ssa.c 51 KB
Newer Older
Alex Samuel committed
1 2 3
/* Static Single Assignment conversion routines for the GNU compiler.
   Copyright (C) 2000 Free Software Foundation, Inc.

4
This file is part of GNU CC.
Alex Samuel committed
5

6 7 8 9
GNU CC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
Alex Samuel committed
10

11 12 13 14
GNU CC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
Alex Samuel committed
15

16 17 18 19
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */
Alex Samuel committed
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

/* References:

   Building an Optimizing Compiler
   Robert Morgan
   Butterworth-Heinemann, 1998

   Static Single Assignment Construction
   Preston Briggs, Tim Harvey, Taylor Simpson
   Technical Report, Rice University, 1995
   ftp://ftp.cs.rice.edu/public/preston/optimizer/SSA.ps.gz
*/

#include "config.h"
#include "system.h"

#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "function.h"
#include "real.h"
#include "insn-config.h"
#include "recog.h"
#include "basic-block.h"
#include "output.h"
#include "partition.h"


/* TODO: 

Alex Samuel committed
51 52 53 54 55 56 57
   Handle subregs better, maybe.  For now, if a reg that's set in a
   subreg expression is duplicated going into SSA form, an extra copy
   is inserted first that copies the entire reg into the duplicate, so
   that the other bits are preserved.  This isn't strictly SSA, since
   at least part of the reg is assigned in more than one place (though
   they are adjacent).

Alex Samuel committed
58 59 60 61 62 63 64
   ??? What to do about strict_low_part.  Probably I'll have to split
   them out of their current instructions first thing.

   Actually the best solution may be to have a kind of "mid-level rtl"
   in which the RTL encodes exactly what we want, without exposing a
   lot of niggling processor details.  At some later point we lower
   the representation, calling back into optabs to finish any necessary
Alex Samuel committed
65 66 67 68 69 70 71 72 73
   expansion.  */


/* If conservative_reg_partition is non-zero, use a conservative
   register partitioning algorithm (which leaves more regs after
   emerging from SSA) instead of the coalescing one.  This is being
   left in for a limited time only, as a debugging tool until the
   coalescing algorithm is validated.  */
static int conservative_reg_partition;
Alex Samuel committed
74

Alex Samuel committed
75 76
/* This flag is set when the CFG is in SSA form.  */
int in_ssa_form = 0;
Alex Samuel committed
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/* Element I is the single instruction that sets register I+PSEUDO.  */
varray_type ssa_definition;

/* Element I is an INSN_LIST of instructions that use register I+PSEUDO.  */
varray_type ssa_uses;

/* Element I-PSEUDO is the normal register that originated the ssa
   register in question.  */
varray_type ssa_rename_from;

/* The running target ssa register for a given normal register.  */
static rtx *ssa_rename_to;

/* The number of registers that were live on entry to the SSA routines.  */
92
static unsigned int ssa_max_reg_num;
Alex Samuel committed
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

/* Local function prototypes.  */

static inline rtx * phi_alternative
  PARAMS ((rtx, int));

static int remove_phi_alternative
  PARAMS ((rtx, int));
static void simplify_to_immediate_dominators 
  PARAMS ((int *idom, sbitmap *dominators));
static void compute_dominance_frontiers_1
  PARAMS ((sbitmap *frontiers, int *idom, int bb, sbitmap done));
static void compute_dominance_frontiers
  PARAMS ((sbitmap *frontiers, int *idom));
static void find_evaluations_1
  PARAMS ((rtx dest, rtx set, void *data));
static void find_evaluations
  PARAMS ((sbitmap *evals, int nregs));
static void compute_iterated_dominance_frontiers
  PARAMS ((sbitmap *idfs, sbitmap *frontiers, sbitmap *evals, int nregs));
static void insert_phi_node
  PARAMS ((int regno, int b));
static void insert_phi_nodes
  PARAMS ((sbitmap *idfs, sbitmap *evals, int nregs));
static int rename_insn_1 
  PARAMS ((rtx *ptr, void *data));
static void rename_block 
  PARAMS ((int b, int *idom));
static void rename_registers 
  PARAMS ((int nregs, int *idom));

static inline int ephi_add_node
  PARAMS ((rtx reg, rtx *nodes, int *n_nodes));
static int * ephi_forward
  PARAMS ((int t, sbitmap visited, sbitmap *succ, int *tstack));
static void ephi_backward
  PARAMS ((int t, sbitmap visited, sbitmap *pred, rtx *nodes));
static void ephi_create
  PARAMS ((int t, sbitmap visited, sbitmap *pred, sbitmap *succ, rtx *nodes));
static void eliminate_phi
  PARAMS ((edge e, partition reg_partition));
static int make_regs_equivalent_over_bad_edges 
  PARAMS ((int bb, partition reg_partition));
Alex Samuel committed
136 137 138

/* These are used only in the conservative register partitioning
   algorithms.  */
Alex Samuel committed
139 140 141
static int make_equivalent_phi_alternatives_equivalent 
  PARAMS ((int bb, partition reg_partition));
static partition compute_conservative_reg_partition 
142
  PARAMS ((void));
Alex Samuel committed
143 144 145 146 147 148 149
static int rename_equivalent_regs_in_insn 
  PARAMS ((rtx *ptr, void *data));

/* These are used in the register coalescing algorithm.  */
static int coalesce_if_unconflicting
  PARAMS ((partition p, conflict_graph conflicts, int reg1, int reg2));
static int coalesce_regs_in_copies
150
  PARAMS ((basic_block bb, partition p, conflict_graph conflicts));
Alex Samuel committed
151 152 153
static int coalesce_reg_in_phi
  PARAMS ((rtx, int dest_regno, int src_regno, void *data));
static int coalesce_regs_in_successor_phi_nodes
154
  PARAMS ((basic_block bb, partition p, conflict_graph conflicts));
Alex Samuel committed
155
static partition compute_coalesced_reg_partition
156
  PARAMS ((void));
Alex Samuel committed
157 158 159 160 161
static int mark_reg_in_phi 
  PARAMS ((rtx *ptr, void *data));
static void mark_phi_and_copy_regs
  PARAMS ((regset phi_set));

Alex Samuel committed
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
static int rename_equivalent_regs_in_insn 
  PARAMS ((rtx *ptr, void *data));
static void rename_equivalent_regs 
  PARAMS ((partition reg_partition));


/* Given the SET of a PHI node, return the address of the alternative
   for predecessor block C.  */

static inline rtx *
phi_alternative (set, c)
     rtx set;
     int c;
{
  rtvec phi_vec = XVEC (SET_SRC (set), 0);
  int v;

  for (v = GET_NUM_ELEM (phi_vec) - 2; v >= 0; v -= 2)
    if (INTVAL (RTVEC_ELT (phi_vec, v + 1)) == c)
      return &RTVEC_ELT (phi_vec, v);

  return NULL;
}

/* Given the SET of a phi node, remove the alternative for predecessor
   block C.  Return non-zero on success, or zero if no alternative is
   found for C.  */

static int
remove_phi_alternative (set, c)
     rtx set;
     int c;
{
  rtvec phi_vec = XVEC (SET_SRC (set), 0);
  int num_elem = GET_NUM_ELEM (phi_vec);
  int v;

  for (v = num_elem - 2; v >= 0; v -= 2)
    if (INTVAL (RTVEC_ELT (phi_vec, v + 1)) == c)
      {
	if (v < num_elem - 2)
	  {
	    RTVEC_ELT (phi_vec, v) = RTVEC_ELT (phi_vec, num_elem - 2);
	    RTVEC_ELT (phi_vec, v + 1) = RTVEC_ELT (phi_vec, num_elem - 1);
	  }
	PUT_NUM_ELEM (phi_vec, num_elem - 2);
	return 1;
      }

  return 0;
}

/* Computing the Immediate Dominators:

