regs.h 13.5 KB
Newer Older
Richard Kenner committed
1
/* Define per-register tables for data flow info and register allocation.
Jeff Law committed
2
   Copyright (C) 1987, 1993, 1994, 1995, 1996, 1997, 1998,
3
   1999, 2000, 2003, 2004, 2005, 2006, 2007, 2008, 2010 Free Software
4
   Foundation, Inc.
Richard Kenner committed
5

6
This file is part of GCC.
Richard Kenner committed
7

8 9
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11
version.
Richard Kenner committed
12

13 14 15 16
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
Richard Kenner committed
17 18

You should have received a copy of the GNU General Public License
19 20
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
Richard Kenner committed
21

22 23
#ifndef GCC_REGS_H
#define GCC_REGS_H
Richard Kenner committed
24

25
#include "machmode.h"
26
#include "hard-reg-set.h"
Richard Kenner committed
27 28 29

#define REG_BYTES(R) mode_size[(int) GET_MODE (R)]

30 31
/* When you only have the mode of a pseudo register before it has a hard
   register chosen for it, this reports the size of each hard register
32 33
   a pseudo in such a mode would get allocated to.  A target may
   override this.  */
34 35 36 37

#ifndef REGMODE_NATURAL_SIZE
#define REGMODE_NATURAL_SIZE(MODE)	UNITS_PER_WORD
#endif
Richard Kenner committed
38 39 40 41 42

/* Maximum register number used in this function, plus one.  */

extern int max_regno;

43 44 45 46
/* REG_N_REFS and REG_N_SETS are initialized by a call to
   regstat_init_n_sets_and_refs from the current values of
   DF_REG_DEF_COUNT and DF_REG_USE_COUNT.  REG_N_REFS and REG_N_SETS
   should only be used if a pass need to change these values in some
Mike Stump committed
47
   magical way or the pass needs to have accurate values for these
48 49 50
   and is not using incremental df scanning.

   At the end of a pass that uses REG_N_REFS and REG_N_SETS, a call
H.J. Lu committed
51
   should be made to regstat_free_n_sets_and_refs.
52 53 54 55 56 57 58

   Local alloc seems to play pretty loose with these values.
   REG_N_REFS is set to 0 if the register is used in an asm.
   Furthermore, local_alloc calls regclass to hack both REG_N_REFS and
   REG_N_SETS for three address insns.  Other passes seem to have
   other special values.  */

59 60


61 62 63 64 65
/* Structure to hold values for REG_N_SETS (i) and REG_N_REFS (i). */

struct regstat_n_sets_and_refs_t
{
  int sets;			/* # of times (REG n) is set */
66
  int refs;			/* # of times (REG n) is used or set */
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
};

extern struct regstat_n_sets_and_refs_t *regstat_n_sets_and_refs;

/* Indexed by n, gives number of times (REG n) is used or set.  */
static inline int
REG_N_REFS(int regno)
{
  return regstat_n_sets_and_refs[regno].refs;
}

/* Indexed by n, gives number of times (REG n) is used or set.  */
#define SET_REG_N_REFS(N,V) (regstat_n_sets_and_refs[N].refs = V)
#define INC_REG_N_REFS(N,V) (regstat_n_sets_and_refs[N].refs += V)

/* Indexed by n, gives number of times (REG n) is set.  */
static inline int
REG_N_SETS (int regno)
{
  return regstat_n_sets_and_refs[regno].sets;
}

/* Indexed by n, gives number of times (REG n) is set.  */
#define SET_REG_N_SETS(N,V) (regstat_n_sets_and_refs[N].sets = V)
#define INC_REG_N_SETS(N,V) (regstat_n_sets_and_refs[N].sets += V)


/* Functions defined in reg-stat.c.  */
extern void regstat_init_n_sets_and_refs (void);
extern void regstat_free_n_sets_and_refs (void);
extern void regstat_compute_ri (void);
extern void regstat_free_ri (void);
extern bitmap regstat_get_setjmp_crosses (void);
extern void regstat_compute_calls_crossed (void);
extern void regstat_free_calls_crossed (void);


