regs.h 12.3 KB
Newer Older
Richard Kenner committed
1
/* Define per-register tables for data flow info and register allocation.
Jeff Law committed
2
   Copyright (C) 1987, 1993, 1994, 1995, 1996, 1997, 1998,
3 4
   1999, 2000, 2003, 2004, 2005, 2006, 2007, 2008 Free Software
   Foundation, Inc.
Richard Kenner committed
5

6
This file is part of GCC.
Richard Kenner committed
7

8 9
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11
version.
Richard Kenner committed
12

13 14 15 16
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
Richard Kenner committed
17 18

You should have received a copy of the GNU General Public License
19 20
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
Richard Kenner committed
21

22 23
#ifndef GCC_REGS_H
#define GCC_REGS_H
Richard Kenner committed
24

25
#include "varray.h"
26
#include "obstack.h"
27 28
#include "hard-reg-set.h"
#include "basic-block.h"
Richard Kenner committed
29 30 31

#define REG_BYTES(R) mode_size[(int) GET_MODE (R)]

32 33
/* When you only have the mode of a pseudo register before it has a hard
   register chosen for it, this reports the size of each hard register
34 35
   a pseudo in such a mode would get allocated to.  A target may
   override this.  */
36 37 38 39

#ifndef REGMODE_NATURAL_SIZE
#define REGMODE_NATURAL_SIZE(MODE)	UNITS_PER_WORD
#endif
Richard Kenner committed
40

Jeff Law committed
41 42 43 44
#ifndef SMALL_REGISTER_CLASSES
#define SMALL_REGISTER_CLASSES 0
#endif

Richard Kenner committed
45 46 47 48
/* Maximum register number used in this function, plus one.  */

extern int max_regno;

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/* REG_N_REFS and REG_N_SETS are initialized by a call to
   regstat_init_n_sets_and_refs from the current values of
   DF_REG_DEF_COUNT and DF_REG_USE_COUNT.  REG_N_REFS and REG_N_SETS
   should only be used if a pass need to change these values in some
   magical way or or the pass needs to have accurate values for these
   and is not using incremental df scanning.

   At the end of a pass that uses REG_N_REFS and REG_N_SETS, a call
   should be made to regstat_free_n_sets_and_refs.  

   Local alloc seems to play pretty loose with these values.
   REG_N_REFS is set to 0 if the register is used in an asm.
   Furthermore, local_alloc calls regclass to hack both REG_N_REFS and
   REG_N_SETS for three address insns.  Other passes seem to have
   other special values.  */

65 66


67 68 69 70 71
/* Structure to hold values for REG_N_SETS (i) and REG_N_REFS (i). */

struct regstat_n_sets_and_refs_t
{
  int sets;			/* # of times (REG n) is set */
72
  int refs;			/* # of times (REG n) is used or set */
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
};

extern struct regstat_n_sets_and_refs_t *regstat_n_sets_and_refs;

/* Indexed by n, gives number of times (REG n) is used or set.  */
static inline int
REG_N_REFS(int regno)
{
  return regstat_n_sets_and_refs[regno].refs;
}

/* Indexed by n, gives number of times (REG n) is used or set.  */
#define SET_REG_N_REFS(N,V) (regstat_n_sets_and_refs[N].refs = V)
#define INC_REG_N_REFS(N,V) (regstat_n_sets_and_refs[N].refs += V)

/* Indexed by n, gives number of times (REG n) is set.  */
static inline int
REG_N_SETS (int regno)
{
  return regstat_n_sets_and_refs[regno].sets;
}

/* Indexed by n, gives number of times (REG n) is set.  */
#define SET_REG_N_SETS(N,V) (regstat_n_sets_and_refs[N].sets = V)
#define INC_REG_N_SETS(N,V) (regstat_n_sets_and_refs[N].sets += V)


/* Functions defined in reg-stat.c.  */
extern void regstat_init_n_sets_and_refs (void);
extern void regstat_free_n_sets_and_refs (void);
extern void regstat_compute_ri (void);
extern void regstat_free_ri (void);
extern bitmap regstat_get_setjmp_crosses (void);
extern void regstat_compute_calls_crossed (void);
extern void regstat_free_calls_crossed (void);


/* Register information indexed by register number.  This structure is
   initialized by calling regstat_compute_ri and is destroyed by
   calling regstat_free_ri.  */
struct reg_info_t
{
115
  int freq;			/* # estimated frequency (REG n) is used or set */
116 117 118
  int deaths;			/* # of times (REG n) dies */
  int live_length;		/* # of instructions (REG n) is live */
  int calls_crossed;		/* # of calls (REG n) is live across */
119
  int freq_calls_crossed;	/* # estimated frequency (REG n) crosses call */
120
  int throw_calls_crossed;	/* # of calls that may throw (REG n) is live across */
121
  int basic_block;		/* # of basic blocks (REG n) is used in */
122
};
123