   Throughout, we don't actually want the full dominators set as
   calculated by flow, but rather the immediate dominators.
*/

static void
simplify_to_immediate_dominators (idom, dominators)
     int *idom;
     sbitmap *dominators;
{
  sbitmap *tmp;
  int b;

  tmp = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);

  /* Begin with tmp(n) = dom(n) - { n }.  */
  for (b = n_basic_blocks; --b >= 0; )
    {
      sbitmap_copy (tmp[b], dominators[b]);
      RESET_BIT (tmp[b], b);
    }

  /* Subtract out all of our dominator's dominators.  */
  for (b = n_basic_blocks; --b >= 0; )
    {
      sbitmap tmp_b = tmp[b];
      int s;

      for (s = n_basic_blocks; --s >= 0; )
	if (TEST_BIT (tmp_b, s))
	  sbitmap_difference (tmp_b, tmp_b, tmp[s]);
    }

  /* Find the one bit set in the bitmap and put it in the output array.  */
  for (b = n_basic_blocks; --b >= 0; )
    {
      int t;
      EXECUTE_IF_SET_IN_SBITMAP (tmp[b], 0, t, { idom[b] = t; });
    }

  sbitmap_vector_free (tmp);
}


/* For all registers, find all blocks in which they are set.

   This is the transform of what would be local kill information that
   we ought to be getting from flow.  */

static sbitmap *fe_evals;
static int fe_current_bb;

static void
find_evaluations_1 (dest, set, data)
     rtx dest;
     rtx set ATTRIBUTE_UNUSED;
     void *data ATTRIBUTE_UNUSED;
{
  if (GET_CODE (dest) == REG
      && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
    SET_BIT (fe_evals[REGNO (dest) - FIRST_PSEUDO_REGISTER], fe_current_bb);
}

static void
find_evaluations (evals, nregs)
     sbitmap *evals;
     int nregs;
{
  int bb;

  sbitmap_vector_zero (evals, nregs);
  fe_evals = evals;

  for (bb = n_basic_blocks; --bb >= 0; )
    {
      rtx p, last;

      fe_current_bb = bb;
      p = BLOCK_HEAD (bb);
      last = BLOCK_END (bb);
      while (1)
	{
	  if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
	    note_stores (PATTERN (p), find_evaluations_1, NULL);

	  if (p == last)
	    break;
	  p = NEXT_INSN (p);
	}
    }
}


/* Computing the Dominance Frontier:
  
   As decribed in Morgan, section 3.5, this may be done simply by 
   walking the dominator tree bottom-up, computing the frontier for
   the children before the parent.  When considering a block B,
   there are two cases:

   (1) A flow graph edge leaving B that does not lead to a child
   of B in the dominator tree must be a block that is either equal
   to B or not dominated by B.  Such blocks belong in the frontier
   of B.

   (2) Consider a block X in the frontier of one of the children C
   of B.  If X is not equal to B and is not dominated by B, it
   is in the frontier of B.
*/

static void
compute_dominance_frontiers_1 (frontiers, idom, bb, done)
     sbitmap *frontiers;
     int *idom;
     int bb;
     sbitmap done;
{
  basic_block b = BASIC_BLOCK (bb);
  edge e;
  int c;

  SET_BIT (done, bb);
  sbitmap_zero (frontiers[bb]);

  /* Do the frontier of the children first.  Not all children in the
     dominator tree (blocks dominated by this one) are children in the
     CFG, so check all blocks.  */
  for (c = 0; c < n_basic_blocks; ++c)
    if (idom[c] == bb && ! TEST_BIT (done, c))
      compute_dominance_frontiers_1 (frontiers, idom, c, done);

  /* Find blocks conforming to rule (1) above.  */
  for (e = b->succ; e; e = e->succ_next)
    {
      if (e->dest == EXIT_BLOCK_PTR)
	continue;
      if (idom[e->dest->index] != bb)
	SET_BIT (frontiers[bb], e->dest->index);
    }

  /* Find blocks conforming to rule (2).  */
  for (c = 0; c < n_basic_blocks; ++c)
    if (idom[c] == bb)
      {
	int x;
	EXECUTE_IF_SET_IN_SBITMAP (frontiers[c], 0, x,
	  {
	    if (idom[x] != bb)
	      SET_BIT (frontiers[bb], x);
	  });
      }
}

static void
compute_dominance_frontiers (frontiers, idom)
     sbitmap *frontiers;
     int *idom;
{
  sbitmap done = sbitmap_alloc (n_basic_blocks);
  sbitmap_zero (done);

  compute_dominance_frontiers_1 (frontiers, idom, 0, done);

  sbitmap_free (done);
}


/* Computing the Iterated Dominance Frontier:

   This is the set of merge points for a given register.

   This is not particularly intuitive.  See section 7.1 of Morgan, in
   particular figures 7.3 and 7.4 and the immediately surrounding text.
*/

static void
compute_iterated_dominance_frontiers (idfs, frontiers, evals, nregs)
     sbitmap *idfs;
     sbitmap *frontiers;
     sbitmap *evals;
     int nregs;
{
  sbitmap worklist;
  int reg, passes = 0;

  worklist = sbitmap_alloc (n_basic_blocks);

  for (reg = 0; reg < nregs; ++reg)
    {
      sbitmap idf = idfs[reg];
      int b, changed;

      /* Start the iterative process by considering those blocks that
	 evaluate REG.  We'll add their dominance frontiers to the
	 IDF, and then consider the blocks we just added.  */
      sbitmap_copy (worklist, evals[reg]);

      /* Morgan's algorithm is incorrect here.  Blocks that evaluate
	 REG aren't necessarily in REG's IDF.  Start with an empty IDF.  */
      sbitmap_zero (idf);

      /* Iterate until the worklist is empty.  */
      do
	{
	  changed = 0;
	  passes++;
	  EXECUTE_IF_SET_IN_SBITMAP (worklist, 0, b,
	    {
	      RESET_BIT (worklist, b);
	      /* For each block on the worklist, add to the IDF all
		 blocks on its dominance frontier that aren't already
		 on the IDF.  Every block that's added is also added
		 to the worklist.  */
	      sbitmap_union_of_diff (worklist, worklist, frontiers[b], idf);
	      sbitmap_a_or_b (idf, idf, frontiers[b]);
	      changed = 1;
	    });
	}
      while (changed);
    }

  sbitmap_free (worklist);

  if (rtl_dump_file)
    {
      fprintf(rtl_dump_file,
	      "Iterated dominance frontier: %d passes on %d regs.\n",
	      passes, nregs);
    }
}


/* Insert the phi nodes.  */

static void
insert_phi_node (regno, bb)
     int regno, bb;
{
  basic_block b = BASIC_BLOCK (bb);
  edge e;
  int npred, i;
  rtvec vec;
  rtx phi, reg;

  /* Find out how many predecessors there are.  */
  for (e = b->pred, npred = 0; e; e = e->pred_next)
    if (e->src != ENTRY_BLOCK_PTR)
      npred++;

  /* If this block has no "interesting" preds, then there is nothing to
     do.  Consider a block that only has the entry block as a pred.  */
  if (npred == 0)
    return;

  /* This is the register to which the phi function will be assinged.  */
  reg = regno_reg_rtx[regno + FIRST_PSEUDO_REGISTER];