/* Register information indexed by register number.  This structure is
   initialized by calling regstat_compute_ri and is destroyed by
   calling regstat_free_ri.  */
struct reg_info_t
{
109
  int freq;			/* # estimated frequency (REG n) is used or set */
110 111 112
  int deaths;			/* # of times (REG n) dies */
  int live_length;		/* # of instructions (REG n) is live */
  int calls_crossed;		/* # of calls (REG n) is live across */
113
  int freq_calls_crossed;	/* # estimated frequency (REG n) crosses call */
114
  int throw_calls_crossed;	/* # of calls that may throw (REG n) is live across */
115
  int basic_block;		/* # of basic blocks (REG n) is used in */
116
};
117

118
extern struct reg_info_t *reg_info_p;
119

120 121
/* The number allocated elements of reg_info_p.  */
extern size_t reg_info_p_size;
Richard Kenner committed
122

123 124
/* Estimate frequency of references to register N.  */

125
#define REG_FREQ(N) (reg_info_p[N].freq)
126

127
/* The weights for each insn varies from 0 to REG_FREQ_BASE.
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
   This constant does not need to be high, as in infrequently executed
   regions we want to count instructions equivalently to optimize for
   size instead of speed.  */
#define REG_FREQ_MAX 1000

/* Compute register frequency from the BB frequency.  When optimizing for size,
   or profile driven feedback is available and the function is never executed,
   frequency is always equivalent.  Otherwise rescale the basic block
   frequency.  */
#define REG_FREQ_FROM_BB(bb) (optimize_size				      \
			      || (flag_branch_probabilities		      \
				  && !ENTRY_BLOCK_PTR->count)		      \
			      ? REG_FREQ_MAX				      \
			      : ((bb)->frequency * REG_FREQ_MAX / BB_FREQ_MAX)\
			      ? ((bb)->frequency * REG_FREQ_MAX / BB_FREQ_MAX)\
			      : 1)

Richard Kenner committed
145 146 147 148 149 150
/* Indexed by N, gives number of insns in which register N dies.
   Note that if register N is live around loops, it can die
   in transitions between basic blocks, and that is not counted here.
   So this is only a reliable indicator of how many regions of life there are
   for registers that are contained in one basic block.  */

151
#define REG_N_DEATHS(N) (reg_info_p[N].deaths)
Richard Kenner committed
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

/* Get the number of consecutive words required to hold pseudo-reg N.  */

#define PSEUDO_REGNO_SIZE(N) \
  ((GET_MODE_SIZE (PSEUDO_REGNO_MODE (N)) + UNITS_PER_WORD - 1)		\
   / UNITS_PER_WORD)

/* Get the number of bytes required to hold pseudo-reg N.  */

#define PSEUDO_REGNO_BYTES(N) \
  GET_MODE_SIZE (PSEUDO_REGNO_MODE (N))

/* Get the machine mode of pseudo-reg N.  */

#define PSEUDO_REGNO_MODE(N) GET_MODE (regno_reg_rtx[N])

/* Indexed by N, gives number of CALL_INSNS across which (REG n) is live.  */

170
#define REG_N_CALLS_CROSSED(N)  (reg_info_p[N].calls_crossed)
171
#define REG_FREQ_CALLS_CROSSED(N)  (reg_info_p[N].freq_calls_crossed)
Richard Kenner committed
172

173 174 175
/* Indexed by N, gives number of CALL_INSNS that may throw, across which
   (REG n) is live.  */

176
#define REG_N_THROWING_CALLS_CROSSED(N) (reg_info_p[N].throw_calls_crossed)
177

178 179 180 181 182 183
/* Total number of instructions at which (REG n) is live.  The larger
   this is, the less priority (REG n) gets for allocation in a hard
   register (in global-alloc).  This is set in df-problems.c whenever
   register info is requested and remains valid for the rest of the
   compilation of the function; it is used to control register
   allocation.
Richard Kenner committed
184 185 186 187 188 189 190

   local-alloc.c may alter this number to change the priority.

