bounds.c 6.83 KB
Newer Older
1
/* Copyright (C) 2009-2018 Free Software Foundation, Inc.
Thomas Koenig committed
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
   Contributed by Thomas Koenig

This file is part of the GNU Fortran runtime library (libgfortran).

Libgfortran is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */

#include "libgfortran.h"
#include <assert.h>

/* Auxiliary functions for bounds checking, mostly to reduce library size.  */

/* Bounds checking for the return values of the iforeach functions (such
   as maxloc and minloc).  The extent of ret_array must
   must match the rank of array.  */

void
bounds_iforeach_return (array_t *retarray, array_t *array, const char *name)
{
  index_type rank;
  index_type ret_rank;
  index_type ret_extent;

  ret_rank = GFC_DESCRIPTOR_RANK (retarray);

43 44
  /* ret_rank should always be 1, otherwise there is an internal error */
  GFC_ASSERT(ret_rank == 1);
Thomas Koenig committed
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

  rank = GFC_DESCRIPTOR_RANK (array);
  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
  if (ret_extent != rank)
    runtime_error ("Incorrect extent in return value of"
		   " %s intrinsic: is %ld, should be %ld",
		   name, (long int) ret_extent, (long int) rank);

}

/* Check the return of functions generated from ifunction.m4.
   We check the array descriptor "a" against the extents precomputed
   from ifunction.m4, and complain about the argument a_name in the
   intrinsic function. */

void
bounds_ifunction_return (array_t * a, const index_type * extent,
			 const char * a_name, const char * intrinsic)
{
  int empty;
  int n;
  int rank;
  index_type a_size;

  rank = GFC_DESCRIPTOR_RANK (a);
  a_size = size0 (a);

  empty = 0;
  for (n = 0; n < rank; n++)
    {
      if (extent[n] == 0)
	empty = 1;
    }
  if (empty)
    {
      if (a_size != 0)
	runtime_error ("Incorrect size in %s of %s"
		       " intrinsic: should be zero-sized",
		       a_name, intrinsic);
    }
  else
    {
      if (a_size == 0)
	runtime_error ("Incorrect size of %s in %s"
		       " intrinsic: should not be zero-sized",
		       a_name, intrinsic);

      for (n = 0; n < rank; n++)
	{
	  index_type a_extent;
	  a_extent = GFC_DESCRIPTOR_EXTENT(a, n);
	  if (a_extent != extent[n])
	    runtime_error("Incorrect extent in %s of %s"
			  " intrinsic in dimension %ld: is %ld,"
			  " should be %ld", a_name, intrinsic, (long int) n + 1,
			  (long int) a_extent, (long int) extent[n]);

	}
    }
}

/* Check that two arrays have equal extents, or are both zero-sized.  Abort
   with a runtime error if this is not the case.  Complain that a has the
   wrong size.  */

void
bounds_equal_extents (array_t *a, array_t *b, const char *a_name,
		      const char *intrinsic)
{
  index_type a_size, b_size, n;

  assert (GFC_DESCRIPTOR_RANK(a) == GFC_DESCRIPTOR_RANK(b));

  a_size = size0 (a);
  b_size = size0 (b);

  if (b_size == 0)
    {
      if (a_size != 0)
	runtime_error ("Incorrect size of %s in %s"
		       " intrinsic: should be zero-sized",
		       a_name, intrinsic);
    }
  else
    {
      if (a_size == 0) 
	runtime_error ("Incorrect size of %s of %s"
		       " intrinsic: Should not be zero-sized",
		       a_name, intrinsic);

      for (n = 0; n < GFC_DESCRIPTOR_RANK (b); n++)
	{
	  index_type a_extent, b_extent;
	  
	  a_extent = GFC_DESCRIPTOR_EXTENT(a, n);
	  b_extent = GFC_DESCRIPTOR_EXTENT(b, n);
	  if (a_extent != b_extent)
	    runtime_error("Incorrect extent in %s of %s"
			  " intrinsic in dimension %ld: is %ld,"
			  " should be %ld", a_name, intrinsic, (long int) n + 1,
			  (long int) a_extent, (long int) b_extent);
	}
    }
}

/* Check that the extents of a and b agree, except that a has a missing
   dimension in argument which.  Complain about a if anything is wrong.  */

void
bounds_reduced_extents (array_t *a, array_t *b, int which, const char *a_name,
		      const char *intrinsic)
{

  index_type i, n, a_size, b_size;

  assert (GFC_DESCRIPTOR_RANK(a) == GFC_DESCRIPTOR_RANK(b) - 1);

  a_size = size0 (a);
  b_size = size0 (b);

  if (b_size == 0)
    {
      if (a_size != 0)
	runtime_error ("Incorrect size in %s of %s"
		       " intrinsic: should not be zero-sized",
		       a_name, intrinsic);
    }
  else
    {
      if (a_size == 0) 
	runtime_error ("Incorrect size of %s of %s"
		       " intrinsic: should be zero-sized",
		       a_name, intrinsic);

      i = 0;
      for (n = 0; n < GFC_DESCRIPTOR_RANK (b); n++)
	{
	  index_type a_extent, b_extent;

	  if (n != which)
	    {
	      a_extent = GFC_DESCRIPTOR_EXTENT(a, i);
	      b_extent = GFC_DESCRIPTOR_EXTENT(b, n);
	      if (a_extent != b_extent)
		runtime_error("Incorrect extent in %s of %s"
			      " intrinsic in dimension %ld: is %ld,"
			      " should be %ld", a_name, intrinsic, (long int) i + 1,
			      (long int) a_extent, (long int) b_extent);
	      i++;
	    }
	}
    }
}
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

/* count_0 - count all the true elements in an array.  The front
   end usually inlines this, we need this for bounds checking
   for unpack.  */

index_type count_0 (const gfc_array_l1 * array)
{
  const GFC_LOGICAL_1 * restrict base;
  index_type rank;
  int kind;
  int continue_loop;
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type result;
  index_type n;

  rank = GFC_DESCRIPTOR_RANK (array);
  kind = GFC_DESCRIPTOR_SIZE (array);

218
  base = array->base_addr;
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

  if (kind == 1 || kind == 2 || kind == 4 || kind == 8
#ifdef HAVE_GFC_LOGICAL_16
      || kind == 16
#endif
    )
    {
      if (base)
	base = GFOR_POINTER_TO_L1 (base, kind);
    }
  else
    internal_error (NULL, "Funny sized logical array in count_0");

  for (n = 0; n < rank; n++)
    {
      sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
      count[n] = 0;

238
      if (extent[n] <= 0)
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
	return 0;
    }

  result = 0;
  continue_loop = 1;
  while (continue_loop)
    {
      if (*base)
	result ++;

      count[0]++;
      base += sstride[0];
      n = 0;
      while (count[n] == extent[n])
	{
	  count[n] = 0;
	  base -= sstride[n] * extent[n];
	  n++;
	  if (n == rank)
	    {
	      continue_loop = 0;
	      break;
	    }
	  else
	    {
	      count[n]++;
	      base += sstride[n];
	    }
	}
    }
  return result;
}