  /* Construct the arguments to the PHI node.  The use of pc_rtx is just
     a placeholder; we'll insert the proper value in rename_registers.  */
  vec = rtvec_alloc (npred * 2);
  for (e = b->pred, i = 0; e ; e = e->pred_next, i += 2)
    if (e->src != ENTRY_BLOCK_PTR)
      {
	RTVEC_ELT (vec, i + 0) = pc_rtx;
	RTVEC_ELT (vec, i + 1) = GEN_INT (e->src->index);
      }

  phi = gen_rtx_PHI (VOIDmode, vec);
  phi = gen_rtx_SET (VOIDmode, reg, phi);

  if (GET_CODE (b->head) == CODE_LABEL)
    emit_insn_after (phi, b->head);
  else
    b->head = emit_insn_before (phi, b->head);
}


static void
insert_phi_nodes (idfs, evals, nregs)
     sbitmap *idfs;
     sbitmap *evals ATTRIBUTE_UNUSED;
     int nregs;
{
  int reg;

  for (reg = 0; reg < nregs; ++reg)
    {
      int b;
      EXECUTE_IF_SET_IN_SBITMAP (idfs[reg], 0, b,
	{
	  if (REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start, 
			       reg + FIRST_PSEUDO_REGISTER))
	    insert_phi_node (reg, b);
	});
    }
}

/* Rename the registers to conform to SSA. 

   This is essentially the algorithm presented in Figure 7.8 of Morgan,
   with a few changes to reduce pattern search time in favour of a bit
   more memory usage.  */


/* One of these is created for each set.  It will live in a list local
   to its basic block for the duration of that block's processing.  */
struct rename_set_data
{
  struct rename_set_data *next;
  rtx *reg_loc;
  rtx set_dest;
  rtx new_reg;
  rtx prev_reg;
Alex Samuel committed
528 529 530 531 532 533 534 535 536
  rtx set_insn;
};

/* This struct is used to pass information to callback functions while
   renaming registers.  */
struct rename_context
{
  struct rename_set_data *set_data;
  rtx current_insn;
Alex Samuel committed
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
};

static void new_registers_for_updates 
  PARAMS ((struct rename_set_data *set_data,
	   struct rename_set_data *old_set_data, rtx insn));

/* This is part of a rather ugly hack to allow the pre-ssa regno to be
   reused.  If, during processing, a register has not yet been touched,
   ssa_rename_to[regno] will be NULL.  Now, in the course of pushing
   and popping values from ssa_rename_to, when we would ordinarily 
   pop NULL back in, we pop RENAME_NO_RTX.  We treat this exactly the
   same as NULL, except that it signals that the original regno has
   already been reused.  */
#define RENAME_NO_RTX  pc_rtx

/* Part one of the first step of rename_block, called through for_each_rtx. 
   Mark pseudos that are set for later update.  Transform uses of pseudos.  */

static int
rename_insn_1 (ptr, data)
     rtx *ptr;
     void *data;
{
  rtx x = *ptr;
Alex Samuel committed
561 562
  struct rename_context *context = data;
  struct rename_set_data **set_datap = &(context->set_data);
Alex Samuel committed
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594

  if (x == NULL_RTX)
    return 0;

  switch (GET_CODE (x))
    {
    case SET:
      {
	rtx *destp = &SET_DEST (x);
	rtx dest = SET_DEST (x);

	/* Subregs at word 0 are interesting.  Subregs at word != 0 are
	   presumed to be part of a contiguous multi-word set sequence.  */
	while (GET_CODE (dest) == SUBREG
	       && SUBREG_WORD (dest) == 0)
	  {
	    destp = &SUBREG_REG (dest);
	    dest = SUBREG_REG (dest);
	  }

	if (GET_CODE (dest) == REG
	    && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
	  {
	    /* We found a genuine set of an interesting register.  Tag
	       it so that we can create a new name for it after we finish
	       processing this insn.  */

	    struct rename_set_data *r;
	    r = (struct rename_set_data *) xmalloc (sizeof(*r));

	    r->reg_loc = destp;
	    r->set_dest = SET_DEST (x);
Alex Samuel committed
595
	    r->set_insn = context->current_insn;
Alex Samuel committed
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
	    r->next = *set_datap;
	    *set_datap = r;

	    /* Since we do not wish to (directly) traverse the
	       SET_DEST, recurse through for_each_rtx for the SET_SRC
	       and return.  */
	    for_each_rtx (&SET_SRC (x), rename_insn_1, data);
	    return -1;
	  }

	/* Otherwise, this was not an interesting destination.  Continue
	   on, marking uses as normal.  */
	return 0;
      }

    case REG:
      if (REGNO (x) >= FIRST_PSEUDO_REGISTER
	  && REGNO (x) < ssa_max_reg_num)
	{
	  rtx new_reg = ssa_rename_to[REGNO(x) - FIRST_PSEUDO_REGISTER];

	  if (new_reg != NULL_RTX && new_reg != RENAME_NO_RTX)
	    {
	      if (GET_MODE (x) != GET_MODE (new_reg))
		abort ();
	      *ptr = new_reg;
	    }
	  /* Else this is a use before a set.  Warn?  */
	}
      return -1;

    case PHI:
      /* Never muck with the phi.  We do that elsewhere, special-like.  */
      return -1;

    default:
      /* Anything else, continue traversing.  */
      return 0;
    }
}

/* Second part of the first step of rename_block.  The portion of the list
   beginning at SET_DATA through OLD_SET_DATA contain the sets present in
   INSN.  Update data structures accordingly.  */

static void
new_registers_for_updates (set_data, old_set_data, insn)
     struct rename_set_data *set_data, *old_set_data;
     rtx insn;
{
  while (set_data != old_set_data)
    {
      int regno, new_regno;
      rtx old_reg, new_reg, prev_reg;

      old_reg = *set_data->reg_loc;
      regno = REGNO (*set_data->reg_loc);

      /* For the first set we come across, reuse the original regno.  */
      if (ssa_rename_to[regno - FIRST_PSEUDO_REGISTER] == NULL_RTX)
	{
	  new_reg = old_reg;
	  prev_reg = RENAME_NO_RTX;
	}
      else
	{
	  prev_reg = ssa_rename_to[regno - FIRST_PSEUDO_REGISTER];
	  new_reg = gen_reg_rtx (GET_MODE (old_reg));
	}

      set_data->new_reg = new_reg;
      set_data->prev_reg = prev_reg;
      new_regno = REGNO (new_reg);
      ssa_rename_to[regno - FIRST_PSEUDO_REGISTER] = new_reg;

      if (new_regno >= (int) ssa_definition->num_elements)
	{
	  int new_limit = new_regno * 5 / 4;
	  ssa_definition = VARRAY_GROW (ssa_definition, new_limit);
	  ssa_uses = VARRAY_GROW (ssa_uses, new_limit);
	  ssa_rename_from = VARRAY_GROW (ssa_rename_from, new_limit);
	}

      VARRAY_RTX (ssa_definition, new_regno) = insn;
      VARRAY_RTX (ssa_rename_from, new_regno) = old_reg;

      set_data = set_data->next;
    }
}

static void
rename_block (bb, idom)
     int bb;
     int *idom;
{
  basic_block b = BASIC_BLOCK (bb);
  edge e;
  rtx insn, next, last;
  struct rename_set_data *set_data = NULL;
  int c;

  /* Step One: Walk the basic block, adding new names for sets and
     replacing uses.  */
     
  next = b->head;
  last = b->end;
  do
    {
      insn = next;
      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
	{
Alex Samuel committed
707 708 709
	  struct rename_context context;
	  context.set_data = set_data;
	  context.current_insn = insn;
Alex Samuel committed
710