   Negative values are special.
   -1 is used to mark a pseudo reg which has a constant or memory equivalent
   and is used infrequently enough that it should not get a hard register.
   -2 is used to mark a pseudo reg for a parameter, when a frame pointer
191
   is not required.  global.c makes an allocno for this but does
Richard Kenner committed
192 193
   not try to assign a hard register to it.  */

194 195 196 197 198 199 200 201 202 203 204 205 206
#define REG_LIVE_LENGTH(N)  (reg_info_p[N].live_length)

/* Indexed by n, gives number of basic block that  (REG n) is used in.
   If the value is REG_BLOCK_GLOBAL (-1),
   it means (REG n) is used in more than one basic block.
   REG_BLOCK_UNKNOWN (0) means it hasn't been seen yet so we don't know.
   This information remains valid for the rest of the compilation
   of the current function; it is used to control register allocation.  */

#define REG_BLOCK_UNKNOWN 0
#define REG_BLOCK_GLOBAL -1

#define REG_BASIC_BLOCK(N) (reg_info_p[N].basic_block)
Richard Kenner committed
207 208

/* Vector of substitutions of register numbers,
209 210 211 212
   used to map pseudo regs into hardware regs.

   This can't be folded into reg_n_info without changing all of the
   machine dependent directories, since the reload functions
213
   in the machine dependent files access it.  */
Richard Kenner committed
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

extern short *reg_renumber;

/* Flag set by local-alloc or global-alloc if they decide to allocate
   something in a call-clobbered register.  */

extern int caller_save_needed;

/* Predicate to decide whether to give a hard reg to a pseudo which
   is referenced REFS times and would need to be saved and restored
   around a call CALLS times.  */

#ifndef CALLER_SAVE_PROFITABLE
#define CALLER_SAVE_PROFITABLE(REFS, CALLS)  (4 * (CALLS) < (REFS))
#endif
229

230 231
/* Select a register mode required for caller save of hard regno REGNO.  */
#ifndef HARD_REGNO_CALLER_SAVE_MODE
232
#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
233
  choose_hard_reg_mode (REGNO, NREGS, false)
234 235
#endif

236
/* Registers that get partially clobbered by a call in a given mode.
237 238 239 240 241
   These must not be call used registers.  */
#ifndef HARD_REGNO_CALL_PART_CLOBBERED
#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) 0
#endif

Vladimir Makarov committed
242 243
typedef unsigned short move_table[N_REG_CLASSES];

244 245 246 247 248 249 250 251 252 253 254
/* Target-dependent globals.  */
struct target_regs {
  /* For each starting hard register, the number of consecutive hard
     registers that a given machine mode occupies.  */
  unsigned char x_hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];

  /* For each hard register, the widest mode object that it can contain.
     This will be a MODE_INT mode if the register can hold integers.  Otherwise
     it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
     register.  */
  enum machine_mode x_reg_raw_mode[FIRST_PSEUDO_REGISTER];
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

  /* Vector indexed by machine mode saying whether there are regs of
     that mode.  */
  bool x_have_regs_of_mode[MAX_MACHINE_MODE];

  /* 1 if the corresponding class contains a register of the given mode.  */
  char x_contains_reg_of_mode[N_REG_CLASSES][MAX_MACHINE_MODE];

  /* Maximum cost of moving from a register in one class to a register
     in another class.  Based on TARGET_REGISTER_MOVE_COST.  */
  move_table *x_move_cost[MAX_MACHINE_MODE];

  /* Similar, but here we don't have to move if the first index is a
     subset of the second so in that case the cost is zero.  */
  move_table *x_may_move_in_cost[MAX_MACHINE_MODE];

  /* Similar, but here we don't have to move if the first index is a
     superset of the second so in that case the cost is zero.  */
  move_table *x_may_move_out_cost[MAX_MACHINE_MODE];

  /* Keep track of the last mode we initialized move costs for.  */
  int x_last_mode_for_init_move_cost;
277 278 279 280 281 282 283 284 285