124
extern struct reg_info_t *reg_info_p;
125

126 127
/* The number allocated elements of reg_info_p.  */
extern size_t reg_info_p_size;
Richard Kenner committed
128

129 130
/* Estimate frequency of references to register N.  */

131
#define REG_FREQ(N) (reg_info_p[N].freq)
132

133
/* The weights for each insn varies from 0 to REG_FREQ_BASE.
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
   This constant does not need to be high, as in infrequently executed
   regions we want to count instructions equivalently to optimize for
   size instead of speed.  */
#define REG_FREQ_MAX 1000

/* Compute register frequency from the BB frequency.  When optimizing for size,
   or profile driven feedback is available and the function is never executed,
   frequency is always equivalent.  Otherwise rescale the basic block
   frequency.  */
#define REG_FREQ_FROM_BB(bb) (optimize_size				      \
			      || (flag_branch_probabilities		      \
				  && !ENTRY_BLOCK_PTR->count)		      \
			      ? REG_FREQ_MAX				      \
			      : ((bb)->frequency * REG_FREQ_MAX / BB_FREQ_MAX)\
			      ? ((bb)->frequency * REG_FREQ_MAX / BB_FREQ_MAX)\
			      : 1)

Richard Kenner committed
151 152 153 154 155 156
/* Indexed by N, gives number of insns in which register N dies.
   Note that if register N is live around loops, it can die
   in transitions between basic blocks, and that is not counted here.
   So this is only a reliable indicator of how many regions of life there are
   for registers that are contained in one basic block.  */

157
#define REG_N_DEATHS(N) (reg_info_p[N].deaths)
Richard Kenner committed
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

/* Get the number of consecutive words required to hold pseudo-reg N.  */

#define PSEUDO_REGNO_SIZE(N) \
  ((GET_MODE_SIZE (PSEUDO_REGNO_MODE (N)) + UNITS_PER_WORD - 1)		\
   / UNITS_PER_WORD)

/* Get the number of bytes required to hold pseudo-reg N.  */

#define PSEUDO_REGNO_BYTES(N) \
  GET_MODE_SIZE (PSEUDO_REGNO_MODE (N))

/* Get the machine mode of pseudo-reg N.  */

#define PSEUDO_REGNO_MODE(N) GET_MODE (regno_reg_rtx[N])

/* Indexed by N, gives number of CALL_INSNS across which (REG n) is live.  */

176
#define REG_N_CALLS_CROSSED(N)  (reg_info_p[N].calls_crossed)
177
#define REG_FREQ_CALLS_CROSSED(N)  (reg_info_p[N].freq_calls_crossed)
Richard Kenner committed
178

179 180 181
/* Indexed by N, gives number of CALL_INSNS that may throw, across which
   (REG n) is live.  */

182
#define REG_N_THROWING_CALLS_CROSSED(N) (reg_info_p[N].throw_calls_crossed)
183

184 185 186 187 188 189
/* Total number of instructions at which (REG n) is live.  The larger
   this is, the less priority (REG n) gets for allocation in a hard
   register (in global-alloc).  This is set in df-problems.c whenever
   register info is requested and remains valid for the rest of the
   compilation of the function; it is used to control register
   allocation.
Richard Kenner committed
190 191 192 193 194 195 196

   local-alloc.c may alter this number to change the priority.

   Negative values are special.
   -1 is used to mark a pseudo reg which has a constant or memory equivalent
   and is used infrequently enough that it should not get a hard register.
   -2 is used to mark a pseudo reg for a parameter, when a frame pointer
197
   is not required.  global.c makes an allocno for this but does
Richard Kenner committed
198 199
   not try to assign a hard register to it.  */

200 201 202 203 204 205 206 207 208 209 210 211 212
#define REG_LIVE_LENGTH(N)  (reg_info_p[N].live_length)

/* Indexed by n, gives number of basic block that  (REG n) is used in.
   If the value is REG_BLOCK_GLOBAL (-1),
   it means (REG n) is used in more than one basic block.
   REG_BLOCK_UNKNOWN (0) means it hasn't been seen yet so we don't know.
   This information remains valid for the rest of the compilation
   of the current function; it is used to control register allocation.  */

#define REG_BLOCK_UNKNOWN 0
#define REG_BLOCK_GLOBAL -1

#define REG_BASIC_BLOCK(N) (reg_info_p[N].basic_block)
Richard Kenner committed
213 214

/* Vector of substitutions of register numbers,
215 216 217 218
   used to map pseudo regs into hardware regs.