Alex Samuel committed
711 712
	  for_each_rtx (&PATTERN (insn), rename_insn_1, &context);
	  for_each_rtx (&REG_NOTES (insn), rename_insn_1, &context);
Alex Samuel committed
713
	  
Alex Samuel committed
714 715
	  new_registers_for_updates (context.set_data, set_data, insn);
	  set_data = context.set_data;
Alex Samuel committed
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
	}

      next = NEXT_INSN (insn);
    }
  while (insn != last);

  /* Step Two: Update the phi nodes of this block's successors.  */

  for (e = b->succ; e; e = e->succ_next)
    {
      if (e->dest == EXIT_BLOCK_PTR)
	continue;

      insn = e->dest->head;
      if (GET_CODE (insn) == CODE_LABEL)
	insn = NEXT_INSN (insn);

      while (PHI_NODE_P (insn))
	{
	  rtx phi = PATTERN (insn);
736
	  unsigned int regno;
Alex Samuel committed
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
	  rtx reg;

	  /* Find out which of our outgoing registers this node is
	     indended to replace.  Note that if this not the first PHI
	     node to have been created for this register, we have to
	     jump through rename links to figure out which register
	     we're talking about.  This can easily be recognized by
	     noting that the regno is new to this pass.  */
	  regno = REGNO (SET_DEST (phi));
	  if (regno >= ssa_max_reg_num)
	    regno = REGNO (VARRAY_RTX (ssa_rename_from, regno));
	  reg = ssa_rename_to[regno - FIRST_PSEUDO_REGISTER];

	  /* It is possible for the variable to be uninitialized on
	     edges in.  Reduce the arity of the PHI so that we don't
	     consider those edges.  */
	  if (reg == NULL || reg == RENAME_NO_RTX)
	    {
	      if (! remove_phi_alternative (phi, bb))
		abort ();
	    }
	  else
	    {
	      /* When we created the PHI nodes, we did not know what mode
	     the register should be.  Now that we've found an original,
	     we can fill that in.  */
	      if (GET_MODE (SET_DEST (phi)) == VOIDmode)
		PUT_MODE (SET_DEST (phi), GET_MODE (reg));
	      else if (GET_MODE (SET_DEST (phi)) != GET_MODE (reg))
		abort();

	      *phi_alternative (phi, bb) = reg;
	      /* ??? Mark for a new ssa_uses entry.  */
	    }

	  insn = NEXT_INSN (insn);
	}
    }

  /* Step Three: Do the same to the children of this block in
     dominator order.  */

  for (c = 0; c < n_basic_blocks; ++c)
    if (idom[c] == bb)
      rename_block (c, idom);

  /* Step Four: Update the sets to refer to their new register.  */

  while (set_data)
    {
      struct rename_set_data *next;
Alex Samuel committed
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
      rtx old_reg = *set_data->reg_loc;

      /* If the set is of a subreg only, copy the entire reg first so
	 that unmodified bits are preserved.  Of course, we don't
	 strictly have SSA any more, but that's the best we can do
	 without a lot of hard work.  */

      if (GET_CODE (set_data->set_dest) == SUBREG) 
	{
	  if (old_reg != set_data->new_reg)
	    {
	      rtx copy = gen_rtx_SET (GET_MODE (old_reg), 
				      set_data->new_reg, old_reg);
	      emit_insn_before (copy, set_data->set_insn);
	    }
	}
Alex Samuel committed
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824

      *set_data->reg_loc = set_data->new_reg;
      ssa_rename_to[REGNO (old_reg)-FIRST_PSEUDO_REGISTER]
	= set_data->prev_reg;

      next = set_data->next;
      free (set_data);
      set_data = next;
    }      
}

static void
rename_registers (nregs, idom)
     int nregs;
     int *idom;
{
  VARRAY_RTX_INIT (ssa_definition, nregs * 3, "ssa_definition");
  VARRAY_RTX_INIT (ssa_uses, nregs * 3, "ssa_uses");
  VARRAY_RTX_INIT (ssa_rename_from, nregs * 3, "ssa_rename_from");

  ssa_rename_to = (rtx *) alloca (nregs * sizeof(rtx));
825
  bzero ((char *) ssa_rename_to, nregs * sizeof(rtx));
Alex Samuel committed
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853

  rename_block (0, idom);

  /* ??? Update basic_block_live_at_start, and other flow info 
     as needed.  */

  ssa_rename_to = NULL;
}


/* The main entry point for moving to SSA.  */

void
convert_to_ssa()
{
  /* Element I is the set of blocks that set register I.  */
  sbitmap *evals;

  /* Dominator bitmaps.  */
  sbitmap *dominators;
  sbitmap *dfs;
  sbitmap *idfs;

  /* Element I is the immediate dominator of block I.  */
  int *idom;

  int nregs;

Alex Samuel committed
854 855 856 857
  /* Don't do it twice.  */
  if (in_ssa_form)
    abort ();

Richard Henderson committed
858
  /* Need global_live_at_{start,end} up to date.  */
859
  life_analysis (get_insns (), NULL, PROP_KILL_DEAD_CODE | PROP_SCAN_DEAD_CODE);
Alex Samuel committed
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923

  /* Compute dominators.  */
  dominators = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
  compute_flow_dominators (dominators, NULL);

  idom = (int *) alloca (n_basic_blocks * sizeof (int));
  memset ((void *)idom, -1, (size_t)n_basic_blocks * sizeof (int));
  simplify_to_immediate_dominators (idom, dominators);

  sbitmap_vector_free (dominators);

  if (rtl_dump_file)
    {
      int i;
      fputs (";; Immediate Dominators:\n", rtl_dump_file);
      for (i = 0; i < n_basic_blocks; ++i)
	fprintf (rtl_dump_file, ";\t%3d = %3d\n", i, idom[i]);
      fflush (rtl_dump_file);
    }

  /* Compute dominance frontiers.  */

  dfs = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
  compute_dominance_frontiers (dfs, idom);

  if (rtl_dump_file)
    {
      dump_sbitmap_vector (rtl_dump_file, ";; Dominance Frontiers:",
			   "; Basic Block", dfs, n_basic_blocks);
      fflush (rtl_dump_file);
    }

  /* Compute register evaluations.  */

  ssa_max_reg_num = max_reg_num();
  nregs = ssa_max_reg_num - FIRST_PSEUDO_REGISTER;
  evals = sbitmap_vector_alloc (nregs, n_basic_blocks);
  find_evaluations (evals, nregs);

  /* Compute the iterated dominance frontier for each register.  */

  idfs = sbitmap_vector_alloc (nregs, n_basic_blocks);
  compute_iterated_dominance_frontiers (idfs, dfs, evals, nregs);

  if (rtl_dump_file)
    {
      dump_sbitmap_vector (rtl_dump_file, ";; Iterated Dominance Frontiers:",
			   "; Register-FIRST_PSEUDO_REGISTER", idfs, nregs);
      fflush (rtl_dump_file);
    }

  /* Insert the phi nodes.  */

  insert_phi_nodes (idfs, evals, nregs);

  /* Rename the registers to satisfy SSA.  */

  rename_registers (nregs, idom);

  /* All done!  Clean up and go home.  */

  sbitmap_vector_free (dfs);
  sbitmap_vector_free (evals);
  sbitmap_vector_free (idfs);
Alex Samuel committed
924
  in_ssa_form = 1;
Alex Samuel committed
925

Alex Samuel committed
926 927
  reg_scan (get_insns (), max_reg_num (), 1);
}
Alex Samuel committed
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120