  /* Record for each mode whether we can move a register directly to or
     from an object of that mode in memory.  If we can't, we won't try
     to use that mode directly when accessing a field of that mode.  */
  char x_direct_load[NUM_MACHINE_MODES];
  char x_direct_store[NUM_MACHINE_MODES];

  /* Record for each mode whether we can float-extend from memory.  */
  bool x_float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
286 287 288 289 290 291 292 293 294 295 296 297 298
};

extern struct target_regs default_target_regs;
#if SWITCHABLE_TARGET
extern struct target_regs *this_target_regs;
#else
#define this_target_regs (&default_target_regs)
#endif

#define hard_regno_nregs \
  (this_target_regs->x_hard_regno_nregs)
#define reg_raw_mode \
  (this_target_regs->x_reg_raw_mode)
299 300 301 302 303 304 305 306 307 308
#define have_regs_of_mode \
  (this_target_regs->x_have_regs_of_mode)
#define contains_reg_of_mode \
  (this_target_regs->x_contains_reg_of_mode)
#define move_cost \
  (this_target_regs->x_move_cost)
#define may_move_in_cost \
  (this_target_regs->x_may_move_in_cost)
#define may_move_out_cost \
  (this_target_regs->x_may_move_out_cost)
309 310 311 312 313 314
#define direct_load \
  (this_target_regs->x_direct_load)
#define direct_store \
  (this_target_regs->x_direct_store)
#define float_extend_from_mem \
  (this_target_regs->x_float_extend_from_mem)
315

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
/* Return an exclusive upper bound on the registers occupied by hard
   register (reg:MODE REGNO).  */

static inline unsigned int
end_hard_regno (enum machine_mode mode, unsigned int regno)
{
  return regno + hard_regno_nregs[regno][(int) mode];
}

/* Likewise for hard register X.  */

#define END_HARD_REGNO(X) end_hard_regno (GET_MODE (X), REGNO (X))

/* Likewise for hard or pseudo register X.  */

#define END_REGNO(X) (HARD_REGISTER_P (X) ? END_HARD_REGNO (X) : REGNO (X) + 1)

/* Add to REGS all the registers required to store a value of mode MODE
   in register REGNO.  */

static inline void
add_to_hard_reg_set (HARD_REG_SET *regs, enum machine_mode mode,
		     unsigned int regno)
{
  unsigned int end_regno;

  end_regno = end_hard_regno (mode, regno);
  do
    SET_HARD_REG_BIT (*regs, regno);
  while (++regno < end_regno);
}

/* Likewise, but remove the registers.  */

static inline void
remove_from_hard_reg_set (HARD_REG_SET *regs, enum machine_mode mode,
			  unsigned int regno)
{
  unsigned int end_regno;

  end_regno = end_hard_regno (mode, regno);
  do
    CLEAR_HARD_REG_BIT (*regs, regno);
  while (++regno < end_regno);
}

/* Return true if REGS contains the whole of (reg:MODE REGNO).  */

static inline bool
in_hard_reg_set_p (const HARD_REG_SET regs, enum machine_mode mode,
		   unsigned int regno)
{
  unsigned int end_regno;

  if (!TEST_HARD_REG_BIT (regs, regno))
    return false;

  end_regno = end_hard_regno (mode, regno);
  while (++regno < end_regno)
    if (!TEST_HARD_REG_BIT (regs, regno))
      return false;

  return true;
}

/* Return true if (reg:MODE REGNO) includes an element of REGS.  */

static inline bool
overlaps_hard_reg_set_p (const HARD_REG_SET regs, enum machine_mode mode,
			 unsigned int regno)
{
  unsigned int end_regno;

  if (TEST_HARD_REG_BIT (regs, regno))
    return true;

  end_regno = end_hard_regno (mode, regno);
  while (++regno < end_regno)
    if (TEST_HARD_REG_BIT (regs, regno))
      return true;

  return false;
}

400
#endif /* GCC_REGS_H */