   This can't be folded into reg_n_info without changing all of the
   machine dependent directories, since the reload functions
219
   in the machine dependent files access it.  */
Richard Kenner committed
220 221 222

extern short *reg_renumber;

223 224 225 226
/* Vector indexed by machine mode saying whether there are regs of that mode.  */

extern bool have_regs_of_mode [MAX_MACHINE_MODE];

Doug Evans committed
227 228 229 230 231 232 233
/* For each hard register, the widest mode object that it can contain.
   This will be a MODE_INT mode if the register can hold integers.  Otherwise
   it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
   register.  */

extern enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];

Richard Kenner committed
234 235 236 237 238 239 240 241 242 243 244 245
/* Flag set by local-alloc or global-alloc if they decide to allocate
   something in a call-clobbered register.  */

extern int caller_save_needed;

/* Predicate to decide whether to give a hard reg to a pseudo which
   is referenced REFS times and would need to be saved and restored
   around a call CALLS times.  */

#ifndef CALLER_SAVE_PROFITABLE
#define CALLER_SAVE_PROFITABLE(REFS, CALLS)  (4 * (CALLS) < (REFS))
#endif
246

247 248 249 250 251 252
/* On most machines a register class is likely to be spilled if it
   only has one register.  */
#ifndef CLASS_LIKELY_SPILLED_P
#define CLASS_LIKELY_SPILLED_P(CLASS) (reg_class_size[(int) (CLASS)] == 1)
#endif

253 254
/* Select a register mode required for caller save of hard regno REGNO.  */
#ifndef HARD_REGNO_CALLER_SAVE_MODE
255
#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
256
  choose_hard_reg_mode (REGNO, NREGS, false)
257 258
#endif

259
/* Registers that get partially clobbered by a call in a given mode.
260 261 262 263 264
   These must not be call used registers.  */
#ifndef HARD_REGNO_CALL_PART_CLOBBERED
#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) 0
#endif

Vladimir Makarov committed
265 266 267 268 269 270 271 272 273 274
/* 1 if the corresponding class does contain register of given
   mode.  */
extern char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];

typedef unsigned short move_table[N_REG_CLASSES];

/* Maximum cost of moving from a register in one class to a register
   in another class.  */
extern move_table *move_cost[MAX_MACHINE_MODE];

275 276
/* Specify number of hard registers given machine mode occupy.  */
extern unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
277

Vladimir Makarov committed
278 279 280 281 282 283 284 285
/* Similar, but here we don't have to move if the first index is a
   subset of the second so in that case the cost is zero.  */
extern move_table *may_move_in_cost[MAX_MACHINE_MODE];

/* Similar, but here we don't have to move if the first index is a
   superset of the second so in that case the cost is zero.  */
extern move_table *may_move_out_cost[MAX_MACHINE_MODE];

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
/* Return an exclusive upper bound on the registers occupied by hard
   register (reg:MODE REGNO).  */

static inline unsigned int
end_hard_regno (enum machine_mode mode, unsigned int regno)
{
  return regno + hard_regno_nregs[regno][(int) mode];
}

/* Likewise for hard register X.  */

#define END_HARD_REGNO(X) end_hard_regno (GET_MODE (X), REGNO (X))

/* Likewise for hard or pseudo register X.  */

#define END_REGNO(X) (HARD_REGISTER_P (X) ? END_HARD_REGNO (X) : REGNO (X) + 1)

/* Add to REGS all the registers required to store a value of mode MODE
   in register REGNO.  */

static inline void
add_to_hard_reg_set (HARD_REG_SET *regs, enum machine_mode mode,
		     unsigned int regno)
{
  unsigned int end_regno;

  end_regno = end_hard_regno (mode, regno);
  do
    SET_HARD_REG_BIT (*regs, regno);
  while (++regno < end_regno);
}

/* Likewise, but remove the registers.  */

static inline void
remove_from_hard_reg_set (HARD_REG_SET *regs, enum machine_mode mode,
			  unsigned int regno)
{
  unsigned int end_regno;

  end_regno = end_hard_regno (mode, regno);
  do
    CLEAR_HARD_REG_BIT (*regs, regno);
  while (++regno < end_regno);
}

/* Return true if REGS contains the whole of (reg:MODE REGNO).  */

static inline bool
in_hard_reg_set_p (const HARD_REG_SET regs, enum machine_mode mode,
		   unsigned int regno)
{
  unsigned int end_regno;

  if (!TEST_HARD_REG_BIT (regs, regno))
    return false;

  end_regno = end_hard_regno (mode, regno);
  while (++regno < end_regno)
    if (!TEST_HARD_REG_BIT (regs, regno))
      return false;

  return true;
}

/* Return true if (reg:MODE REGNO) includes an element of REGS.  */

static inline bool
overlaps_hard_reg_set_p (const HARD_REG_SET regs, enum machine_mode mode,
			 unsigned int regno)
{
  unsigned int end_regno;

  if (TEST_HARD_REG_BIT (regs, regno))
    return true;

  end_regno = end_hard_regno (mode, regno);
  while (++regno < end_regno)
    if (TEST_HARD_REG_BIT (regs, regno))
      return true;

  return false;
}

370
#endif /* GCC_REGS_H */