/* REG is the representative temporary of its partition.  Add it to the
   set of nodes to be processed, if it hasn't been already.  Return the
   index of this register in the node set.  */

static inline int
ephi_add_node (reg, nodes, n_nodes)
     rtx reg, *nodes;
     int *n_nodes;
{
  int i;
  for (i = *n_nodes - 1; i >= 0; --i)
    if (REGNO (reg) == REGNO (nodes[i]))
      return i;

  nodes[i = (*n_nodes)++] = reg;
  return i;
}

/* Part one of the topological sort.  This is a forward (downward) search
   through the graph collecting a stack of nodes to process.  Assuming no
   cycles, the nodes at top of the stack when we are finished will have
   no other dependancies.  */

static int *
ephi_forward (t, visited, succ, tstack)
     int t;
     sbitmap visited;
     sbitmap *succ;
     int *tstack;
{
  int s;

  SET_BIT (visited, t);

  EXECUTE_IF_SET_IN_SBITMAP (succ[t], 0, s,
    {
      if (! TEST_BIT (visited, s))
        tstack = ephi_forward (s, visited, succ, tstack);
    });

  *tstack++ = t;
  return tstack;
}

/* Part two of the topological sort.  The is a backward search through
   a cycle in the graph, copying the data forward as we go.  */

static void
ephi_backward (t, visited, pred, nodes)
     int t;
     sbitmap visited, *pred;
     rtx *nodes;
{
  int p;

  SET_BIT (visited, t);

  EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
    {
      if (! TEST_BIT (visited, p))
	{
	  ephi_backward (p, visited, pred, nodes);
	  emit_move_insn (nodes[p], nodes[t]);
	}
    });
}

/* Part two of the topological sort.  Create the copy for a register
   and any cycle of which it is a member.  */

static void
ephi_create (t, visited, pred, succ, nodes)
     int t;
     sbitmap visited, *pred, *succ;
     rtx *nodes;
{
  rtx reg_u = NULL_RTX;
  int unvisited_predecessors = 0;
  int p;

  /* Iterate through the predecessor list looking for unvisited nodes.
     If there are any, we have a cycle, and must deal with that.  At 
     the same time, look for a visited predecessor.  If there is one,
     we won't need to create a temporary.  */

  EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
    {
      if (! TEST_BIT (visited, p))
	unvisited_predecessors = 1;
      else if (!reg_u)
	reg_u = nodes[p];
    });

  if (unvisited_predecessors)
    {
      /* We found a cycle.  Copy out one element of the ring (if necessary),
	 then traverse the ring copying as we go.  */

      if (!reg_u)
	{
	  reg_u = gen_reg_rtx (GET_MODE (nodes[t]));
	  emit_move_insn (reg_u, nodes[t]);
	}

      EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
	{
	  if (! TEST_BIT (visited, p))
	    {
	      ephi_backward (p, visited, pred, nodes);
	      emit_move_insn (nodes[p], reg_u);
	    }
	});
    }  
  else 
    {
      /* No cycle.  Just copy the value from a successor.  */

      int s;
      EXECUTE_IF_SET_IN_SBITMAP (succ[t], 0, s,
	{
	  SET_BIT (visited, t);
	  emit_move_insn (nodes[t], nodes[s]);
	  return;
	});
    }
}

/* Convert the edge to normal form.  */

static void
eliminate_phi (e, reg_partition)
     edge e;
     partition reg_partition;
{
  int n_nodes;
  sbitmap *pred, *succ;
  sbitmap visited;
  rtx *nodes;
  int *stack, *tstack;
  rtx insn;
  int i;

  /* Collect an upper bound on the number of registers needing processing.  */

  insn = e->dest->head;
  if (GET_CODE (insn) == CODE_LABEL)
    insn = next_nonnote_insn (insn);

  n_nodes = 0;
  while (PHI_NODE_P (insn))
    {
      insn = next_nonnote_insn (insn);
      n_nodes += 2;
    }

  if (n_nodes == 0)
    return;

  /* Build the auxilliary graph R(B). 

     The nodes of the graph are the members of the register partition
     present in Phi(B).  There is an edge from FIND(T0)->FIND(T1) for
     each T0 = PHI(...,T1,...), where T1 is for the edge from block C.  */

  nodes = (rtx *) alloca (n_nodes * sizeof(rtx));
  pred = sbitmap_vector_alloc (n_nodes, n_nodes);
  succ = sbitmap_vector_alloc (n_nodes, n_nodes);
  sbitmap_vector_zero (pred, n_nodes);
  sbitmap_vector_zero (succ, n_nodes);

  insn = e->dest->head;
  if (GET_CODE (insn) == CODE_LABEL)
    insn = next_nonnote_insn (insn);

  n_nodes = 0;
  for (; PHI_NODE_P (insn); insn = next_nonnote_insn (insn))
    {
      rtx* preg = phi_alternative (PATTERN (insn), e->src->index);
      rtx tgt = SET_DEST (PATTERN (insn));
      rtx reg;

      /* There may be no phi alternative corresponding to this edge.
	 This indicates that the phi variable is undefined along this
	 edge.  */
      if (preg == NULL)
	continue;
      reg = *preg;

      if (GET_CODE (reg) != REG || GET_CODE (tgt) != REG)
	abort();

Alex Samuel committed
1121 1122
      reg = regno_reg_rtx[partition_find (reg_partition, REGNO (reg))];
      tgt = regno_reg_rtx[partition_find (reg_partition, REGNO (tgt))];
Alex Samuel committed
1123 1124
      /* If the two registers are already in the same partition, 
	 nothing will need to be done.  */
Alex Samuel committed
1125
      if (reg != tgt)
Alex Samuel committed
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	{
	  int ireg, itgt;

	  ireg = ephi_add_node (reg, nodes, &n_nodes);
	  itgt = ephi_add_node (tgt, nodes, &n_nodes);

	  SET_BIT (pred[ireg], itgt);
	  SET_BIT (succ[itgt], ireg);
	}
    }

  if (n_nodes == 0)
    goto out;

  /* Begin a topological sort of the graph.  */

  visited = sbitmap_alloc (n_nodes);
  sbitmap_zero (visited);

  tstack = stack = (int *) alloca (n_nodes * sizeof (int));

  for (i = 0; i < n_nodes; ++i)
    if (! TEST_BIT (visited, i))
      tstack = ephi_forward (i, visited, succ, tstack);

  sbitmap_zero (visited);

  /* As we find a solution to the tsort, collect the implementation 
     insns in a sequence.  */
  start_sequence ();
  
  while (tstack != stack)
    {
      i = *--tstack;
      if (! TEST_BIT (visited, i))
	ephi_create (i, visited, pred, succ, nodes);
    }

  insn = gen_sequence ();
  end_sequence ();
  insert_insn_on_edge (insn, e);
  if (rtl_dump_file)
    fprintf (rtl_dump_file, "Emitting copy on edge (%d,%d)\n",
	     e->src->index, e->dest->index);

  sbitmap_free (visited);
out:
  sbitmap_vector_free (pred);
  sbitmap_vector_free (succ);
}


/* For basic block B, consider all phi insns which provide an
   alternative corresponding to an incoming abnormal critical edge.
   Place the phi alternative corresponding to that abnormal critical
   edge in the same register class as the destination of the set.  

   From Morgan, p. 178:

     For each abnormal critical edge (C, B), 
     if T0 = phi (T1, ..., Ti, ..., Tm) is a phi node in B, 
     and C is the ith predecessor of B, 
     then T0 and Ti must be equivalent. 

