rtl_opt_pass *
make_pass_rtl_dse2 (gcc::context *ctxt)
{
  return new pass_rtl_dse2 (ctxt);
}