   Return non-zero iff any such cases were found for which the two
   regs were not already in the same class.  */

static int
make_regs_equivalent_over_bad_edges (bb, reg_partition)
     int bb;
     partition reg_partition;
{
  int changed = 0;
  basic_block b = BASIC_BLOCK (bb);
  rtx phi = b->head;

  /* Advance to the first phi node.  */
  if (GET_CODE (phi) == CODE_LABEL)
    phi = next_nonnote_insn (phi);

  /* Scan all the phi nodes.  */
  for (; 
       PHI_NODE_P (phi);
       phi = next_nonnote_insn (phi))
    {
      edge e;
      int tgt_regno;
      rtx set = PATTERN (phi);
      rtx tgt = SET_DEST (set);

      /* The set target is expected to be a pseudo.  */
      if (GET_CODE (tgt) != REG 
	  || REGNO (tgt) < FIRST_PSEUDO_REGISTER)
	abort ();
      tgt_regno = REGNO (tgt);

      /* Scan incoming abnormal critical edges.  */
      for (e = b->pred; e; e = e->pred_next)
	if (e->flags & (EDGE_ABNORMAL | EDGE_CRITICAL))
	  {
	    rtx *alt = phi_alternative (set, e->src->index);
	    int alt_regno;

	    /* If there is no alternative corresponding to this edge,
	       the value is undefined along the edge, so just go on.  */
	    if (alt == 0)
	      continue;

	    /* The phi alternative is expected to be a pseudo.  */
	    if (GET_CODE (*alt) != REG 
		|| REGNO (*alt) < FIRST_PSEUDO_REGISTER)
	      abort ();
	    alt_regno = REGNO (*alt);

	    /* If the set destination and the phi alternative aren't
	       already in the same class...  */
	    if (partition_find (reg_partition, tgt_regno) 
		!= partition_find (reg_partition, alt_regno))
	      {
		/* ... make them such.  */
		partition_union (reg_partition, 
				 tgt_regno, alt_regno);
		++changed;
	      }
	  }
    }

  return changed;
}


/* Consider phi insns in basic block BB pairwise.  If the set target
   of both isns are equivalent pseudos, make the corresponding phi
   alternatives in each phi corresponding equivalent.

   Return nonzero if any new register classes were unioned.  */

static int
make_equivalent_phi_alternatives_equivalent (bb, reg_partition)
     int bb;
     partition reg_partition;
{
  int changed = 0;
  rtx phi = BLOCK_HEAD (bb);
  basic_block b = BASIC_BLOCK (bb);

  /* Advance to the first phi node.  */
  if (GET_CODE (phi) == CODE_LABEL)
    phi = next_nonnote_insn (phi);

  /* Scan all the phi nodes.  */
  for (; 
       PHI_NODE_P (phi);
       phi = next_nonnote_insn (phi))
    {
      rtx set = PATTERN (phi);
      /* The regno of the destination of the set.  */
      int tgt_regno = REGNO (SET_DEST (PATTERN (phi)));

      rtx phi2 = next_nonnote_insn (phi);

      /* Scan all phi nodes following this one.  */
      for (;
	   PHI_NODE_P (phi2);
	   phi2 = next_nonnote_insn (phi2))
	{
	  rtx set2 = PATTERN (phi2);
	  /* The regno of the destination of the set.  */
	  int tgt2_regno = REGNO (SET_DEST (set2));
		  
	  /* Are the set destinations equivalent regs?  */
	  if (partition_find (reg_partition, tgt_regno) ==
	      partition_find (reg_partition, tgt2_regno))
	    {
	      edge e;
	      /* Scan over edges.  */
	      for (e = b->pred; e; e = e->pred_next)
		{
		  int pred_block = e->src->index;
		  /* Identify the phi altnernatives from both phi
		     nodes corresponding to this edge.  */
		  rtx *alt = phi_alternative (set, pred_block);
		  rtx *alt2 = phi_alternative (set2, pred_block);

		  /* If one of the phi nodes doesn't have a
		     corresponding alternative, just skip it.  */
		  if (alt == 0 || alt2 == 0)
		    continue;

		  /* Both alternatives should be pseudos.  */
		  if (GET_CODE (*alt) != REG
		      || REGNO (*alt) < FIRST_PSEUDO_REGISTER)
		    abort ();
		  if (GET_CODE (*alt2) != REG
		      || REGNO (*alt2) < FIRST_PSEUDO_REGISTER)
		    abort ();

		  /* If the altneratives aren't already in the same
		     class ... */
		  if (partition_find (reg_partition, REGNO (*alt)) 
		      != partition_find (reg_partition, REGNO (*alt2)))
		    {
		      /* ... make them so.  */
		      partition_union (reg_partition, 
				       REGNO (*alt), REGNO (*alt2));
		      ++changed;
		    }
		}
	    }
	}
    }

  return changed;
}

/* Compute a conservative partition of outstanding pseudo registers.
   See Morgan 7.3.1.  */

static partition
compute_conservative_reg_partition ()
{
  int bb;
  int changed = 0;

  /* We don't actually work with hard registers, but it's easier to
     carry them around anyway rather than constantly doing register
     number arithmetic.  */
  partition p = 
    partition_new (ssa_definition->num_elements + FIRST_PSEUDO_REGISTER);

  /* The first priority is to make sure registers that might have to
     be copied on abnormal critical edges are placed in the same
     partition.  This saves us from having to split abnormal critical
     edges.  */
  for (bb = n_basic_blocks; --bb >= 0; )
    changed += make_regs_equivalent_over_bad_edges (bb, p);
  
  /* Now we have to insure that corresponding arguments of phi nodes
     assigning to corresponding regs are equivalent.  Iterate until
     nothing changes.  */
  while (changed > 0)
    {
      changed = 0;
      for (bb = n_basic_blocks; --bb >= 0; )
	changed += make_equivalent_phi_alternatives_equivalent (bb, p);
    }

  return p;
}

Alex Samuel committed
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
/* The following functions compute a register partition that attempts
   to eliminate as many reg copies and phi node copies as possible by
   coalescing registers.   This is the strategy:

    1. As in the conservative case, the top priority is to coalesce
       registers that otherwise would cause copies to be placed on
       abnormal critical edges (which isn't possible).

    2. Figure out which regs are involved (in the LHS or RHS) of
       copies and phi nodes.  Compute conflicts among these regs.  

    3. Walk around the instruction stream, placing two regs in the
       same class of the partition if one appears on the LHS and the
       other on the RHS of a copy or phi node and the two regs don't
       conflict.  The conflict information of course needs to be
       updated.  

    4. If anything has changed, there may be new opportunities to
       coalesce regs, so go back to 2.
*/

/* If REG1 and REG2 don't conflict in CONFLICTS, place them in the
   same class of partition P, if they aren't already.  Update
   CONFLICTS appropriately.  

   Returns one if REG1 and REG2 were placed in the same class but were
   not previously; zero otherwise.  

   See Morgan figure 11.15.  */

static int 
coalesce_if_unconflicting (p, conflicts, reg1, reg2)
     partition p;
     conflict_graph conflicts;
     int reg1;
     int reg2;
{
  int reg;

  /* Don't mess with hard regs.  */
  if (reg1 < FIRST_PSEUDO_REGISTER || reg2 < FIRST_PSEUDO_REGISTER)
    return 0;

  /* Find the canonical regs for the classes containing REG1 and
     REG2.  */
  reg1 = partition_find (p, reg1);
  reg2 = partition_find (p, reg2);
  
  /* If they're already in the same class, there's nothing to do.  */
  if (reg1 == reg2)
    return 0;

  /* If the regs conflict, our hands are tied.  */
  if (conflict_graph_conflict_p (conflicts, reg1, reg2))
    return 0;

  /* We're good to go.  Put the regs in the same partition.  */
  partition_union (p, reg1, reg2);

  /* Find the new canonical reg for the merged class.  */
  reg = partition_find (p, reg1);
  
  /* Merge conflicts from the two previous classes.  */
  conflict_graph_merge_regs (conflicts, reg, reg1);
  conflict_graph_merge_regs (conflicts, reg, reg2);

  return 1;
}

/* For each register copy insn in basic block BB, place the LHS and
   RHS regs in the same class in partition P if they do not conflict
   according to CONFLICTS.

   Returns the number of changes that were made to P.

   See Morgan figure 11.14.  */

static int
coalesce_regs_in_copies (bb, p, conflicts)
1455
     basic_block bb;
Alex Samuel committed
1456 1457 1458 1459 1460
     partition p;
     conflict_graph conflicts;
{
  int changed = 0;
  rtx insn;
1461
  rtx end = bb->end;
Alex Samuel committed
1462 1463

  /* Scan the instruction stream of the block.  */
1464
  for (insn = bb->head; insn != end; insn = NEXT_INSN (insn))
Alex Samuel committed
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
    {
      rtx pattern;
      rtx src;
      rtx dest;

      /* If this isn't a set insn, go to the next insn.  */
      if (GET_CODE (insn) != INSN)
	continue;
      pattern = PATTERN (insn);
      if (GET_CODE (pattern) != SET)
	continue;

      src = SET_SRC (pattern);
      dest = SET_DEST (pattern);

      /* If src or dest are subregs, find the underlying reg.  */
      while (GET_CODE (src) == SUBREG
	     && SUBREG_WORD (src) != 0)
	src = SUBREG_REG (src);
      while (GET_CODE (dest) == SUBREG
	     && SUBREG_WORD (dest) != 0)
	dest = SUBREG_REG (dest);

      /* We're only looking for copies.  */
      if (GET_CODE (src) != REG || GET_CODE (dest) != REG)
	continue;

      /* Coalesce only if the reg modes are the same.  As long as
	 each reg's rtx is unique, it can have only one mode, so two
	 pseudos of different modes can't be coalesced into one.  

         FIXME: We can probably get around this by inserting SUBREGs
         where appropriate, but for now we don't bother.  */
      if (GET_MODE (src) != GET_MODE (dest))
	continue;

      /* Found a copy; see if we can use the same reg for both the
	 source and destination (and thus eliminate the copy,
	 ultimately).  */
      changed += coalesce_if_unconflicting (p, conflicts, 
					    REGNO (src), REGNO (dest));
    }

  return changed;
}


struct phi_coalesce_context
{
  partition p;
  conflict_graph conflicts;
  int changed;
};

/* Callback function for for_each_successor_phi.  If the set
   destination and the phi alternative regs do not conflict, place
   them in the same paritition class.  DATA is a pointer to a
   phi_coalesce_context struct.  */

static int
coalesce_reg_in_phi (insn, dest_regno, src_regno, data)
     rtx insn ATTRIBUTE_UNUSED;
     int dest_regno;
     int src_regno;
     void *data;
{
  struct phi_coalesce_context *context = 
    (struct phi_coalesce_context *) data;
  
  /* Attempt to use the same reg, if they don't conflict.  */
  context->changed 
    += coalesce_if_unconflicting (context->p, context->conflicts, 
				  dest_regno, src_regno);
  return 0;
}

/* For each alternative in a phi function corresponding to basic block
   BB (in phi nodes in successor block to BB), place the reg in the
   phi alternative and the reg to which the phi value is set into the
   same class in partition P, if allowed by CONFLICTS.  

   Return the number of changes that were made to P.
   
   See Morgan figure 11.14.  */

static int
coalesce_regs_in_successor_phi_nodes (bb, p, conflicts)
1552
     basic_block bb;
Alex Samuel committed
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
     partition p;
     conflict_graph conflicts;
{
  struct phi_coalesce_context context;
  context.p = p;
  context.conflicts = conflicts;
  context.changed = 0;

  for_each_successor_phi (bb, &coalesce_reg_in_phi, &context);

  return context.changed;
}

/* Compute and return a partition of pseudos.  Where possible,
   non-conflicting pseudos are placed in the same class.  

   The caller is responsible for deallocating the returned partition.  */

static partition
compute_coalesced_reg_partition ()
{
  int bb;
  int changed = 0;

  /* We don't actually work with hard registers, but it's easier to
     carry them around anyway rather than constantly doing register
     number arithmetic.  */
  partition p = 
    partition_new (ssa_definition->num_elements + FIRST_PSEUDO_REGISTER);

  /* The first priority is to make sure registers that might have to
     be copied on abnormal critical edges are placed in the same
     partition.  This saves us from having to split abnormal critical
     edges (which can't be done).  */
  for (bb = n_basic_blocks; --bb >= 0; )
    make_regs_equivalent_over_bad_edges (bb, p);

  do
    {
      regset_head phi_set;
      conflict_graph conflicts;

      changed = 0;

      /* Build the set of registers involved in phi nodes, either as
	 arguments to the phi function or as the target of a set.  */
      INITIALIZE_REG_SET (phi_set);
      mark_phi_and_copy_regs (&phi_set);

      /* Compute conflicts.  */
      conflicts = conflict_graph_compute (&phi_set, p);

      /* FIXME: Better would be to process most frequently executed
	 blocks first, so that most frequently executed copies would
	 be more likely to be removed by register coalescing.  But any
	 order will generate correct, if non-optimal, results.  */
      for (bb = n_basic_blocks; --bb >= 0; )
	{
1611 1612 1613 1614
	  basic_block block = BASIC_BLOCK (bb);
	  changed += coalesce_regs_in_copies (block, p, conflicts);
	  changed += 
	    coalesce_regs_in_successor_phi_nodes (block, p, conflicts);
Alex Samuel committed
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
	}

      conflict_graph_delete (conflicts);
    }
  while (changed > 0);

  return p;
}

/* Mark the regs in a phi node.  PTR is a phi expression or one of its
   components (a REG or a CONST_INT).  DATA is a reg set in which to
   set all regs.  Called from for_each_rtx.  */

static int
mark_reg_in_phi (ptr, data)
     rtx *ptr;
     void *data;
{
  rtx expr = *ptr;
  regset set = (regset) data;

  switch (GET_CODE (expr))
    {
    case REG:
      SET_REGNO_REG_SET (set, REGNO (expr));
      /* Fall through.  */
    case CONST_INT:
    case PHI:
      return 0;
    default:
      abort ();
    }
}

/* Mark in PHI_SET all pseudos that are used in a phi node -- either
   set from a phi expression, or used as an argument in one.  Also
   mark regs that are the source or target of a reg copy.  Uses
   ssa_definition.  */

static void
mark_phi_and_copy_regs (phi_set)
     regset phi_set;
{
  int reg;

  /* Scan the definitions of all regs.  */
  for (reg = VARRAY_SIZE (ssa_definition); 
       --reg >= FIRST_PSEUDO_REGISTER; 
       ) 
    {
      rtx insn = VARRAY_RTX (ssa_definition, reg);
      rtx pattern;
      rtx src;

      if (insn == NULL)
	continue;
      pattern = PATTERN (insn);
      /* Sometimes we get PARALLEL insns.  These aren't phi nodes or
	 copies.  */
      if (GET_CODE (pattern) != SET)
	continue;
      src = SET_SRC (pattern);

      if (GET_CODE (src) == REG)
	{
	  /* It's a reg copy.  */
	  SET_REGNO_REG_SET (phi_set, reg);
	  SET_REGNO_REG_SET (phi_set, REGNO (src));
	}
      else if (GET_CODE (src) == PHI)
	{
	  /* It's a phi node.  Mark the reg being set.  */
	  SET_REGNO_REG_SET (phi_set, reg);
	  /* Mark the regs used in the phi function.  */
	  for_each_rtx (&src, mark_reg_in_phi, phi_set);
	}
      /* ... else nothing to do.  */
    }
}
Alex Samuel committed
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731

/* Rename regs in insn PTR that are equivalent.  DATA is the register
   partition which specifies equivalences.  */

static int
rename_equivalent_regs_in_insn (ptr, data)
     rtx *ptr;
     void* data;
{
  rtx x = *ptr;
  partition reg_partition = (partition) data;

  if (x == NULL_RTX)
    return 0;

  switch (GET_CODE (x))
    {
    case SET:
      {
	rtx *destp = &SET_DEST (x);
	rtx dest = SET_DEST (x);

	/* Subregs at word 0 are interesting.  Subregs at word != 0 are
	   presumed to be part of a contiguous multi-word set sequence.  */
	while (GET_CODE (dest) == SUBREG
	       && SUBREG_WORD (dest) == 0)
	  {
	    destp = &SUBREG_REG (dest);
	    dest = SUBREG_REG (dest);
	  }

	if (GET_CODE (dest) == REG
	    && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
	  {
	    /* Got a pseudo; replace it.  */
	    int regno = REGNO (dest);
	    int new_regno = partition_find (reg_partition, regno);
	    if (regno != new_regno)
Alex Samuel committed
1732
	      *destp = regno_reg_rtx[new_regno];
Alex Samuel committed
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811

	    for_each_rtx (&SET_SRC (x), 
			  rename_equivalent_regs_in_insn, 
			  data);
	    return -1;
	  }

	/* Otherwise, this was not an interesting destination.  Continue
	   on, marking uses as normal.  */
	return 0;
      }

    case REG:
      if (REGNO (x) >= FIRST_PSEUDO_REGISTER)
	{
	  int regno = REGNO (x);
	  int new_regno = partition_find (reg_partition, regno);
	  if (regno != new_regno)
	    {
	      rtx new_reg = regno_reg_rtx[new_regno];
	      if (GET_MODE (x) != GET_MODE (new_reg))
		abort ();
	      *ptr = new_reg;
	    }
	}
      return -1;

    case PHI:
      /* No need to rename the phi nodes.  We'll check equivalence
	 when inserting copies.  */
      return -1;

    default:
      /* Anything else, continue traversing.  */
      return 0;
    }
}

/* Rename regs that are equivalent in REG_PARTITION.  */

static void
rename_equivalent_regs (reg_partition)
     partition reg_partition;
{
  int bb;

  for (bb = n_basic_blocks; --bb >= 0; )
    {
      basic_block b = BASIC_BLOCK (bb);
      rtx next = b->head;
      rtx last = b->end;
      rtx insn;

      do
	{
	  insn = next;
	  if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
	    {
	      for_each_rtx (&PATTERN (insn), 
			    rename_equivalent_regs_in_insn, 
			    reg_partition);
	      for_each_rtx (&REG_NOTES (insn), 
			    rename_equivalent_regs_in_insn, 
			    reg_partition);
	    }

	  next = NEXT_INSN (insn);
	}
      while (insn != last);
    }
}

/* The main entry point for moving from SSA.  */

void
convert_from_ssa()
{
  int bb;
  partition reg_partition;
Alex Samuel committed
1812 1813
  rtx insns = get_insns ();
    
Richard Henderson committed
1814
  /* Need global_live_at_{start,end} up to date.  */
1815
  life_analysis (insns, NULL, PROP_KILL_DEAD_CODE | PROP_SCAN_DEAD_CODE);
Alex Samuel committed
1816 1817 1818 1819 1820 1821 1822 1823

  /* Figure out which regs in copies and phi nodes don't conflict and
     therefore can be coalesced.  */
  if (conservative_reg_partition)
    reg_partition = compute_conservative_reg_partition ();
  else
    reg_partition = compute_coalesced_reg_partition ();

Alex Samuel committed
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
  rename_equivalent_regs (reg_partition);

  /* Eliminate the PHI nodes.  */
  for (bb = n_basic_blocks; --bb >= 0; )
    {
      basic_block b = BASIC_BLOCK (bb);
      edge e;

      for (e = b->pred; e; e = e->pred_next)
	if (e->src != ENTRY_BLOCK_PTR)
	  eliminate_phi (e, reg_partition);
    }

  partition_delete (reg_partition);

  /* Actually delete the PHI nodes.  */
  for (bb = n_basic_blocks; --bb >= 0; )
    {
      rtx insn = BLOCK_HEAD (bb);
      int start = (GET_CODE (insn) != CODE_LABEL);

      if (! start)
	insn = next_nonnote_insn (insn);
      while (PHI_NODE_P (insn))
	{
Alex Samuel committed
1849 1850 1851 1852 1853
	  /* If a phi node is the last insn in the block, there must
	     have been nothing else.  Set the block end to the block
	     head.  */
	  if (insn == BLOCK_END (bb))
	    BLOCK_END (bb) = BLOCK_HEAD (bb);
Alex Samuel committed
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	  insn = delete_insn (insn);
	  if (GET_CODE (insn) == NOTE)
	    insn = next_nonnote_insn (insn);
	}
      if (start)
	BLOCK_HEAD (bb) = insn;
    }

  /* Commit all the copy nodes needed to convert out of SSA form.  */
  commit_edge_insertions ();

Alex Samuel committed
1865 1866
  in_ssa_form = 0;

Alex Samuel committed
1867 1868
  count_or_remove_death_notes (NULL, 1);
}
Alex Samuel committed
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880

/* Scan phi nodes in successors to BB.  For each such phi node that
   has a phi alternative value corresponding to BB, invoke FN.  FN
   is passed the entire phi node insn, the regno of the set
   destination, the regno of the phi argument corresponding to BB,
   and DATA.

   If FN ever returns non-zero, stops immediately and returns this
   value.  Otherwise, returns zero.  */

int
for_each_successor_phi (bb, fn, data)
1881
     basic_block bb;
Alex Samuel committed
1882 1883 1884 1885 1886
     successor_phi_fn fn;
     void *data;
{
  edge e;
  
1887
  if (bb == EXIT_BLOCK_PTR)
Alex Samuel committed
1888 1889 1890
    return 0;

  /* Scan outgoing edges.  */
1891
  for (e = bb->succ; e != NULL; e = e->succ_next)
Alex Samuel committed
1892 1893 1894 1895
    {
      rtx insn;

      basic_block successor = e->dest;
1896 1897
      if (successor == ENTRY_BLOCK_PTR 
	  || successor == EXIT_BLOCK_PTR)
Alex Samuel committed
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
	continue;

      /* Advance to the first non-label insn of the successor block.  */
      insn = successor->head;
      while (insn != NULL 
	     && (GET_CODE (insn) == CODE_LABEL
		 || GET_CODE (insn) == NOTE))
	insn = NEXT_INSN (insn);

      if (insn == NULL)
	continue;

      /* Scan phi nodes in the successor.  */
      for ( ; PHI_NODE_P (insn); insn = NEXT_INSN (insn))
	{
	  int result;
	  rtx phi_set = PATTERN (insn);
1915
	  rtx *alternative = phi_alternative (phi_set, bb->index);
Alex Samuel committed
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
	  rtx phi_src;
	  
	  /* This phi function may not have an alternative
	     corresponding to the incoming edge, indicating the
	     assigned variable is not defined along the edge.  */
	  if (alternative == NULL)
	    continue;
	  phi_src = *alternative;

	  /* Invoke the callback.  */
	  result = (*fn) (insn, REGNO (SET_DEST (phi_set)), 
			  REGNO (phi_src), data);

	  /* Terminate if requested.  */
	  if (result != 0)
	    return result;
	}
    }

  return 0;
}